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Abstract

This paper studies the partial differential equation describing the charge distribution of an
electrolyte in a porous medium. Realistic non-ideal effects are incorporated through the mean
spherical approximation (MSA) model which takes into account finite size ions and screening
effects. The main novelty is the consideration of a non-constant surface charge density on the
pore walls. Indeed, a chemical equilibrium reaction is considered on the boundary to represent
the dissociation of ionizable sites on the solid walls. The surface charge density is thus given
as a non-linear function of the electrostatic potential. Even in the ideal case, the resulting
system is a new variant of the famous Poisson-Boltzmann equation, which still has a monotone
structure under quantitative assumptions on the physical parameters. In the non-ideal case,
the MSA model brings in additional non-linearities which break down the monotone structure
of the system. We prove existence, and sometimes uniqueness, of the solution. Some numerical
experiments are performed in 2-d to compare this model with that for a constant surface charge.

pacs 02.30.Jr ; 47.57.J- ; 47.70.Fw ; 82.70.Dd ; 91.60.Pn . keywords Poisson-Boltzmann equation,
MSA, electro-osmosis.
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1 Introduction

This paper is devoted to the modeling, the mathematical analysis and some numerical experiments
of the electrostatic properties of an electrolyte in a charged porous medium. In the so-called ideal
case and when the surface charge of the solid porous medium is constant, this model is well-known
in the literature under the name of Poisson-Boltzmann equation [13]. In the present work, we go
beyond the ideal case by using the Mean Spherical Approximation (MSA) model, which considers
ions to be charged hard spheres, takes into account their finite size and screening effects [4], [10].
This MSA model is known to improve the ideal model for high concentrations and small pores
[3], [7]. We already studied this MSA model in our previous work [2]. Actually, the main novelty
of the present paper is the analysis of a model of surface charge density, which is not any longer
constant, but rather given as the output of a chemical equilibrium reaction on the pores boundaries
which represents the dissociation of ionizable sites on the solid walls (see [5], [6], [12], [19] for a
physico-chemical presentation). Note that the Poisson-Boltzmann equation and its variants are key
ingredients to derive transport properties of electrolytes in porous media by means of homogenization
or upscaling [1], [17], [18].

The precise model which is studied here is described in Section 2. For simplicity we start in
Subsection 2.1 with the case of a salt free bulk solution, namely with H™ as the single ion in the
model. Indeed, the ionizable sites on the solid walls are of the type M — OH, where M is some
metallic atom, and the dissociation reaction is M — OH + M — O~ + H™. In other words, only
HT ions are involved in this chemical reaction at the boundary. For the sake of completeness, we
recall in Subsection 2.2 the ideal model for this single HT ion. Finally, Subsection 2.3 describes our
full model with several ions in the bulk. But still, only HT is involved in the non-linear boundary
condition.

Section 3 is devoted to the mathematical analysis of this non-linear electrostatic model in the case
of a single ion. For pedagogical reasons, the ideal model is first discussed before going to the MSA
model. In the ideal case, the non-linearities of the partial differential equations are monotone, so the
existence and uniqueness of a solution is easy, let apart the difficulty that the Poisson-Boltzmann
equation involves an exponential non-linearity which is not integrable in full generality. Nevertheless,
this kind of difficulty is classical in the literature (see [9], [14]): here we use a truncation argument
and L°°-bounds to prove existence of a solution. For the MSA model, we prove that the non-
linearities are monotone under an assumption on the size of the ions (which must be not too small,
see Proposition 13). Then, the existence proof for solutions is surprisingly simpler since the MSA
model furnishes an upper bound on the ion concentration: Theorem 19 gives the existence and
uniqueness of a solution, provided that a parameter §, measuring the departure from the ideal case,
is small enough.

Section 4 extends the mathematical analysis to the case of several ions. Again we begin with the
easier ideal model before going to the more involved MSA model. In the ideal case, the non-linearities
are again monotone and existence and uniqueness is easy, with the same arguments as in the case
of a single ion (see Theorem 22). However, the MSA model is much more intricate. Although we
can still prove that the bulk charge density is monotone under an assumption on the size of the ions
(which must be not too small, see Proposition 29), we are unable to prove a similar result for the
surface charge density. Fortunately, the MSA model still furnishes uniform upper bounds on the
non-linearities, which allows us to prove existence of at least one solution (see Theorem 28).

Eventually Section 5 is concerned with some numerical experiments. In particular, comparisons
are made between a constant surface charge density and the non-linear one which is proposed by
our model of Section 2. Our conclusion is that, although the surface charge density may vary
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significantly, the resulting potentials are quite similar.

2 Electrokinetic models

This work is restricted to equilibrium situations for an electrolyte in a charged rigid porous medium.
In other words, the fluid containing the electrolyte is assumed to be at rest and only electrostatic
equations are considered.

2.1 Single ion case

We first consider a simpler case with a salt free bulk solution (i.e. with a reservoir containing no
ions). More precisely, only the counterions to the charge of the porous medium are considered. These
counterions are H ', implying that the surface of the solid porous medium is negatively charged as
is the case in practice for rocks like clays.

