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We review the integration of the KP hierarchy in several nonstandard contexts. Specifically, we consider KP in the following associative differential algebras: an algebra equipped with a nilpotent derivation; an algebra of functions equipped with a derivation that generalizes the gradient operator; an algebra of quaternion-valued functions; a differential Lie algebra; an algebra of polynomials equipped with the Pincherle differential; a Moyal algebra. In all these cases we can formulate and solve the Cauchy problem of the KP hierarchy. Also, in each of these cases we derive different Zakharov-Shabat (t 2 , t 3 )-equations -that is, different Kadomtsev-Petviashvili equations-and we prove existence of solutions arising from solutions to the corresponding KP hierarchy.

Introduction

The Kadomtsev-Petviashvili (KP) hierarchy is an integrable system in an infinite number of independent variables (t 1 , t 2 , ..) that contains numerous integrable equations in two and three independent variables. Among them, we mention the Boussinesq equation, the KP equation, the KdV equations and the Gelfand-Dickey flows. Usually, these equations are derived from the equations of the KP hierarchy posed on formal pseudodifferential operators ΨDO(A) with coefficients in the algebra of smooth periodic functions A = C ∞ (S 1 , R), or in the algebra of rapidly decaying functions on the line, or in the Gelfand-Dickey algebraic framework explained in [1, Chapter 1]. Classical discussions of this system of equations can be found in [START_REF] Dickey | Soliton equations and Hamiltonian systems[END_REF][START_REF] Miwa | Solitons, Differential Equations, Symmetries and Infinite Dimensional Algebras[END_REF]. A solution to the KP hierarchy satisfies the so-called Zhakarov-Shabat (ZS) relations, as explained in [START_REF] Dickey | Soliton equations and Hamiltonian systems[END_REF][START_REF] Etigoff | Factorization of differential operators, quasideterminants, and nonabelian Toda field equations[END_REF]. The ZS relations are zero-curvature equations (and hence they provide one of the justifications for stating that the KP hierarchy is an integrable system), from which the standard KP equation in the t 2 and t 3 variables can be derived.

It is already well-known that it is possible to change the algebra A and define a similar KP system on ΨDO(A) even when A is not commutative. We mention the paper [START_REF] Mulase | Solvability of the super KP equation and a generalization of the Birkhoff decomposition[END_REF] by Mulase for a very general construction of a KP hierarchy on a differential associative algebra, the paper [START_REF] Etigoff | Factorization of differential operators, quasideterminants, and nonabelian Toda field equations[END_REF], and also Kupershmidt treatise [START_REF] Kuperschmidt | KP or mKP: Mathematics of Lagrangian, Hamiltonian and Integrable Systems[END_REF] for a thorough study of the Hamiltonian content of the non-commutative KP hierarchy. A particular example appears in [START_REF] Kuperschmidt | KP or mKP: Mathematics of Lagrangian, Hamiltonian and Integrable Systems[END_REF][START_REF] Mc Intosh | The quaternionic KP hierarchy and conformally immersed 2-tori on the 4sphere[END_REF], in which the algebra A is the algebra C ∞ (R, H), where H is the skew-field of quaternions. In these two references we can already see that the equations deduced from the (t 2 , t 3 )-ZS equations can be deeply different from the classical KP equation, see also Section 3.3 below. Other examples of "non-standard" KP hierarchies can be found in [START_REF] Strachan | Integrability of the Frobenius algebra-valued Kadomtsev-Petviashvili hierarchy[END_REF][START_REF] Magnot | On the Kadomtsev-Petviashvili hierarchy in an extended class of formal pseudo-differential operators[END_REF][START_REF] Mendoza | Massey products, A ∞ -algebras, differential equations, and Chekanov homology[END_REF]; we also mention [START_REF] Magnot | Well-posedness of the Kadomtsev-Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups[END_REF] for non-standard commutative examples, and [START_REF] Hamanaka | Commuting flows and conservation laws for noncommutative Lax hierarchies[END_REF][START_REF] Takasaki | Nonabelian KP hierarchy with Moyal algebraic coefficients[END_REF][START_REF] Sakakibara | Factorization methods for noncommutative KP and Toda hierarchy[END_REF] as representative works on a KP hierarchy posed on algebras equipped with a Moyal multiplication. Now, the construction of general solutions to the KP system for differential algebras A has been systematically studied in [START_REF] Eslami Rad | The Cauchy problem of the Kadomtsev-Petviashvili hierarchy with arbitrary coefficient algebra[END_REF][START_REF] Magnot | Well-posedness of the Kadomtsev-Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups[END_REF]: in these references, the issues of existence and uniqueness of solutions, and well-posedness of the corresponding Cauchy problem, are formulated and stated in frameworks as general as possible. But we remark that, strangely, the analogues of the KP equations and their solutions in generalized settings appear to have been mostly ignored, with very few exceptions (we mention just [START_REF] Kuperschmidt | KP or mKP: Mathematics of Lagrangian, Hamiltonian and Integrable Systems[END_REF][START_REF] Mc Intosh | The quaternionic KP hierarchy and conformally immersed 2-tori on the 4sphere[END_REF][START_REF] Hamanaka | Commuting flows and conservation laws for noncommutative Lax hierarchies[END_REF][START_REF] Magnot | Well-posedness of the Kadomtsev-Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups[END_REF]). Even some of the authors of the present work, in a first step of investigations, have been doubtful to deduce other (t 2 , t 3 )-ZS equations than those already highlighted by other authors. We show in the present work that we can deduce many types of equations: for example, we find first order nonlinear equations, Navier-Stokes-type equations, and many others. To the best of our knowledge, the equations that we present are new.

