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ABSTRACT

The detection of mixed modes in red giants with space missions CoRoT and Kepler has revealed their deep internal structure. These
modes allow us to characterize the pattern of pressure modes (through the measurement of their asymptotic frequency separation
∆ν) and the pattern of gravity modes (through the determination of their asymptotic period spacing ∆Π1). It has been shown that
red giant branch (RGB) stars regroup on a well-defined sequence in the ∆ν−∆Π1 plane. Our first goal is to theoretically explain the
features of this sequence and understand how it can be used to probe the interiors of red giants. Using a grid of red giant models
computed with mesa, we demonstrate that red giants join the ∆ν−∆Π1 sequence whenever electron degeneracy becomes strong in
the core. We argue that this can be used to estimate the central densities of these stars, and potentially to measure the amount of
core overshooting during the main sequence part of the evolution. We also investigate a puzzling subsample of red giants that are
located below the RGB sequence, in contradiction with stellar evolution models. After checking the measurements of the asymptotic
period spacing for these stars, we show that they are mainly intermediate-mass red giants. This is doubly peculiar because these stars
should have nondegenerate cores and they are expected to be located well above the RGB sequence. We show that these peculiarities
are well accounted for if these stars result from the interaction between two low-mass (M . 2 M�) close companions during the red
giant branch phase. If the secondary component has already developed a degenerate core before mass transfer begins, it becomes
an intermediate-mass giant with a degenerate core. The secondary star is then located below the degenerate sequence, which is in
agreement with the observations.

Key words. asteroseismology – stars: interiors – binaries: close

1. Introduction

Red giants stochastically excite oscillations in the outer convec-
tive envelope, in a similar way as the Sun. Contrary to main
sequence solar-like pulsators, they show nonradial oscillations
of a mixed nature, resulting from the coupling between pressure
(p) waves and gravity (g) waves. These mixed modes have a very
high potential in terms of asteroseismic diagnostics because they
are sensitive to the envelope properties through their p-mode
behavior, and to the core structure through their g-mode nature.
High-precision space photometry provided by space missions
CoRoT (Baglin et al. 2006), Kepler (Borucki et al. 2010), and
now tess (Ricker et al. 2014) has led to the detection of mixed
modes in tens of thousands of red giants and thus revealed
the internal structure of these stars. This has led to major
achievements, such as the unambiguous distinction between H-
shell burning giants and core-He burning giants (Bedding et al.
2011; Mosser et al. 2011). Mixed modes have also allowed us
to probe the internal rotation of red giants (e.g., Beck et al.
2012; Mosser et al. 2012a; Deheuvels et al. 2012, 2014, 2020;
Gehan et al. 2018), thereby permitting novel observational con-
straints to progress in the longstanding problem of the transport
of angular momentum in stellar interiors (e.g., Marques et al.
2013; Cantiello et al. 2014; Fuller et al. 2019).

Well before the detection of mixed modes, Shibahashi (1979)
proposed an asymptotic expression for their frequencies. This

later provided the proper framework to measure the global seis-
mic parameters of p- and g-modes using mixed mode frequen-
cies (Mosser et al. 2012b, 2015). In particular, one can infer
the asymptotic large separation ∆ν of p modes and the asymp-
totic period spacing ∆Π1 of dipolar g modes. Vrard et al. (2016)
(hereafter V16) thus measured ∆Π1 for 6100 Kepler red giants.
Placing red giants in the plane ∆Π1 versus ∆ν provides a wealth
of information about their structure. The most striking feature of
this representation is the very clear separation between stars on
the first-ascent red giant branch (RGB stars) and giants that are
already burning He in the core (clump stars). Another remark-
able feature is the well-defined sequence over which RGB stars
regroup in the ∆ν−∆Π1 plane (see Fig. 1). Mosser et al. (2014)
found that as subgiants evolve onto the RGB, their evolutionary
paths eventually converge in the ∆ν−∆Π1 diagram. This RGB
sequence in the ∆ν−∆Π1 plane was also characterized by V16,
who reported that the location of this sequence depends on the
stellar mass. Interestingly, a similar sequence in the ∆ν−∆Π1
diagram was also found for RGB stars using stellar models
(Stello et al. 2013). However, no dedicated study has been pro-
posed to explain the main features of this sequence. For future
purposes, we also note that V16 found red giants that are located
below this RGB sequence. We show in this study that stars are
not expected to be found in this region of the ∆ν−∆Π1 plane.

In this paper, we investigate the RGB sequence in the
∆ν−∆Π1 plane in order to physically explain its main features.
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Our first goal is to provide keys to interpret the comparison
between the observed sequence and the one predicted by stellar
models, which has been only briefly addressed in previous stud-
ies. In Sect. 2, we summarize the main observational features of
the RGB sequence in the ∆ν−∆Π1 diagram. In Sect. 3, we clearly
establish the link between electron degeneracy in the core and
the RGB sequence. We then use approximations in order to phys-
ically account for the observed features of the RGB sequence and
we give hints on the way it could be used to probe the interiors of
red giants (Sect. 4). In a second part of this paper, we instigate
the puzzling question of stars that are located below the RGB
sequence, in contradiction with the predictions of stellar mod-
els. In Sect. 5, we check the determination of ∆Π1 for a subset
of this group of stars. Red giants that we confirm to be located
below the RGB sequence are mainly intermediate-mass giants.
This makes these stars doubly puzzling because they should have
nondegenerate cores and are thus expected to have much larger
period spacings, which would place them well above the RGB
sequence. In Sect. 6, we show that these peculiarities could in
fact be well accounted for if these stars are the product of mass
transfer between two low-mass (M . 2 M�) close companions
during the red giant branch phase.

2. Observational features of the RGB sequence in
the ∆ν−∆Π1 plane

The largest catalog of measured period spacings in red giants is
that of V16, which contains 6100 stars. The authors calculated
the large separations ∆ν using radial modes and an asymptotic
expression of p modes (Mosser et al. 2013). The period spacings
∆Π1 were measured after applying a stretching of the observed
mode periods in order to remove the dependency to p modes,
as prescribed by Mosser et al. (2015). Figure 1 shows the loca-
tion of RGB stars in the ∆ν−∆Π1 plane. Core-He burning giants
were removed by selecting only stars with ∆Π1 < 130 s and we
were thus left with close to 2000 stars on the RGB. RGB stars
regroup on a well-defined sequence, whereby the period spacing
decreases with decreasing ∆ν. As stars ascend the RGB, their
radius increases and their large separation decreases, so that they
evolve from right to left on this sequence. In Fig. 1, stars are
color-coded by their masses, which were derived from seismic
scaling relations by V16.

Several key features of the RGB sequence have already been
observed. First, there is a clear mass-dependency of the RGB
sequence. At fixed ∆Π1, higher-mass stars tend to have larger
values of ∆ν, which means that they are denser than their lower-
mass counterparts. This was pointed out by V16, but no physical
explanation of this tendency has yet been proposed. Secondly,
higher-mass stars appear to join the RGB sequence at lower ∆ν
(i.e., later in the evolution) than lower-mass stars. This is evident
from Fig. 1, where the right part of the sequence is comprised
only of low-mass stars. This was also found in stellar models
(Lagarde et al. 2016). Finally, there is a scatter around the RGB
sequence, which has been reported to increase with stellar mass
(Mosser et al. 2014). At least part of this scatter could be caused
by incorrect estimations of the period spacing. We propose phys-
ical explanations for these features in Sects. 3 and 4.

3. Link with electron degeneracy in the core

We know that the asymptotic large separation ∆ν essentially
measures the mean density of the star. The period spacing ∆Π1
is related to the properties of the stellar core. The existence of a

Fig. 1. ∆ν−∆Π1 relation of RGB stars studied by V16. Only stars with
∆Π1 < 130 s are represented in order to remove the contribution from
core-He burning giants. Stars are color-coded by their mass, obtained
from seismic scaling relations. The thick black dashed line indicates the
average RGB sequence as obtained from observations (see Sect. 5.1).

tight sequence for RGB stars in the ∆ν−∆Π1 diagram shows that
stars with a given ∆Π1 and a given mass all have similar mean
densities, that is, similar envelope properties. We here study the
link between electron degeneracy in the core and the settling of
stars on the RGB sequence in the ∆ν−∆Π1 diagram, which was
also suggested by Farnir et al. (2021).

