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ICB UMR 6303 CNRS, Dijon, France

Andro Mikelić
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Abstract

This paper studies the partial differential equation describing the charge distribution of an
electrolyte in a porous medium. Realistic non-ideal effects are incorporated through the mean
spherical approximation (MSA) model which takes into account finite size ions and screening
effects. The main novelty is the consideration of a non-constant surface charge density on the
pore walls. Indeed, a chemical equilibrium reaction is considered on the boundary to represent
the dissociation of ionizable sites on the solid walls. The surface charge density is thus given
as a non-linear function of the electrostatic potential. Even in the ideal case, the resulting
system is a new variant of the famous Poisson-Boltzmann equation, which still has a monotone
structure under quantitative assumptions on the physical parameters. In the non-ideal case,
the MSA model brings in additional non-linearities which break down the monotone structure
of the system. We prove existence, and sometimes uniqueness, of the solution. Some numerical
experiments are performed in 2-d to compare this model with that for a constant surface charge.

pacs 02.30.Jr ; 47.57.J- ; 47.70.Fw ; 82.70.Dd ; 91.60.Pn . keywords Poisson-Boltzmann equation,
MSA, electro-osmosis.
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1 Introduction

This paper is devoted to the modeling, the mathematical analysis and some numerical experiments
of the electrostatic properties of an electrolyte in a charged porous medium. In the so-called ideal
case and when the surface charge of the solid porous medium is constant, this model is well-known
in the literature under the name of Poisson-Boltzmann equation [13]. In the present work, we go
beyond the ideal case by using the Mean Spherical Approximation (MSA) model, which considers
ions to be charged hard spheres, takes into account their finite size and screening effects [4], [10].
This MSA model is known to improve the ideal model for high concentrations and small pores
[3], [7]. We already studied this MSA model in our previous work [2]. Actually, the main novelty
of the present paper is the analysis of a model of surface charge density, which is not any longer
constant, but rather given as the output of a chemical equilibrium reaction on the pores boundaries
which represents the dissociation of ionizable sites on the solid walls (see [5], [6], [12], [19] for a
physico-chemical presentation). Note that the Poisson-Boltzmann equation and its variants are key
ingredients to derive transport properties of electrolytes in porous media by means of homogenization
or upscaling [1], [17], [18].

The precise model which is studied here is described in Section 2. For simplicity we start in
Subsection 2.1 with the case of a salt free bulk solution, namely with H+ as the single ion in the
model. Indeed, the ionizable sites on the solid walls are of the type M − OH, where M is some
metallic atom, and the dissociation reaction is M − OH ↔ M − O− + H+. In other words, only
H+ ions are involved in this chemical reaction at the boundary. For the sake of completeness, we
recall in Subsection 2.2 the ideal model for this single H+ ion. Finally, Subsection 2.3 describes our
full model with several ions in the bulk. But still, only H+ is involved in the non-linear boundary
condition.

Section 3 is devoted to the mathematical analysis of this non-linear electrostatic model in the case
of a single ion. For pedagogical reasons, the ideal model is first discussed before going to the MSA
model. In the ideal case, the non-linearities of the partial differential equations are monotone, so the
existence and uniqueness of a solution is easy, let apart the difficulty that the Poisson-Boltzmann
equation involves an exponential non-linearity which is not integrable in full generality. Nevertheless,
this kind of difficulty is classical in the literature (see [9], [14]): here we use a truncation argument
and L∞-bounds to prove existence of a solution. For the MSA model, we prove that the non-
linearities are monotone under an assumption on the size of the ions (which must be not too small,
see Proposition 13). Then, the existence proof for solutions is surprisingly simpler since the MSA
model furnishes an upper bound on the ion concentration: Theorem 19 gives the existence and
uniqueness of a solution, provided that a parameter δ, measuring the departure from the ideal case,
is small enough.

Section 4 extends the mathematical analysis to the case of several ions. Again we begin with the
easier ideal model before going to the more involved MSA model. In the ideal case, the non-linearities
are again monotone and existence and uniqueness is easy, with the same arguments as in the case
of a single ion (see Theorem 22). However, the MSA model is much more intricate. Although we
can still prove that the bulk charge density is monotone under an assumption on the size of the ions
(which must be not too small, see Proposition 29), we are unable to prove a similar result for the
surface charge density. Fortunately, the MSA model still furnishes uniform upper bounds on the
non-linearities, which allows us to prove existence of at least one solution (see Theorem 28).

Eventually Section 5 is concerned with some numerical experiments. In particular, comparisons
are made between a constant surface charge density and the non-linear one which is proposed by
our model of Section 2. Our conclusion is that, although the surface charge density may vary
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significantly, the resulting potentials are quite similar.

2 Electrokinetic models
s.model

This work is restricted to equilibrium situations for an electrolyte in a charged rigid porous medium.
In other words, the fluid containing the electrolyte is assumed to be at rest and only electrostatic
equations are considered.

2.1 Single ion case
s.1ion

We first consider a simpler case with a salt free bulk solution (i.e. with a reservoir containing no
ions). More precisely, only the counterions to the charge of the porous medium are considered. These
counterions are H+, implying that the surface of the solid porous medium is negatively charged as
is the case in practice for rocks like clays.

As usual in porous media studies, we consider a representative volume element of a porous
medium which, for simplicity, is a cube Q = (0, L)d with periodic boundary conditions (d = 2, 3 is
the space dimension). The fluid part of Q is Ωf and the solid part is Ωs with Ωf ∩ Ωs = ∅ and
Q = Ωf ∪ Ωs. In the sequel, because of the finite size of ions, we shall rather consider another
effective fluid domain ΩD ⊂ Ωf , which is slightly smaller than Ωf and is the domain on which the
equations are posed. Its internal boundary ∂ΩD is the interface between the effective solid structure
and the effective pore volume ΩD. It is assumed to be smooth, say C1. An example of ΩD is shown
on Figure 2.

The concentration of the sole type of ions, namely H+, is denoted by nH and its valence is
zH = 1. These H+ ions come from the dissociation of ionizable sites, M − OH, located on the
“hard” (non penetrating) surface of the solid porous medium, ∂Ωs. Here, M refers to some metallic
atom. The dissociation reaction of M −OH obeys the following chemical equilibrium

M −OH ↔M −O− +H+, (1) chemreac

which gives rise to a surface charge distribution on ∂Ωs. The H+ ions have a finite non-zero diameter
σH . As a result they cannot lie on ∂Ωs but rather stay at a distance not smaller than σH/2 from
∂Ωs. We, therefore, define another surface ∂ΩD which is obtained from ∂Ωs by a translation of σH/2
in the opposite normal direction. In other word, ∂ΩD is the boundary of the Stern layer where the
ion concentration starts to be non-zero. A generic point on ∂Ωs is denoted by xs and it is associated
to a unique point xD on ∂ΩD (provided that the surface is smooth enough and σH is small enough,
this point is uniquely defined by xD = xs− (σH/2)n where n is the exterior unit normal). Note that
the following equations (Poisson-Boltzmann and MSA model) are actually valid only up to ∂ΩD
because no ions can get closer to the hard surface ∂Ωs. In the sequel, ΩD denotes the effective fluid
part of the porous domain, enclosed by ∂ΩD.

The electrostatic potential is calculated from Poisson equation with the electric charge density
as bulk source term

−E∆Ψ = enH in ΩD, (2) AM3

where E > 0 is the dielectric constant of the solvent and e is the (positive) electron charge. The
boundary condition reads

E∇Ψ · ν = −Σs on ∂ΩD, (3) AM4
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where ν is the unit exterior normal to the porous domain ΩD and −Σs denotes the surface charge
density on ∂ΩD which turns out to be equal to that on ∂Ωs, as we shall see in a few lines. We
assume that the surface charge density on ∂Ωs is negative, which translates as Σs > 0. The novelty
of our model is that the value of Σs is not a data but is given as a non linear function of Ψ, as is
detailed below.

For the moment, let us relate the ion concentration nH to the potential Ψ. Let µH be the
chemical potential of H+ in the bulk given by

µH = µ0
H + kBT lnnH + kBT ln γH , (4) Chempot

with γH being the activity coefficient of H+, kB the Boltzmann constant, µ0
H the standard chemical

potential expressed at infinite dilution and T is the absolute temperature. All these quantities are
constants in our model, except γH which depends on the concentration nH . Indeed, as nH increases,
interactions between ions becomes non negligible and γH takes them into account. We model γH
through the Mean Spherical Approximation (MSA) in simplified form [7]. The activity coefficient
reads

ln γH = − LBΓz2
H

1 + ΓσH
+ ln γHS , (5) gamma-j

where σH is the ion diameter of H+, zH = 1 is the valence of H+, LB is the Bjerrum length given
by LB = e2/(4πEkBT ), γHS is the hard sphere term defined by (8) and Γ is the MSA screening
parameter defined by

Γ2 = πLB
nHz

2
H

(1 + ΓσH)2
, (6) Gamma0

or equivalently by the positive root of (6)

Γ =
2zH
√
πLBnH

1 +
√

1 + 4zHσH
√
πLBnH

. (7) Gamma

In (5) the hard sphere term γHS is given by

ln γHS = p(ξ) ≡ ξ 8− 9ξ + 3ξ2

(1− ξ)3
, with ξ =

π

6
nHσ

3
H , (8) Hardsphere

and ξ is called the solute packing fraction. From (5), (7) and (8) it is clear that γH is a function of
nH . Note that Γ in (7) is also a function of nH .