The paper is organized as follows. We recall old and not-so-old constructions for formal pseudo-differential operators and KP hierarchy on a unital differential (non-graded) associative algebra A in section 2, and then we exhibit the announced examples in section 3. We remark that the results of [START_REF] Eslami Rad | The Cauchy problem of the Kadomtsev-Petviashvili hierarchy with arbitrary coefficient algebra[END_REF] allow us to state theorems on the well-posedness our non-commutative KP hierarchies, and that these theorems imply that we can prove the existence of a full class of smooth solutions to our non-commutative (t 2 , t 3 )-ZS equations. We present these existence results also in Section 3.

2.

The KP hierarchy of a general differential associative algebra 2.1. Algebraic setting. Let K be a characteristic zero field and let (A, +, * , ∂) be a differential associative algebra over K. We fix the following framework. Definition 2.1. We define

ΨDO(A) = n∈Z a n ξ n : a n ∈ A; a n = 0 for n >> 0
where ξ is a formal variable.

Hereafter we assume that A is unital, that is, we assume that there exists 1 ∈ A such that ∀a ∈ A, 1 * a = a * 1 = a. We call the elements of ΨDO(A) "pseudodifferential operators" even though we are aware that we are incurring in a slight abuse of terminology. Definition 2.2. Let us define addition and multiplication on ΨDO(A).

+ : ΨDO(A) × ΨDO(A) -→ ΨDO(A) ( a n ξ n , b m ξ m ) -→ (a p + b p )ξ p and * : ΨDO(A) × ΨDO(A) -→ ΨDO(A) a(ξ) = a n ξ n , b(ξ) = b m ξ m -→ m,n α∈N 1 α! (a n ∂ α b m )(D α ξ ξ n )ξ m Theorem 2.3. (ΨDO(A), +, * ) is a unital (associative) K-algebra.
This theorem is well-known, see for example [START_REF] Dickey | Soliton equations and Hamiltonian systems[END_REF], or the more recent paper [START_REF] Eslami Rad | The Cauchy problem of the Kadomtsev-Petviashvili hierarchy with arbitrary coefficient algebra[END_REF]. Hereafter we omit the multiplication symbol * or we use simply " • " . We also point out that ΨDO(A) is a graded algebra with deg ξ ( a n ξ n ) = max{n ∈ Z : a n = 0} and (by convention) deg ξ (0) = -∞. This grading allows us to define the vector subspaces ΨDO k (A) = {P ∈ ΨDO(A) : deg ξ (P ) ≤ k}, which will appear below.

Proposition 2.4. The decomposition ΨDO(A) = DO(A) ⊕ IO(A), in which IO(A) = ΨDO -1 (A) is the algebra of integral operators and DO(A) = ΨDO(A) \ ΨDO -1 (A) is the subalgebra of differential operators, is a vector space splitting. We note that IO(A) may be a non-unital algebra.

Proof. The proof relies on standard arguments:

• if (n, m) ∈ N 2 , then for all α ∈ N, we have that deg ξ (D α ξ ξ n )ξ m ∈ N ∪ {-∞}, which shows that DO(A) is stable under multiplication, • while for (n, m) ∈ (N * ) 2 , ∀α ∈ N, we have that deg ξ (D α ξ ξ -n )ξ -m < 0, which shows that DO(A) is stable under multiplication.
A consequence of this proposition is that any operator a ∈ ΨDO(A) decomposes uniquely under this direct sum as a = a D + a S for a D ∈ DO(A) and a S ∈ IO(A).

In the most classical framework, A is an algebra of functions equipped with a derivation ∂. Standard choices are A = C ∞ (S 1 , K) with K = R, C or, in [START_REF] Kuperschmidt | KP or mKP: Mathematics of Lagrangian, Hamiltonian and Integrable Systems[END_REF][START_REF] Mc Intosh | The quaternionic KP hierarchy and conformally immersed 2-tori on the 4sphere[END_REF], K = H, and ∂ = d dx . In these contexts, the algebras of functions A are Fréchet algebras equipped with natural notions of differentiability, and the operations of addition, multiplication and differentiation are smooth. It follows that addition and multiplication on ΨDO(A) are smooth in the following sense: if