For this purpose, we computed a grid of stellar models using
the evolution code mesa (Paxton et al. 2011, 2013, 2015, 2018,
2019). This grid was further used to explore the dependence of
the RGB sequence on different stellar parameters, like the mass,
the metallicity and the amount of core overshoot during the main
sequence. We thus varied the stellar mass from 1 to 2.5 M�
(step 0.1 M�). We considered a range of metallicity between
−0.4 to 0.4 dex (step 0.1 dex), which covers the great majority
of Kepler giants. We assumed the solar mixture of Asplund et al.
(2009) for all our models. Nuclear reactions rates were com-
puted with the NACRE compilation (Angulo et al. 1999) com-
pleted with the revised LUNA rate (Formicola et al. 2004) for
the 14N(p, γ)15O reaction. The atmosphere was described by
Eddington’s gray law. Convection was described using the clas-
sical mixing length theory (Böhm-Vitense 1958) calibrated on
the Sun. Core overshooting was added during the main sequence
as an instantaneous mixing beyond the convective core over a
distance dov = αovHp, where Hp is the pressure scale height and
αov is a free parameter controlling the efficiency of core over-
shooting. We considered values of αov = 0, 0.1, and 0.2, in line
with the existing observational measurements of this free param-
eter (e.g., Deheuvels et al. 2016).

Models were evolved until they reach a large separation of
2 µHz, that is, well below the lower limit of ∆ν for which mea-
surements of ∆Π1 can be obtained (see Fig. 1). At each stage of
the evolution, we estimated ∆ν as

∆ν = ∆ν�

(
M
M�

)1/2 (
R
R�

)−3/2

(1)

where the solar large separation was taken as ∆ν� = 134.9 µHz
(Kallinger et al. 2010). ∆Π1 was estimated using its asymptotic
expression

∆Π1 = π2
√

2
(∫

g

NBV

r
dr

)−1

(2)
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where NBV is the Brunt–Väisälä frequency and the integration is
performed over the extent of the g-mode cavity.

For each model, the level of degeneracy of the electrons in
the core is measured by the parameter ψ defined as

eψ =
h3

2mu(2πmekB)3/2

ρ

µeT 3/2 (3)

where ρ is the gas density, T is its temperature, µe is the mean
molecular weight per free electron, h is the Planck constant, kB
is the Boltzmann constant, mu is the atomic unit mass, and me is
the mass of the electron. Values of ψ � 1 indicate a high level
of electron degeneracy (Kippenhahn & Weigert 1990). We here
arbitrarily considered that the core has reached strong electron
degeneracy when ψ(r = 0) > 25.

Figure 2 shows the evolutionary tracks of models from the
grid. The parts of the evolution where electron degeneracy is
high are indicated by the thick colored curves. For clarity rea-
sons, we only represented the nondegenerate part of the evo-
lution for models with solar metallicity and without core over-
shooting. It is very clear from this figure that red giants populat-
ing the RGB sequence in the ∆ν−∆Π1 plane all have degenerate
cores. Conversely, no models with a degenerate core are found
outside this sequence. We thus propose to refer to this particular
region in the ∆ν−∆Π1 plane as the degenerate sequence.

In Fig. 2, stars evolve from the top right corner to the bottom
left corner. During the evolution, the core gets denser and there-
fore the asymptotic period spacing decreases. For stars that are
less massive than about 2.1 M�, the core eventually reaches con-
ditions of density and temperature such that electron degeneracy
becomes important (thick colored curves in Fig. 2). Then, ∆ν
and ∆Π1 vary following the degenerate sequence, which depends
weakly on the stellar mass but seems nearly independent of other
stellar parameters. It is well known that the higher the mass,
the later in the evolution the He core becomes degenerate (e.g.,
Kippenhahn & Weigert 1990). This explains why higher-mass
red giants join the sequence later than lower-mass red giants.

Stars that are located above the degenerate sequence in the
∆ν−∆Π1 have nondegenerate cores and are thus evolving on a
Kelvin-Helmholtz timescale. This explains why we detect rel-
atively few stars in this region of the diagram. On the other
hand, no stars are expected to be located below the degener-
ate sequence. Yet Fig. 1 shows that several stars are found in
this part of the diagram. We address this intriguing question in
Sects. 5 and 6.

4. Investigating the properties of the degenerate
sequence

We used the grid of stellar models built in Sect. 3 to investigate
the observed features of the degenerate sequence.

4.1. Relation between ∆Π1 and ρc

It is quite well known that in subgiants and red giants, g-mode
properties are tightly related to the central density ρc (e.g.,
Deheuvels & Michel 2011; Montalbán et al. 2013). Figure 3
shows the relation between ∆Π1 and ρc for all the models of
the computed grid. The correlation between the two quantities
appears clearly, and becomes tighter as stars evolve (as ∆Π1
decreases). We observe that when the core becomes degenerate
(thick colored curves in Fig. 3), there is a nearly one-to-one rela-
tion between ρc and ∆Π1. For values of ∆Π1 above around 75 s,

Fig. 2. Evolutionary paths in the ∆ν−∆Π1 plane of stellar models from
the grid presented in Sect. 3. Thick solid lines indicate periods of the
evolution where electron degeneracy is strong in the core – ψ(r = 0) >
25. Dashed lines correspond to ψ(r = 0) < 25. For clarity, the non-
degenerate part of the evolution is shown only for models with solar
metallicity and without core overshooting.

Fig. 3. Relation between ∆Π1 and the central density ρc in the models of
the grid presented in Sect. 3. Thick colored lines (resp. thin black lines)
indicate periods of the evolution where electron degeneracy is strong
(resp. weak) in the core. The color code is the same as in Fig. 2. The red
dashed line corresponds to a linear regression of the ∆Π1−ρc relation
for stars with degenerate cores (see text).

the ρc−∆Π1 relation is very tight. Despite the wide range of stel-
lar parameters explored in our grid, we find that models sharing
the same ∆Π1 within 0.5 s (typical uncertainty in the determina-
tion of ∆Π1, see V16) show variations in ρc of only about 5%.
A large fraction of the RGB stars on the degenerate sequence in
the V16 catalog are in this range of ∆Π1. For lower values of
∆Π1, the scatter in the relation is larger and reaches about 15%
for ∆Π1 ∼ 50 s.

A first rough explanation of this tight relation can be obtained
by assuming that the stellar matter in the core behaves as a com-
pletely degenerate nonrelativistic gas. This leads us to model
the degenerate core as a polytrope with P = K(ρ/µe)γ, where
γ = 5/3, µe is the mean molecular weight per free electron, and
K is a constant determined by the equation of state of the gas.
Such models have one single degree of freedom. Their complete
mechanical structure, that is ρ(r), P(r), m(r), and thus NBV(r)
are entirely determined by one parameter only, for instance the
central density ρc.
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Fig. 4. Density profile in the degenerate helium core of models shar-
ing similar values of ρc but different stellar parameters (blue curve:
M = 1 M� and [Fe/H] =−0.4 dex, red curve: M = 1.4 M� and
[Fe/H] = +0.4 dex). The dotted lines delimit the region of strong degen-
eracy for both models and the dash-dot lines indicate the location of
the H-burning shell. The black dashed line corresponds to the density
profile for a polytrope of exponent γ = 1.55.

In reality, the helium core is not fully degenerate and we do
not expect the central layers to behave as a polytrope of exponent
γ = 5/3. To verify this, we calculated the local polytropic expo-
nent γ = (d ln p/d ln ρ) in the degenerate cores of the models in
our computed grid. We found that γ is nearly identical for mod-
els with degenerate cores, with values ranging from about 1.54
to about 1.56. We can thus make the assumption that the degen-
erate cores of models having similar central densities behave as
polytropes with an identical exponent γ. To illustrate this, we
compare in Fig. 4 the density profiles of two models with dif-
ferent stellar parameters but same ρc to the density profile of a
polytrope with γ = 1.55 and identical ρc. The curves overlap in
the region of strong degeneracy.