The migration-diffusion flux j is given by the following linear relationship

j = −L(nH)
(
∇µH + zHe∇Ψ

)
, (9) electroflux

where L(nH) is the (positive) Onsager coefficient. Under our equilibrium assumption, the migration-
diffusion flux must vanish, j = 0, which implies that µH + zHeΨ is constant, and, together with (4),
leading to

nHγHe
zHeΨ

kBT = aH , (10) equil

where aH is a given positive constant, called the activity of H+. This relation (10) gives nH , the
right hand side of (2), as a non-linear function of Ψ.
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We now come to the modelling of the surface charge distribution on ∂Ωs, following classical
works as [5], [6], [12], [19]. If aM−OH and aM−O denote the activities of M − OH and M − O−,
respectively, the standard equilibrium constant K0 > 0 for the dissociation reaction defined in (1)
can be written as

K0 =
aHaM−O
aM−OH

.

Through a formula similar to (10) we compute the activities aM−OH and aM−O in terms of the
surface concentrations nM−OH , nM−O and activity coefficients γM−OH , γM−O. More precisely, for
any point on ∂Ωs we have

aM−O = γM−OnM−Oe
zM−OeΨ
kBT and aM−OH = γM−OHnM−OHe

zM−OHeΨ
kBT

with the valences zM−OH = 0 and zM−O = −1. Since M − OH and M − O− are surface sites
there are no hard sphere terms in the definitions of γM−OH , γM−O. Furthermore, since M −OH is
neutral, there is no screening effect for this type of site and we therefore assume γM−OH = 1, which
implies that aM−OH = nM−OH . The surface charge density is simply

−Σs = ezM−OnM−O = −enM−O (11) Sigma1

since the valence is zM−O = −1. The maximal possible charge is denoted by Σsmax > 0. Since the
number of ionizable sites is constant, equal to nM−OH +nM−O, the maximal possible charge is given
by

e(nM−OH + nM−O) = Σsmax.

We deduce

Σs =
K0Σsmax

K0 + γM−O exp{−eΨkBT
}aH

. (12) Sigma4

To compute the activity coefficient γM−O we rely on a formula similar to (5). However there is a
subtle point here: the screening parameter is due to H+ ions which are not lying on the hard surface
∂Ωs but are on the effective surface ∂ΩD. In other words, formula (12) holds for a point xs ∈ ∂Ωs
but γM−O is evaluated at the corresponding point xD ∈ ∂ΩD. Similarly, the potential Ψ(xs) on ∂Ωs
is different from the so-called diffuse potential or Stern potential Ψ(xD) on ∂ΩD. Formula (5) is
adapted to this case by taking γHS = 1, since the surface concentration of H+ is null on ∂Ωs, and
σH = 0, since punctual surface sites are assumed, leading to the following formula for the activity
coefficient of the charged sites, M −O−,

ln γM−O = −LBz2
M−OΓ(xD) (13) gamma-D

where Γ is the surface screening parameter defined by (7).
Since there are no ions between the hard surface ∂Ωs and the effective surface ∂ΩD, they form

a capacitor with capacitance (for not too curved surfaces) defined as

Cs = 2E/σH ,

and the charge surface densities on ∂Ωs and ∂ΩD are equal, Σs(xs) = Σs(xD), while the potential
Ψ(xD) on ∂ΩD is then related to Ψ(xs) on ∂Ωs by

Ψ(xs) = Ψ(xD)− Σs/Cs.
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From these last expressions we can substitute for γM−O and Ψ(xs) in (12) to get

Σs(xD) =
K0Σsmax

K0 + aH exp{−LBz2
M−OΓ(xD)} exp

{
−e
kBT

(
Ψ(xD)− ΣsσH

2E
)} .

Defining

C1 =
e

kBT
, C2 =

eσH
2kBTE

, C3 = LB ,

(and recalling that K0 and aH are constant, independent of xD ∈ ∂ΩD) we rewrite

Σs(xD) =
K0Σsmax

K0 + aH exp {−C1Ψ(xD) + C2Σs(xD)− C3Γ(xD)}
,

which implicitly gives Σs as a non-linear function of Ψ on ∂ΩD. By some algebra and a logarithmic
transformation, it is equivalent to

C1Ψ(xD) = C2Σs(xD)− C3Γ(xD)− ln

(
Σsmax

Σs(xD)
− 1

)
− ln

K0

aH
. (14) Sigma3

Eventually, our electrokinetic model is a combination of the Poisson-Boltzmann equation and MSA
model in the bulk, and of a new non-linear boundary condition, issued from (14), which reads −E∆Ψ = enH(Ψ) in ΩD,

E∇Ψ · ν = −Σs(Ψ) on ∂ΩD,
x 7→ Ψ(x) is (0, L)d-periodic,

(15) Eqsinglequil1

where nH(Ψ) is a solution of the algebraic equation (10) and Σs(Ψ) is a solution of the other algebraic
equation (14).

The various physical parameters appearing in the above equations are defined in Table 1.

QUANTITY CHARACTERISTIC VALUE
e electron charge 1.602e−19 C (Coulomb)
kB Boltzmann constant 1.38e−23 J/K
aH H+ activity coefficient 1.e− 7 mole/liter
T temperature 298◦K (Kelvin)
E dielectric constant 6.9479e−10C/(mV )

λD =
√
EkBT
e2aH

Debye’s length 1.3574 e−6 m

Σsmax maximal surface charge density 0.768C/m2

σH ionic hard sphere diameter 4e−10 m
ζ = kBT/e characteristic electrokinetic potential 0.02567 V (Volt)
LB = e2/(4πEkBT ) Bjerrum length 7.14772e−10 m
K0 dissociation reaction equilibrium constant 1.5849 e −10 mole/litre

Γc =
√
πLBaH characteristic MSA screening parameter 0.3677 e6 1/m

ξc = π
6 aHσ

3
H characteristic solute packing fraction 2.01 e −9

bi = LB/σH Bjerrum parameter 1.786

Table 1: Data of the physical parameters Data
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2.2 Ideal model for a single H+ ion
sub22

The MSA model introduces additional non-linearities, through the activity coefficient γH , in equation
(15). In the dilute regime of small concentrations, the MSA model can be replaced by the simpler
ideal model, which is easier to analyze. The present subsection is devoted to this simpler ideal case,
which is defined by an activity coefficient γH = 1. Therefore, equation (10) simplifies

nidH = aHe
−zHeΨ
kBT . (16) equilideal

In the ideal case, the screening parameter Γ and the Bjerrum length are neglected, so the constant
C3 in (14) vanishes. The nonlinear equation (14) becomes

C1Ψ(xD) = C2Σsid(xD)− ln

(
Σsmax

Σsid(xD)
− 1

)
− ln

K0

aH
. (17) Sigma3ideal

System (15) becomes  −E∆Ψ = enidH(Ψ) in ΩD,
E∇Ψ · ν = −Σsid(Ψ) on ∂ΩD,
x 7→ Ψ(x) is (0, L)d-periodic,

(18) Eqsinglequil2

which shall be analyzed in Subsection 3.1.

rem.limit Remark 1. The ideal model has been defined through a unit activity coefficient γH = 1. Actually,
it is known to be the limit of the MSA model in the dilute regime. This limit was more precisely
stated in lemma 1 of [2] introducing some characteristic parameters. Define the characteristic solute
packing fraction parameter ξc = πaHσ

3
H/6 and the Bjerrum parameter bi = LB

σH
. Then, the ideal

case is the limit of the MSA model when ξc → 0, while bi is fixed of order one.

2.3 Several ions case
ss.model

We now consider a solution of N different ions in water, labelled by an index i ∈ {1, ..., N}. These
ions are characterized by their valence zi, diameter σi, concentration ni and chemical potential
µi. For the mathematical analysis of Subsection 4.2, we shall assume that all ions have the same
diameter and that there are both positive and negative valences (which is always the case in practice
when considering a salt like Ca(OH)2). Of course, one of these ions is H+ which is necessarily
involved in the dissociation reaction of ionizable sites on the pore surface. The Poisson equation (2)
is changed to

−E∆Ψ = e

N∑
i=1

zini in ΩD. (19) 3.AM3

The chemical potential µi is given by

µi = µ0
i + kBT lnni + kBT ln γi, (20) 3.Chempot

where γi is the activity coefficient of ion i which, according to the MSA model, is defined by

ln γi = − LBΓz2
i

1 + Γσi
+ ln γHS , (21) 3.gamma-j
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where Γ is the MSA screening parameter defined by

Γ2 = πLB

N∑
i=1

niz
2
i

(1 + Γσi)2
, (22) 3.Gamma

and γHS is the hard sphere term given by

ln γHS = p(ξ) ≡ ξ 8− 9ξ + 3ξ2

(1− ξ)3
, with ξ =

π

6

N∑
i=1

niσ
3
i , (23) 3.Hardsphere

where ξ is the solute packing fraction.
The migration-diffusion flux ji of ion i is given by the following linear relationship

ji = −
N∑
j=1

Lij
(
∇µj + zje∇Ψ

)
, i = 1, . . . , N, (24) 3.electroflux

where Lij is the Onsager coefficient (the Onsager tensor is assumed to be positive definite, thus
invertible). At equilibrium, all migration-diffusion fluxes must vanish, ji = 0, a condition which is
satisfied if µj + zjeΨ is constant for all j = 1, . . . , N , or equivalently

njγje
zjeΨ

kBT = aj , j = 1, . . . , N, (25) 3.equil

where aj is a given positive constant defining the activity of ion j. The collection of relations (25),
together with (21), (22) and (23), gives all ni, in the right hand side of (19), as a non-linear function
of Ψ.

