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COEFFICIENT IDENTIFICATION IN PARABOLIC EQUATIONS WITH FINAL DATA

FAOUZI TRIKI

Abstract. In this work we determine the second-order coefficient in a parabolic équation from the knowl-
edge of a single final data. Under assumptions on the concentration of eigenvalues of the associated elliptic
operator, and the initial state, we show the uniqueness of solution, and we derive a Lipschitz stability
estimate of the inversion when the final time is large enough. The Lipschitz stability constant grows expo-
nentially with respect to the final time, which makes the inversion ill-posed. The proof of stability estimate
is based on a spectral decomposition of the solution to the parabolic equation in terms of the eigenfunctions
of the associated elliptic operator, and an ad hoc method to solve a nonlinear stationary transport equation
that is itself of interest.
Résumé : Dans ce travail nous déterminons le coefficient du terme de second ordre d’une équation
parabolique à partir de la connaissance d’une seule donnée finale. Sous des hypothèses sur la concentration
des valeurs propres de l’opérateur associé, nous établirons une estimation de stabilité de type Lipschitz
de l’inversion quand le temps final est assez grand. La constante de Lipschitz croît exponentiellement en
fonction du temps final, ce qui indique que le problème inverse est mal-posé. La preuve de l’estimation de
stabilité est basée sur la décomposition spectrale de la solution de l’équation parabolique, et une méthode
originale pour résoudre une équation de transport nonlinéaire qui est intéressante en soi.

1. Introduction and main results

Let Ω be a C3 bounded domain of Rn, n = 2, 3, with a boundary Γ. Let ν(x) be the outward unitary
normal vector at x ∈ Γ. For a+ > 1, a fixed constant, and a0 ∈ C1(Γ), a given function, set

A =
{
a ∈ C1(Ω) : 1 ≤ a(x); a|Γ = a0; ‖a‖C1(Ω) ≤ a+

}
.

Consider, for u0 ∈ L2(Ω) and a ∈ A, the following initial-boundary value problem ut − div(a∇u) = 0 in Ω×]0,+∞[,
u = 0 on Ω×]0,+∞[,
u = u0 in Ω× {0}.

(1)

The parabolic system (1) is used to describe a wide variety of time-dependent phenomena, including heat
conduction, particle diffusion, and pricing of derivative investment instruments. It is well known that the
system (1) has a unique solution u(x, t) ∈ C0 ([0,+∞[;L2(Ω)

)
∩ C0 (]0,+∞[;H2(Ω) ∩H1

0 (Ω)
)
[11].

The goal of this work is to study the following inverse problem (P): Given u(x, T ) ∈ H2(Ω) for T > 0, to
find a ∈ A such that u is a solution to the system (1).

This inverse problem finds applications in multi-wave imaging and geophysics [3,5,14,22]. It can be seen
as an extension to a non-stationary setting of a well known inverse elliptic problem with interior data, for
which uniqueness and stability have been already derived [1, 4, 10]. In such an elliptic context, it can be
seen that boundary information on the coefficient a is needed, as well as a unique continuation property of
the gradient of solutions. Notice that in dimension one a solution of an inverse problem similar to (P) was
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given under some special assumptions on the boundary data [15]. The inverse problem (P) was recently
cited among few other open inverse problems in [2]. Reviews for results concerning other inverse problems
for parabolic equations using final datum can be found in the following references [6, 11,12,16,24].

In this paper we show that the inverse problem (P) has a unique solution, and we derive stability esti-
mates for the inversion under some assumptions on the point spectrum distribution of the associated elliptic
operator, the initial state u0, and the observation time T .

It is well known that the unbounded operator La : L2(Ω)→ L2(Ω), defined by
La := −div(a∇·),

with a Dirichlet boundary condition on Γ, is self-adjoint, strictly positive operator with a compact resol-
vent [18]. Its domain is given by D(La) = H1

0 (Ω) ∩H2(Ω).

The uniqueness and stability estimate presented here depend in an intricate way on the distribution of
the eigenvalues of La. We denote by λk, k ∈ N∗, the eigenvalues of La arranged in a non-decreasing order and
repeated according to multiplicity. We also introduce the strictly ordered eigenvalues λ̂k, k ∈ N∗. Notice
that the first two values of both sequences coincide.

Definition 1.1. We say that La satisfies the property (G) with constants γ ≥ 0 and δ > 0 if its eigenvalues
λk, k ∈ N∗, verify the following gap condition:

λ̂k+1 − λ̂k ≥ δλ̂−γk , k ∈ N∗.(2)

Remark 1.1. It is well known that under a non-trapping condition the operator La, subject to a Dirichlet
boundary condition satisfies the property (G) with γ = 0, and δ > 0 is a constant depending only on a and
Ω [8,9]. The property (G) is also somehow related to the boundary observability problem for Shrödinger and
wave equations in control theory [8,25].

The obtained stability estimate require that the property (G) be satisfied by the operator La. Therefore
for γ ≥ 0, and δ > 0 some fixed constants, we introduce the set

A0 = {a ∈ A : La satisfies property (G) with fixed constants γ ≥ 0 and δ > 0} .
Let dΩ(x) be the distance of x ∈ Ω to the boundary Γ. For v ∈ L2(Ω), we further denote v+ = max(v, 0)
and v− = max(−v, 0).

Theorem 1.1. Let a, ã ∈ A0. Denote u(x, t) and ũ(x, t) the solutions to the system (1) with respectively
coefficients a and ã. There exists a constant c0 > 2 that depends on A, n and Ω, such that if v = u0 or
v = −u0 satisfies ˆ

Ω
v+(x)dΩ(x)dx > c0

ˆ
Ω
v−(x)dΩ(x)dx,(3)

then the following stability estimate holds

‖a− ã‖L2(Ω) ≤ Cea+λ
Ω
1 T ‖u(·, T )− ũ(·, T )‖H2(Ω),(4)

for all T > T0, where the constants T0 > 0, C > 0, depend on A0, u0, n, Ω, and λΩ
1 is the first eigenvalue of

the Dirichlet Laplacian on Ω.