Assuming that the degenerate cores of RGB stars can be
modeled as polytropes with the same index n, the expression of
the Brunt–Väisälä frequency can be recast as

N2
BV = 4πGρcn

1
w

(
dw
dz

)2 (
1 −

γ

Γ1

)
, (4)

where G is the gravitational constant, Γ1 is the adiabatic expo-
nent (∂ ln P/∂ ln ρ)ad, w = (ρ/ρc)1/n, and z = r/A, where

A =

K(n + 1)ρ1/n−1
c

4πG

1/2

. (5)

The only free parameter governing the value of NBV(r) is ρc, and
we deduce that NBV ∝

√
ρc.

The g-mode cavity extends up to the hydrogen burning shell
and thus also comprises regions that are weakly degenerate.
Equation (4) cannot a priori hold in these regions. However, we
observe from our grid that models sharing similar central den-
sities also have very similar structure in the weakly-degenerate
regions below the H-shell burning. This appears clearly in Fig. 4.
We therefore assumed that the relation NBV ∼

√
ρc holds in the

whole g-mode cavity. In these conditions, Eq. (2) shows that
∆Π1 ∼ ρ

−1/2
c . To check how this relation agrees with the predic-

tions from stellar models, we fit a power law to the ∆Π1−ρc rela-
tion obtained from degenerate models in our grid (see Fig. 3). We
found ∆Π1 ∼ ρ

−0.47
c , which is close to the dependence that was

Fig. 5. Relation between ∆Π1 and the stellar radius R in the models of
the grid presented in Sect. 3. The colors and thickness of the lines have
the same meaning as in Fig. 3. For clarity, the nondegenerate part of the
evolution is shown only for models with solar metallicity, αov = 0, and
masses ranging from 1 to 2.5 M� from bottom to top.

obtained with our simplifying assumptions. We conclude that for
red giants belonging to the degenerate sequence, the asymptotic
period spacing ∆Π1 provides a quite good direct estimate of the
central density.

4.2. Relation between ∆Π1 and stellar radius

From the previous section, we can interpret the degenerate
sequence in the ∆ν−∆Π1 plane as a tight relation between the
central density ρc (through ∆Π1) and the mean density ρ̄ (through
∆ν). This is a manifestation of the more general mirror princi-
ple, whereby the envelope expands as the core contracts. In this
particular case, the relation between core properties and enve-
lope properties can be understood as follows. We have shown
that stars with similar period spacings have nearly identical
structure from the center to the H-burning shell. We can thus
assume that the masses Mc and radii Rc of their inert helium
cores are similar. From arguments based on shell-source homol-
ogy (Refsdal & Weigert 1970), the stellar luminosity essentially
depends on Mc and Rc, so that stars with similar ∆Π1 should
have approximately the same luminosity regardless of their total
mass. The link with envelope properties can then be made by
noticing that red giants have to evolve along Hayashi lines in
the HR diagram. If we make the very crude approximation that
all RGB stars follow the same Hayashi line, defined by L(Teff),
then stars with similar ∆Π1 should have the same effective tem-
perature, and thus the same radius (since L ∝ R2T 4

eff
). We thus

conclude that there should be a close relation between ∆Π1 and
the stellar radius R.

As shown by Fig. 5, we indeed find a tight relation between
∆Π1 and R for the models of our grid that have degenerate cores.
The relation is very clear for low-luminosity giants (R . 8 R�).
Contrary to the relation between ∆Π1 and ∆ν, it seems to be
nearly independent of the stellar mass. The widening of the rela-
tion above ∼8 R� is caused by the crossing of the luminosity
bump.

4.3. Mass dependency of the degenerate sequence

We now turn to the mass-dependency that was observed for the
degenerate sequence in the ∆ν−∆Π1 plane (V16). The same type
of dependency is also found in stellar models with degenerate
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helium cores, as can be seen in Fig. 2. We have shown that the
cores of stars with similar ∆Π1 have nearly identical structures.
The differences in ∆ν thus come almost entirely from the enve-
lope structure. Observations have shown that for a given value
of ∆Π1, higher-mass stars tend to have larger ∆ν, and thus larger
mean densities. This means that higher-mass envelopes tend to
be more condensed.

We show in Fig. 6 the variations in ∆ν as a function of stellar
mass for the models of our grid that have a period spacing of
∆Π1 = 71± 0.5 s (this value was chosen arbitrarily for illustra-
tion purposes, other values yield qualitatively similar plots). In
this figure, we have selected only the models that have degener-
ate cores. It is clear that ∆ν increases with stellar mass at fixed
∆Π1. By fitting a power law to Fig. 6, we find that ∆ν ∼ M0.64 at
fixed ∆Π1. The value of the exponent is only weakly dependent
on the chosen value of ∆Π1. For higher masses in Fig. 6, this
trend starts to reverse. Indeed, for the highest masses in the plot,
electron degeneracy is not yet strong in the core and stars are just
settling on the ∆ν−∆Π1 degenerate sequence.

We then tried to provide a quantitative explanation for the
mass dependency of the ∆ν−∆Π1 degenerate sequence. At fixed
period spacing ∆Π1, using the fact that ∆ν scales as the square
root of the mean density, we have(
∂ ln ∆ν

∂ ln M

)
∆Π1

=
1
2
−

3
2

(
∂ ln R
∂ ln M

)
∆Π1

. (6)

As explained in Sect. 4.2, we expect stars with similar ∆Π1 to
have the same radius approximately, that is, (∂ ln R/∂ ln M)∆Π1

≈

0. Using this crude approximation, one would have ∆ν ∼ M0.5,
which is rather close to the relation that was obtained using
the models of our grid. To refine this first estimate, one would
need to take into account the mass dependency of Hayashi lines
(e.g., Kippenhahn & Weigert 1990) and the deviations from the
approximation (∂ ln L/∂ ln M)∆Π1

≈ 0. The latter arises because
the core structure of stars with similar ∆Π1 start to significantly
differ near the top of the H-burning shell. Since a non-negligible
part of the stellar luminosity is produced in this region, stars with
common values of ∆Π1 can show a scatter in the total luminosity.

Instead, we followed a more pragmatic approach and pro-
ceeded to estimate (∂ ln R/∂ ln M)∆Π1

numerically. For this pur-
pose, we evolved a 1.6 M� model until it reached strong elec-
tron degeneracy in the core. We then applied mass loss from
the surface, in order to modify the amount of mass stored in
the envelope. Since the core is degenerate, it is not affected by
this procedure. This operation was repeated, applying various
amounts of mass loss to create models with total masses ranging
from 1 to 1.6 M�. Using the radii of these models, we obtained
(∂ ln R/∂ ln M)∆Π1

≈ −0.054. This yields ∆ν ∼ M0.58, according
to Eq. (6), which is closer to the relation that was found with our
grid of stellar models.

4.4. Mass at which core degeneracy occurs

We have shown in Sect. 3 that RGB stars with masses below
about 2.1 M� (this limit depends on the input physics) join
the ∆ν−∆Π1 sequence on the RGB when electron degeneracy
becomes strong in the core. The evolutionary stage at which
these stars reach the degenerate sequence depends primarily on
their mass (the lower the mass, the sooner in the evolution this
occurs). Figure 2 shows that models with the same input physics
and masses of 1.7, 1.8, 1.9, and 2 M� reach the sequence with
large separations of 14.3, 9.0, 5.4, and 2.8 µHz, respectively. It
is clear from Fig. 2 that for a given ∆ν (that is, for a given stellar

Fig. 6. Variations in ∆ν as a function of stellar mass at fixed value of
∆Π1 (71 ± 0.5 s). Blue filled circles represent models from our grid,
with αov = 0, 0.1, and 0.2 from light blue to dark blue. For clarity, a
small artificial shift in mass was applied to clearly separate models with
different αov. The black dashed line corresponds to the fit of a power
law to the ∆ν−M relation using the models of the grid. Red circles con-
nected by a thick red line correspond to a 1.6 M� stellar model to which
various amounts of mass loss have been applied (see Sect. 4.3).

mean density), red giants below a certain mass have a degener-
ate core and therefore lie on the ∆ν−∆Π1 degenerate sequence
already, while stars more massive than this limit have nondegen-
erate cores and therefore lie above the ∆ν−∆Π1 sequence. This
transitional mass is strongly dependent on the choice of ∆ν, as is
apparent from the example given above.