a = n∈Z a n ξ n , b = n∈Z b n ξ n , we set a + b = c = n∈Z c n ξ n and ab = d = n∈Z d n ξ n .
Then, the map The foregoing set-up circumvent the use of the technical tools recently developed in [START_REF] Eslami Rad | The Cauchy problem of the Kadomtsev-Petviashvili hierarchy with arbitrary coefficient algebra[END_REF][START_REF] Magnot | Well-posedness of the Kadomtsev-Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups[END_REF], where a fully rigorous framework for smoothness on objects such as ΨDO(A), is described and used. The geometric approach to smoothness described therein is based on the theories of diffeologies and Frölicher spaces. We will not dwell on it here, we refer the reader to the mentioned papers [START_REF] Eslami Rad | The Cauchy problem of the Kadomtsev-Petviashvili hierarchy with arbitrary coefficient algebra[END_REF][START_REF] Magnot | Well-posedness of the Kadomtsev-Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups[END_REF] for details, but we do mention that, for instance, our point of view allows us to develop a fully rigorous approach to smoothness on Frobenius algebras -so as to justify all the formal calculations of [START_REF] Strachan | Integrability of the Frobenius algebra-valued Kadomtsev-Petviashvili hierarchy[END_REF][START_REF] Strachan | Frobenius manifolds and Frobenius algebra-valued integrable systems[END_REF][START_REF] Zhang | Hamiltonian structures and integrability of Frobenius algebra-valued (n,m)th KdV hierarchy[END_REF]-by adapting the considerations appearing in [START_REF] Eslami Rad | The Cauchy problem of the Kadomtsev-Petviashvili hierarchy with arbitrary coefficient algebra[END_REF].

((a n ) n∈Z , (b n ) n∈Z ) → ((c n ) n∈Z , (d n ) n∈Z ) is smooth as a map from Π Z A × Π Z A → Π Z A × Π Z A,
Remark 2.5. We comment on the relation of our approach with more standard (and also more restrictive) viewpoints. Our notion of smoothness restricts to the notion of smoothness in infinite dimensional geometry on manifolds (with atlases) modelled on complete locally convex topological vector spaces. This latter theory is discussed in [START_REF] Neeb | Towards a Lie theory of locally convex groups[END_REF]. In particular, see [START_REF] Magnot | Well-posedness of the Kadomtsev-Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups[END_REF], if we work with Fréchet manifolds of operators, being smooth in our sense is equivalent to being Fréchet smooth.

2.2.

Integration of the KP hierarchy on a differential algebra. Let T = {t n } n∈N * be an infinite set of formal (time) variables and let us consider the algebra of formal series ΨDO

(A[[T ]]) with infinite set of formal variables t 1 , t 2 , • with T -valuation val defined by val T (t n ) = n [13].
If we assume that the algebra operations on A are smooth, then so are the corresponding operations on A[[T ]], essentially because they are defined term by term using finite numbers of operations on A. This intuitive description can be fully formalized in the context of ultrametric completions, see [START_REF] Eslami Rad | The Cauchy problem of the Kadomtsev-Petviashvili hierarchy with arbitrary coefficient algebra[END_REF]. Now we extend this notion of smoothness to ΨDO(A[[T ]]) as in [START_REF] Eslami Rad | The Cauchy problem of the Kadomtsev-Petviashvili hierarchy with arbitrary coefficient algebra[END_REF][START_REF] Magnot | Well-posedness of the Kadomtsev-Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups[END_REF], and we are able to talk about smoothness at the level of pseudo-differential operators. We will make some further remarks on this theme after Theorem 2.6.

The Kadomtsev-Petviashvili (KP) hierarchy reads

(1)

dL dt k = (L k ) D , L , k ≥ 1 , with initial condition L(0) = L 0 ∈ ∂ + IO(A).
The dependent variable L is chosen to be of the form

L = ξ + α≤-1 u α ξ α ∈ ΨDO 1 (A[[T ]]) .
A standard reference on (1) is L.A. Dickey's treatise [START_REF] Dickey | Soliton equations and Hamiltonian systems[END_REF], see also [START_REF] Miwa | Solitons, Differential Equations, Symmetries and Infinite Dimensional Algebras[END_REF][START_REF] Mulase | Complete integrability of the Kadomtsev-Petvishvili equation[END_REF][START_REF] Mulase | Solvability of the super KP equation and a generalization of the Birkhoff decomposition[END_REF].

In order to solve the KP hierarchy, we need the following groups (see e.g. [START_REF] Eslami Rad | The Cauchy problem of the Kadomtsev-Petviashvili hierarchy with arbitrary coefficient algebra[END_REF][START_REF] Magnot | Well-posedness of the Kadomtsev-Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups[END_REF] for the latest adaptations of Mulase's constructions appearing in [START_REF] Mulase | Complete integrability of the Kadomtsev-Petvishvili equation[END_REF][START_REF] Mulase | Solvability of the super KP equation and a generalization of the Birkhoff decomposition[END_REF]):

Ḡ = 1 + IO(A[[T ]]) , Ψ = P = α∈Z a α ξ α : a α ∈ A[[T ]] , val T (a α ) ≥ α and P | t=0 ∈ 1 + ΨDO -1 (A) ,
where P | t=0 is the equivalence class P mod I, and

I is the ideal of A[[T ]] generated by {t 1 , t 2 , • • • }, and 
D = P = α∈Z a α ξ α : P ∈ Ψ and a α = 0 for α < 0 .
We have a matched pair (see for example [START_REF] Majid | Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations[END_REF])

Ψ = Ḡ D
which is smooth under the terminology we gave before. The following result, from [START_REF] Eslami Rad | The Cauchy problem of the Kadomtsev-Petviashvili hierarchy with arbitrary coefficient algebra[END_REF], gives a synthesized statement of our results on existence and uniqueness of solutions to the KP hierarchy [START_REF] Dickey | Soliton equations and Hamiltonian systems[END_REF], and on smooth dependence on the initial conditions.