As usual in porous media studies, we consider a representative volume element of a porous
medium which, for simplicity, is a cube Q = (0, L)% with periodic boundary conditions (d = 2,3 is
the space dimension). The fluid part of @ is Qf and the solid part is Qg with Q; N Q = 0 and
Q = ﬁf U Q. In the sequel, because of the finite size of ions, we shall rather consider another
effective fluid domain Qp C £y, which is slightly smaller than {2y and is the domain on which the
equations are posed. Its internal boundary 9€)p is the interface between the effective solid structure
and the effective pore volume Qp. It is assumed to be smooth, say C'. An example of Qp is shown
on Figure 2.

The concentration of the sole type of ions, namely H7T, is denoted by ny and its valence is
zg = 1. These H* ions come from the dissociation of ionizable sites, M — OH, located on the
“hard” (non penetrating) surface of the solid porous medium, 9Q;. Here, M refers to some metallic
atom. The dissociation reaction of M — OH obeys the following chemical equilibrium

M—OH < M—0~ +H*, (1)

which gives rise to a surface charge distribution on 9Q,. The H™ ions have a finite non-zero diameter
om. As a result they cannot lie on 95 but rather stay at a distance not smaller than op /2 from
0. We, therefore, define another surface 9Qp which is obtained from 9 by a translation of o g /2
in the opposite normal direction. In other word, dQp is the boundary of the Stern layer where the
ion concentration starts to be non-zero. A generic point on 02, is denoted by x4 and it is associated
to a unique point xp on 9Qp (provided that the surface is smooth enough and o is small enough,
this point is uniquely defined by zp = x5 — (o /2)n where n is the exterior unit normal). Note that
the following equations (Poisson-Boltzmann and MSA model) are actually valid only up to 9Qp
because no ions can get closer to the hard surface 0€25. In the sequel, 2p denotes the effective fluid
part of the porous domain, enclosed by 9Qp.

The electrostatic potential is calculated from Poisson equation with the electric charge density
as bulk source term

—EAV =engy in Qp, (2)

where € > 0 is the dielectric constant of the solvent and e is the (positive) electron charge. The
boundary condition reads

EVY .y =-3%° on 00Qp, (3)

chemreac
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where v is the unit exterior normal to the porous domain 2p and —X° denotes the surface charge
density on 0Q2p which turns out to be equal to that on 02, as we shall see in a few lines. We
assume that the surface charge density on 02 is negative, which translates as ¥° > 0. The novelty
of our model is that the value of ¥° is not a data but is given as a non linear function of ¥, as is
detailed below.

For the moment, let us relate the ion concentration ngx to the potential ¥. Let pug be the
chemical potential of H* in the bulk given by

MHZ/L?LI-I—/{BTlnnH—&-kBTln'yH, (4)

with g being the activity coefficient of H, kp the Boltzmann constant, u% the standard chemical
potential expressed at infinite dilution and T is the absolute temperature. All these quantities are
constants in our model, except v which depends on the concentration ny. Indeed, as ny increases,
interactions between ions becomes non negligible and vy takes them into account. We model v
through the Mean Spherical Approzimation (MSA) in simplified form [7]. The activity coefficient
reads

LBFZ%I

1 HS
TaTo, TV (5)

Inyy = —

where o is the ion diameter of HT, 2y = 1 is the valence of HT, Lp is the Bjerrum length given
by Lp = €?/(4n€kpT), v7° is the hard sphere term defined by (8) and T' is the MSA screening
parameter defined by

2
I’ =nrLg __MHZg (6)
or equivalently by the positive root of (6)

I — 2ZH\/7TLBTLH
1+ \/1 —|—4ZHO'H\/7TLB’I’LH'

In (5) the hard sphere term 5 is given by

8 —9¢ +3¢2 ) ™ 3
T—¢p with &= G (8)
and ¢ is called the solute packing fraction. From (5), (7) and (8) it is clear that vy is a function of
ng. Note that T in (7) is also a function of ng.

The migration-diffusion flux j is given by the following linear relationship

Iny79 = p(¢) =¢

i=—Lng)(Vug + zzeV¥), (9)

where L(ng) is the (positive) Onsager coefficient. Under our equilibrium assumption, the migration-
diffusion flux must vanish, j = 0, which implies that pgy + zgeW¥ is constant, and, together with (4),
leading to

zge¥
NHYHE BT = am, (10)

where ay is a given positive constant, called the activity of Ht. This relation (10) gives ng, the
right hand side of (2), as a non-linear function of ¥.

Chempot
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We now come to the modelling of the surface charge distribution on 9€), following classical
works as [5], [6], [12], [19]. If apy—om and apr—o denote the activities of M — OH and M — O~
respectively, the standard equilibrium constant K° > 0 for the dissociation reaction defined in (1)

can be written as
KO — aGgAM—-O

aM-OH
Through a formula similar to (10) we compute the activities ayr—og and ap—o in terms of the
surface concentrations ny;—om, nyr—o and activity coefficients vy—om, Yar—o. More precisely, for
any point on 0€); we have

zp—oev zp—oHeY
ap-0 = YM-onym-o€ BT and aym_oH = YM-OHNM-OHE BT
with the valences zp;—og = 0 and zp;_o0 = —1. Since M — OH and M — O~ are surface sites

there are no hard sphere terms in the definitions of ya/_og, var—o. Furthermore, since M — OH is
neutral, there is no screening effect for this type of site and we therefore assume vyy;_og = 1, which
implies that ap;—_og = ny—op. The surface charge density is simply