Another key ingredient to determine when core degeneracy
becomes important is the amount of core overshooting during
the main sequence. It is well known that core overshooting mod-
ifies the stellar mass that marks the transition between stars that
ascend the RGB until the He flash, and stars that trigger helium
burning in a nondegenerate core (e.g., Montalbán et al. 2013;
Bossini et al. 2017). This transitional mass indeed decreases
from about 2.3 M� without core overshooting to about 2 M� for
core overshooting over a distance of 0.2 Hp, where Hp is the local
pressure scale height.

Core overshooting during the MS also modifies the mass
limit below which stars have a degenerate core at a given value
of ∆ν. To illustrate this, we selected stars that have a specific
large separation (here 11 ± 0.5 µHz) in the models of our grid.
We plotted ∆Π1 as a function of the stellar mass for these models
in Fig. 7, color-coding them as a function of the amount of core
overshooting in the main sequence. As can be seen in the figure,
the transitional mass is mainly determined by αov, the metallicity
having much less influence. Models without overshooting have
a transition mass around 1.75 M�, while for models computed
with αov = 0.2, this mass is about 1.5 M�. A detailed comparison
between models and observations for stars that lie on the degen-
erate sequence could therefore yield an estimate of the amount
of core overshooting during the main sequence.

5. A population of red giants below the degenerate
sequence

5.1. Departure from the degenerate sequence

We mentioned in Sect. 2 that a scatter of red giants is observed
around the degenerate sequence in the ∆ν−∆Π1 plane. To inves-
tigate this scatter, we first derived an approximate expression for
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Fig. 7. Relation between ∆Π1 and stellar mass at fixed ∆ν. The shaded
areas show the range of ∆Π1 for models of our grid that have a large
separation of ∆ν = 11 ± 0.5 µHz. Core overshooting corresponds to
αov = 0, 0.1 and 0.2 from light blue to dark blue.

the degenerate sequence. For this purpose, we separated RGB
stars from the catalog of V16 in bins of ∆ν of size 1 µHz, ranging
from 5 to 18 µHz. We then calculated the median value of ∆Π1
for each bin and fit a third-order polynomial to these points, with
coefficients ai, i = {0, 1, 2, 3}. This analytical approximation of
the degenerate sequence is shown in Fig. 1. We then measured
the departure from the degenerate sequence for a star with given
large separation ∆ν and period spacing ∆Π1 by the quantity z
defined as

z = ∆Π1 −

3∑
i=0

ai∆ν
i. (7)

A positive (resp. negative) value of z indicates a star above (resp.
below) the average degenerate sequence.

As explained in Sect. 4.4, the stellar mass plays a critical
role in determining when a star joins the degenerate sequence
during its evolution on the RGB. We thus separated stars from
the catalog of V16 in three mass ranges (M/M� < 1.4, 1.4 ≤
M/M� < 1.8, and M ≥ 1.8 M�). We did not directly use the mass
estimates that V16 derived from seismic scaling relations, but
rather used the measurements of Yu et al. (2018), which include
a correction factor for ∆ν calibrated with stellar models on the
RGB (Sharma et al. 2016). We also distinguished between stars
on the lower RGB (defined as ∆ν ≥ 9 µHz) and stars on the upper
RGB (∆ν < 9 µHz) because they show a different behavior.

Figure 8 shows the distribution of z for stars in the three dif-
ferent mass ranges. For reasons that are made clear below, we
show stars with large separations above and below 9 µHz in sep-
arate panels. We observe that the great majority of stars with
masses below 1.8 M� have low values of |z| (see black and red
histograms in both panels of Fig. 8) and are thus located on the
degenerate sequence, as expected. The mode of z decreases with
increasing stellar mass, in agreement with the mass dependency
of the degenerate sequence that is predicted by stellar models
(see Sect. 4.3). However, we note the detection of a small frac-
tion of stars in this mass range with large negative values of z
(about 3% of these stars have values of z below −6 s in both
ranges of ∆ν), which means that they are located well below the
degenerate sequence in the ∆ν−∆Π1 plane, in a region where
we do not expect stars based on stellar models. We address the
question of these stars in Sect. 5.2.

Fig. 8. Departure from degenerate sequence for low-luminosity red
giants (∆ν > 9 µHz, top panel) and high-luminosity giants (∆ν < 9 µHz,
bottom panel). Black, red, and blue histograms represent stars with
masses M/M� < 1.4, 1.4 ≤ M/M� < 1.8, and M/M� ≥ 1.8, respec-
tively. In the top panel, the blue dashed-line histogram corresponds to
stars from the catalog of V16 only, while the blue solid-line histogram
also includes stars from Yu et al. (2018).

For higher masses (M/M� > 1.8), the values of z are much
more spread out. We do expect a large proportion of these stars
to have nondegenerate cores, especially for stars on the lower
RGB. These stars should thus be lying above the ∆ν−∆Π1 degen-
erate sequence (positive values of z). We indeed find a larger
proportion of stars with large positive values of z among higher-
mass giants. However, a large fraction of higher-mass stars are
found to have large negative values of z (see the peak centered
around z ∼ −10 s in the top panel of Fig. 8), which means that
these stars are lying well below the degenerate sequence in the
∆ν−∆Π1 plane. These peculiar stars are mainly found among
low-luminosity red giants (∆ν ≥ 9 µHz, top panel of Fig. 8). For
higher-luminosity giants (∆ν < 9 µHz), this population of inter-
mediate mass stars lying below the degenerate sequence in the
∆ν−∆Π1 plane is much less prominent (bottom panel of Fig. 8).

This population of stars is doubly peculiar. First, stars with
masses above 1.8 M� are not expected to have degenerate cores
in the low-luminosity part of the RGB and they should thus
have period spacings that place them well above the degen-
erate sequence. This is illustrated in Fig. 9, which shows the
evolutionary tracks of stellar models with M > 1.8 M� in the
∆ν−∆Π1 plane, along with RGB stars with seismic masses above
1.8 M� from the catalog of V16. Clearly, a large fraction of stars
observed in this mass range have period spacings that are much
lower than those predicted by stellar models. To give an idea of
the magnitude of this discrepancy, we can quote the example of
KIC7778197, which has a seismic mass of 2.21 ± 0.14 M�, a
large separation of 9.84±0.02 µHz, and a measured period spac-
ing of ∆Π1 = 65.7 ± 0.55 s. By comparison, at the same large
separation, stellar models of 2.2 M� all have values of ∆Π1 that
are above 120 s. This discrepancy could be caused by a wrong
measurement of the stellar mass from seismic scaling relations.
However, large corrections would be needed to reconcile obser-
vations with model predictions. Following on the example given
above, our grid indicates that models computed with αov = 0.1
need to have a mass below 1.7 M� in order to be located on
the degenerate sequence at a large separation of 9.84 µHz. With
an overshooting efficiency of αov = 0.2 (more likely for this
mass range), the upper mass limit drops to 1.5 M�. The stel-
lar mass would therefore need to be overestimated by 23% for
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Fig. 9. Location in the ∆ν−∆Π1 plane of RGB stars with masses above
1.8 M�. The colors indicate the stellar mass, following the same scale
as in Fig. 2. Evolutionary tracks of stellar models with αov = 0.1 are
displayed with thick lines when electron degeneracy is strong in the
core, and thin lines otherwise. Circles correspond to RGB stars studied
by V16 and star-shaped symbols indicate stars from Yu et al. (2018)
with period spacing measured in this study (see Sect. 5.3). The black
dashed line corresponds to the average degenerate sequence obtained
from observations. The vertical gray dotted line shows the limit of ∆ν =
9 µHz, above which we have performed new measurements of ∆Π1 in
Sect. 5.2.

αov = 0.1, and 32% for αov = 0.2 to solve this discrepancy. This
is much larger than the level of accuracy of seismic scaling rela-
tions for stellar masses, which was recently estimated to about
5% (Serenelli et al. 2021). Another possibility to explain this
discrepancy is that the period spacings might have been incor-
rectly estimated for these stars. To investigate this hypothesis,
we check the measurements of ∆Π1 in Sect. 5.2.