Remark 1.2. The stability estimate implies the uniqueness of the inverse problem (P). The exponential
growth of the Lipschitz stability constant (4) shows that the inversion is in general ill-posed. The exponential
growth constant a+λ

Ω
1 can actually be replaced by min(λ1, λ̃1), where λ̃1 is the first eigenvalue of Lã. The

required regularity on the right hand side of the stability estimate seems to be optimal, as for the inverse
elliptic problem with interior data [1].

Remark 1.3. The assumption (3) is fullfiled if ±u0 ≥ 0 on Ω, and it implies that
´

Ω u0(x)φ1(x)dx 6= 0, for
all a ∈ A, where φ1 is an eigenfunction of La associated to λ1.
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The proof is based on a particular decomposition of −∂tu(x, T ). The principal idea is to substitute
−∂tu(x, T ) in the parabolic equation of the system (1) by λ̂1u(x, T ) + F(a;x, T ), where a → F(a;x, T ) is a
Lipschitz non-linear function with Lipschitz constant that decays faster than u(x, T ) when T tends towards
infinity. Moreover the function F(a;x, T ) is independent of the data u(x, T ), and can be entirely recovered
from the knowledge a, u0, and Ω. In this regard, the unknown coefficient a satisfies a nonlinear stationary
transport equation

div(a∇u(x, T )) = −λ̂1u(x, T ) + F(a;x, T ), x ∈ Ω.
Since F(a;x, T ) decays faster than u(x, T ) in L2(Ω) for large T , the system above can be considered as a
nonlinear perturbation of a stationary linear transport equation

div(a∇u(x, T )) = −λ̂1u(x, T ), x ∈ Ω.
Consequently, by solving the simplified linear equation above, we shall be able to derive the global stability
estimate for the nonlinear one using classical perturbation methods. The detailed proof is presented at the
end of section 2.

The paper is organized as follows. The first section is dedicated to some useful properties of the solution
u of the system (1) including its spectral decomposition. In section 2, we provide the proof of the main
Theorem 1.1. In appendix A, we recall some known useful properties of the eigenvalues and eigenfunctions
of elliptic operators in a divergence form.

2. Preliminaries results

We first derive some properties of the eigenelements of the unbounded operator La. Considering ã as a
perturbation of the coefficient a, we derive an upper bound of the perturbation of eigenelements of La in
terms of ‖a− ã‖L2(Ω).

Theorem 2.1. Let a, ã ∈ A, and (λk)k∈N∗ ⊂ R∗ (resp. (λ̃k)k∈N∗ ⊂ R∗) be respectively the increasing
sequence of eigenvalues of La (resp. Lã). Then

|λk − λ̃k| ≤ C min(λk, λ̃k)1+n
4 ‖a− ã‖L2(Ω),(5)

where C > 0 is a constant that depends only on n,A and Ω.

Proof. Without loss of generality we assume that λk ≥ λ̃k.

Denote by φk, k ∈ N∗ (resp. φ̃k, k ∈ N∗) the orthonormal sequence of eigenfunctions of La (resp. Lã)
associated to λk, k ∈ N∗ (resp. λk, k ∈ N∗).

Recall the Min-max characterization of the eigenvalues (λ̃k)k∈N∗ [20]

λ̃k = min
Φk ⊂ H1

0 (Ω)
dim(Φk) = k

max
φ∈Φk\{0}

´
Ω ã|∇φ|2dx´

Ω |φ|2dx
(6)

In the expression above the minimum is achieved when Φk coincides with the finite dimension space
generated by Ṽk := {φ̃l : l ≤ k}. Therefore

λk − λ̃k ≤ max
φ∈Ṽk\{0}

´
Ω a|∇φ|2dx´

Ω |φ|2dx
− max
φ∈Ṽk\{0}

´
Ω ã|∇φ|2dx´

Ω |φ|2dx
.

Since Ṽk is a finite dimension space the first maximum is reached at some vector ψ̃k ∈ Ṽk \ {0}, satisfying´
Ω |ψ̃k|

2dx = 1. Hence

λk − λ̃k ≤
ˆ

Ω
a|∇ψ̃k|2dx−

ˆ
Ω

ã|∇ψ̃k|2dx ≤ ‖a− ã‖L2(Ω)

(ˆ
Ω
|∇ψ̃k|4dx

) 1
2

.(7)
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Since ψ̃k ∈ Ṽk\{0}, there exists a real valued sequence αl, l ≤ k, satisfying
∑k
l=1 α

2
l = 1, and ψ̃k =

∑k
l=1 αlφ̃l.

Therefore, ψ̃k verifies the following elliptic equation

Lãψ̃k =
k∑
l=1

αlλ̃lφ̃l.

We then deduce from the classical elliptic regularity (Theorem 8.12 in [18])

‖ψ̃k‖H2(Ω) ≤ C1

∥∥∥∥∥
k∑
l=1

αlλ̃lφ̃l

∥∥∥∥∥
L2(Ω)

≤ C1λ̃k,(8)

where C1 > 0 depends only on n,A and Ω.

Classical Sobolev interpolation inequalities for n = 2, 3, give [18]

‖∇ψ̃k‖L4(Ω) ≤ C2‖∇ψ̃k‖
1−n4
L2(Ω)‖ψ̃k‖

n
4
H2(Ω),(9)

where C2 > 0 depends only on n and Ω.