—Y =ezp_onpM—o = —eny—_o (11)

since the valence is zp;_o = —1. The maximal possible charge is denoted by X2 . > 0. Since the

max
number of ionizable sites is constant, equal to ny;_og +nar— o, the maximal possible charge is given
by
e(ny—on +ny-0) = S
We deduce

KOo%s
= L (12)
K% +ym-oexp{ 1 7 tan

To compute the activity coefficient vy,—o we rely on a formula similar to (5). However there is a
subtle point here: the screening parameter is due to H+ ions which are not lying on the hard surface
08 but are on the effective surface 9Qp. In other words, formula (12) holds for a point z; € 9
but vas_o is evaluated at the corresponding point xp € 9Qp. Similarly, the potential ¥(xzs) on 9
is different from the so-called diffuse potential or Stern potential ¥(zp) on 92p. Formula (5) is
adapted to this case by taking v = 1, since the surface concentration of H* is null on 99, and
og = 0, since punctual surface sites are assumed, leading to the following formula for the activity
coefficient of the charged sites, M — O™,

Inyay—o0 = —Lpzy_ol'(zp) (13)

where T is the surface screening parameter defined by (7).
Since there are no ions between the hard surface 92, and the effective surface 0Qp, they form
a capacitor with capacitance (for not too curved surfaces) defined as

C?® :2(‘:/0’[{7

and the charge surface densities on 9 and 9Qp are equal, ¥*(zs) = X¥(xp), while the potential
U(xp) on 0Np is then related to ¥(z,) on 9 by

U(zs) =V(xp) —X°/C°.



From these last expressions we can substitute for yp—o and ¥(zy) in (12) to get

¥ (zp)

Defining

KO%ax

KO+ a exp{~Luzdy_oT(en)} exp { 5

e eoHyg

Cr= kpT’ Ce = QkpTE’

(W(wp) - Z22) |

C3 = LBv

(and recalling that K° and ay are constant, independent of xp € OQp) we rewrite

¥ en) = gy amexp{—C1¥(zp) + CoX%(xp) — CsT(zp)}’

KOES

max

which implicitly gives X% as a non-linear function of ¥ on 0Q2p. By some algebra and a logarithmic
transformation, it is equivalent to

C1V(zp) = Co¥°(zp) — Csl(zp) — In <

S
max

Ys(xp)

KO
Qm.
ag

(14) |sigma3

Eventually, our electrokinetic model is a combination of the Poisson-Boltzmann equation and MSA

model in the bulk, and of a new non-linear boundary condition, issued from (14), which reads

—EAV =enyg(P) in
EVU.v=-%°(T) on
x— U(x)

QDa
8S)D7

is (0, L)%-periodic,

09

where n g () is a solution of the algebraic equation (10) and ¥°(¥) is a solution of the other algebraic

equation (14).

The various physical parameters appearing in the above equations are defined in Table 1.

QUANTITY CHARACTERISTIC VALUE
e electron charge 1.602e—19 C (Coulomb)
kg Boltzmann constant 1.38e—23 J/K
ap H activity coefficient 1.e — 7 mole/liter
T temperature 298°K (Kelvin)
£ dielectric constant 6.9479e—10C/(mV)
A\p = \/i’;gg Debye’s length 1.3574 e—6 m
8 oz maximal surface charge density 0.768C /m?
oH ionic hard sphere diameter 4e—10 m

C = kBT/e

characteristic electrokinetic potential

0.02567 V (Volt)

LB = 62/(47T5/€BT)

Bjerrum length

7.14772e—10 m

KO

dissociation reaction equilibrium constant

1.5849 e —10 mole/litre

I'.=+/rLpay characteristic MSA screening parameter 0.3677 €6 1/m
(o= %CLHU% characteristic solute packing fraction 2.0l e —9
bi=Lg/oy Bjerrum parameter 1.786

Table 1: Data of the physical pammeter
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2.2 Ideal model for a single H" ion

The MSA model introduces additional non-linearities, through the activity coefficient vy, in equation
(15). In the dilute regime of small concentrations, the MSA model can be replaced by the simpler
ideal model, which is easier to analyze. The present subsection is devoted to this simpler ideal case,
which is defined by an activity coefficient vy = 1. Therefore, equation (10) simplifies

—zpeV

n'd = ape FBT . (16)

In the ideal case, the screening parameter I' and the Bjerrum length are neglected, so the constant
C3 in (14) vanishes. The nonlinear equation (14) becomes

C1¥(xp) = CoXfy(xp) —In %—1 —an—O (17)
1¥(zp) = C22i4(p = (2p) an
System (15) becomes
—EAV = enid (D) in Qp,
EVU .v=-%7,(T) on 0Qp, (18)

x— U(x) is (0, L)%-periodic,
which shall be analyzed in Subsection 3.1.

Remark 1. The ideal model has been defined through a unit activity coefficient yg = 1. Actually,
it is known to be the limit of the MSA model in the dilute regime. This limit was more precisely
stated in lemma 1 of [2] introducing some characteristic parameters. Define the characteristic solute
packing fraction parameter . = mayos /6 and the Bjerrum parameter bi = 5—5 Then, the ideal

case is the limit of the MSA model when & — 0, while bi is fixed of order one.