The second reason why these stars are peculiar is that stellar
models clearly show that stars are not expected to be located
below the degenerate sequence in the ∆ν−∆Π1 plane. They
should approach this sequence from above when their core is
nondegenerate, and evolve along this sequence once electron
degeneracy becomes strong in the core (see Fig. 2). The lowest
value of z obtained for the models of our grid is around −4.5 s,
that is, much higher than the z values obtained for a large fraction
of low-luminosity giants with masses above 1.8 M�. We note that
even if the masses of these stars were incorrectly determined,
as suggested above, this would not explain why they are found
below the degenerate sequence in the ∆ν−∆Π1 plane.

5.2. Checking the measurements of ∆Π1

One obvious hypothesis to explain the discrepancy that was
found in the previous section would be that the asymptotic period
spacings have been incorrectly measured. To measure ∆Π1, V16
perform a stretching of the oscillation spectrum in order to repro-
duce the evenly-spaced period pattern of pure gravity modes
(see Mosser et al. 2015). For this purpose, an initial guess for
∆Π1 is required. Then, to search for regularities, a Fourier trans-
form of the stretched spectrum is computed, which yields a
revised estimate of ∆Π1. The final value of ∆Π1 is obtained by
iterating on this procedure. One caveat is that the amplitudes
of g-dominated mixed modes are much smaller than those of
p-dominated modes, owing to their higher inertia. This produces
a window effect on the stretched spectrum, and thus generates
aliases, which can be mistaken for the asymptotic period spacing
∆Π1. V16 flagged the stars that might suffer from this aliasing

effect in their catalog. We note that the iterative procedure fol-
lowed by the authors might amplify the aliasing phenomenon.
Indeed, if an alias is chosen at the first iteration, the stretching of
the oscillation spectrum in the next iterations is performed with
an incorrect value of ∆Π1, which favors the eventual detection
of the alias.

To investigate the reliability of the ∆Π1 estimates, we per-
formed our own measurements using the method described in
Deheuvels et al. (2015), which consists in fitting an asymptotic
expression of mixed mode frequencies to the detected peaks
in the oscillation spectrum. We included the effects of rota-
tion to the mixed mode frequencies in order to be able to treat
stars for which the identification of rotational multiplets is not
straightforward. Similar tests were performed with the method
exposed in Mosser et al. (2018), which also considers rotational
multiplets. Details of our method are recalled in Appendix A.
This method is less prone to the aliasing problem for two rea-
sons. First, all possible values of ∆Π1 are consistently tested,
so the method does not depend on the choice of an initial
guess. Secondly, to correctly match the detected peaks, a solu-
tion from our method has to reproduce the whole pattern of rota-
tional multiplets, which can help to distinguish between potential
aliases.

We here show two examples of the results obtained with our
method for stars that were found below the degenerate sequence.

– KIC7778197: V16 found a period spacing of ∆Π1 = 65.7 ±
0.55 s (z = −10.6 s) for this star, but flagged the measure-
ment as potentially corresponding to an alias. We show in
the left panel of Fig. 10 the result of our method applied to
this star. For each considered value of ∆Π1, we give the best
value of χ2 (see Eq. (A.9)) obtained with our method. The
result is here unambiguous, and we confirm the estimate of
∆Π1 from V16. Only one component per multiplet is visible
for this star, which can either mean that the core rotation is
slow, or that the inclination angle is low. When trying to fit
the detected modes with two or three visible components per
multiplet, no satisfactory solution can be found.

– KIC7509923: V16 found ∆Π1 = 65.9 ± 1.15 s, which places
this star well below the degenerate sequence (z = −16 s), but
they also flagged it as likely to be affected by aliasing. By
applying the method of V16 to this star, we indeed recovered
the solution given by the authors, along with a clear alias for
∆Π1 ∼ 80 s. Comparatively, our method provided an unam-
biguous measurement of ∆Π1 = 80.9 s for this star, as is
shown in the right panel of Fig. 10. Three components per
multiplet are visible for this star, and we could thus estimate
the core rotation rate to 〈Ω〉g/(2π) = 800 nHz. Our estimates
of ∆Π1 and 〈Ω〉g are consistent with those of Gehan et al.
(2018), who also measured the core rotation of this star. The
solution favored by V16, around ∆Π1 = 65.9 s, yields no sat-
isfactory solution with our method because it cannot match
the whole pattern of the rotational multiplets. This example
illustrates how our method can alleviate the problem of alias-
ing.

We then proceeded to check the determination of ∆Π1 for all
the red giants that were found significantly below the degenerate
sequence in the ∆ν−∆Π1 plane. Taking into account the predic-
tions of stellar models, which give a lower possible value of z of
about −4.5 s, and the uncertainties in the measurement of ∆Π1,
which are typically of the order of 1 s, we considered that red
giants are below the degenerate sequence whenever their value
of z is below −6 s. Since most of the red giants identified as pecu-
liar in Sect. 5.1 have low luminosities, we restricted our analysis
to stars on the lower RGB, with large separations above 9 µHz.
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Fig. 10. Estimate of ∆Π1 for KIC7778197 (left panels) and KIC7509923 (right panels) using the method presented in Sect. 5.2 and Appendix A.
Top panel: optimal values of χ2 (see Eq. (A.9)) obtained for each tested value of ∆Π1. The vertical dotted line indicates the best fit to the data.
Bottom panel: oscillation spectrum shown in the shape of an échelle diagram. Blue vertical dashed lines correspond to the best fit to the detected
peaks, which are indicated as red vertical solid lines. No clear signature of rotation was found in the spectrum of KIC7778197, whereas it is evident
for KIC7509923 (see text).

We thus obtained a sample of 42 stars that satisfy these criteria,
with masses ranging from 1.03 to 2.28 M�.

We applied our method to all the stars of this sample. We
were able to obtain estimates of ∆Π1 for 40 stars out of 42.
The method failed for KIC7767409 because it has low-amplitude
dipolar modes (the existence of a category of red giants with
low-amplitude dipolar mixed modes is well documented, see
e.g., Mosser et al. 2012c; García et al. 2014), and KIC4587050,
which has too few detected dipolar modes to reliably extract
the period spacing using our method. Our results are detailed
in Table 1 and they are shown in Fig. 11. It is striking to see that
our revised measurements of ∆Π1 have a strong mass depen-
dency. As shown by Fig. 11, for nearly all the lower-mass stars
of the sample, we obtained estimates of ∆Π1 that deviate from
those of V16. We note that all these stars were in fact flagged
by the authors as potentially resulting from aliases. Interstingly,
our revised measurements bring most of these stars close to the
degenerate sequence, where they are expected to be found. On
the contrary, for all the stars with masses larger than 1.62 M�,
we obtained measurements of ∆Π1 that are fully consistent with

the measurements of V16. We can thus confirm that these stars
are located below the degenerate sequence, in contradiction with
the predictions of stellar models.

5.3. Intermediate-mass RGB stars from Yu et al. (2018)

To further investigate this puzzling discrepancy, we included
to our data set intermediate-mass stars from the catalog of
Yu et al. (2018). This catalog does not include measurements
of the asymptotic period spacing, so the evolutionary status of
stars cannot be known upfront. We decided to consider only
low-luminosity giants (∆ν > 9 µHz) from Yu et al. (2018) in
order to ensure that our sample only contains RGB stars (sec-
ondary clump stars have large separations below 9 µHz, see
Mosser et al. 2014). We found 43 stars with masses above 2 M�
that satisfy this criterion and are not already within the sample
of V16 (their masses range from 2.0 to 3.1 M�).

To estimate ∆Π1 for these stars, we used the method
described in Sect. 5.2 and Appendix A. We were able to mea-
sure ∆Π1 for 12 stars out of the 43 that were selected. Among the
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Table 1. Measurements of ∆Π1 for low-luminosity giants that were
found below the degenerate sequence.