By a simple calculation, and using the fact that ‖∇φ̃l‖2L2(Ω) ≤ λ̃l, l ∈ N∗, we obtain

‖∇ψ̃k‖L2(Ω) ≤ λ̃k.(10)
Combining inequalities (8), (9) and (10), we get

‖∇ψ̃k‖L4(Ω) ≤ C3λ̃
n+4

8
k ,

where C3 > 0 depends only on n,A and Ω. We then deduce from (7)

λk − λ̃k ≤ C3‖a− ã‖L2(Ω)λ̃
1+n

4
k ,

which achieves the proof of the theorem.
�

Remark 2.1. The estimate (5) may not be optimal. The objective here was to obtain an inequality with an
uniform constant for all functions a, ã ∈ A.

Theorem 2.2. Let a, ã ∈ A0. Let Pk (resp. P̃k) be the orthogonal projection onto the eigenspace of La (resp.
Lã) corresponding to the eigenvalue λ̂k (resp. ̂̃λk). There exist constants η > 0 and C > 0 that depend only
on n,A0, and Ω, such that if

‖a− ã‖L2(Ω) ≤ ηmax(λ̂k, ̂̃λk)−(1+γ+n
4 ),(11)

then, the following estimate

‖Pk − P̃k‖L2(Ω) ≤ C(max(λ̂k, ̂̃λk)γ+1 + 1)2‖a− ã‖L2(Ω),(12)
holds.

Proof. In the proof C > 0 denotes a generic constant depending n, A0, and Ω. Without loss of generality
we further assume that λ̂k ≥ ̂̃λk.

Since a, ã ∈ A0, the gap condition (2) implies

Bρk(λ̂k) ∩ {λ̂l, l ∈ N∗} = {λ̂k}, Bρk(̂̃λk) ∩ {(̂̃λl, l ∈ N∗} = {̂̃λk},(13)
where Bρk(z) is the complex disc of center z ∈ C, and radius ρk = δ

4λ̂γ
k

.

On the other hand estimate (5) leads to

|λ̂k − ̂̃λk| ≤ C ̂̃λ1+n
4

k ‖a− ã‖L2(Ω).(14)
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Now, combining inequalities (14) and (11), we have

|λ̂k − ̂̃λk| ≤ Cηδ−1ρk.(15)
Choosing η > 0 small enough such that Cη < 1, we obtain̂̃λk ∈ Bρk(λ̂k).(16)

Therefore, we also have

Bρk(λ̂k) ∩ {̂̃λl, l ∈ N∗} = {̂̃λk}.(17)
Consequently, the resolvents (λI − La)−1 and (λI − Lã)−1 are well defined as operators from L2(Ω) onto
H1

0 (Ω) ∩H2(Ω) for all λ ∈ ∂Bρk(λ̂k). In addition, by the well-known Riesz formula, we get [17]

Pk = − 1
2ιπ

ˆ
|λ−λ̂k|=ρk

(λI − La)−1dλ, P̃k = − 1
2ιπ

ˆ
|λ−λ̂k|=ρk

(λI − La)−1dλ,

where ι ∈ C is the imaginary complex number, and I is the identity operator.

Hence

Pk − P̃k = 1
2ιπ

ˆ
|λ−λ̂k|=ρk

(λI − La)−1(La − Lã)(λI − Lã)−1dλ.

Since Pk and P̃k are orthogonal projections, Pk − P̃k is a self-adjoint bounded operator from L2(Ω) to itself.

Consequently

‖Pk − P̃k‖L2(Ω) = (2π)−1 sup
λ∈∂Bρk (λ̂k), f∈Wk, ‖f‖L2(Ω)=1

|
〈
(La − Lã)ũλf , uλf

〉
L2(Ω) |,

= (2π)−1 sup
λ∈∂Bρk (λ̂k), f∈Wk, ‖f‖L2(Ω)=1

∣∣∣∣ˆ
Ω

(a− ã)∇uλf∇ũλfdx
∣∣∣∣ ,

≤ (2π)−1‖a− ã‖L2(Ω) sup
λ∈∂Bρk (λ̂k), f∈Wk, ‖f‖L2(Ω)=1

‖∇uλf‖L4(Ω)‖∇ũλf‖L4(Ω),(18)

where uλf = (λI−La)−1f, ũλf = (λI−Lã)−1f, and Wk is the finite dimension vector space in L2(Ω), spanned
by the eigenfunctions associated to λ̂k, and ̂̃λk.

By construction, we have

‖uλf‖L2(Ω), ‖ũλf‖L2(Ω) ≤
1
ρk

(19)

Similar to the proof of Theorem 2.1, we deduce from the classical elliptic regularity
‖uλf‖H2(Ω) ≤ C(λ‖uλf‖L2(Ω) + 1), ‖ũλf‖H2(Ω) ≤ C(λ‖uλf‖L2(Ω) + 1),

which associated to inequalities (19), provide

‖uλf‖H2(Ω), ‖ũλf‖H2(Ω) ≤ C( λ
ρk

+ 1).(20)

Sobolev embedding Theorem gives [18]

‖∇uλf‖L4(Ω) ≤ C‖uλf‖H2(Ω), ‖∇ũλf‖L4(Ω) ≤ C‖ũλf‖H2(Ω).(21)

Combining estimates (20) and (21), we finally obtain

‖∇uλf‖L4(Ω), ‖∇ũλf‖L4(Ω) ≤ C( λ
ρk

+ 1).(22)
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We infer from (18)

‖Pk − P̃k‖L2(Ω) ≤ C(λ̂γ+1
k + 1)2‖a− ã‖L2(Ω).

�

3. Proof of Theorem 1.1

We first introduce the nonlinear function F(a;x, T ), and show that its Lipschitz continuous modulus with
respect to a, decays faster than u(x, T ) for large T .

We first derive the following auxiliary result.

Proposition 3.1. There exists a constant c0 > 2 depending on A, n and Ω, such that if v = u0 or v = −u0
satisfies (3), then ∣∣∣∣ˆ

Ω
u0(x)φ1(x)dx

∣∣∣∣ > 1√
2c0

∣∣∣∣ˆ
Ω
u0(x)dΩ(x)dx

∣∣∣∣ > 0,

for all a ∈ A.