2.3 Several ions case

We now consider a solution of N different ions in water, labelled by an index i € {1, ..., N}. These
ions are characterized by their valence z;, diameter o;, concentration n; and chemical potential
;. For the mathematical analysis of Subsection 4.2, we shall assume that all ions have the same
diameter and that there are both positive and negative valences (which is always the case in practice
when considering a salt like Ca(OH)s3). Of course, one of these ions is HT which is necessarily
involved in the dissociation reaction of ionizable sites on the pore surface. The Poisson equation (2)
is changed to

N
—EAT = eZzini in Qp. (19)

i=1

The chemical potential y; is given by
pi = pf + kpTlnn; + kpTIny;, (20)
where ~; is the activity coefficient of ion ¢ which, according to the MSA model, is defined by

LBFZiQ

In~% 21
TiTo, T (21)

Iny; =—

equilideal
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where T" is the MSA screening parameter defined by
N n;z?
2 _ %
I'“=nxLp E: a i (22)

and y75 is the hard sphere term given by

8 — 9¢ + 3¢2

Iy =p(¢) =¢ T ep

N
. with ¢= %an?, (23)
=1

where £ is the solute packing fraction.
The migration-diffusion flux j; of ion ¢ is given by the following linear relationship

N
ji=—=> Lij(Vuj+2eV¥), i=1,.. N, (24)

=1

where L;; is the Onsager coefficient (the Onsager tensor is assumed to be positive definite, thus
invertible). At equilibrium, all migration-diffusion fluxes must vanish, j; = 0, a condition which is
satisfied if p; + z;e¥ is constant for all j = 1,..., N, or equivalently

zje\I'

n;vje*sT =aj;, j=1,...,N, (25)

where a; is a given positive constant defining the activity of ion j. The collection of relations (25),
together with (21), (22) and (23), gives all n;, in the right hand side of (19), as a non-linear function
of U.

The Neumann boundary condition (3), as well as the modelling of the surface charge distribution
3% on the boundary 0€1p, are the same as in the case of a single ion since it involves only the surface
sites M — OH and M — O~, together with the H" ion. In particular, formulas (12) and (13) still
hold true. However, the surface screening parameter I'(zp) should be evaluated with formula (22)
instead of the previous one (6). The rest of the derivation is the same and the previous nonlinear
Neumann boundary condition is still valid.

Eventually, the electrokinetic model is a combination of the Poisson-Boltzmann equation, of the
MSA model in the bulk, and of the non-linear boundary condition, issued from (14), which reads

N
—EAV = eszi(\I/) in QD7
i=1 26
EVU .y =-%°(D) on 0Qp, (26)
x = U(x) is (0, L)?-periodic,

where n;(¥) is a solution of the system of algebraic equations (25), (21), (22) and (23), while 3°(¥)
is a solution of the other algebraic equation (14).

Remark 2. The periodic boundary condition in (26) implies a global electroneutrality condition,

namely
N
e/ Z zing (V) dx = / 23(P) du.
9

D =1

3.Hardsphere

3.electroflux
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In other words, the surface charge on 0Qp is exactly compensated by the bulk charge in Qp, due
to the ion densities. The same would be true with homogeneous Neumann boundary condition on
the exterior boundary of the cube (0, L)%, Since, by definition, 0 < $° < X3 it implies that all
valences z; cannot be negative and there must be at least one which is positive (recall that the valences
2z;i are non-zero relative integers). Indeed, as already said, the ion HT with zg+ = 1 is always in
the list of ions since it appears in the dissociation reaction of ionizable sites on the pore surface.
In most practical cases, the solution contains both anions and cations, that is positive and negative
values of the valences z;.

3 Mathematical analysis in the single ion case

This section is concerned with the existence of solutions for the nonlinear boundary value problem
(15). The fact that periodic boundary conditions are enforced on the cubic domain (0, L)% is irrele-
vant and other outer boundary conditions (like Dirichlet or Neumann) do not change our results. To
simplify the notations, and thus the analysis, we first re-write the equations in their dimensionless
form.

3.1 Ideal model

The ideal case of Subsection 2.2 is much simpler, so we start with its analysis. In particular, equation
(18) is the Euler-Lagrange condition for the minimization of a convex energy (see Remark 4), which
makes its analysis especially easy.

To write dimensionless equations, we introduce dimensionless quantities 7 and 7g, defined by

T=canl?/(C€), TB = 354.L/(CE), (27)

where ¢ = kpT'/e is the characteristic electrokinetic potential. A scaled space variable is also
introduced as x = LZ, with domain Qp = LQp. The dimensionless unknowns are denoted with a
tilde : , . R R

nf (@) = apig(z), W(r) =CU(F) and X3(z) = 5, 554(F).
Then, equation (16) simplifies

7 =e ¥
and, similarly, the nonlinear equation (17) becomes
- - 1 K°
V=003 2 —In| =——-1|—-In—. (28)
X3y H

For simplicity, in the sequel we skip the tilde notation. System (18) now reads

—AV =7V in Qp,
VU -v=—7m555(0) on 8Qp, (29)
x— U(x) is (0, 1)%-periodic,

where 37,() is uniquely defined by (28) as shown in the next lemma.