KIC id M ∆ν ∆Π1 z 〈Ω〉g/(2π)
(M�) (µHz) (s) (s) (nHz)

3216736 1.23 12.4 74.5 −6.1 0
3097360 (a) 2.30 11.3 69.5 −9.3 0
3648674 1.31 9.4 76.0 0.6 1020
4350501 1.55 11.1 69.2 −9.3 0
4667909 1.25 11.5 80.0 0.8 820
4820412 1.04 12.1 80.8 0.6 690
5166068 1.03 9.6 76.9 1.0 690
5180345 1.17 11.8 74.0 −5.7 0
5556743 1.82 10.0 62.9 −13.6 180
5639438 1.68 13.1 71.1 −10.6 160
5696938 1.86 9.1 59.1 −15.8 0
6024654 1.86 16.8 77.8 −10.3 0
6143256 1.32 10.0 75.3 −1.3 590
6182668 1.24 16.5 80.4 −7.1 0
6273090 1.70 16.1 73.6 −13.1 800
6620586 1.94 12.5 68.0 −12.8 320
6633766 1.46 11.8 73.1 −6.5 200
6690139 1.54 9.6 66.0 −9.9 340
6864132 1.88 11.1 69.2 −9.3 170
7376259 1.25 9.4 75.3 −0.1 790
7509923 1.46 13.2 80.9 −0.9 800
7778197 2.21 9.8 65.6 −10.7 0
8023523 (a) 2.60 10.2 65.7 −11.2 200
8055108 1.84 9.2 64.9 −10.1 290
8096716 1.16 10.6 78.0 0.4 690
8108732 1.12 10.2 77.8 0.8 1030
8301083 1.10 9.6 76.6 0.7 750
8827808 (a) 2.45 14.8 77.2 −7.2 880
9227589 1.23 15.2 75.3 −9.9 1900
9326896 1.65 12.4 73.1 −7.4 470
9474201 1.53 15.0 76.8 −7.9 0
9512519 1.27 9.6 73.0 −2.8 730
9642805 1.63 12.5 70.5 −10.3 0
9903598 (a) 2.13 11.0 66.8 −11.6 0
9907511 2.28 10.5 66.8 −10.6 190
9945389 1.47 16.2 87.0 0.1 800
10132814 1.62 9.4 74.2 −1.2 460
10420335 1.17 10.3 78.5 1.3 540
10645209 1.73 14.0 70.4 −12.6 820
10712314 1.69 9.4 68.4 −7.1 660
11186389 1.38 10.1 77.5 0.7 910
11302371 (a) 2.51 10.1 65.5 −11.2 0
11304067 1.08 9.3 77.5 2.2 630
11555266 1.28 11.2 79.7 1.0 680
11805876 (a) 2.18 9.8 68.5 −7.6 0
12301741 1.56 10.9 76.1 −2.0 730

Notes. (a)Stars taken from the catalog of Yu et al. (2018).

remaining stars of the sample, 21 were found to have suppressed
dipolar modes, so that we could not measure ∆Π1. This num-
ber is consistent with the estimate of Stello et al. (2016), who
found that approximately 40% of stars with masses above 2 M�
show suppression of dipolar mixed modes. Nine other stars have
either a too low signal-to-noise ratio or too few dipolar modes
detected to produce a reliable estimate of ∆Π1. For the last star,
KIC7592662, the mode parameters were incorrectly determined

Fig. 11. Revised values of ∆ν and ∆Π1 for the stars that were found
below the degenerate sequence (z < −6 s) in Sect. 5.1, which are indi-
cated by black circles. Other stars from V16 are shown as gray circles.
The black dashed line corresponds to the average degenerate sequence
computed in Sect. 5.1. Colored circles correspond to revisions of ∆ν
and ∆Π1 obtained in this study. They are linked to the original measure-
ments of V16 by straight lines. Colored star-shaped symbols correspond
to stars from Yu et al. (2018) (see Sect. 5.3).

by Yu et al. (2018) because the whole oscillation spectrum actu-
ally corresponds to aliasing, the mode frequencies being higher
than the Nyquist frequency for long-cadence data. The frequency
of maximal power of the oscillations is νmax = 351.3 ± 2.5 µHz
instead of 214.6 ± 2.5 µHz as was initially found by Yu et al.
(2018), and the large separation is ∆ν = 23.8 ± 0.3 µHz instead
of 14.22± 0.06 µHz. With these revised parameters, this star has
a seismic mass of 1.33±0.12 M� and thus does not belong to our
sample of intermediate mass stars.

We added the 12 intermediate mass stars for which we could
measure ∆Π1 to the bottom right panel of Fig. 9 (red star-shaped
symbols). Interestingly, nine out of these 12 stars are found to
be located near or below the degenerate sequence, in striking
disagreement with the predictions of stellar models.

5.4. Characteristics of stars below the degenerate sequence

To summarize, we here give the characteristics of the popula-
tion of low-luminosity red giants that are found to be located
below the degenerate sequence. First, they are significantly more
massive than regular red giants. The average mass of red giants
with confirmed values of z below −6 s within the catalog by
V16 is 1.69 M�. If we include the stars from Yu et al. (2018),
it increases to 1.84 M�. By comparison, using the data set from
Yu et al. (2018), we find that the average mass of RGB stars with
∆ν > 9 µHz is 1.34 M�.

We also find a few lower-mass stars below the degenerate
sequence. However, these stars seem to be rather peculiar. We
here show the example of KIC5180345, which has a stellar mass
of 1.17 ± 0.07 M�. Our method provides an estimate of ∆Π1
around 74 s for this star and only one component per multiplet
is visible. However, this solution yields a rather poor fit to the
data. This can be better understood by drawing the échelle dia-
gram of stretched periods for this star, following Mosser et al.
(2015). When only the m = 0 component is visible, we expect
to see a nearly straight vertical ridge in the stretched échelle dia-
gram (see the left panel of Fig. 12). For KIC5180345, the ridge
shows a clear curvature. This is reminiscent of the behavior that
is expected in the presence of so-called buoyancy glitches, that
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Fig. 12. Stretched period échelle diagrams of four targets that were found to be located below the degenerate sequence in the ∆ν−∆Π1 plane.

is, when the Brunt–Väisälä frequency profile shows sharp spatial
variations over length scales that are shorter than the mode wave-
length (see Mosser et al. 2015). We observe a similar behavior
for two other low-mass RGB stars that were found to be below
the degenerate sequence: KIC3216736 (1.23 ± 0.08 M�), and to
a lesser extent KIC6182668 (1.24 ± 0.09 M�), as can be seen in
Fig. 12. Buoyancy glitches are not expected for RGB stars, but
in core-helium burning stars only (Cunha et al. 2019). So far, the
signature of a buoyancy glitch was detected in only one RGB star
(Mosser et al. 2018), namely KIC3216736, which is also part
of our sample. This suggests that there might be a connexion
between the existence of a glitch and the fact that the period
spacing is lower than expected. This clearly deserves further
investigation, although this is beyond the scope of the present
study. We note that the higher-mass RGB stars that are below the
degenerate sequence do not show this behavior in the stretched
échelle diagram (see for instance the case of KIC7778197 in the
left panel of Fig. 12).

We give in Table 1 the core rotation rates that we obtained for
the RGB stars that are located below the degenerate sequence.
Among the 14 stars with masses above 1.8 M� that we analyzed,
seven stars show no sign of rotational splittings (only one compo-
nent is detected per rotational multiplet), which means that they
either have very slow core rotation or that they are seen pole-on.
For the seven other targets, we obtained an average core rota-
tion rate of 〈Ω〉g/(2π) = 319 nHz. By comparison, in the catalog
of Gehan et al. (2018), about 26% targets show no sign of rota-
tional splitting and for the other stars, the average core rotation
rate is 694 nHz. This suggests that the intermediate-mass stars that
are found below the degenerate sequence might have slower core
rotation compared to typical red giants, although the low number
of targets prevents us from drawing firm conclusions.

6. Potential evidence for mass transfer from close
red giant companion

The existence of stars located below the degenerate sequence in
the ∆ν−∆Π1 plane is a puzzle. This is even more intriguing since

these stars are mostly intermediate-mass giants, which should
have nondegenerate cores and be located well above the degen-
erate sequence. In this section, we propose a possible scenario
that could potentially account for this double peculiarity.

We first make the hypothesis that these stars have degenerate
helium cores. This seems to be a reasonable assumption because
they seem to evolve on a sequence that is roughly parallel to the
degenerate sequence in the ∆ν−∆Π1 plane (see Fig. 11). If it is
indeed the case, then the cores of these stars have an internal
structure that is nearly identical to those of regular red giants
having similar values of ∆Π1, as mentioned in Sect. 4.1. Only
their envelopes (the layers above the H-burning shell) are dif-
ferent. Their large separations ∆ν are larger than those of regular
red giants on the degenerate sequence. This means that they have
higher mean densities, and thus that their envelopes are denser.