Proof. Let c0 = 2C−2 where C ∈ (0, 1) is the constant of Lemma A.2 which depends on A, n and Ω. Without
loss of generality we further assume that v = u0 satisfies (3). Since c0 > 2, and v = v+ − v−, we have´

Ω v(x)dΩ(x)dx > 0.

Combining inequalities (3) and (56) givesˆ
Ω
v+(x)φ1(x)dx > 2

ˆ
Ω
v−(x)φ1(x)dx.

Consequently

2
ˆ

Ω
v(x)φ1(x)dx >

ˆ
Ω
v+(x)φ1(x)dx.

Applying again inequality (56) in Lemma A.2, we obtainˆ
Ω
v(x)φ1(x)dx > C

2

ˆ
Ω
v+(x)dΩ(x)dx ≥ C

2

ˆ
Ω
v(x)dΩ(x)dx,

which finishes the proof.
�

Define for a ∈ A0 and T > 0, the nonlinear function F(a;x, T ) ∈ L2(Ω), by

F(a;x, T ) = ∂tu(x, T ) + λ̂1u(x, T ), x ∈ Ω,(23)
where u is the unique solution of the system (1). Without loss of generality we further assume that v = u0
satisfies (3).

Theorem 3.1. Let a, ã ∈ A0. Then there exists a constant C > 0 that depends only on θ,Ω, n, u0 and A0,
such that the inequality

‖F(a;x, T )− F(ã;x, T )‖L2(Ω) ≤ Ce−min(λ̂2 ,̂λ̃2)T ‖a− ã‖L2(Ω),(24)
is valid for all T ≥ 1.

Proof. In the proof C > 0 denotes a generic constant depending on n, A0, u0, and Ω.

We start the proof by writing the decomposition of F(a;x, T ) (resp. F(ã;x, T )) in terms of the eigen-
functions of the elliptic operator La (resp. Lã). Recall Pk (resp. P̃k) the orthogonal projection onto the
eigenspace of La (resp. Lã) associated to the eigenvalue λ̂k (resp. ̂̃λk).
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It is well known that u and ũ have the following spectral decomposition [11]

u(x, t) =
∞∑
k=1

e−λ̂ktPku0(x); ũ(x, t) =
∞∑
k=1

e−
̂̃λktP̃ku0(x)

Forward calculations yield

F(a;x, T ) =
∞∑
k=2

(λ̂k − λ̂1)e−λ̂kTPku0(x); F̃(a;x, T ) =
∞∑
k=2

(̂̃λk − ̂̃λ1)e−̂̃λkT P̃ku0(x).

Hence
F(a;x, T )− F(ã;x, T ) =

∞∑
k=2

[
(λ̂k − λ̂1)e−λ̂kT − (̂̃λk − ̂̃λ1)e−̂̃λkT] P̃ku0(x) +

∞∑
k=2

(λ̂k − λ̂1)e−λ̂kT
[
Pk − P̃k

]
u0(x)

= F1 + F2.

Let βk, k ∈ N \ {0, 1}, defined by

βk = min(λ̂k, ̂̃λk).
Then

‖F1‖2L2(Ω) ≤
∞∑
k=2

[
|λ̂k − ̂̃λk|(1 + βkT ) + |λ̂1 − ̂̃λ1|

]2
e−2βkT ‖u0‖2L2(Ω).

Using results of Theorem 2.1 and Lemma A.2, we obtain

‖F1‖2L2(Ω) ≤ C

∞∑
k=2

[
β

1+n
4

k (1 + βkT ) + β
1+n

4
1

]2
e−2βkT ‖u0‖2L2(Ω)‖a− ã‖2L2(Ω),

≤ C

∞∑
k=2

β
2+n

2
k e−βkT ‖u0‖2L2(Ω)‖a− ã‖2L2(Ω) ≤ Ce

−β2T
∞∑
k=2

β
2+n

2
k e−(βk−β2)‖u0‖2L2(Ω)‖a− ã‖2L2(Ω).

Note that by Weyl’s asymptotic formula, we have λk ∼ Ck
2
n for large k, which guarantees the convergence

of the series above [19,20].

The results of Lemma A.3 imply
‖F1‖L2(Ω) ≤ Ce−β2T ‖a− ã‖L2(Ω).(25)

Since the orthogonality of the terms of the series F2 is no longer true, and the fact that the perturbation
does not affect uniformly the eigenfunctions, deriving an upper bound for ‖F2‖L2(Ω) is more involved.

Recall that the sequences λ̂k and ̂̃λk are strictly increasing. Let N ∈ N∗ be the smallest integer satisfying

‖a− ã‖L2(Ω) > ηmax(λ̂k, ̂̃λk)−(1+γ+n
4 ) ≥ ηβ−(1+γ+n

4 )
k , ∀k ≥ N,(26)

where η > 0 is the constant introduced in Theorem 2.2.

Next, we split F2 into two parts:

F2 =
N−1∑
k=2

(λ̂k − λ̂1)e−λ̂kT
[
Pk − P̃k

]
u0(x) +

∞∑
k=N

(λ̂k − λ̂1)e−λ̂kT
[
Pk − P̃k

]
u0(x) = F21 + F22,(27)

with the convention that the first sum F21 = 0 when N = 2.
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We deduce from (26) the following estimate

‖F22‖2L2(Ω) ≤ η−2
∞∑
k=N

(λ̂k − λ̂1)2β
2(1+γ+n

4 )
k e−2βkT ‖u0‖2L2(Ω)‖a− ã‖2L2(Ω),

≤ η−2e−2βkT
∞∑
k=2

(λ̂k − λ̂1)2β
2(1+γ+n

4 )
2 e−2(βk−β2)‖u0‖2L2(Ω)‖a− ã‖2L2(Ω).