Lemma 3. For any value of U, there exists a unique solution X2,(¥) of equation (28) and the

function ¥ — X2,(¥) is strictly monotone increasing from R into (0,1).

Sigma3ideal2

’Eqsinglequilidl
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Proof. Formula (28) yields
dv 1

T:C2Ef‘nax+ﬁ>0 fOr 0<Zfd<1
A5y (1 —X5)
Hence ¢, is a strictly monotone increasing function of W. O

We introduce the Sobolev space H%& (Qp), defined by
H;E(QD) ={pec H'(2p) | ¢ is (0,1)%periodic }.
A variational formulation of problem (29) is: find ¥ € H;#(QD) N L (Qp) such that

VO Vodo -7 [ e todorms [ SuWeds=0, Vo€ Hy@).  (30)

Qp Qp oQp

Note that the solution ¥ is required to belong to L>=(2p) so that the exponential non-linearity is
well defined. On the contrary, the boundary nonlinearity X2,(¥) does not require ¥ € L*(2p)
since it is a bounded function by Lemma 3.

Remark 4. Solving the boundary value problem (29) or the variational formulation (30) is formally
equivalent to minimizing the following energy

1
E() = 5/Q |w|2dac+r/Q e Vdr + 15 /BQ =2, () ds,

where Z2,(1) is a primitive of ¥5,(¢). Since X3,(1) is strictly monotone increasing, its primitive
=2,(¢¥) is convex. Therefore the energy E(y) is strictly conver. Existence and uniqueness of a
minimizer would be very easy if there were not the problem that the exponential term e™¥ is not
well defined in the natural energy space H;&(QD) as soon as the space dimension d is larger than
1. Our remedy is to truncate the exponential non-linearity, prove uniform L™ (Qp) bounds and take
the limit when the truncation parameter tends to infinity.

Theorem 5. The variational formulation (30) has a unique solution in Hj(2p) N L>(2p).
To prove Theorem 5 requires some auxiliary results.
Definition 6. For M € R, a cut-off function of nid(¢) = e=? is defined by
mte) = { G 0= (31)
In particular, this cut-off function is bounded, 0 < nyr(¢) < eM for any ¢ € R.
Introduce the cut-off version of the variational formulation (30): find Wy € Hj (€2p) such that

vt (W) dar + 73 / S8 (Uar)dds =0, Yoe HY(Qp).  (32)

VU, - Véda —T/
oQp

Qp Qp

Next we introduce an auxiliary Neumann problem

—AU = o in Qp,
VU~V=—D on 0Qp, (33)
x—U(x) is (0, 1)?-periodic,

10
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which has a unique solution U € H# (2p)/R, i.e. up to an additive constant (the choice of which
does not influence our results, as we shall see). Furthermore, since the boundary of p is smooth,
so is the solution and U € C(Q2p).

Lemma 7. Define

U(z) = 75 (U(a:) — max U) +In ('QD“) : (34)

9 |0Qp|7TB
and

2|QD|T

W)= 2 (U(:zc) - min U) + max (( fd)_l(%),ln |89D|TB> . (35)

Then, ¥ is a subsolution and V¥ is a supersolution for problem (32) when M > —min W.
Qp

Proof. Take M > —ming_ W, so that nyy (¥) = e~¥. Using the variational formulation of (33) for
U, a direct calculation gives for any ¢ > 0, ¢ € Hy(Qp)

VU .- Vedxr — ’7'/ na (U)o de + 1p / S(®)eds =
Qp Qp p
. /BQD (25,(2) — 1) ¢ ds + W?ZJZJITB /QD(l —exp(~Tp(U ~maxU))odr <0. (36)

Hence ¥ is a subsolution for problem (32). A similar calculation gives for any ¢ >0, ¢ € H#(Q D)

v@-wdx—T/

nwj(@)d)d.’t-i-TB/ Efd(@)¢d8 >
Qp

QD BQD

s ([ 1 |0Qp|Tp B .
TB /()QD ( ’Ld(\IJ) - 5)¢d8 + m /QD(l — exp{—7(U — %LDU)})¢dx >0, (37)

where we additionally used the strict monotonicity of £3, and the fact that W(z) > (£2,)7(3).
Hence ¥ is a supersolution for problem (32). O

Having found a subsolution and a supersolution, we are in a position to apply Perron’s method
to establish the existence of a solution for problem (32). This is a very classical process and the
interested reader is referred to the textbook [8] (section 9.3) and to the monograph [15] for more
details and references.

Proposition 8. There exists a weak solution of problem (32), ¥y € H;E(QD) NL>(Qp), such that
U<y <T age in Qp.

We skip the proof of Proposition 8 which can be found, for example, in [8], pages 544-546.