We have shown in Sect. 4.3 that higher-mass envelopes
tend to be more condensed (see Fig. 6). This suggests that the
observed stars might result from an episode of mass accretion in
the envelope of a low-mass RGB star. Indeed, let us consider a
red giant with an initial mass such that it has a degenerate core
on the lower part of the RGB. This star lies on the degenerate
sequence. If at some point this star experiences mass accretion,
for instance from a close stellar companion, its envelope will
gain mass and therefore become denser. On the other hand, the
structure of the degenerate core will remain unchanged because
it is independent of the evolution of the envelope. The star will
therefore keep a constant value of ∆Π1 but its large separation
will increase. It will thus move to the right in the ∆ν−∆Π1 plane
and be located below the degenerate sequence. Interestingly, the
hypothesis of mass accretion is able to account for both pecu-
liarities observed in Sect. 5: it creates intermediate-mass stars
with degenerate cores and it forces these stars to move below the
degenerate sequence in the ∆ν−∆Π1 plane.

We believe that this could be achieved through the evolu-
tion of a close binary system with appropriate properties. The
initial separation between the two components needs to be large
enough so that the two components remain well separated during
the main-sequence evolution, and mass transfer occurs when
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Fig. 13. Effects of mass accretion on the location of a low-mass RGB
in the ∆ν−∆Π1 plane. The blue star-shaped symbol corresponds to a
regular 1.3 M� red giant model with solar composition. Mass accretion
in the envelope of this model shifts its position horizontally to the right.
The red star-shaped symbol corresponds to an accretion of 1 M� (see
text), which brings the stellar mass to 2.3 M�. The purple star-shaped
symbol shows the location of a 2.3 M� red giant model resulting from
single star evolution when it reaches the same large separation as the
accretion model. The black dashed line indicates the average degenerate
sequence and the gray circles correspond to RGB stars from V16, taking
into account the corrections in ∆Π1 that were obtained in Sect. 5.2.

the primary has already reached the RGB (this corresponds to
the so-called “case B” of binary evolution scenarios, see e.g.,
Iben & Tutukov 1985). The primary component evolves faster
than the secondary. Due to the expansion of its radius in the
RGB phase, it eventually fills its Roche lobe and starts trans-
ferring mass to the secondary star. In order to match the scenario
described in the previous paragraph, we need the secondary star
to have already developed a degenerate helium core by the time
it starts accreting mass. For this reason, the mass ratio between
the two components needs to be close to unity, so that the two
stars are at a similar evolutionary stage at the same age. If the
mass ratio were significantly smaller than unity, the secondary
star would start accreting while it is still on the main sequence.
Its core structure would then simply adjust to mass accretion
and it would later evolve as a regular higher-mass star, trigger-
ing helium burning in a nondegenerate core. On the contrary,
with a mass ratio close to one, the envelope of the secondary
can gain mass without modifying the structure of the degener-
ate helium core. As the primary evolves, its radius continues to
increase and eventually nearly all of its envelope is transferred to
the secondary. The primary then shrinks and becomes a helium
white dwarf.

A first crude test of this scenario can be made by artificially
accreting mass in the envelope of a low-mass red giant model.
Let us consider for instance a binary system composed of stars
with masses around 1.3 M�, the secondary being only slightly
less massive than the primary. If the characteristics of the system
are such that it evolves as described above, at the final stage of
the binary evolution, the primary star will have lost nearly all of
its envelope (corresponding to an overall mass loss above 1 M�).
Assuming conservative mass transfer, the secondary will gain an
equivalent amount of mass. It will then have a stellar mass above
2.3 M� and a degenerate helium core (which cannot be obtained
with single star evolution). To simulate the secondary, we com-
puted a 1.3 M� model with solar composition using mesa, and
stopped the evolution when the asymptotic period spacing of g

modes reached 75 s (which is in the range of ∆Π1 of stars studied
in Sect. 5). It has a large separation of 10.1 µHz, which places it
on the degenerate sequence (blue star-shaped symbol in Fig. 13).
To simulate the effects of mass transfer, we artificially accreted
1 M� to the envelope of the secondary and evolved the model
to restore thermal equilibrium. As expected, this has essentially
no effect on the core structure, so that the period spacing ∆Π1
is not significantly modified. Owing to the mass increase, the
envelope has become denser and we now have ∆ν = 14.5 µHz.
As can be seen in Fig. 13 (red star-shaped symbol), the star then
lies well below the degenerate sequence in the ∆ν−∆Π1 plane,
in the vicinity of the observed stars studied in Sect. 5. By com-
parison, a 2.3 M� model resulting from single star evolution and
evolved until it has the same large separation (14.5 µHz) has a
nondegenerate helium core and a period spacing of 310 s (purple
star-shaped symbol in Fig. 13).

The scenario of mass transfer from a close red-giant com-
panion looks quite promising to explain the peculiar stars found
in this study. We are currently testing this scenario more thor-
oughly, using binary evolution models and our results will be
presented in a subsequent study. One can then wonder about
the prevalence of binary systems that are in the right configu-
ration to produce the scenario that we described. To answer this
question, a more thorough study is required. However, we can
already find hints using the review of Moe & Di Stefano (2017).
They found that about 2% of solar-type stars (M = 0.8−1.2 M�)
have close companions with orbital periods below 10 days (this
is about the separation that is required to have mass transfer dur-
ing the post-main-sequence phase) and this fraction increases
rapidly with stellar mass. For low-mass close binary systems,
Moe & Di Stefano (2017) report an excess of twins (mass ratio
close to unity). This is attributed to Roche-lobe overflow dur-
ing the pre-main-sequence or to shared accretion in the disk
(Tokovinin 2000; Halbwachs et al. 2003). Moe & Di Stefano
(2017) found that the excess fraction of twins is about 29% for
low-mass stars, which means that about a quarter of close binary
systems composed of low-mass stars have a mass ratio close to
unity. Taking this figure at face value, this would mean that about
0.5% of low-mass stars are in the right configuration to produce
the scenario the we described. Among the catalog of V16, which
is composed of about 2000 RGB stars, we would then expect
to find about 10 targets having possibly undergone mass transfer
from a close binary. Interestingly, the order of magnitude is simi-
lar to the number of targets that we identified from the catalog of
V16. This requires further investigation, which will be presented
in a future study.

Another possibility would be that these peculiar red giants
result from the merger between a red giant and a lower-mass star.
It has very recently been proposed by Rui & Fuller (2021) that
stellar mergers of this type might be detectable using seismol-
ogy. The underlying idea is similar to the one that we exposed in
this study, that is, the accretion of a significant amount of mass
in the envelope of a red giant star can produce an intermediate-
mass giant with a degenerate core, which cannot be achieved
with single-star evolution1. To account for the peculiar red giants
identified in the present study, this scenario would require the
accreted star to be entirely transferred to the envelope of the
accretor without modifying the core properties, which remains
to be theoretically shown.

1 The study of Rui & Fuller (2021) is completely independent of ours,
and we had knowledge of this work upon submission of the present
paper.
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7. Conclusions

In this study, we investigated the clear sequence formed by RGB
stars in the diagram showing the period spacing of dipolar g
modes ∆Π1 as a function of the large separation of p modes
∆ν. Using a grid of stellar models computed with mesa, we
showed that RGB stars join this sequence when electron degen-
eracy becomes strong in their core. We thus propose to refer to
this sequence as the degenerate sequence. The higher the mass,
the later in the evolution the helium core becomes degenerate.
This explains why higher-mass giants join the sequence later
than their lower-mass counterparts, a feature that was pointed
out from the observations (V16). Stellar models show that the
degenerate sequence constitues a firm lower limit in the ∆ν−∆Π1
diagram. Stars are thus not expected to occupy the region below
this sequence.

A clear mass dependency was found for the degenerate
sequence, from the observations (V16): the degenerate sequence
of higher-mass stars is shifted toward lower ∆Π1. To explain this
mass dependency, we first showed that red giants with degener-
ate cores and similar period spacings ∆Π1 have a nearly identical
structure from the center up to the H-burning shell. Only their
envelopes differ. Using simple physical arguments, we showed
that the density of the envelope increases with increasing mass,
and found that this relation approximately accounts for the mass
dependency of the degenerate sequence.