Again using the upper and lower bounds derived in Lemma A.3, we obtain

‖F22‖L2(Ω) ≤ Ce−β2T ‖a− ã‖L2(Ω).(28)
On the other hand, we have

‖F21‖2L2(Ω) ≤

∥∥∥∥∥
N−1∑
k=2

(λ̂k − λ̂1)e−λ̂kT
∣∣∣[Pk − P̃k]u0

∣∣∣∥∥∥∥∥
2

L2(Ω)

.

Cauchy-Shwartz inequality gives

‖F21‖2L2(Ω) ≤

(
N−1∑
k=2

(λ̂k − λ̂1)2e−λ̂kT

)(
N−1∑
k=2

e−λ̂kT
∥∥∥Pk − P̃k∥∥∥2

L(L2(Ω))

)
‖u0‖2L2(Ω).

By construction, we have

‖a− ã‖L2(Ω) ≤ ηmax(λ̂k, ̂̃λk)−(1+γ+n
4 ), ∀k ≤ N − 1.(29)

Using the results of Theorem 2.2, leads to
‖F21‖2L2(Ω)

≤ C

(
N−1∑
k=2

(λ̂k − λ̂1)2e−λ̂kT

)(
N−1∑
k=2

(max(λ̂k, ̂̃λk)γ+1 + 1)4e−λ̂kT

)
‖u0‖2L2(Ω)‖a− ã‖2L2(Ω),

≤ Ce−2β2T

( ∞∑
k=2

(λ̂k − λ̂1)2e−(λ̂k−λ̂2)

)( ∞∑
k=2

(max(λ̂k, ̂̃λk)γ+1 + 1)4e−(λ̂k−λ̂2)

)
‖u0‖2L2(Ω)‖a− ã‖2L2(Ω).

Applying again the bounds in Lemma A.3, we get
‖F21‖L2(Ω) ≤ Ce−β2T ‖a− ã‖L2(Ω).(30)

Finally, combining inequalities (25), (28), and (30), conducts to the desired estimate. �

We next study the decay behavior of ∂tu(x, T ) and |∇u(x, T )|2 as T tends towards infinity.

Theorem 3.2. Let a ∈ A0, and u be the unique solution to the system (1). Then there exist T1 > 0, ε0 > 0,
and C > 0 depending only on A0, Ω, n and u0 such that the following inequalities

u(x, T ) ≥ Ce−λ1Tφ1(x), ∀x ∈ Ω,(31)
−∂tu(x, T ) ≥ Ce−λ1Tφ1(x), ∀x ∈ Ω,(32)
|∇u(x, T )|2 ≥ Ce−2λ1T |∇φ1(x)|2, ∀x ∈ Ωε,(33)

hold for all T ≥ T1, and 0 < ε < ε0, with Ωε = {x ∈ Ω : dΩ(x) < ε}.

Proof. In the sequel C > 0 denotes a generic constant that depends only on A0, Ω, n and u0. We further
assume that T ≥ 1.

The proof is based on the following decomposition of u in terms of the eigenfunctions of La:

u(x, t) =
∞∑
k=1

e−λ̂ktPku0(x), ∀t > 0, x ∈ Ω.
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For T ≥ 1, we have

∇u(x, T ) =
∞∑
k=1

e−λ̂kT∇Pku0(x), ∀x ∈ Ω,

−∂tu(x, T ) =
∞∑
k=1

λke
−λ̂kT∇Pku0(x), ∀x ∈ Ω.

Therefore

−∂tu(x, T )≥ λ̂1e
−λ1T |P1u0(x)| −

∞∑
k=2

λ̂ke
−λ̂kT |Pku0(x)|,(34)

|∇u(x, T )|2≥ λ
2
1

2 e−2λ1T |∇P1u0(x)|2 −
( ∞∑
k=2

e−λ̂kT |∇Pku0(x))|2)
) 1

2
( ∞∑
k=2

e−λ̂kT

) 1
2

,(35)

for all x ∈ Ω.

Next, we derive the first inequality of the lemma. Using inequalities (58), we obtain

−∂tu(x, T ) ≥

[
λ̂1e
−λ̂1T ‖P1u0(x)‖L2(Ω) −

∞∑
k=2

λ̂
3
2 +n

4
k e−λ̂kT ‖u0‖L2(Ω)

]
φ1(x),

≥

[
λ̂1e
−λ̂1T ‖P1u0(x)‖L2(Ω) − e−λ̂2T

∞∑
k=2

λ̂
3
2 +n

4
k e−(λ̂k−λ̂2)‖u0‖L2(Ω)

]
φ1(x).

Since a ∈ A0, the following gap condition (2), holds

λ̂2 − λ̂1 ≥
δ

λ̂1
.

Notice that the gap condition between the two first eigenvalues is always fulfilled [19].

We deduce from Lemma A.3

λ̂2 − λ̂1 ≥
δ

a+λΩ
1
.(36)

Hence

∂tu(x, T ) ≥ e−λ̂1T

[
λ̂1‖P1u0(x)‖L2(Ω) − e

− δ

a+λΩ
1
T
∞∑
k=2

λ̂
3
2 +n

4
k e−(λ̂k−λ̂2)‖u0‖L2(Ω)

]
φ1(x).

Again using Lemma A.3 leads to

|∂tu(x, T )| ≥ e−λ̂1T

[
λΩ

1 ‖P1u0(x)‖L2(Ω) − Ce
− δ

a+λΩ
1
T
‖u0‖L2(Ω)

]
φ1(x).

On the other hand, we deduce from Proposition 3.1

‖P1u0(x)‖L2(Ω) =
ˆ

Ω
u0(x)φ1(x)dx > 1√

2c0

ˆ
Ω
u0(x)dΩ(x)dx > 0.

Hence there exists a unique T11 ∈ R solution to the equation

‖P1u0(x)‖L2(Ω) − Ce
− δ

a+λΩ
1
T11
‖u0‖L2(Ω) = 0.