Proof of Theorem 5. Choosing M > — ming ¥ we have ¥y, > ¥ and nar(War) = e~ ¥, Thus ¥y,
is also a solution of problem (30). The uniqueness of the solution ¥ = ¥, is easily deduced from
the monotonicity of the nonlinearities. O
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3.2 MSA model
3.2.1 Adimensionalization and scaling of the MSA parameters

Here again we write the equations with dimensionless unknowns. To do so we introduce charac-
teristic values of the physical parameters which are denoted with a subscript c. As before apy is
the characteristic ion concentration. We define a characteristic MSA screening parameter I'. and a
characteristic solute packing fraction parameter £, by

I.=+/rLgay and ¢.=magoy/6. (38)

Introducing the Bjerrum parameter
Lg
bi=—, 39
i~ 2 (39)

we define two coefficients

I'.Lp -3/2 Feon :1/2
o= = /6bi and f= = V/6bi'/2, (40)
According to [2] (see Remark 1), the ideal case is the limit of the MSA model when & — 0, while
bi is fixed of order one. Therefore, in the sequel we shall assume some precise bounds on bi in order
to analyze the non-linearities of the MSA model. Since bi is assumed to be of order one, so are «, 3
and thus

FCUH = O(\/g) and FCLB = O(\/éi) (41)
Based on this scaling we define a small parameter J by

§=/E.

Recalling the scaled space variable & = z/L, we introduce dimensionless unknowns, denoted with a
tilde,

np(e) = apiip(#), U(z)=(¥(F), D) =TL@), &) =0%(F), °(2) =55, ),

where we recall that ( = kgT'/e. For readability we skip the tildes in the sequel.
Since zy = 1, the non-linear algebraic equations (7), (10) and (14) become in adimensionalized

form 5
r= AL R— (42)
14+ +/14+486/ng

aol’ 9
o O’HE;SMH s 1 KO
U = WZ O[(SF ln( s ].) In an s (44)

where the function p(§) is defined by (8) for the hard sphere term. Similarly the adimensional form
of system (15) is
—AV = ng(P) in  Qp,
VU .v=—-715%(¥) on 0Qp, (45)
x— U(x) is (0, 1)%-periodic,

where the positive parameters 7 and 7p are defined by (27). In the next subsection we check
(under some technical conditions) that (42) and (43) unambiguously define ngy(¥) and that X5(¥)
is uniquely defined by (44).
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3.2.2 Monotony properties of the functions ny(¥) and X5(¥)
We first study the variations of I' as a function of ny.

Lemma 9. The MSA screening parameter I, defined by (42), is a smooth strictly monotone in-
creasing function of ng € (0, +00).

Proof. Obviously, I'(ng) is an infinitely smooth function for ng > 0. A simple computation yields

ar- 1 50
dyng 1+2B6T ’
thus I' is a strictly monotone increasing function of ng. O

Next we study the variations of ny as a function of . From formulae (43) and (42), it is clear
that ng — ¥(ng) is a well defined function on (0,1/6%). However, it is its inverse function which
is required as the right hand side in the Poisson equation (45).

Lemma 10. Assume the Bjerrum parameter bi = L /oy satisfies the upper bound bi < 6 + 44/2.
Then, W +— ng (W) is a strictly monotone decreasing function from R into (0,1/6%) (and thus one-
to-one).

Proof. Replacing I' in (43) by its formula (42) yields an explicit formula for ¥ as a function of
ng € (0,1/82) (the solute packing fraction & = §%ny must stay in the range (0,1)). It is easy to
see that the limits of ¥(ny) when ny goes to 0, resp. to 1/62, is +oo, resp. —o0o. So the range of
U(ng) is R. Differentiating (43) leads to

av(ng) 1 o dl'(ne) o 4 <o
dnH o ng + (1 +B5F)2 dnH 0 p (6 nH)7 (46)
dl'(ng) 1

dng  2yna(1+286T) (47)

We insert expression (47) for the derivative of T" into (46). The derivative of the hard sphere term
p(§), given by formula (8), is positive

4-¢
') =2—>7>0 for0<&<1.
p'(€) L <<
Hence to prove Y (nn) < 0, it is sufficient to show that
ni
0> 1 . ad 1 _ —4(BT)% + (a/ 8 — 6)36T — 2 (48)
T ng o 2yng (1+2B6T)(1+B6T)2  2ng(1+236T)(1+ BT

where we used
vng =T'(1 4 V6bidl). (49)

Recall that a/f = bi. The numerator in the last expression of the right hand side of (48) is
a polynomial of degree 2 in the variable 6T and its discriminant is equal to (bi — 6)? — 32. For
6 —4v/2 < bi < 6+4+/2, this discriminant is negative, therefore the polynomial has no real roots and
is always negative. Furthermore, for bi < 6 — 4y/2 the roots of this polynomial are strictly negative
and for positive I' the expression remains strictly negative. Therefore, the condition bi < 6 4+ 4v/2
is sufficient for the decreasing character of W(ng), which is thus invertible on its range. O
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r(bi)

r(bi)
r_max

bi

Figure 1: Variations of r(bi) and r,,q.(bi) as functions of the Bjerrum parameter bi.

Remark 11. From the data of Table 1 we find that bi ~ 1.786 < 6 + 4v/2, so the assumption
of Lemma 10 is satisfied. Furthermore, under this assumption the bulk source nonlinearity in the
Poisson-Boltzmann equation (45) derives from a convex energy (cf. Remark 4). The invertibility of

the function U(ng) can be guaranteed under less stringent conditions, but not its monotone character
(see [2] for more details).