Theorem 2.6.

Consider the KP hierarchy 1 with initial condition L(0) = L 0 . Then,

(1) There exists a pair (S, Y ) ∈ Ḡ×D such that the unique solution to Equation (1) with L| t=0 = L 0 is

L(t 1 , t 2 , • • • ) = Y L 0 Y -1 = SL 0 S -1 .
(2) The pair (S, Y ) is uniquely determined by the smooth decomposition problem

exp k∈N τ k L k 0 = S -1 Y ,
and the solution L depends smoothly on the initial condition L 0 .

(3) The solution operator L is smoothly dependent on the initial value L 0 .

In this theorem the expression "smoothly dependent" is to be understood essentially as explained in the two paragraphs before Remark 2.5, namely, it means that each coefficient of the solution L = L = ξ + α≤-1 u α ξ α , understood as a series in the T variables, depends smoothly on a finite number of the coefficients of the initial value L 0 . Indeed, if one reads the computations given in e.g. [START_REF] Mulase | Solvability of the super KP equation and a generalization of the Birkhoff decomposition[END_REF][START_REF] Eslami Rad | The Cauchy problem of the Kadomtsev-Petviashvili hierarchy with arbitrary coefficient algebra[END_REF][START_REF] Magnot | Well-posedness of the Kadomtsev-Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups[END_REF] where the computations of coefficients are sketched, it is possible to check that each coefficient of L is obtained via a large but finite number of smooth operations (addition, multiplication, inversion, derivation) in A[[T ]] from the coefficients of L 0 .

2.3. ZS-Equations deduced from the hierarchy. It is well-known that the zero curvature equations

(2) ∂ ∂t m L n + - ∂ ∂t n L m + = [L m + , L n + ]
are a consequence of the KP hierarchy, see for instance [1, Proposition 5.1.4] or [START_REF] Etigoff | Factorization of differential operators, quasideterminants, and nonabelian Toda field equations[END_REF], and that these equations are a system of non-linear equations in three independent variables, namely, t n , t m and the "space variable" implicit in the derivation ∂ of the differential algebra A. Our Theorem 2.6 implies the following result (in the proposition below, we put t k = 0 for k = n, m):

Proposition 2.7. Let L = ξ + α≤-1 u α ξ α ∈ Ψ 1 (A[[T ]]
) and assume that the zero curvature equation (2) is a system of equations for N dependent variables

u 1 , • • • , u N . Fix u 1,0 , • • • , u N,0 ∈ A. Then, the system of equations (2) has a unique smooth solution L with u 1 (0) = u 1,0 , • • • , u N (0) = u N,0
, and this solution is smooth with respect to initial conditions.

Proof. We define

L(0) = L 0 ∈ ∂ + IO(A) as L(0) = ξ + u 1,0 ξ -1 + • • • + u N,0 ξ -N ,
we solve the KP hierarchy with initial condition L 0 , and we apply [1, Proposition 5.1.4].

We note that this proposition does not solve the full Cauchy problem for (2), since our initial condition fixes only the "space" dependence of the solution, while the dependence on t m , t n is fixed by the solution to the complete KP hierarchy with initial data L 0 defined as in the above proof. Nonetheless we think it is a relevant result on solutions to very general zero curvature equations.

We consider the set of independent variables {t 1 , t 2 , t 3 } and write down explicitly the corresponding zero curvature equations; we are mostly interested in the equations arising from the set {t 2 , t 3 }, but we also try the {t 1 , t 2 } and {t 1 , t 3 } easy cases for completeness.

With the notation

L = k≤1 u k ξ k
with u 1 = 1 and u 0 = 0, we have

L 2 L 3 σ 3 - ξ 3 σ 2 ξ 2 0 σ 1 0 3u -1 ξ σ 0 2u -1 ξ 0 (3u -2 + 3∂u -1 )ξ 0
in which σ k , k = 0, 1, 2, 3, indicates higher symbols (that is, homogeneous parts of degree k) of the corresponding pseudo-differential operator, and therefore

L 2 + , L 3 + = ξ 2 , ξ 3 + 3 ξ 2 , u -1 ξ + 3 ξ 2 , u -2 + ∂u -1 +2 u -1 , ξ 3 + 6 [u -1 , u -1 ξ] + 6 [u -1 , u -2 + ∂u -1 ] = 0 + (6∂u -1 ξ 2 + 3∂ 2 u -1 ξ) + (6∂u -2 ξ + 3∂ 2 u -2 + 6∂ 2 u -1 ξ + 3∂ 3 u -1 ) +(-6∂u -1 ξ 2 -6∂ 2 u -1 ξ -2∂ 3 u -1 ) + (6[u -1 , u -2 ] -6∂u -1 u -1 ) = (3∂ 2 u -1 + 6∂u -2 )ξ + ([u -1 , u -2 ] -6∂u -1 u -1 + ∂ 3 u -1 + 3∂ 2 u -2 ) .
The ZS-equations for the pairs (t 1 , t 2 ) and (t 1 , t 3 ) read respectively as