Obviously T11 depends only on A0, Ω, n and u0.
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Consequently

−∂tu(x, T ) ≥ Ce−λ̂1Tφ1(x), ∀x ∈ Ω, t ∈]T11,+∞[.
Similar analysis on u(x, T ), leads to

u(x, T ) ≥ Ce−λ̂1Tφ1(x), ∀x ∈ Ω, t ∈]T12,+∞[,
where T12 ∈ R.

Now, we shall focus on the second inequality. To do so we need to estimate ‖∇φk‖L∞(Ω). There are many
works dealing with optimal increasing rate of ‖φk‖L∞(Ω) and ‖∇φk‖L∞(Ω) in terms of λk, when k tends
to infinity (see for instance [21, 23] and references therein). Most existing results considered the Laplacian
operator or did not pay attention to the regularity of the elliptic coefficients. Since the optimal increasing
rate is out of the focus of this work, we prefer here deriving similar estimates using classical elliptic regularity
combined with results of Lemma A.4.

We deduce from elliptic regularity (Theorem 9.12 in [18])

‖φk‖
W 2,n+ 1

n (Ω)
≤ C(1 + λ̂k)‖φk‖

Ln+ 1
n (Ω)

.

By Sobolev embedding Theorem, we have

‖∇φk‖
C

1
n2+1 (Ω)

≤ C(1 + λ̂k)‖φk‖L∞(Ω).

Lemma A.4 yields

‖∇φk‖
C

1
n2+1 (Ω)

≤ C(1 + λ̂k)λ̂
1
2 +n

4
k .(37)

Combining (37) with (35), we get

|∇u(x, T )|2 ≥

λ̂2
1

2 e−2λ̂1T ‖P1u0(x)‖L2(Ω)|∇φ1(x)|2 −
( ∞∑
k=2

(1 + λ̂k)2λ̂
1+n

2
k e−2λ̂kT ‖u0‖2L2(Ω)

) 1
2
( ∞∑
k=2

e−λ̂kT

) 1
2

,

for all x ∈ Ω.

Consequently
|∇u(x, T )|2 ≥

λ̂2
1

2 e−2λ̂1T ‖P1u0(x)‖L2(Ω)|∇φ1(x)|2−e−2λ̂2T

( ∞∑
k=2

(1 + λ̂k)2λ̂
1+n

2
k e−2(λ̂k−λ̂2)‖u0‖2L2(Ω)

) 1
2
( ∞∑
k=2

e−(λ̂k−λ̂2)

) 1
2

,

for all x ∈ Ω, and T ≥ 1.

We deduce from Lemma A.3 and inequality (36), the following estimate

|∇u(x, T )|2 ≥ e−2λ̂1T

[
(λΩ

1 )2

2 ‖P1u0(x)‖L2(Ω)|∇φ1(x)|2 − Ce
− δ

2a+λΩ
1
T
‖u0‖L2(Ω)

]
, ∀x ∈ Ω, T ≥ 1.(38)

Proposition 3.2. There exist constants ε0 > 0 and C0 > 0 that depend only on Ω, n, and A, such that the
following inequality

|∇φ1(x)| ≥ C0, ∀x ∈ Ωε,(39)
holds for all 0 < ε < ε0.
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Proof. For ε > 0 small enough, Ωε becomes a tubular domain, and can be parametrized by

Ωε = {x+ sν(x) : x ∈ Γ, 0 < s < ε}.

We deduce from (37), the following estimate

|−∇φ1(x+ sν(x)) · ν(x) + ∂νφ1(x)| ≤ C(1 + λ̂1)λ̂
1
2 +n

4
1 ε

1
n2+1 , ∀s ∈]0, ε[, x ∈ Γ.

Hence

|∇φ1(x+ sν(x))| ≥ −∇φ1(x+ sν(x)) · ν(x)| ≥ −∂νφ1(x)− C(1 + λ̂1)λ̂
1
2 +n

4
1 ε

1
n2+1 , ∀s ∈]0, ε[, x ∈ Γ.

Recall that the constants ε0 > 0 and C0 in inequality (39) depend only on Ω, n, and A. Since inequality (39)
is valid for all ε ∈]0, ε0[, we deduce from Lemmata A.2, and A.3, the desired result. �

Let T13 ∈ R be the unique solution to the following equation

1
2‖P1u0(x)‖L2(Ω)C0 = Ce

− δ

2a+λΩ
1
T13
‖u0‖L2(Ω),

where C0 > 0 is the constant of inequality (39).

Applying the results of Proposition (3.2) to the inequality (38), we obtain

|∇u(x, T )|2 ≥ e−2λ̂1T
(λΩ

1 )2

4 ‖P1u0‖L2(Ω)|∇φ1(x)|2,(40)

for all T ≥ T12.

By taking T1 = max(1, T11, T12, T1,3), we achieve the proof of the theorem. �

Now, we are ready to prove the main Theorem 1.1. Without loss of generality, we assume that λ̂2 =
min(λ̂2,

̂̃λ2). Further C > 0 denotes a generic constant that depending on A0, Ω, n and u0.

Since u satisfies (1), a verifies the following nonlinear transport equation

div( a
λ̂1
∇u(x, T )) = −u(x, T ) + 1

λ̂1
F(a;x, T ), x ∈ Ω.(41)

Similarly, ã satisfies the following nonlinear transport equation

div( ã̂̃λ1

∇ũ(x, T )) = −ũ(x, T ) + 1̂̃λ1

F(ã;x, T ), x ∈ Ω.(42)

Taking the difference between the two equations (41) and (42), we get

div(( a
λ̂1
− ã̂̃λ )∇u(x, T )) =(43)

div( ã̂̃λ1

∇(u(x, T )− ũ(x, T ))) + ũ(x, T )− u(x, T ) + 1
λ̂1

F(a;x, T )− 1̂̃λ1

F(ã;x, T ), x ∈ Ω.