Remark 12. By combining Lemmata 9 and 10, it is immediate that ¥ — T(V) is a decreasing
function from R into its range (0,Tpaz) with the mazimal value, corresponding to ng = 1/62,

_ Tmaac(bi) . N 26 o p
Fmaa: — T with rma:v(bl) - 1—}-\/714-745 and 5 = \/@ (50)

Eventually, we now prove that the surface charge density ¢ is well defined by (44) and is an
increasing function of the potential W.

Proposition 13. Assume that bi < 3. Define a polynomial of degree 3
Py(w) = biw® + 2bi(bi — 2)w? + (2bi — 6)w — 2. (51)
Then Ps admits a unique positive root r(bi). Define

U 2Ind 4+ Cy  if r(bi) < rimag(bi),
T — if r(bi) > rimag (bi),

with a constant Cy, independent of § > 0, given by

V/6bi bir(bi) (r(bi)2(1 + r(bi))z) _

Co =2 T+ (b)) | T+ r(bD) 6bi

The algebraic equations (42), (43) and (44) uniquely define a function U +— X°(W) which is strictly
monotone increasing from (¥4, +00) into its range (X°(¥s),1) C (0,1).

14
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Remark 14. The assumption bi < 3 implies the previous one bi < 6+4v/2, which is one reason why
we did not try to improve Lemma 10. We do not claim that the assumption bi < 3 is optimal and it
can certainly be improved. Since our data from Table 1 imply that bi ~ 1.786 < 3, the assumption
of Proposition 13 is satisfied. The same data yield that r(bi) & 1.656 > rpq.(bi) &~ 1.377, so that
U, = —oo and 25(V) is well defined and increasing on the entire real line R. However, as can be
seen on Figure 1, r(bi) can be smaller than ryq.(bi) for values of bi approzimately in the interval
(2,3). The interpretation of r(bi) is that the range of values of the screening parameter T' is possibly
restricted from (0,Tq4z) to (0,7(bi)/(8d)) in order to ensure the monotonicity of X°(¥) on the
corresponding range of V.

One interest of (52) is to show that the range of admissible values of the potential ¥ increases
up to the entire R as & goes to 0.

As a matter of fact, the assumption bi < 3 implies that the boundary source nonlinearity in the
Poisson-Boltzmann equation (45) derives again from a convex energy (cf. Remark 4).

Proof. From Remark 12 we already know that ¥ — I'(¥) is a decreasing function from R into its

range (0, ') and thus its inverse U(T') is well defined from (0, T'),4,) into R. Therefore, replacing

U by U(T') in (44) yields a nonlinear equation in I and ¥*. Since I" and X* are bounded, while ¥(T")

and In(g; — 1) both vary in the entire real line, equation (44) has always a solution I'(X%).
Differentiating (44) with respect to X° yields

A AU ouss 1
<d1_‘+015> FSTE 25< + 25(1—25) > 0. (53)

ayv
Therefore, I" is a monotone decreasing function of ¥ if and only if — + ad < 0. As soon as this
monotonicity property is satisfied, there exists a unique solution I'(X*) of (44) and the function X° —
I'(X#) is one-to-one decreasing from (0,1) into (0,T,44). Combined with Remark 12 (decreasing
character of I'(¥)) it yields the existence and uniqueness of ¥*(¥) which is an increasing function
from R into (0, 1).
We study the sign of 4L + 6. Combining (43) and (49) gives ¥ as a function of I

U() = —2(InT +In(1 + BéT)) + ad p(6%ng (T)). (54)

_r
1+ BT
Differentiating (54) with respect to I', using the fact that p’(¢) > 0 and the increasing character of
np(I") (see Lemma 9) gives

4w 1+ 286T as Py(B4T)

— < =2 0= ——— 2.

ar TS T Tt ger) Tt pore T T T+ por )2
Since P3(0) = —2, P5(0) = 2bi — 6 < 0 (by assumption) and its leading coefficient is positive, it
has one and only one strictly positive root, denoted by r(bi) (which depends only on bi). Thus the
quantity 2 + ad is negative if I' < T'y = r(bi)/(86). In view of the monotone character of (T
(cf. Remark 12), the range 0 < T' < Ty is equivalent to the range ¥ € (¥, +00) with U, = U(T,).
Note that, if [';,,4, < I's, then the condition I' < T’y is always satisfied and Wy = —oo. Otherwise,
a computation, using (54), shows that ¥y = U(T'y) = 2Ind + Cy, with the prescribed value of the
constant Cp, independent of 4. O

Remark 15. The regime U, = 2Ind + Cy in Proposition 13 corresponds to Wy = U(T'y) with
s =r(bi)/(B9). A simple computation in (44) shows that, when § goes to 0,

KO
YE(W,) = C16% +0(0%)  with Oy = ——exp Co + ar(bi)/B.
H
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3.2.3 Existence of solutions

The proof of existence of solutions for the MSA model (45) is surprisingly simpler than for the ideal
model in Subsection 3.1. The reason is that the non-linearity ny (¥) is now bounded (cf. Lemma 10).
Nevertheless, there is still a slight difficulty because, according to Proposition 13, the monotonicity
property of the surface density charge ¥° is valid only for the potential ¥ higher than a threshold
value Wy, This requires to define a truncation of ¥*(¥) as follows

%(z) for¥,<z
s,cut _ s = <y
2Te) = { (W) forz < U, (55)
We start by studying the corresponding truncated MSA equilibrium problem: find Wy € H;#(Q D)
such that

v\Ilcut : V(b dx + /

TBZS’Cut(qjcut)¢ ds — / T’I’LH(\IIcut)(b der=0, V¢e H;#(QD% (56)
oQp

Qp Qp

where the non-linearities ngy (¥) and 3°(¥) are defined by (42), (43) and (44).