(3) dL 2 + dt 1 - dL + dt 2 = L + , L 2 + which gives: (4) du -1 dt 1 = ∂u -1 ,

and

(5)

dL 3 + dt 1 - dL + dt 3 = L + , L 3 + which gives: (6) du-1 dt1 = ∂u -1 du-2 dt1 = ∂u -2
which corresponds to the first equations of the hierarchy

du -k dt1 = du -k dx when A = (C ∞ (R), • , d/dx).
Here, ∂ is an arbitrary derivation so that, instead of the usual identification d/dt 1 = d/dx, we get for example the formal integration formula

u -1 = exp(t 1 ∂)u 0 for an initial value u -1 | t1=0 = u 0 .
We now go to the ZS-equation for the pair (t 2 , t 3 ), ( 7)

dL 3 + dt 2 - dL 2 + dt 3 = L 2 + , L 3 + .
We have:

L 2 + = ξ 2 + 2 u -1 , L 3 + = ξ 3 + 3 u -1 ξ + 3 ∂u -1 + 3 u -2 and [L 2 + , L 3 + ] = (3∂ 2 u -1 + 6∂u -2 )ξ + 6[u -1 , u -2 ] -6∂u -1 u -1 + ∂ 3 u -1 + 3∂ 2 u -2 . Equation (7) yields du -1 dt 2 = ∂ 2 u -1 + 2∂u -2 (8) d(u -2 + ∂u -1 ) dt 2 - 2 3 
du -1 dt 3 = 2[u -1 , u -2 ] -2∂u -1 u -1 + 1 3 ∂ 3 u -1 + ∂ 2 u -2 . ( 9 
)
If we set 2u -1 = u, t 2 = y and t 3 = t, system (8), [START_REF] Magnot | On the Kadomtsev-Petviashvili hierarchy in an extended class of formal pseudo-differential operators[END_REF] becomes

u y = ∂ 2 u + 4∂u -2 (10) ∂u y + 2u -2,y - 2 3 u t = 2[u, u -2 ] -∂u u + 1 3 ∂ 3 u + 2∂ 2 u -2 . ( 11 
)
The system [START_REF] Magnot | Well-posedness of the Kadomtsev-Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups[END_REF], ( 11) reduces to the system appearing in [1, Exercise 5.

1.8] if u -1 , u -2 commute.
We remark that this system of equations is obtained directly from our PDOs calculus without further assumptions on the derivation ∂. The classical KP-II equation on C ∞ (S 1 , R) can be deduced from it by an adequate substitution procedure, as explained in [START_REF] Dickey | Soliton equations and Hamiltonian systems[END_REF]. In order to work in generalized settings, we stop our computations at system (10)- [START_REF] Mendoza | Massey products, A ∞ -algebras, differential equations, and Chekanov homology[END_REF], because the substitution procedure just mentioned may not be available in them.

KP equations and hierarchies in various contexts

3.1. When ∂ is an exterior derivation. We say that ∂ is an exterior derivation if ∂ 2 = 0. In this case, uξ m • vξ n = (uv)ξ m+n + (m u ∂v) ξ m+n-1 , and therefore the zero-curvature equations ( 8) and ( 9) read ( 12)

du-1 dt2 -2∂u -2 = 0 du-2 dt2 -2 3 du-1 dt3 = -2∂u -1 u -1 + 2[u -1 , u -2 ] ,
in which we have used that the first equation implies that ∂u -1,t2 = 0. Now we set 2u -1 = u, t 2 = y and t 3 = t. Equation ( 10) yields ( 13) u = 4∂ -1 y ∂u -2 , and therefore equation [START_REF] Mendoza | Massey products, A ∞ -algebras, differential equations, and Chekanov homology[END_REF] becomes

∂ y u -2 - 4 3 ∂ -1 y ∂ t ∂u -2 = 4[∂ -1 y ∂u -2 , u -2 ] ,
this is

(14) ∂ 2 y u -2 - 4 3 ∂ t ∂u -2 = 4∂ y [∂ -1 y ∂u -2 , u -2 ] ,
an equation that reduces to a linear wave equation in the commutative case. Proposition 2.7 yields the result Proposition 3.1. Let us fix u ∈ A. Equation ( 14) has a solution u -2 (y, t) with u -2 (0, 0) = u, and this solution is smooth with respect to the initial condition u.

Proof. We choose u(y) such that ∂ y u(y) = 4∂u. Such a u(y) exists because the derivation ∂ y is surjective on A[[y, t]]. Now we apply Proposition 2.7 with u 1,0 = (1/2) u(0) and u 2,0 = u, thereby obtaining a solution u -1 (y, t) and u -2 (y, t) to ( 12), or, equivalently, to the system ( 13)- [START_REF] Mulase | Solvability of the super KP equation and a generalization of the Birkhoff decomposition[END_REF]. By construction, the solution u -2 (y, t) satisfies u -2 (0, 0) = u and our general theory implies that it is smooth with respect to the initial condition u.

3.2.