Proposition 3.3. There exist constants T2 > 0, C > 0 and ε0 > 0 that depend only on Ω, n, A0 and u0
such that the following inequalities

| 1
λ̂1
− 1̂̃λ1

| ≤ C
[
eλ̂1T ‖u− ũ‖H2(Ω) + e−(λ̂2−λ̂1)T ‖a− ã‖L2(Ω)

]
,(44)
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and ˆ
Ωε
| a
λ̂1
− ã̂̃λ1

|2|∇φ1|2dx+
ˆ

Ω
| a
λ̂1
− ã̂̃λ1

|2φ2
1dx(45)

≤ C

[
eλ̂1T ‖u− ũ‖H2(Ω) + e−(λ̂2−λ̂1)T

(
‖a− ã‖L2(Ω) + | 1

λ̂1
− 1̂̃λ1

|

)]∥∥∥∥∥ a
λ̂1
− ã̂̃λ1

∥∥∥∥∥
L2(Ω)

,

hold for all T ≥ T2, and ε ∈]0, ε0[.

Proof. Multiplying equation (43) by 1, and integrating over Ω, we obtain

| 1
λ̂1
− 1̂̃λ1

|
∣∣∣∣ˆ

Γ
a0∂νu(., T )ds(x)

∣∣∣∣(46)

≤ C

[
‖u− ũ‖H2(Ω) + | 1

λ̂1
− 1̂̃λ1

|‖F(a; ., T )‖L2(Ω) + 1̂̃λ1

‖F(a; ., T )− F(ã; ., T )‖L2(Ω)

]
.

Recall

‖F(a; ., T )‖2L2(Ω) =
∞∑
k=2

(λ̂k − λ̂1)2e−2λ̂kT ‖Pku0‖2L2(Ω),

≤
∞∑
k=2

(λ̂k − λ̂1)2e−2λ̂kT ‖u0‖2L2(Ω)

≤
∞∑
k=2

(λ̂k − λ̂1)2e−2(λ̂k−λ̂2)‖u0‖2L2(Ω)e
−2λ̂2T ,

for all T ≥ 1.

Consequently

‖F(a; ., T )‖L2(Ω) ≤ Ce−λ̂2T , ∀T ≥ 1.(47)

Applying inequalities (57), (24) and (47) to the relation (46), yields

| 1
λ̂1
− 1̂̃λ1

|
∣∣∣∣ˆ

Γ
a0∂νu(., T )ds(x)

∣∣∣∣ ≤ C
[
‖u− ũ‖H2(Ω) + e−λ̂2T

(
| 1
λ̂1
− 1̂̃λ1

|+ ‖a− ã‖L2(Ω)

)]
.

We deduce from inequalities (56), (33), and the fact that a0 ≥ 1, the following estimate

e−λ̂1T | 1
λ̂1
− 1̂̃λ1

| ≤ C

[
‖u− ũ‖H2(Ω) + e−λ̂2T

(
| 1
λ̂1
− 1̂̃λ1

|+ ‖a− ã‖L2(Ω)

)]
.

Inequality (36) gives

(1− Ce−θT )| 1
λ̂1
− 1̂̃λ1

| ≤ C
[
eλ̂1T ‖u− ũ‖H2(Ω) + e−(λ̂2−λ̂1)T ‖a− ã‖L2(Ω)

]
,

with θ = δ
a+λΩ

1
. Finally, taking T ≥ max(T21, 1), where T21 ∈ R verifies e−θT21 = 1

2C , provides the first
inequality (44).

Now, we shall focus on the second inequality. Let

ζ = 1
a

(
a
λ̂1
− ã̂̃λ1

)
.
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Multiplying again the equation (43) by ζ(x)u(x, T ), and integrating over Ω, we obtain

−1
2

ˆ
Ω

au(·, T )∇u(·, T ) · ∇ζ2dx−
ˆ

Ω
ζ2a|∇u(·, T )|2dx+

ˆ
Γ

aζ2u(·, T )∂νu(·, T )ds(x)

=
ˆ

Ω
div( ã̂̃λ1

∇(u(·, T )− ũ(·, T )))ζu(·, T )dx+
ˆ

Ω
(ũ(·, T )− u(·, T ))ζu(·, T )dx

+
ˆ

Ω

(
1
λ̂1

F(a; ·, T )− 1̂̃λ1

F(ã; ·, T )
)
ζu(·, T )dx.

Integrating by parts the first term on the left hand side, leads to

−1
2

ˆ
Ω
ζ2u(·, T )∂tu(·, T )dx+ 1

2

ˆ
Ω
ζ2a|∇u(·, T )|2dx−

ˆ
Γ

aζ2u(·, T )∂νu(·, T )ds(x)

≤ C

[
‖u− ũ‖H2(Ω) + | 1

λ̂1
− 1̂̃λ1

|‖F(a; ·, T )‖L2(Ω) + 1̂̃λ1

‖F(a; ·, T )− F(ã; ·, T )‖L2(Ω)

]
‖u(·, T )‖L2(Ω)‖ζ‖L2(Ω).

Since the third term on the left side is positive for T ≥ T1, we deduce from inequalities (47), (57), (24), the
following estimate

−1
2

ˆ
Ω
ζ2u(·, T )∂tu(·, T )dx+ 1

2

ˆ
Ω
ζ2a|∇u(·, T )|2dx(48)

≤ C

[
‖u− ũ‖H2(Ω) + e−λ̂2T

(
| 1
λ̂1
− 1̂̃λ1

|+ ‖a− ã‖L2(Ω)

)]
‖u(·, T )‖L2(Ω)‖ζ‖L2(Ω), ∀T ≥ T1.

On the other hand, we have

‖u‖2L2(Ω) =
∞∑
k=1

λ̂2
ke
−2λ̂kT ‖Pku0‖2L2(Ω) ≤ e

−2λ̂1T
∞∑
k=1

λ̂2
ke
−2(λ̂k−1)‖u0‖2L2(Ω).