The Neumann boundary condition (3), as well as the modelling of the surface charge distribution
Σs on the boundary ∂ΩD, are the same as in the case of a single ion since it involves only the surface
sites M − OH and M − O−, together with the H+ ion. In particular, formulas (12) and (13) still
hold true. However, the surface screening parameter Γ(xD) should be evaluated with formula (22)
instead of the previous one (6). The rest of the derivation is the same and the previous nonlinear
Neumann boundary condition is still valid.

Eventually, the electrokinetic model is a combination of the Poisson-Boltzmann equation, of the
MSA model in the bulk, and of the non-linear boundary condition, issued from (14), which reads

−E∆Ψ = e

N∑
i=1

zini(Ψ) in ΩD,

E∇Ψ · ν = −Σs(Ψ) on ∂ΩD,
x 7→ Ψ(x) is (0, L)d-periodic,

(26) Eqmulti

where ni(Ψ) is a solution of the system of algebraic equations (25), (21), (22) and (23), while Σs(Ψ)
is a solution of the other algebraic equation (14).

rem.valence Remark 2. The periodic boundary condition in (26) implies a global electroneutrality condition,
namely

e

∫
ΩD

N∑
i=1

zini(Ψ) dx =

∫
∂ΩD

Σs(Ψ) dx.
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In other words, the surface charge on ∂ΩD is exactly compensated by the bulk charge in ΩD, due
to the ion densities. The same would be true with homogeneous Neumann boundary condition on
the exterior boundary of the cube (0, L)d. Since, by definition, 0 ≤ Σs ≤ Σsmax, it implies that all
valences zi cannot be negative and there must be at least one which is positive (recall that the valences
zi are non-zero relative integers). Indeed, as already said, the ion H+ with zH+ = 1 is always in
the list of ions since it appears in the dissociation reaction of ionizable sites on the pore surface.
In most practical cases, the solution contains both anions and cations, that is positive and negative
values of the valences zi.

3 Mathematical analysis in the single ion case
s.analysis

This section is concerned with the existence of solutions for the nonlinear boundary value problem
(15). The fact that periodic boundary conditions are enforced on the cubic domain (0, L)d is irrele-
vant and other outer boundary conditions (like Dirichlet or Neumann) do not change our results. To
simplify the notations, and thus the analysis, we first re-write the equations in their dimensionless
form.

3.1 Ideal model
ss.ideal

The ideal case of Subsection 2.2 is much simpler, so we start with its analysis. In particular, equation
(18) is the Euler-Lagrange condition for the minimization of a convex energy (see Remark 4), which
makes its analysis especially easy.

To write dimensionless equations, we introduce dimensionless quantities τ and τB , defined by

τ = eaHL
2/(ζE), τB = ΣsmaxL/(ζE), (27) def.tau

where ζ = kBT/e is the characteristic electrokinetic potential. A scaled space variable is also
introduced as x = Lx̃, with domain ΩD = LΩ̃D. The dimensionless unknowns are denoted with a
tilde :

nidH(x) = aH ñ
id
H(x̃), Ψ(x) = ζΨ̃(x̃) and Σsid(x) = ΣsmaxΣ̃sid(x̃).

Then, equation (16) simplifies

ñidH = e−Ψ̃

and, similarly, the nonlinear equation (17) becomes

Ψ̃ = C2ΣsmaxΣ̃sid − ln

(
1

Σ̃sid
− 1

)
− ln

K0

aH
. (28) Sigma3ideal2

For simplicity, in the sequel we skip the tilde notation. System (18) now reads −∆Ψ = τe−Ψ in ΩD,
∇Ψ · ν = −τBΣsid(Ψ) on ∂ΩD,
x 7→ Ψ(x) is (0, 1)d-periodic,

(29) Eqsinglequilid1

where Σsid(Ψ) is uniquely defined by (28) as shown in the next lemma.

lem.sigmas Lemma 3. For any value of Ψ, there exists a unique solution Σsid(Ψ) of equation (28) and the
function Ψ 7→ Σsid(Ψ) is strictly monotone increasing from R into (0, 1).
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Proof. Formula (28) yields

dΨ

dΣsid
= C2Σsmax +

1

Σsid(1− Σsid)
> 0 for 0 < Σsid < 1.

Hence Σsid is a strictly monotone increasing function of Ψ.

We introduce the Sobolev space H1
#(ΩD), defined by

H1
#(ΩD) = {φ ∈ H1(ΩD) | φ is (0, 1)d-periodic }.

A variational formulation of problem (29) is: find Ψ ∈ H1
#(ΩD) ∩ L∞(ΩD) such that∫

ΩD

∇Ψ · ∇φdx− τ
∫

ΩD

e−Ψφdx+ τB

∫
∂ΩD

Σsid(Ψ)φds = 0, ∀φ ∈ H1
#(ΩD). (30) Varforid

Note that the solution Ψ is required to belong to L∞(ΩD) so that the exponential non-linearity is
well defined. On the contrary, the boundary nonlinearity Σsid(Ψ) does not require Ψ ∈ L∞(ΩD)
since it is a bounded function by Lemma 3.

rem.convex Remark 4. Solving the boundary value problem (29) or the variational formulation (30) is formally
equivalent to minimizing the following energy

E(ψ) =
1

2

∫
ΩD

|∇ψ|2dx+ τ

∫
ΩD

e−ψdx+ τB

∫
∂ΩD

Ξsid(ψ)ds,

where Ξsid(ψ) is a primitive of Σsid(ψ). Since Σsid(ψ) is strictly monotone increasing, its primitive
Ξsid(ψ) is convex. Therefore the energy E(ψ) is strictly convex. Existence and uniqueness of a
minimizer would be very easy if there were not the problem that the exponential term e−ψ is not
well defined in the natural energy space H1

#(ΩD) as soon as the space dimension d is larger than
1. Our remedy is to truncate the exponential non-linearity, prove uniform L∞(ΩD) bounds and take
the limit when the truncation parameter tends to infinity.

Trueexistid Theorem 5. The variational formulation (30) has a unique solution in H1
#(ΩD) ∩ L∞(ΩD).

To prove Theorem 5 requires some auxiliary results.

Definition 6. For M ∈ R, a cut-off function of nidH(φ) = e−φ is defined by

nM (φ) =

{
e−φ, for φ ≥ −M,

eM , for φ < −M.
(31) nhcutoffid

In particular, this cut-off function is bounded, 0 < nM (φ) ≤ eM for any φ ∈ R.

Introduce the cut-off version of the variational formulation (30): find ΨM ∈ H1
#(ΩD) such that∫

ΩD

∇ΨM · ∇φdx− τ
∫

ΩD

nM (ΨM )φdx+ τB

∫
∂ΩD

Σsid(ΨM )φds = 0, ∀φ ∈ H1
#(ΩD). (32) Varforiddelta

Next we introduce an auxiliary Neumann problem
−∆U =

|∂ΩD|
|ΩD|

in ΩD,

∇U · ν = −1 on ∂ΩD,
x 7→ U(x) is (0, 1)d-periodic,

(33) Auxeq1
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which has a unique solution U ∈ H1
#(ΩD)/R, i.e. up to an additive constant (the choice of which

does not influence our results, as we shall see). Furthermore, since the boundary of ΩD is smooth,
so is the solution and U ∈ C(ΩD).

Lemma 7. Define

Ψ(x) = τB

(
U(x)−max

ΩD

U

)
+ ln

(
|ΩD|τ
|∂ΩD|τB

)
, (34) subPsi

and

Ψ(x) =
τB
2

(
U(x)−min

ΩD

U

)
+ max

(
(Σsid)

−1(
1

2
), ln

2|ΩD|τ
|∂ΩD|τB

)
. (35) superPsi

Then, Ψ is a subsolution and Ψ is a supersolution for problem (32) when M ≥ −min
ΩD

Ψ.

Proof. Take M ≥ −minΩD
Ψ, so that nM (Ψ) = e−Ψ. Using the variational formulation of (33) for

U , a direct calculation gives for any φ ≥ 0, φ ∈ H1
#(ΩD)∫

ΩD

∇Ψ · ∇φdx− τ
∫

ΩD

nM (Ψ)φdx+ τB

∫
∂ΩD

Σsid(Ψ)φds =

τB

∫
∂ΩD

(
Σsid(Ψ)− 1

)
φds+

|∂ΩD|τB
|ΩD|

∫
ΩD

(1− exp{−τB(U −max
ΩD

U)})φdx ≤ 0. (36) subcal1

Hence Ψ is a subsolution for problem (32). A similar calculation gives for any φ ≥ 0, φ ∈ H1
#(ΩD)∫

ΩD

∇Ψ · ∇φdx− τ
∫

ΩD

nM (Ψ)φdx+ τB

∫
∂ΩD

Σsid(Ψ)φds ≥

τB

∫
∂ΩD

(
Σsid(Ψ)− 1

2

)
φds+

|∂ΩD|τB
2|ΩD|

∫
ΩD

(1− exp{−τB
2

(U −min
ΩD

U)})φdx ≥ 0, (37) superX

where we additionally used the strict monotonicity of Σsid and the fact that Ψ(x) ≥ (Σsid)
−1( 1

2 ).

Hence Ψ is a supersolution for problem (32).