The evolutionary stage at which a red giant develops a degen-
erate core, and thus reaches the degenerate sequence in the
∆ν−∆Π1 plane, depends mostly on its stellar mass. However,
the amount of extra mixing beyond the convective core during
the main-sequence evolution also plays an important role. Stars
with larger convective cores tend to reach electron degeneracy in
the core earlier in the evolution. We showed that for a given value
of the large separation (i.e., for a given mean density), the maxi-
mum mass of red giants that lie on the degenerate sequence can
be an efficient tracer of the amount of core overshooting during
the main sequence (for ∆ν = 11 µHz, this maximum mass varies
from about 1.75 M� without core overshooting to about 1.5 M�
for stars with a step overshooting over a distance of 0.2 Hp).
This could provide an additional measurement of the efficiency
of core overshooting during the main sequence.

Within the catalog of V16, we investigated the puzzling case
of a subgroup of red giants that are located below the degen-
erate sequence in the ∆ν−∆Π1 plane, in contradiction with the
predictions of stellar models. We performed a new measurement
of the asymptotic period spacings ∆Π1 for these stars, using a
different technique from V16. We showed that most of the low-
mass giants in this sample are in fact located on the degenerate
sequence, as expected from stellar models. However, we verified
without ambiguity that the higher-mass giants of this sample are
indeed located well below the degenerate sequence. This is all
the more puzzling since most of these stars, owing to their high
masses, should have nondegenerate cores and thus lie well above
the degenerate sequence.

To account for these peculiar stars, we assumed that they
have degenerate helium cores. To be located below the degen-
erate sequence, these stars must have higher large separations
∆ν (and thus higher mean densities) than regular red giants with
the same core density. Since the core structure is entirely deter-
mined by electron degeneracy, this means that these stars must
have denser envelopes than regular red giants. We argued in this
paper that this could be achieved if the envelope has gained a
substantial amount of mass, for instance during an episode of
mass transfer from a close companion.

We thus proposed the following scenario. We considered two
low-mass stars (.2 M�) in a close binary system with an ini-
tial separation such that they will start to interact only during
the post-main-sequence evolution. They must have a mass ratio
close to unity, so that when mass transfer begins, the secondary
star is already on the RGB, with a degenerate helium core. In
these conditions, the envelope of the secondary can gain mass
without modifying the structure of the degenerate helium core.
The primary star is then expected to transfer nearly all the con-
tent of its envelope to the secondary and to eventually become a
helium white dwarf. With this scenario, the secondary has gained
a substantial amount of mass (for instance, it should gain more
than 1 M� for stars with initial masses of 1.3 M�) and has a
degenerate core. Its more massive envelope is denser, so that it
then has a larger ∆ν than regular red giants on the degenerate
sequence. The scenario of mass transfer from a close red giant
companion is thus able to account for the two peculiarities of the
sample of stars under study: the secondary star has a degener-
ate core despite its intermediate mass and it is lying below the
degenerate sequence in the ∆ν−∆Π1 plane.

We are currently in the process of computing binary evolu-
tion models with mesa in order to fully test the proposed sce-
nario. Preliminary results are promising and will be presented
in a following paper. The question of the probability of such
a scenario will also be addressed in this follow-up work. First
order-of-magnitude estimates obtained from Moe & Di Stefano
(2017) show that the fraction of stars that should be in the right
configuration to produce the scenario that we propose is roughly
compatible with the number of red giants that are found below
the degenerate sequence, which is quite encouraging.
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Appendix A: Fit of the mixed modes

To determine the asymptotic period spacings of red giants, we
follow the method described in Deheuvels et al. (2015), which
we adapt to take the effects of rotation into account. We proceed
as follows.

We first estimate the global parameters of p modes by fit-
ting the following second-order asymptotic expression to the
observed radial modes:

νn,l=0 =

[
n + εp +

α

2
(n − nmax)2

]
∆ν, (A.1)

where α measures the second-order effects in the asymp-
totic development, εp is a phase term, and nmax = νmax/∆ν
(Mosser et al. 2013). By smoothing the power spectrum of the
observed star, we obtain first approximate expressions for the
frequencies of radial modes. We fit these frequencies to Eq. A.1
and thus obtain estimates of ∆ν, εp, and α.

We then search for peaks in the domain where dipolar mixed
modes are expected. They should have their highest amplitudes
in the vicinity of l = 1 pure pressure modes, whose approxi-
mate frequencies can be obtained using our previous measure-
ments along with the so-called universal pattern of Mosser et al.
(2011). We search for significant peaks contained within a win-
dow of width 0.45∆ν centered on the frequencies of pure l = 1
p modes. The width of the window is chosen in order to avoid
selecting l = 2 and l = 3 modes. The frequencies of significant
peaks are hereafter labeled as νobs

i , i = 1,N.
We then use the asymptotic expression of mixed mode fre-

quencies proposed by Shibahashi (1979). In this context, the
matching of solutions corresponding to g-modes in the core, and
to p-modes in the envelope requires that

tan(θp) = q tan(θg) (A.2)

where q corresponds to the coupling strength between the two
cavities, and θp, θg are phase terms that can be expressed as a
function of the asymptotic expressions of p- and g-modes. Fol-
lowing Mosser et al. (2012b), we have

θp =
π

∆ν

[
ν − (νp)n,1

]
(A.3)

θg = π

(
1

∆Π1ν
− εg

)
(A.4)

where (νp)n,1 correspond to the frequencies of l = 1 pure pressure
modes. The latter can be expressed as

(νp)n,1 = νn,0 + (1/2 − d01)∆ν, (A.5)

where d01 corresponds to the mean small separation built with
l = 0 and 1 pressure modes. For any given set of parameters
(∆Π1, q, εg, d01), the corresponding mixed mode frequencies νn,1
can be obtained by solving Eq. A.2 with a Newton-Raphson
algorithm.

The effects of rotation can be considered by calculating the
rotational splittings of the modes, denoted as δνs. Goupil et al.
(2013) showed that the splitting δνs can be expressed as a func-
tion of the average rotation rates 〈Ω〉g and 〈Ω〉p in the g-mode
and p-mode cavities, respectively, and the parameter ζ, which
corresponds to the ratio between the kinetic energy of the mode
in the g-mode cavity and the total kinetic energy of the mode.
They obtained the relation

δνs =

[
〈Ω〉g/(2π)

2
− 〈Ω〉p/(2π)

]
ζ + 〈Ω〉p/(2π). (A.6)

Using an asymptotic development, Goupil et al. (2013) found an
expression relating ζ to the mode frequencies, which means that
this parameter can be estimated directly from the observations.
Hekker & Christensen-Dalsgaard (2017) showed that the origi-
nal expression of Goupil et al. (2013) can be conveniently recast
as

ζ =

1 + q
ν2∆Π1

∆ν

1
sin2 θp + q2 cos2 θp

−1

. (A.7)

Using Eq. A.6 and A.7, we can calculate the frequencies of
modes with azimuthal order m as

νn,1,m = νn,1 + mδνs (A.8)

for any given rotation profile.
We can then search for the set of parameters

(∆Π1, q, εg, d01, 〈Ω〉g, 〈Ω〉p) that produces the best match
with the peaks that were detected in the expected frequency
domain of l = 1 mixed modes. In practice, the envelope rotation
of red giants has been shown to have negligible contribution
to the splittings of mixed modes in red giants (Mosser et al.
2012a; Goupil et al. 2013). We thus choose to neglect 〈Ω〉p in
the expression of the rotational splittings. All other parameters
are varied within a grid and for each configuration, we calculate
the distance between the observed peaks

χ2 =

N∑
i=1

(νobs
i − ν

closest
i )2, (A.9)

where νclosest
i corresponds to the frequency νn,1,m that is the clos-

est to the observed peak at a frequency νobs
i .

This method has already been successfully used by
Deheuvels et al. (2015) to measure ∆Π1, but without taking rota-
tion into account. Only axisymmetric modes were then consid-
ered in the fit, which is possible only when the identification
of the azimuthal order m is evident in the observations. This is
not necessarily the case, especially when the rotational splitting
becomes comparable to the frequency separation between mixed
modes of consecutive radial orders. This is why we chose to add
the effects of rotation to the expression of the modes frequencies,
and to consider all detected peaks.
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