We deduce from inequalities (57)

‖u‖L2(Ω) ≤ Ce−λ̂1T , ∀T ≥ 1.(49)

Since 1
a ≥

1
a+

, we have

‖ζ‖L2(Ω) ≤ C

∥∥∥∥∥ a
λ̂1
− ã̂̃λ1

∥∥∥∥∥
L2(Ω)

.(50)

Combining inequalities (31), (32), (33), (48), (49), and (50), we finally obtain the second inequality (45)
for T ≥ T2 = max(T1, T21).

�

Proposition 3.4. Let a ∈ A, and φ1 be the first eigenfunction of La. Then for ε ∈]0, ε0[, there exists a
constant C > 0 depending only on ε,A, n, and Ω such that

φ2
1(x) + 1Ωε(x)|∇φ1(x)|2 ≥ C, ∀x ∈ Ω,(51)

Proof. Since ε ∈]0, ε0[, inequality (39) in Proposition 3.2 implies

|∇φ1(x)| ≥ C0, ∀x ∈ Ωε.(52)

Combining (52) with inequality (56) provides the wanted estimate. �
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Back to the proof of Theorem 1.1. Fixing ε = ε0
2 , we deduce from Propositions 3.3 and 3.4 the following

estimate ∥∥∥∥∥ a
λ̂1
− ã̂̃λ1

∥∥∥∥∥
L2(Ω)

(53)

≤ C

[
eλ̂1T ‖u− ũ‖H2(Ω) + e−(λ̂2−λ̂1)T

(
‖a− ã‖L2(Ω) + | 1

λ̂1
− 1̂̃λ1

|

)]
,

for all T ≥ T2.

We further assume that T ≥ T2. By a simple calculation, we get(
1̂̃λ1

ˆ
Ω
|a− ã|2dx

) 1
2

≤

∥∥∥∥∥ a
λ̂1
− ã̂̃λ1

∥∥∥∥∥
L2(Ω)

+

∣∣∣∣∣ 1
λ̂1
− 1̂̃λ1

∣∣∣∣∣ ‖ã‖L2(Ω).

We deduce from inequalities (57), the following estimate

‖a− ã‖L2(Ω) ≤ C

∥∥∥∥∥ a
λ̂1
− ã̂̃λ1

∥∥∥∥∥
L2(Ω)

+

∣∣∣∣∣ 1
λ̂1
− 1̂̃λ1

∣∣∣∣∣
 .(54)

Combining estimates (54), (53), and (44), yields

‖a− ã‖L2(Ω) ≤ C
[
eλ̂1T ‖u− ũ‖H2(Ω) + e−(λ̂2−λ̂1)T ‖a− ã‖L2(Ω)

]
.(55)

The gap condition (36) gives

(1− Ce−θT )‖a− ã‖L2(Ω) ≤ Ceλ̂1T ‖u− ũ‖L2(Ω)

with θ = δ
a+λΩ

1
. Finally, taking T ≥ max(T2, T3), where T3 ∈ R verifies e−θT3 = 1

2C , provides the main
estimate (4) of Theorem 1.1.

Appendix A.

We recall some known properties of the eigenelements of the unbounded operator La.

Lemma A.1. The eigenvalue λ1 is simple, and has a strictly positive eigenfunction φ1 ∈ C1(Ω).

Proof. The proof can be found in many references [18,19]. Since it is too short and for the sake of complete-
ness we give it here.

We can recover the second result by using the Min-max principle. It is well known that the smallest
eigenvalue λ1 is the minimizer of the Rayleigh quotient [19]

λ1 = min
φ∈H1

0 (Ω)\{0}

´
Ω a|∇φ|

2dx´
Ω |φ|2dx

.

Since φ1 ∈ H1
0 (Ω) we also have |φ1| ∈ H1(Ω) and ∇|φ1| = sign(φ1)∇φ1, we see that |φ1| and φ1 has the

similar Rayleigh quotient. Therefore, |φ1| is also a minimizer of the Rayleigh quotient and, therefore, an
eigenfunction associated to λ1. By Harnack inequality for elliptic operators, |φ1| does not vanish in Ω. Since
two functions having contant signs can not be orthogonal in L2(Ω), λ1 is simple. We also deduce from elliptic
regularity that φ1 is C1(Ω). �

The proof of the lower bound in the following Lemma can be found in Proposition 2.1 and Lemma 2.1
in [7] or Lemma 4.6.1 in [13]. The upper bound can be derived easily using a Harnack inequality inside Ω,
and the regularity of both Γ and the first eigenfunction φ1 near the boundary.
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Lemma A.2. Let a ∈ A, and φ1 be the first eigenfunction of La. Then there exists a constant C ∈ (0, 1)
that depends only on A, n and Ω such that

1
C
dΩ(x) ≥ φ1(x) ≥ CdΩ(x) ∀x ∈ Ω; −∂νφ1(x) > C ∀x ∈ Γ.(56)

The proof of the following lemma based on the Min-max principle is forward.

Lemma A.3. Let a ∈ A, and let λk, k ∈ N∗, be the increasing eigenvalues of La. Then
λΩ
k ≤ λk ≤ a+λ

Ω
k , ∀k ∈ N∗,(57)

where λΩ
k , k ∈ N∗, are the increasing Dirichlet eigenvalues of the Laplacian −∆ in Ω.

The proof of the following lemma is based on the analysis of the rate of decay of the heat kernel, and can
be found in (Corollary 4.6.3 of [13]).

Lemma A.4. Let a ∈ A, and let λk, k ∈ N∗, be the increasing eigenvalues of La, and φk, k ∈ N∗, be
corresponding orthonormal sequence of eigenfunctions. Then there exists a constant C > 0 depending on
A, n and Ω such that

|φk(x)| ≤ Cλ
1
2 +n

4
k φ1(x), ∀x ∈ Ω, k ∈ N∗.(58)
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