Having found a subsolution and a supersolution, we are in a position to apply Perron’s method
to establish the existence of a solution for problem (32). This is a very classical process and the
interested reader is referred to the textbook [8] (section 9.3) and to the monograph [15] for more
details and references.

existsingleideal Proposition 8. There exists a weak solution of problem (32), ΨM ∈ H1
#(ΩD)∩L∞(ΩD), such that

Ψ ≤ ΨM ≤ Ψ a.e. in ΩD.

We skip the proof of Proposition 8 which can be found, for example, in [8], pages 544-546.

Proof of Theorem 5. Choosing M ≥ −minΩD
Ψ we have ΨM ≥ Ψ and nM (ΨM ) = e−ΨM . Thus ΨM

is also a solution of problem (30). The uniqueness of the solution Ψ = ΨM is easily deduced from
the monotonicity of the nonlinearities.

11



3.2 MSA model

3.2.1 Adimensionalization and scaling of the MSA parameters
sub21bis

Here again we write the equations with dimensionless unknowns. To do so we introduce charac-
teristic values of the physical parameters which are denoted with a subscript c. As before aH is
the characteristic ion concentration. We define a characteristic MSA screening parameter Γc and a
characteristic solute packing fraction parameter ξc by

Γc =
√
πLBaH and ξc = πaHσ

3
H/6. (38) coeff1

Introducing the Bjerrum parameter

bi =
LB
σH

, (39) coeff2

we define two coefficients

α =
ΓcLB√
ξc

=
√

6bi3/2 and β =
ΓcσH√
ξc

=
√

6bi1/2. (40) coeff3

According to [2] (see Remark 1), the ideal case is the limit of the MSA model when ξc → 0, while
bi is fixed of order one. Therefore, in the sequel we shall assume some precise bounds on bi in order
to analyze the non-linearities of the MSA model. Since bi is assumed to be of order one, so are α, β
and thus

ΓcσH = O(
√
ξc) and ΓcLB = O(

√
ξc). (41) coeffgamma

Based on this scaling we define a small parameter δ by

δ =
√
ξc.

Recalling the scaled space variable x̃ = x/L, we introduce dimensionless unknowns, denoted with a
tilde,

nH(x) = aH ñH(x̃), Ψ(x) = ζΨ̃(x̃), Γ(x) = ΓcΓ̃(x̃), ξ(x) = δ2ξ̃(x̃), Σs(x) = ΣsmaxΣ̃s(x̃),

where we recall that ζ = kBT/e. For readability we skip the tildes in the sequel.
Since zH = 1, the non-linear algebraic equations (7), (10) and (14) become in adimensionalized

form

Γ =
2
√
nH

1 +
√

1 + 4βδ
√
nH

, (42) rootGamma

lnnH + Ψ− δ αΓ

1 + βδΓ
+ p(δ2nH) = 0, (43) logequil

Ψ =
σHΣsmax

2Eζ
Σs − αδΓ− ln(

1

Σs
− 1)− ln

K0

aH
, (44) dsSigma

where the function p(ξ) is defined by (8) for the hard sphere term. Similarly the adimensional form
of system (15) is  −∆Ψ = τnH(Ψ) in ΩD,

∇Ψ · ν = −τBΣs(Ψ) on ∂ΩD,
x 7→ Ψ(x) is (0, 1)d-periodic,

(45) Eqsinglequilid3

where the positive parameters τ and τB are defined by (27). In the next subsection we check
(under some technical conditions) that (42) and (43) unambiguously define nH(Ψ) and that Σs(Ψ)
is uniquely defined by (44).

12



3.2.2 Monotony properties of the functions nH(Ψ) and Σs(Ψ)
sub21

We first study the variations of Γ as a function of nH .

propGamma Lemma 9. The MSA screening parameter Γ, defined by (42), is a smooth strictly monotone in-
creasing function of nH ∈ (0,+∞).

Proof. Obviously, Γ(nH) is an infinitely smooth function for nH > 0. A simple computation yields

dΓ

d
√
nH

=
1

1 + 2βδΓ
> 0,

thus Γ is a strictly monotone increasing function of nH .

Next we study the variations of nH as a function of Ψ. From formulae (43) and (42), it is clear
that nH 7→ Ψ(nH) is a well defined function on (0, 1/δ2). However, it is its inverse function which
is required as the right hand side in the Poisson equation (45).

monotonnH Lemma 10. Assume the Bjerrum parameter bi = LB/σH satisfies the upper bound bi ≤ 6 + 4
√

2.
Then, Ψ 7→ nH(Ψ) is a strictly monotone decreasing function from R into (0, 1/δ2) (and thus one-
to-one).

Proof. Replacing Γ in (43) by its formula (42) yields an explicit formula for Ψ as a function of
nH ∈ (0, 1/δ2) (the solute packing fraction ξ = δ2nH must stay in the range (0, 1)). It is easy to
see that the limits of Ψ(nH) when nH goes to 0, resp. to 1/δ2, is +∞, resp. −∞. So the range of
Ψ(nH) is R. Differentiating (43) leads to

dΨ(nH)

dnH
= − 1

nH
+

αδ

(1 + βδΓ)2

dΓ(nH)

dnH
− δ2p′(δ2nH), (46) logequilsansdPsi2

dΓ(nH)

dnH
=

1

2
√
nH(1 + 2βδΓ)

. (47) logequilsansdPsi3

We insert expression (47) for the derivative of Γ into (46). The derivative of the hard sphere term
p(ξ), given by formula (8), is positive

p′(ξ) = 2
4− ξ

(1− ξ)4
> 0 for 0 ≤ ξ < 1.

Hence to prove
dΨ(nH)

dnH
< 0, it is sufficient to show that

0 ≥ − 1

nH
+

αδ

2
√
nH

1

(1 + 2βδΓ)(1 + βδΓ)2
=
−4(βδΓ)2 + (α/β − 6)βδΓ− 2

2nH(1 + 2βδΓ)(1 + βδΓ)
(48) formula2.nh

where we used
√
nH = Γ(1 +

√
6biδΓ). (49) formula.nh

Recall that α/β = bi. The numerator in the last expression of the right hand side of (48) is
a polynomial of degree 2 in the variable βδΓ and its discriminant is equal to (bi − 6)2 − 32. For
6−4
√

2 < bi < 6+4
√

2, this discriminant is negative, therefore the polynomial has no real roots and
is always negative. Furthermore, for bi ≤ 6− 4

√
2 the roots of this polynomial are strictly negative

and for positive Γ the expression remains strictly negative. Therefore, the condition bi ≤ 6 + 4
√

2
is sufficient for the decreasing character of Ψ(nH), which is thus invertible on its range.
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Figure 1: Variations of r(bi) and rmax(bi) as functions of the Bjerrum parameter bi. fig.rbi

PBcomment1 Remark 11. From the data of Table 1 we find that bi ≈ 1.786 < 6 + 4
√

2, so the assumption
of Lemma 10 is satisfied. Furthermore, under this assumption the bulk source nonlinearity in the
Poisson-Boltzmann equation (45) derives from a convex energy (cf. Remark 4). The invertibility of
the function Ψ(nH) can be guaranteed under less stringent conditions, but not its monotone character
(see [2] for more details).

rem.Gamma Remark 12. By combining Lemmata 9 and 10, it is immediate that Ψ 7→ Γ(Ψ) is a decreasing
function from R into its range (0,Γmax) with the maximal value, corresponding to nH = 1/δ2,

Γmax =
rmax(bi)

βδ
with rmax(bi) =

2β

1 +
√

1 + 4β
and β =

√
6bi. (50) gammamax

Eventually, we now prove that the surface charge density Σs is well defined by (44) and is an
increasing function of the potential Ψ.

bdrynonlin Proposition 13. Assume that bi ≤ 3. Define a polynomial of degree 3

P3(w) = biw3 + 2bi(bi− 2)w2 + (2bi− 6)w − 2. (51) P3

Then P3 admits a unique positive root r(bi). Define

Ψs =

{
2 ln δ + C0 if r(bi) ≤ rmax(bi),
−∞ if r(bi) > rmax(bi),

(52) psis

with a constant C0, independent of δ > 0, given by

C0 = 2 ln

√
6bi

r(bi)(1 + r(bi))
+

bir(bi)

1 + r(bi)
− p

(
r(bi)2(1 + r(bi))2

6bi

)
.

The algebraic equations (42), (43) and (44) uniquely define a function Ψ 7→ Σs(Ψ) which is strictly
monotone increasing from (Ψs,+∞) into its range (Σs(Ψs), 1) ⊂ (0, 1).

14



PBcomment2 Remark 14. The assumption bi ≤ 3 implies the previous one bi ≤ 6+4
√

2, which is one reason why
we did not try to improve Lemma 10. We do not claim that the assumption bi ≤ 3 is optimal and it
can certainly be improved. Since our data from Table 1 imply that bi ≈ 1.786 < 3, the assumption
of Proposition 13 is satisfied. The same data yield that r(bi) ≈ 1.656 > rmax(bi) ≈ 1.377, so that
Ψs = −∞ and Σs(Ψ) is well defined and increasing on the entire real line R. However, as can be
seen on Figure 1, r(bi) can be smaller than rmax(bi) for values of bi approximately in the interval
(2, 3). The interpretation of r(bi) is that the range of values of the screening parameter Γ is possibly
restricted from (0,Γmax) to (0, r(bi)/(βδ)) in order to ensure the monotonicity of Σs(Ψ) on the
corresponding range of Ψ.

One interest of (52) is to show that the range of admissible values of the potential Ψ increases
up to the entire R as δ goes to 0.