On the case when ∂ is the gradient. Let n ∈ N * and let us consider A = C ∞ (R n , R n ) with component-wise operations (this is an instance of a "Hadamard product"). A is therefore a commutative and associative algebra, but it not an integral domain. The algebra A can be equipped with the topology of uniform convergence of derivatives at any order on any compact subset of R n . For the first part of the computations, we can also consider A = C ∞ c (R n , R n ) (functions with compact support) equipped with the Whitney topology (see. e.g. [START_REF] Kriegl | The convenient setting for global analysis Math[END_REF]) or

A = S(R n , R n ) (Schwartz space).
We denote by x = (x 1 , ...

x n ) t a point in R n , by u = (f 1 (x), • • • , f n (x)
) t a point in A, and we define the vector derivation ∇ by ( 15)

∇u = ∇(f 1 (x), ...f n (x)) t = ∂f 1 ∂x 1 (x), ..., ∂f n ∂x n (x) t .
Our notation is justified by the fact that "on the diagonal",

f 1 = f 2 = • • • = f n , our derivation ∇ is indeed standard gradient.
The fact that ∇ is a derivation is clear; let us check the Leibniz rule for benefit of the reader:

We take u = (f

1 (x), • • • , f n (x)) t and v = (g 1 (x), • • • , g n (x)) t in A.
Then (we omit the argument x for brevity),

∇(u • v) = ∂(f 1 g 1 ) ∂x 1 , ..., ∂(f n g n ) ∂x n t = ∂f 1 ∂x 1 g 1 + f 1 ∂g 1 ∂x 1 , ..., ∂f n ∂x n g n + f n ∂g n ∂x n t = ∂f 1 ∂x 1 , • • • , ∂f n ∂x n t (g 1 , • • • , g n ) t + (f 1 , • • • f n ) t ∂g 1 ∂x 1 , ..., ∂g n ∂x n t = ∇(u) v + u ∇(v) .
We note that this computation shows that we can replace the partial derivatives [START_REF] Neeb | Towards a Lie theory of locally convex groups[END_REF] for any n-tuple of smooth vector fields X 1 , • • • X n on R n and still obtain a meaningful derivation on A. We stick with our original choice in view of Remark 3.2 below. Equations ( 7) read as follows (for any of the three choices of A mentioned at the beginning of this subsection):

∂ ∂x1 , • • • , ∂ ∂xn appearing in
(16) du-1 dt2 = ∇ 2 u -1 + 2∇u -2 -2 du-1 dt3 + 6u -1 ∇u -1 -3∇ 2 u -1 = -2∇ 3 u -1 -3∇ 2 (u -2 + u -1 ) -3 du-2 dt2 . Assuming that A = C ∞ (R n , R n ) equipped with the smooth compact-open topol- ogy, we can choose v ∈ C ∞ (R n , R n )[[t 2 , t 3 ]] such that du-2 dt2 = ∇(v). Setting h 1 = 2∇ 2 u -1 -3v -3 dv dt2 -3∇u -1 , we get: (17) 
       d 2 u-1 dt 2 2 = ∇ 2 du-1 dt2 + 2v ∇h 1 = -2 du-1 dt3 + 6u -1 ∇u -1 -3∇ 2 u -1 3 dv dt2 + 3v = -h 1 + 2∇ 2 u -1 -3∇u -1
where t 2 and t 3 are external R-variables. We note that we obtain a "1D Navier-Stokes-like" equation in the second line. In general we can make the following Remark 3.2. We can get the Navier-Stokes equation at any dimension on

A = C ∞ (R n , R n ) if we impose the additional constraint div(u -1 ) = n k=1 ∂u -1,k ∂x k = 0. Indeed, let h be a solution of the equation ∇h = ∇h 1 + 3∇ 2 u -1 -ν∆u -1
we get a four lines system:

(18)              d 2 u-1 dt 2 2 = ∇ 2 du-1 dt2 + 2v ∇h = -2 du-1 dt3 + 6u -1 ∇u -1 + ν∆u -1 3 dv dt2 + 3v = -h 1 + 2∇ 2 u -1 -3∇u -1 ∇h = ∇h 1 + 3∇ 2 u -1 -ν∆u -1
The added line has a particular solution

h = h 1 + 3∇u -1 -ν x1 0 ∆u -1 (z 1 , ...z n )dz 1 , ..., ν xn 0 ∆u -1 (z 1 ; ..., z n )dz n t only valid in C ∞ (R n , R n )[[t 2 , t 3 ]]. 3.3. On C ∞ (R, H).
Let H be the field of quaternions. We give here explicitly the equations derived from the quaternionic KP hierarchy [START_REF] Mc Intosh | The quaternionic KP hierarchy and conformally immersed 2-tori on the 4sphere[END_REF][START_REF] Kuperschmidt | KP or mKP: Mathematics of Lagrangian, Hamiltonian and Integrable Systems[END_REF], obtained for ∂ = d dx and for A = C ∞ (S 1 , H) or A = C ∞ (R, H). Equations ( 8) and ( 9) become:

(19) du-1 dt2 = ∂ 2 u -1 + 2∂u -2 3 du-2 dt2 -2 du-1 dt3 = [u -1 , u -2 ] -6∂u -1 u -1 -2∂ 3 u -1 -3∂ 2 u -2
where multiplication is the H-multiplication, while the system (10), [START_REF] Mendoza | Massey products, A ∞ -algebras, differential equations, and Chekanov homology[END_REF] become

u y = ∂ 2 u + 4u -2
and the quaternionic KP equation Therefore we get the following system:

3u yy = ∂ 4u t -6∂u u -∂ 3 u + 3∂ u, ∂ -1 u y -∂u or (20) 3u yy = ∂ 4u t -3(∂u u + u ∂u) -∂ 3 u + 3∂ u, ∂ -1 u y .
(21)                            d dt2 a = ∂ 2 a + 2∂a , d dt2 b = ∂ 2 b + 2∂b , d dt2 c = ∂ 2 c + 2∂c , d dt2 d = ∂ 2 d + 2∂d 3 da dt2 -2 da dt3 = -6 (a∂a + b∂b + c∂c + d∂d) -2∂ 3 a -3∂ 2 a 3 d(b +∂b) dt2 -2 db dt3 = c c d d -6 (a∂b + b∂a + d∂c -c∂d) -2∂ 3 b -3∂ 2 b 3 dc dt2 -2 dc dt3 = d d b b -6 (a∂c + c∂a + c∂d -d∂c) -2∂ 3 c -3∂ 2 c 3 d(d +∂d) dt2 -2 dd dt3 = b b c c -6 (a∂d + d∂a + c∂b -b∂c) -2∂ 3 u -1 -3∂ 2 d
Proposition 2.7 tells us that given u 0 -1 , u 0 -2 ∈ H, this system has a unique smooth solution with u -1 (0) = u 0 -1 , u -2 (0) = u 0 -2 , and that this solution is smooth with respect to initial conditions. We also have: Proof. We choose u 0 -2 = (1/4)(u -∂ 2 u) and we apply Proposition 2.7 with u 1,0 = (1/2)u and u 2,0 = u 0 -2 . By construction, the solution u(y, t) = 2u -1 (y, t) solves [START_REF] Strachan | Integrability of the Frobenius algebra-valued Kadomtsev-Petviashvili hierarchy[END_REF], it satisfies u(0, 0) = u, and our general theory implies that this solution is smooth with respect to the initial condition u.

3.4. On the case when ∂ is a derivation on a Lie algebra. Let g be a Lie algebra and let T g be its tensor algebra, namely

T g = ⊕ k∈N T k (g) , T k (g) = g ⊗k = g ⊗ • • • ⊗ g , (T 0 (g) = K) .
A derivation D ∈ Der(g) induces a derivation ∂ on T g by the formulas:

∀λ ∈ K, ∂λ = 0, ∂(u 1 ⊗• • •⊗u n ) = (Du 1 )⊗u 2 ⊗• • •⊗u n +u 1 ⊗(Du 2 )⊗u 3 • • • u n +• • •+u 1 ⊗• • •⊗u n-1 ⊗(Du n ) for all u 1 , • • • , u n ∈ g.
Equations ( 7) read as:

                   du (0) -1 dt2 = 0 du (0) -1 dt3 = 3 2 du (0) -2 dt3 du (1) -1 dt2 = D 2 u (1) -1 + 2Du (1) -2 3 du (1) -2 dt2 -2 du (1) -1 dt3 = -2D 3 u (1) -1 -3D 2 u (1) -2

• • •

Let us specialize our computations when D is an inner derivative. Let a ∈ g. We set D = [a, .] and we examine the equations obtained by considering the grading of the tensor algebra,

u -k = u (0) -k + u (1) 
-k + u

-k + • • • Equation [START_REF] Kuperschmidt | KP or mKP: Mathematics of Lagrangian, Hamiltonian and Integrable Systems[END_REF], in its lowest tensor orders, reads:

                   du (0) -1 dt2 = 0 du (0) -1 dt3 = 3 2 du (0) -2 dt3 du (1) -1 dt2 = a, a, u (1) -1 + [2a, u (1) 
-2 ] 3 du (1) -2 dt2 -2 du (1) -1 dt3 = -2 a, a, a, u (1) -1 -3 a, a, u (1) -2
• • • Proposition 2.7 allow us to conclude that the Cauchy problem of this infinite system of equations can be solved in our algebraic setting. We omit the details.

Let us apply this on g = V ect(R n ) and a = ∂ 1 + • • • ∂ n , the same formulas apply and with the same notations and definitions as in section 3.2 we have [a, .] = ∇ as in section 3.2 but here the same equations read as: 

                   du (0) -1 dt2 = 0 du (0) -1 dt3 = 3 2 du (0) -2 dt3 du (1) -1 dt2 = ∇ 2 u (1) -1 + 2∇u (1) -2 3 du (1) -2 dt2 -2 du (1) -1 dt3 = -2∇ 3 u (1) -1 -3∇ 2 u (1) -2 • • •
∀T ∈ End(A), ∂ ξ T = T X -XT = [-X, T ].
Following its fundamental properties [START_REF] Pincherle | Operatori lineari e coefficienti di fattoriali[END_REF][START_REF] Rota | On the Foundations of Combinatorial Theory. VIII: Finite Operator Calculus[END_REF], since ∂ ξ X = 0 and ∂ ξ d dX = 1, it follows that ∂ ξ is also known as a derivation on (polynomial) differential operators A d dX . Proposition 3.4. Let A = K((X)) or A = K((X -1 )). i.e. Then:

(1) In the sequel, the derivation in the formal X-variable will be noted by ∂ X .