As a matter of fact, the assumption bi ≤ 3 implies that the boundary source nonlinearity in the
Poisson-Boltzmann equation (45) derives again from a convex energy (cf. Remark 4).

Proof. From Remark 12 we already know that Ψ 7→ Γ(Ψ) is a decreasing function from R into its
range (0,Γmax) and thus its inverse Ψ(Γ) is well defined from (0,Γmax) into R. Therefore, replacing
Ψ by Ψ(Γ) in (44) yields a nonlinear equation in Γ and Σs. Since Γ and Σs are bounded, while Ψ(Γ)
and ln( 1

Σs − 1) both vary in the entire real line, equation (44) has always a solution Γ(Σs).
Differentiating (44) with respect to Σs yields(

dΨ

dΓ
+ αδ

)
dΓ

dΣs
=
σHΣsmax

2Eζ
+

1

Σs(1− Σs)
> 0. (53) dsSigmader

Therefore, Γ is a monotone decreasing function of Σs if and only if
dΨ

dΓ
+ αδ < 0. As soon as this

monotonicity property is satisfied, there exists a unique solution Γ(Σs) of (44) and the function Σs 7→
Γ(Σs) is one-to-one decreasing from (0, 1) into (0,Γmax). Combined with Remark 12 (decreasing
character of Γ(Ψ)) it yields the existence and uniqueness of Σs(Ψ) which is an increasing function
from R into (0, 1).

We study the sign of dΨ
dΓ + αδ. Combining (43) and (49) gives Ψ as a function of Γ

Ψ(Γ) = −2(ln Γ + ln(1 + βδΓ)) + αδ
Γ

1 + βδΓ
− p(δ2nH(Γ)). (54) PsiGamma

Differentiating (54) with respect to Γ, using the fact that p′(ξ) > 0 and the increasing character of
nH(Γ) (see Lemma 9) gives

dΨ

dΓ
+ αδ < −2

1 + 2βδΓ

Γ(1 + βδΓ)
+

αδ

(1 + βδΓ)2
+ αδ =

P3(βδΓ)

Γ(1 + βδΓ)2
.

Since P3(0) = −2, P ′3(0) = 2bi − 6 ≤ 0 (by assumption) and its leading coefficient is positive, it
has one and only one strictly positive root, denoted by r(bi) (which depends only on bi). Thus the
quantity dΨ

dΓ + αδ is negative if Γ < Γs = r(bi)/(βδ). In view of the monotone character of Ψ(Γ)
(cf. Remark 12), the range 0 ≤ Γ < Γs is equivalent to the range Ψ ∈ (Ψs,+∞) with Ψs = Ψ(Γs).
Note that, if Γmax < Γs, then the condition Γ < Γs is always satisfied and Ψs = −∞. Otherwise,
a computation, using (54), shows that Ψs = Ψ(Γs) = 2 ln δ + C0, with the prescribed value of the
constant C0, independent of δ.

rem.smalldelta2 Remark 15. The regime Ψs = 2 ln δ + C0 in Proposition 13 corresponds to Ψs = Ψ(Γs) with
Γs = r(bi)/(βδ). A simple computation in (44) shows that, when δ goes to 0,

Σs(Ψs) = C1δ
2 + o(δ2) with C1 =

K0

aH
expC0 + αr(bi)/β.
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3.2.3 Existence of solutions
sub23

The proof of existence of solutions for the MSA model (45) is surprisingly simpler than for the ideal
model in Subsection 3.1. The reason is that the non-linearity nH(Ψ) is now bounded (cf. Lemma 10).
Nevertheless, there is still a slight difficulty because, according to Proposition 13, the monotonicity
property of the surface density charge Σs is valid only for the potential Ψ higher than a threshold
value Ψs. This requires to define a truncation of Σs(Ψ) as follows

Σs,cut(z) =

{
Σs(z) for Ψs ≤ z,
Σs(Ψs) for z < Ψs.

(55) Sigcut

We start by studying the corresponding truncated MSA equilibrium problem: find Ψcut ∈ H1
#(ΩD)

such that∫
ΩD

∇Ψcut · ∇φ dx+

∫
∂ΩD

τBΣs,cut(Ψcut)φ ds−
∫

ΩD

τnH(Ψcut)φ dx = 0, ∀φ ∈ H1
#(ΩD), (56) VarforiddeltaMSA

where the non-linearities nH(Ψ) and Σs(Ψ) are defined by (42), (43) and (44).

existsingleMSA Proposition 16. Assume that bi ≤ 3. There exists a unique weak solution Ψcut ∈ H1
#(ΩD) of

problem (56).

Proof. First of all, there is no need to assume that the solution belongs to L∞(ΩD) since the
non-linearities nH(Ψ) and Σs,cut(Ψ) are bounded. The existence and uniqueness of the solution is
classical (see e.g. section 8.2 in [8]) since these non-linearities are monotone, under the assumption
bi ≤ 3, according to Lemma 10 and Proposition 13. In particular, as explained in Remark 4, this
solution can be obtained by minimizing a strictly convex energy on the space H1

#(ΩD).

We now construct a subsolution and a supersolution for problem (56).

lem.subsup Lemma 17. Assume that δ <
√

|ΩD|τ
|∂ΩD|τB . Recalling the definition (33) of U , define

Ψ(x) = τB

(
U(x)−max

ΩD

U

)
+ (nH)−1

(
|∂ΩD|τB
|ΩD|τ

)
, x ∈ ΩD, (57) subPsiMSA

and, for some q ∈ (0, 1) such that q > Σs(Ψs), define

Ψ(x) = τBq

(
U(x)−min

ΩD

U

)
+ max

{
(Σs,cut)−1(q), n−1

H (
q|∂ΩD|τB
|ΩD|τ

)
}
, x ∈ ΩD. (58) superPsiMSA

Then, Ψ is a subsolution and Ψ is a supersolution for problem (56).

rem.smalldelta Remark 18. The assumption on the smallness of δ =
√
ξc is here to ensure that |∂ΩD|τB

|ΩD|τ belongs

to the range of nH(Ψ) (cf. Lemma 10). Recall that the limit of δ going to zero corresponds to the
ideal case (cf. Remark 1). Therefore, it is quite natural to assume such a smallness condition.

Note that, for q close to 1, q |∂ΩD|τB
|ΩD|τ also belongs to the range of nH(Ψ) and, by virtue of Remark

15, the condition q > Σs(Ψs) is always satisfied for small δ.
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Proof. Using definition (33) of U , a direct calculation gives for any φ ≥ 0, φ ∈ H1
#(ΩD)∫

ΩD

∇Ψ · ∇φ dx+

∫
∂ΩD

τBΣs,cut(Ψ)φ ds−
∫

ΩD

τnH(Ψ)φ dx

=

∫
∂ΩD

τB
(
Σs,cut(Ψ)− 1

)
φ ds+

∫
ΩD

( |∂ΩD|
|ΩD|

τB − τnH(Ψ)
)
φ dx ≤ 0, (59) subcal1MSA

where we used that Σs,cut ≤ 1 and the non-positivity of the last integrand follows from the bound

Ψ(x) ≤ (nH)−1

(
|∂ΩD|τB
|ΩD|τ

)
and the decreasing character of Ψ 7→ nH(Ψ). Hence the function Ψ is a subsolution for problem
(56).

Arguing as in (37), the monotonicity of Σs and nH yields for any φ ≥ 0, φ ∈ H1
#(ΩD)∫

ΩD

∇Ψ · ∇φdx+

∫
∂ΩD

τBΣs,cut(Ψ)φds−
∫

ΩD

τnH(Ψ)φdx

=

∫
∂ΩD

τB
(
Σs,cut(Ψ)− q

)
φds+

∫
ΩD

( |∂ΩD|
|ΩD|

τBq − τnH(Ψ)
)
φdx ≥ 0. (60) superX2

Indeed, since Ψ(x) ≥ (Σs,cut)−1(q), by monotonicity of Σs,cut we obtain

Σs,cut(Ψ) ≥ Σs,cut
(
(Σs,cut)−1(q)

)
≥ q,

and, since Ψ(x) ≥ n−1
H ( q|∂ΩD|τB

|ΩD|τ ) in ΩD, by monotonicity of nH(Ψ) we deduce

|∂ΩD|
|ΩD|

τBq − τnH(Ψ) ≥ |∂ΩD|
|ΩD|

τBq − τnH(n−1
H (

q|∂ΩD|τB
|ΩD|τ

)) = 0.

It yields that Ψ is a supersolution for problem (56).

We are now in a position to study the variational formulation of the original MSA problem (15):
find Ψ ∈ H1

#(ΩD) such that∫
ΩD

∇Ψ · ∇φ dx+

∫
∂ΩD

τBΣs(Ψ)φ ds−
∫

ΩD

τnH(Ψ)φ dx = 0, ∀φ ∈ H1
#(ΩD), (61) VarforiddeltaMSA2

TrueexistMSA Theorem 19. For sufficiently small δ > 0, the weak solution Ψcut of (56) is also the unique solution
Ψ = Ψcut of (61) in H1

#(ΩD), satisfying the same bounds Ψ ≤ Ψ ≤ Ψ.

Proof. A solution for the truncated problem (56) would also solve (61) if Ψs ≤ minx Ψ because, in
such a case, the truncation is inoperative. Using definition (52) of Ψs, the later holds true if

2

zH
ln δ + C0 ≤ τB(min

ΩD

U −max
ΩD

U) + (nH)−1
( |∂ΩD|τB
|ΩD|τ

)
,

which is certainly true for sufficiently small δ (this condition can be made more explicit).
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4 Mathematical analysis with several ions
s.2ions

This section investigates the existence of solutions for the nonlinear boundary value problem (26)
in the case of several ions. As in the case of a single ion, we start by studying the ideal case which
has a nicer monotone structure. Afterwards, we consider the MSA case which is somehow simpler
because the non-linearities are bounded. Nevertheless, we loose uniqueness of the solutions since the
MSA model lacks monotonicity.

4.1 Ideal model with several ions
ss.2ideal

As in Subsection 2.3 we consider a solution of N different ions in water, labelled by an index
i ∈ {1, ..., N}, with valence zi, constant activity ai and concentration ni. We restrict ourselves to the
ideal case, meaning that the ion activity coefficients are γi = 1. We perform an adimensionalization,
similar to that of Subsection 3.1,

nidi (x) = aH ñ
id
i (x̃), ai = aH ãi, Ψ(x) = ζΨ̃(x̃) and Σsid(x) = ΣsmaxΣ̃sid(x̃), (62) multi.adim

where aH is a characteristic value of the activity of H+. After dropping tildes, we introduce

N id(Ψ) =

N∑
i=1

zini(Ψ) with ni(Ψ) = aie
−ziΨ.

The surface charge Σsid is still defined by (28) and, in particular, Ψ 7→ Σsid(Ψ) is monotone increasing
from R into (0, 1), according to Lemma 3. The system (26) becomes in the adimensional ideal case

−∆Ψ = τ

N∑
i=1

zini(Ψ) in ΩD,

∇Ψ · ν = −τBΣsid(Ψ) on ∂ΩD,
x 7→ Ψ(x) is (0, 1)d-periodic,

(63) Eqmultia

where τ and τB are defined by (27). The existence and uniqueness of a solution to (63) is quite
similar to the case of a single ion in Subsection 3.1. The variational formulation of problem (63) is:
find Ψ ∈ H1

#(ΩD) ∩ L∞(ΩD), such that∫
ΩD

∇Ψ · ∇φ dx+

∫
∂ΩD

τBΣsid(Ψ)φ ds−
∫

ΩD

τN id(Ψ)φ dx = 0, ∀φ ∈ H1
#(ΩD). (64) Varforidmulti

Note that the solution is required to be bounded so that the nonlinear term involving N id(Ψ) is
integrable.

lem.decr Lemma 20. The function N id(Ψ) is monotone decreasing on R.

Remark 21. According to Remark 2, there is at least one zi > 0, so the range of N id(Ψ) contains
R+. In most practical cases, as we assumed, the solution contains both anions and cations, that is
positive and negative values of the valences zi, and thus the range of N id(Ψ) is R. However, if all
valences were positive, then the range of N id(Ψ) would be just R+.

Proof. A simple computation shows that

(N id)′(Ψ) =

N∑
i=1

−z2
i aie

−ziΨ < 0.
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Similarly, a primitive of −N id(Ψ) is
N∑
i=1

aie
−ziΨ,

which is a convex function of Ψ.

By virtue of Lemma 20, Remark 4 still applies, meaning that (64) is the Euler-Lagrange equation
for the minimization of a convex energy.

multiexist Theorem 22. There exists a unique solution Ψ ∈ H1
#(ΩD) ∩ L∞(ΩD) of problem (64).

The proof of Theorem 22 requires to first introduce a cut-off function for N id. For M > 0 define

N id
M (z) =


N id(z) for −M ≤ z ≤M,

N id
M (−M) for z < −M,

N id
M (M) for M < z.

(65) nhcutoffidmulti

The truncated version of (64) reads: find ΨM ∈ H1
#(ΩD) such that∫

ΩD

∇ΨM · ∇φ dx+

∫
∂ΩD

τBΣsid(ΨM )φ ds−
∫

ΩD

τN id
M (ΨM )φ dx = 0, ∀φ ∈ H1

#(ΩD). (66) Varforiddeltamulti

First, we construct a subsolution and a supersolution for problem (66). Recall that U(x) is the
solution of the auxiliary Neumann problem (33).

lem.subsup2 Lemma 23. Define, for x ∈ ΩD,

Ψ(x) = τB

(
(U(x)−max

ΩD

U

)
+ (N id)−1

(
|∂ΩD|τB
|ΩD|τ

)
, (67) subPsimulti

and

Ψ(x) =
τB
2

(
U(x)−min

ΩD

U

)
+ max

(
(Σsid)

−1(
1

2
), (N id)−1(

|∂ΩD|τB
2|ΩD|τ

)

)
. (68) superPsimulti

Assume

M > (N id)−1(
|∂ΩD|τB
2|ΩD|τ

). (69) sizeM

Then, Ψ is a subsolution and Ψ is a supersolution for problem (66).

Proof. The calculation is analogous to (36): for any φ ≥ 0, φ ∈ H1
#(ΩD)∫

ΩD

∇Ψ · ∇φdx− τ
∫

ΩD

N id
M (Ψ)φdx+ τB

∫
∂ΩD

Σsid(Ψ)φds =

τB

∫
∂ΩD

(
Σsid(Ψ)− 1

)
φds+

∫
ΩD

( |∂ΩD|τB
|ΩD|

− τN id
M (Ψ)

)
φ dx ≤ 0, (70) subcal1multi

because, since N id
M is decreasing and M ≥ (N id)−1( |∂ΩD|τB

|ΩD|τ ),

N id
M (Ψ) ≥ N id

M ( max
x∈ΩD

Ψ) = N id
M ((N id)−1(

|∂ΩD|τB
|ΩD|τ

)) = N id((N id)−1(
|∂ΩD|τB
|ΩD|τ

)) =
|∂ΩD|τB
|ΩD|τ

.
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We conclude that Ψ is a subsolution for problem (66).
Again we use definition of U and the strict monotonicity of Σsid and it is enough to go through

the calculation at the last line of (37). It yields, for any φ ≥ 0, φ ∈ H1
#(ΩD)∫

ΩD

∇Ψ · ∇φ dx−
∫

ΩD

τN id
M (Ψ)φ dx+

∫
∂ΩD

τBΣsid(Ψ)φ ds = (71)∫
∂ΩD

(
Σsid(Ψ)− 1

2

)
φ ds+

∫
ΩD

( |∂ΩD|
2|ΩD|

τB − τN id
M (Ψ)

)
φ dx ≥ 0, (72) superXmulti

because, for the first term in the right hand side of (72), Ψ(x) ≥ (Σsid)
−1( 1

2 ) and Σsid is increasing,

while for the second term, Ψ(x) ≥ (N id)−1( |∂ΩD|τB
2|ΩD|τ ) and N id

M (Ψ) is decreasing so that

τN id
M (Ψ) ≤ τN id

M ((N id)−1(
|∂ΩD|τB
2|ΩD|τ

)) = τN id((N id)−1(
|∂ΩD|τB
2|ΩD|τ

)) =
|∂ΩD|
2|ΩD|

τB .

Hence Ψ is a supersolution for problem (66).

Having found a subsolution and a supersolution, and since N id
M and Σsid are bounded and mono-

tone, the existence and uniqueness of a solution ΨM ∈ H1
#(ΩD) ∩ L∞(ΩD) of (66) is classical, as

already explained for Proposition 8.

Proof of Theorem 22. Since the solution ΨM of (66) satisfies

Ψ ≤ ΨM ≤ Ψ,

choosing M large enough implies that N id
M (ΨM ) = N id(ΨM ) and, as a consequence, Ψ = ΨM is a

solution for problem (64). By the strict monotonicity of the nonlinearities N id and Σsid, the solution
is unique. Therefore, problem (64) has a unique solution in H1

#(ΩD) ∩ L∞(ΩD),

4.2 MSA equilibrium solution in the multiple ion case
sub33

We first perform an adimensionalization of the equations of Subsection 2.3, mixing arguments from
Subsections 3.2.1 and 4.1. Without entering too much into details, we introduce the adimensional
unknowns (62), as well as the characteristic values (38), (39) and (40). Defining a non-linear function
N for the electrical charge density

N(Ψ) =

N∑
i=1

zini(Ψ),

it yields the following system −∆Ψ = τN(Ψ) in ΩD,
∇Ψ · ν = −τBΣs(Ψ) on ∂ΩD,
x 7→ Ψ(x) is (0, 1)d-periodic,

(73) Eqmultimsa

where τ and τB are defined by (27), the surface charge, 0 ≤ Σs(Ψ) ≤ 1 is defined by the adimen-
sionalized version of (14), i.e.,

Ψ =
σHΣsmax

2Eζ
Σs − αδΓ− ln(

1

Σs
− 1)− ln

K0

aH
, (74) Sigmadim

20



while the ion density is given by the adimensionalized version of (25), together with (21) and (23),
i.e.,

ni(Ψ) = aie
−ziΨe

αδΓz2i
1+βδΓ e−p(δ

2N0(Ψ)) with N0(Ψ) =

N∑
j=1

nj(Ψ). (75) ni.msa

Recall that α and β are defined in (40) and that δ =
√
ξc is a small parameter. It remains to define

the MSA screening parameter Γ. To simplify the analysis, we make the assumption that all ions
have the same diameter, namely σi = σH for any i. Such an hypothesis was already made in [2]
for a seemingly different reason (proving the well-posedness of the linearization of (73)) and thus is
both not unusual and fundamentally important. Since the diameters of all ions are assumed to be
equal, σi = σH for any i, equation (22) defining the MSA screening parameter has a unique positive
root, given by

Γ =
2
√
N2(Ψ)

1 +
√

1 + 4βδ
√
N2(Ψ)

with N2(Ψ) =

N∑
i=1

z2
i ni(Ψ) (76) rootGamma2

Eventually, the MSA model is the combination of system (73) with the algebraic equations (74),
(75) and (76). We first prove that these nonlinear algebraic equations have a solution, namely that,
for a given value Ψ ∈ R, they allow us to compute the ion densities ni(Ψ) and the surface charge
Σs(Ψ).

lem.N0 Lemma 24. The algebraic equations (75) and (76) define functions Ψ 7→ ni(Ψ), for 1 ≤ i ≤ N .
Furthermore, the function N0(Ψ), defined in (75), takes values in (0, δ−2).

rem.N0 Remark 25. Lemma 24 does not say anything about uniqueness of the solution to the nonlinear
algebraic equations (75) and (76). Its proof explains which solution is chosen.