∂ ξ A = 0 ( 
Proof. (1) and ( 2) are straightforward from the definitions. In order to prove (3), we get by induction that ∂ ξ ξ -n = -nξ n+1 , which defines it by A -linearity, and then we can check that ∂ ξ satisties the Leibnitz rule on ΨDO(A ).

We now consider ΨDO(B) =

k∈Z a k ζ k : a k ∈ B, a k = 0, k >> 0 . If P ∈ ΨDO(B), we can write P = k∈Z a k ζ k (or "P = k∈Z a k ∂ k ξ ") that is, ζ is the formal variable that corresponds to the derivation ∂ ξ on B.

Thus, we have a "hybrid" system, a Lie algebra bracket and a commutator in an associative algebra:

du-1 dt2 = [X, [X, u -1 ] -2[X, u -2 ] 3 du-2 dt2 -2 du-1 dt3 = [u -1 , u -2 ] + 6[X, u -1 ]u -1 + 2[X, [X, [X, u -1 ]]] -3[X, [X, u -2 ]
] . Once again, Proposition 2.7 allow us to conclude that the Cauchy problem of this system of equations can be solved in our algebraic setting.

3.6. Moyal KP equation. We work in the framework of Hamanaka's paper [START_REF] Hamanaka | Commuting flows and conservation laws for noncommutative Lax hierarchies[END_REF], see also [START_REF] Sakakibara | Factorization methods for noncommutative KP and Toda hierarchy[END_REF][START_REF] Takasaki | Nonabelian KP hierarchy with Moyal algebraic coefficients[END_REF]. We take independent variables x k equipped with non-commutative multiplication [x k , x l ] = i θ kl and we consider the induced multiplication on functions f (x 1 , x 2 , • • • ) given by

f (x) g(x) = f (x) • g(x) + i 2 θ kl ∂ x k f (x)∂ x l g(x) + O(θ 2 ) .
In this context [START_REF] Magnot | Well-posedness of the Kadomtsev-Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups[END_REF], [START_REF] Mendoza | Massey products, A ∞ -algebras, differential equations, and Chekanov homology[END_REF] become

u y = ∂ 2 u + 4∂u -2
and the Moyal KP equation [START_REF] Strachan | Frobenius manifolds and Frobenius algebra-valued integrable systems[END_REF] 3u yy = ∂ 4u t -3(∂u u + u ∂u) -

∂ 3 u + 3∂ u, ∂ -1 u y ,
where the commutator is [f, g] = f g -g f . This last equation is exactly Equation (3.17) in [START_REF] Hamanaka | Commuting flows and conservation laws for noncommutative Lax hierarchies[END_REF]. Soliton solutions to [START_REF] Strachan | Frobenius manifolds and Frobenius algebra-valued integrable systems[END_REF] have been found by Etigoff, Gelfand and Retakh, see [START_REF] Etigoff | Factorization of differential operators, quasideterminants, and nonabelian Toda field equations[END_REF], and also by Paniak in [START_REF] Paniak | Exact Noncommutative KP and KdV Multi-solitons[END_REF]. We finish this paper with a general result on the initial value problem for [START_REF] Strachan | Frobenius manifolds and Frobenius algebra-valued integrable systems[END_REF]. We omit its proof. 

  namely, each coefficient c n and d n depend smoothly (in the usual way) on finite numbers of coefficients a n and b n .

Let us expand u - 1 =- 1 u - 1 =

 111 a + ib + jc + kd and u -2 = a + ib + jc + kd where (a, b, c, d, a , b , c , d ) ∈ A 8 [[T ]]. We compute: [u -1 , u -2 ] = a∂a + b∂b + c∂c + d∂d + (a∂b + b∂a + d∂c -c∂d) i + (a∂c + c∂a + c∂d -d∂c) j + (a∂d + d∂a + c∂b -b∂c) k

Proposition 3 . 3 .

 33 Let us fix u ∈ A. Equation (20) has a solution u(y, t) ∈ A[[y, t]] with u(0, 0) = u, and this solution is smooth with respect to the initial condition u.

3. 5 .

 5 On Pincherle derivative. Let us consider A = K[X], with K = R or C. The Pincherle derivative is defined as follows:

2 )

 2 ∂ ξ extends to a derivation on A d dX . (3) ∂ ξ extends to a derivation on the algebra B = ΨDO(A ) = k∈Z a k ξ k : a k ∈ A , a k = 0, k >> 0 by the relation ∂ ξ ξ = 1.

Proposition 3 . 5 .

 35 Let us fix u ∈ (A, ). Equation[START_REF] Strachan | Frobenius manifolds and Frobenius algebra-valued integrable systems[END_REF] has a solution u(y, t) ∈ A[[y, t]] with u(0, 0) = u, and this solution is smooth with respect to the initial condition u.
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