Proof. Summing (75) over i leads to

N0(Ψ) = e−p(δ
2N0(Ψ))

N∑
i=1

aie
−ziΨe

αδΓz2i
1+βδΓ . (77) N0

Multiplying (75) by z2
i and summing over i leads to

N2(Ψ) = e−p(δ
2N0(Ψ))

N∑
i=1

z2
i aie

−ziΨe
αδΓz2i
1+βδΓ

which can be rewritten as

N2(Ψ) = N0(Ψ)

N∑
i=1

z2
i aie

−ziΨe
αδΓz2i
1+βδΓ

N∑
i=1

aie
−ziΨe

αδΓz2i
1+βδΓ

. (78) N2

Equations (77) and (78) form a system of two equations for the two unknowns N0(Ψ) and N2(Ψ),
depending on the parameter Ψ. From (76) Γ is clearly a function of N2(Ψ) only, namely Γ =
Γ(N2(Ψ)) in (77) and (78). Fix any values of Ψ ∈ R and N2(Ψ) ∈ R and consider (77) as a non-
linear fixed point equation for the unknown N0(Ψ). Since, in view of the definition (23) of p(ξ) for

ξ ∈ (0, 1), p′(ξ) = 8−2ξ
(1−ξ)4 > 0, the map ζ 7→ e−p(δ

2ζ) is strictly decreasing from (0, δ−2) into its
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range, we deduce the uniqueness of a solution N0(Ψ), as well as the bound 0 ≤ N0(Ψ) ≤ δ−2. Plug
this value of N0(Ψ) (which depends on Ψ and N2(Ψ)) in (78) which is now a nonlinear equation
for N2(Ψ) in terms of Ψ. The right hand side of (78) is a very complicated continuous function
of Ψ and N2(Ψ), but it is bounded by δ−2 maxi z

2
i . On the contrary, the left hand side of (78) is

linear increasing in N2(Ψ). Therefore, starting from 0, if the value of N2(Ψ) is increased, there is
always a first root of (78). We choose this solution (there may be other ones larger but still less
than δ−2 maxi z

2
i ). Having determined N0(Ψ) and N2(Ψ) as functions of Ψ, (75) defines ni(Ψ) as a

function solely of Ψ.

rem.Sima Remark 26. In the special case of N = 2 ions with opposite valences z1 = −z2, Lemma 24 can be
slightly improve. Indeed, in such a case, N2(Ψ) = z2

1N0(Ψ) and rewriting (77) as

N0(Ψ)ep(δ
2N0(Ψ))e−

αδΓz21
1+βδΓ =

2∑
i=1

aie
−ziΨ,

one can prove that the left hand side is a monotone increasing function of N0(Ψ), at least if the Bjer-
rum parameter satisfies bi ≤ 4(1 +

√
2)2/z2

1 (the proof involves similar arguments as in Proposition
29 below). Therefore, the nonlinear algebraic equations (75) and (76) have a unique solution.

lem.Sigma Lemma 27. The algebraic equation (74) uniquely defines a function Ψ 7→ Σs(Ψ), from R into (0, 1).

Proof. Rewrite (74) as

σHΣsmax
2Eζ

Σs − ln(
1

Σs
− 1) = Ψ + αδΓ + ln

K0

aH

where the right hand side is a function of Ψ, as a consequence of Lemma 24. It is easily seen that
the left hand side is a strictly increasing function of Σs from (0, 1) into R. Therefore, it admits a
unique solution Σs(Ψ).

thm.Sigma Theorem 28. The MSA model (73), with the algebraic equations (74), (75) and (76), admits a
solution Ψ ∈ H1

#(ΩD).

Proof. As a consequence of Lemma 24 the non-linearity in the right hand side of (73) is uniformly
bounded for any Ψ ∈ H1

#(ΩD) since

|N(Ψ)| ≤ max
1≤i≤N

|zi|N0(Ψ) ≤ δ−2 max
1≤i≤N

|zi|.

Similarly the non-linear boundary condition Σs(Ψ) is bounded between 0 and 1, by definition.
Then, under these conditions the existence of at least one solution is classical by using a fixed point
argument (see e.g. chapter 9 in [8]).

Theorem 28 does not say anything on the uniqueness of solutions of the MSA model (73).
Contrary, to the ideal case of Subsection 4.1 we are unable to prove uniqueness of the solution,
even under additional assumptions on the physical parameters. Actually, we can only prove the
monotonicity of the charge density N(Ψ) but not of the surface charge Σs(Ψ) (Lemma 27 does not
say anything about its monotonicity).
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monotoneN Proposition 29. Assume the Bjerrum parameter bi = LB/σH satisfies the upper bound

bi max
1≤i≤N

z2
i ≤ 4(1 +

√
2)2.

Then, Ψ 7→ N(Ψ) is a strictly monotone decreasing function on R.

rem.monotoneN Remark 30. For a solution of Ca(OH)2, as studied in the numerical section, since max1≤i≤N z
2
i =

4 and bi ≈ 1.786, according to the data of Table 1, the assumption of Proposition 29 is satisfied.

Proof. Taking the logarithm of the definition (75) of ni yields

lnni = −ziΨ + ln ai +
αδΓz2

i

1 + βδΓ
− p

(
δ2N0(Ψ)

)
. (79) logequilsansdmult

Differentiating (79) with respect to Ψ yields

1

ni

dni
dΨ

= −zi +
αδz2

i

(1 + βδΓ)2

dΓ

dΨ
− δ2p′

(
δ2N0(Ψ)

) N∑
j=1

dnj
dΨ

=

−zi +

N∑
j=1

dnj
dΨ

(
−δ2p′

(
δ2N0(Ψ)

)
+

αδz2
i z

2
j

2(1 + βδΓ)2(1 + 2βδΓ)
√
N2(Ψ)

)
, (80) Dervni

since differentiating (76) (and using the proof of Lemma 9) leads to

dΓ

dΨ
=

dΓ

d
√
N2

d
√
N2

dN2

dN2

dΨ
=

1

1 + 2βδΓ

1

2
√
N2

N∑
i=1

z2
i

dni
dΨ

.

Therefore, (80) is equivalent to the linear system

A
(
dni
dΨ

)
i=1,...,N

= (−zi)i=1,...,N , (81) linsyst

where A is a N ×N symmetric matrix defined by its entries

Aij =
δij
ni

+ δ2p′
(
δ2N0(Ψ)

)
−

αδz2
i z

2
j

2(1 + βδΓ)2(1 + 2βδΓ)
√
N2(Ψ)

, (82) linsyst2

where δij is the Kronecker symbol. If A is invertible, then

dN

dΨ
= −A−1 (zi)i=1,...,N · (zi)i=1,...,N

and the decreasing character of N(Ψ) is proved if A−1 is positive. This is equivalent to prove that
A is positive definite. For any vector y = (yi)i=1,...,N , compute

Ay · y =

N∑
i=1

y2
i

ni
+ δ2p′

(
δ2N0(Ψ)

)( N∑
i=1

yi

)2

−
αδ
(∑N

i=1 z
2
i yi

)2

2(1 + βδΓ)2(1 + 2βδΓ)
√
N2(Ψ)

≥ ‖ỹ‖2
1−

αδ
(∑N

i=1 z
4
i ni

)
2(1 + βδΓ)2(1 + 2βδΓ)

√
N2(Ψ)

 ≥ ‖ỹ‖2(1−
αδ
√
N2(Ψ) max1≤i≤N z

2
i

2(1 + βδΓ)2(1 + 2βδΓ)

)
,
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Figure 2: The periodic domain Q in green with its solid part (in white) and its pore volume ΩD (in
black). By symmetry all calculations are performed in the smaller set Y (right). fig.pore

because p′(ξ) ≥ 0 and using the change of variables ỹi = yi/
√
ni with Cauchy-Schwarz inequality.

Recalling definition (76) of Γ and introducing a new variable t =
√

1 + 4βδ
√
N2(Ψ) leads to

Ay · y ≥ ‖ỹ‖2 (1− f(t)) with f(t) =
(t− 1)αmax1≤i≤N z

2
i

4βt(1 + t)
.

Some simple optimization with respect to t ∈ (1; +∞) yields the desired result because bi = α/β.

5 Numerical results
s.num

5.1 Geometrical setting

We consider a periodic domain in the plane (d = 2) for which the pore or fluid part ΩD is a
honeycomb. Because of this special structure, the periodic domain is not a square but a rectangle
Q = (0, Lx) × (0, Ly) with dimensions Lx = 652 nm and Ly = 723 nm (see the green rectangle in
Figure 2). In the middle of the cell, the solid part (in white) is a hexagon of width 200 nm, while
the fluid channels (in black) have a cross-section of width 30 nm. Because of mirror symmetries
with respect to the vertical and horizontal axes, the fluid domain ΩD can be restricted to the subset
denoted by Y on Figure 2. The boundary ∂Y is composed of the solid/pore interface ∂ΩD, where the
non-linear boundary condition takes place, and its complement ∂Y0, where homogeneous Neumann
boundary condition are imposed for symmetry reasons. Because of these symmetries, no periodic
boundary conditions have to be enforced. This subset Y is the computational domain, meshed by
61, 334 triangles with a mesh refinement near the solid/pore interface. The number of degree of
freedom is 136, 987. All our numerical results are obtained with the FreeFem++ package [11], using
Lagrange P2 finite elements. The dashed axis shown on the right of Figure 2 is placed right in the
middle of the channel and it is where the cross-sections of the potential are plotted (see below).
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5.2 Newton algorithm

To solve the non-linear partial differential equation (73) we use a Newton algorithm which is briefly
recalled. Because of the geometric setting, (73) boils down to −∆Ψ = τ N(Ψ) in Y,

∇Ψ · ν = −τB Σs(Ψ) on ∂ΩD,
∇Ψ · ν = 0 on ∂Y \ ∂ΩD.

Define its variational form

R(Ψ, v) =

∫
Y

∇Ψ · ∇v dx+ τB

∫
∂ΩD

Σs(Ψ) v ds− τ
∫
Y

N(Ψ) v dx

and its differential

DΨR(Ψ, v)[δΨ] =

∫
Y

∇δΨ · ∇v dx+ τB

∫
∂ΩD

dΣs

dΨ
(Ψ) v ds− τ

∫
Y

dN

dΨ
(Ψ) v dx .

The formulas for the derivatives are implicitly given in the theoretical analysis of the previous
sections. If Ψ(0) is some initialization for the potential Ψ, a sequence of approximate solutions is
defined by

Ψ(n) = Ψ(n−1) + δΨ

where δΨ is the solution of the linear equation

DΨR(Ψ(n−1), v)[δΨ] = −R(Ψ(n−1), v) ∀ v ∈ H1 (Y ) .

Convergence is detected when the relative residual ‖δΨ‖/‖Ψ(n−1)‖, computed in the H1(Y )-norm,
is smaller than 10−7. Furthermore, the electroneutrality between the bulk and surface charges is
checked.

5.3 Numerical results for the single ion case
ss.singnum

We first perform a numerical computation for system (45) for the single H+ ion in the MSA case.
We choose pH = 7 meaning that the activity is aH = 1.e − 7 mole/liter (see Table 1). Figure 3
shows the isovalues of the potential Ψ, the maxima of which are located at the pore junctions. It
is interesting to see if there is a noticeable difference with the same computation performed with a
constant surface charge density Σav, defined by

Σav =
1

|∂ΩD|

∫
∂ΩD

Σs(Ψ)ds. (83) eq.average

Figure 4 shows the difference between the surface charge density Σs obtained with the nonlinear
boundary condition for a pH = 7 and its average Σav on the boundary. The variation of Σs around
its average Σav is of the order of one percent. The plot on Figure 4 is along the lower left solid
boundary of Y , which exhibits two corners where the surface charge density has clearly a peak.

For the sake of comparison, we thus perform the same computation as for Figure 3, except that
the non-linear boundary condition Σs(Ψ) is replaced by the constant Neumann boundary condition
Σav. The difference between the potential Ψ in these two cases is plotted on Figure 5 where it
can be checked that the relative difference is very small, less than 5.e−5. This is confirmed by the
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Figure 3: Isovalues of Ψ (Volts) for a single ion with pH = 7 in the MSA case. fig.isoH+

Figure 4: Surface charge density Σs (eC/nm2) on the lower left part of the boundary of Y for
pH = 7 in MSA case. The dotted line shows its mean value Σav. fig.SigmaMSAetCst

comparison on Figure 6 of the two profiles of the potential Ψ along a cross-section of a channel (cf.
the dashed line on the right of Figure 2), which are very close. For completeness, we plot on Figure
7 the profile of Ψ for the MSA model on two cross-sections: one in the middle of the channel (as in
Figure 6) and the other at the extremity of the channel. The higher value of Ψ at the end rather
than at the middle of the channel is consistent with the peak of Σs(Ψ) at the corners or end points
of the fluid channels.

We now perform some comparisons between the ideal and MSA models as a function of pH
varying from 1 to 14. Note that the single ion model was established for pH = 7 but it makes sense,
at least from a numerical point of view, to test its numerical output when the pH varies. The activity
aH of the H+ ion is equal to 10−pH (mole/liter). The coefficient τ = (L/λD)2 takes into account the
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Figure 5: Isovalues of the differences in Ψ (Volts), computed with the non-linear boundary condition
Σs(Ψ) and its constant average Σav, for a single ion with pH = 7 in the MSA case. fig.isodiffH+

Figure 6: Cross-sections of the Potentials Ψ (V olts) for the non-linear boundary condition (NLBC)
Σs(Ψ) and for its constant average (Cst) Σav with pH = 7 in the MSA case. fig.PBSigmaMSAetCst-pH=7

different values of the pH via the Debye’s length λD which depends on aH (see Table 1). It turns
out that there is almost no differences between the calculations of the two models, ideal and MSA,
whatever the value of pH. The reason is the very low salt concentration. Actually here the bulk salt
concentration is nill. Nevertheless, we can observe on Figure 8 the linear variation of the maximums
of Ψ as a function of the pH. There is a change of sign of the potential maximum between the values
5.041 and 5.042 of the pH for the Ideal and MSA cases, see Figure 9. All cross-sections of potentials
obtained for other values of pH have roughly the same profile as those shown in Figure 9.
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Figure 7: Cross-sections of the Potentials Ψ (V olts) for the non-linear boundary condition Σs(Ψ)
with pH = 7 in the MSA case: in the middle of the channel [1], at the extremity of the channel [2]. fig.PB-2coupes-col

Figure 8: Evolution of the maximum of Ψ (Volts) in Y as a function of the pH in the MSA case. fig.maxPsi

Figure 9: Cross-sections of the potential Ψ in the fluid channel for a single ion H+ in the MSA case. fig.poreCrossSections
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5.4 Numerical results for the multiple ion case
ss.multinum

We now consider a Ca(OH)2 salt, meaning that there are 3 different ions, H+, OH− and Ca2+, in
the electrolyte. All computations are performed for the MSA model. We vary the bulk concentration
nbulk of Ca(OH)2 from 10−3 to 5.9 10−1 mM. From this reservoir concentration nbulk we have to
deduce the activities aj of the three ions. In a first step, the activities of the ions Ca2+ and OH−

are calculated following the process explained in section 3 of [2]. The main idea to compute these
activities is to impose a bulk electroneutrality condition, ensuring that a constant zero surface charge
density yields a zero potential. In a second step, knowing the activity aOH of the ion OH−, the pH
of the solution is deduced from the autoprotolysis reaction of water

pH = 14 + log10(aOH),

and aOH = 2γOHnbulk. Eventually, the H+ activity is obtained by aH = 10−pH . The H+ activity
is chosen as our characteristic concentration which is used in the adimensionalization process (62).
For a concentration nbulk = 10−3 mM of Ca(OH)2 the potential Ψ is plotted on Figure 10. The
same computation is performed, replacing the non-linear boundary condition Σs(Ψ) by its constant
average Σav, as defined in (83). The difference between the two resulting potentials is plotted on
Figure 11. The largest differences are located at the junctions of the channels, but everywhere the
relative difference is of the order of a few percent.

Figure 10: Isovalues of Ψ (Volts) for a concentration nbulk = 10−3 mM of Ca(OH)2. fig.isomulti

Increasing the bulk concentration nbulk we check that the average and the maximum of the
surface charge density is monotonically increasing (see Figure 12), while the averaged concentration
of the H+ ion is decreasing (see Figure 13). Of course, in the mean time the averaged concentrations
of the OH− and Ca2+ ions are increasing (see Figure 14). From Figure 12 it is obvious that the
surface charge is not constant when nbulk varies, which is a clear indication that taking a constant
surface charge, as was done in most previous studies, was merely a rough approximation. Let us
note that, as in the single ion case, there is a change of sign for the maximum of the potential Ψ:
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Figure 11: Isovalues of the difference of potential Ψ (Volts) between the non-linear boundary condi-
tion Σs(Ψ) and its constant average Σav for a concentration nbulk = 10−3 mM of Ca(OH)2. fig.isomultidiff

it is positive for low concentrations nbulk ≤ 5.5 10−7 mM and negative for higher concentrations
nbulk ≥ 6. 10−7 mM.

Figure 12: Average and maximum of the surface charge density Σs(Ψ) as a function of the bulk
concentration nbulk of Ca(OH)2. fig.SigmaMaxMSA

As a conclusion, our numerical experiments suggest that the non-linear boundary condition Σs(Ψ)
allows us to find the correct value of the surface charge density which is not the same for all salt
reservoir concentrations nbulk. Nevertheless, the relative difference between the resulting potentials
is quite small of the order of 1 or 2 percent.
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Figure 13: Averaged concentration of H+ in the pore Y as a function of the bulk concentration
nbulk of Ca(OH)2. fig.averageH+

Figure 14: Averaged concentrations of Ca2+ and OH− in the pore Y as a function of the bulk
concentration nbulk of Ca(OH)2. fig.averageOH
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