Proposition 16. Assume that bi < 3. There exists a unique weak solution V., € H;E(QD) of
problem (56).

Proof. First of all, there is no need to assume that the solution belongs to L*°(Qp) since the
non-linearities ny (¥) and X5 (V) are bounded. The existence and uniqueness of the solution is
classical (see e.g. section 8.2 in [8]) since these non-linearities are monotone, under the assumption
bi < 3, according to Lemma 10 and Proposition 13. In particular, as explained in Remark 4, this
solution can be obtained by minimizing a strictly convex energy on the space H. #(Q D)- O

We now construct a subsolution and a supersolution for problem (56).

Lemma 17. Assume that § < [plr_ Recalling the definition (33) of U, define

[0Qp|TB
Q —
Y(z) =71 (U(m) - maxU) + (ng)~! (|8D|TB> , x€Qp, (57)
p p[r

and, for some q € (0,1) such that g > X°(V;), define

q‘aQD‘TB

U(x) = 7Bq (U(x) — min U) + max {(Es’cut)_l(q), n;{l( Qplr

Qp

)}, zeQp.  (58)

Then, ¥ is a subsolution and ¥ is a supersolution for problem (56).

Remark 18. The assumption on the smallness of 6 = /€. is here to ensure that %

to the range of ng (V) (c¢f. Lemma 10). Recall that the limit of § going to zero corresponds to the
ideal case (cf. Remark 1). Therefore, it is quite natural to assume such a smallness condition.
Note that, for q close to 1, q‘algleg‘l? also belongs to the range of ny (V) and, by virtue of Remark

15, the condition q > ¥°(Vy) is always satisfied for small d.

belongs
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Proof. Using definition (33) of U, a direct calculation gives for any ¢ > 0, ¢ € H;E (Qp)

V¥ -V da +/ Y5 (W) ds — / ™ (¥)¢ dx
Qp 0D Qp
= / T (Z%M(W) — 1) ¢ ds +/ (|5'£§2D||TB —1np(¥))¢ dz <0, (59)
aQp Qp D

where we used that Y% < 1 and the non-positivity of the last integrand follows from the bound

wa) < () (155272

and the decreasing character of ¥ — ngy(¥). Hence the function ¥ is a subsolution for problem
(56).
Arguing as in (37), the monotonicity of ¥° and ny yields for any ¢ >0, ¢ € H#(QD)

VT~V¢daz+/

TBES’C“t(@)d)dsf/ g (V)¢ d
ap

QD QD

092p|

= /BQD TB(EMM(@) - Q)¢d8+ /QD ( 00| TBq — TnH(@)M)dx > 0. (60)

Indeed, since ¥(z) > (25°%)~1(g), by monotonicity of ¥ we obtain

zs,cut(@) 2 Zs,cut ((Zs,cut)—l(q)) 2 q,

and, since ¥ (z) > ngl(%) in Qp, by monotonicity of ng(¥) we deduce

02| Ty < 1990] ~1,919Qp|78
T80 — Tng (V) > T8Bq — Tng(n =0.
|QD‘ B4 H( )— |QD‘ B4 H( H ( |QD‘T ))
It yields that W is a supersolution for problem (56). O

We are now in a position to study the variational formulation of the original MSA problem (15):
find ¥ € Hj(Qp) such that

V\II~V¢da:+/

X% (V)¢ ds — / (V)¢ de =0, V¢ e Hy(Qp), (61) [VarforiddeltaMSA2
oQp

Qp Qp

TrueexistMSA| Theorem 19. For sufficiently small § > 0, the weak solution Wyt 0]i(56) is also the unique solution
U =W,y of (61) in H#(QD), satisfying the same bounds ¥ < ¥ < U,

Proof. A solution for the truncated problem (56) would also solve (61) if ¥y, < min, ¥ because, in
such a case, the truncation is inoperative. Using definition (52) of Wy, the later holds true if

):

2 oN
—Ind+ Cyp < 7(minU — maxU) + (nH)_l(ﬂ
ZH Qb Qp [T

which is certainly true for sufficiently small ¢ (this condition can be made more explicit). O
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4 Mathematical analysis with several ions

This section investigates the existence of solutions for the nonlinear boundary value problem (26)
in the case of several ions. As in the case of a single ion, we start by studying the ideal case which
has a nicer monotone structure. Afterwards, we consider the MSA case which is somehow simpler
because the non-linearities are bounded. Nevertheless, we loose uniqueness of the solutions since the
MSA model lacks monotonicity.

4.1 Ideal model with several ions

As in Subsection 2.3 we consider a solution of N different ions in water, labelled by an index
i € {1,..., N}, with valence z;, constant activity a; and concentration n;. We restrict ourselves to the
ideal case, meaning that the ion activity coefficients are y; = 1. We perform an adimensionalization,
similar to that of Subsection 3.1,

ni () = apii (), @i =apa;, V() =(U(F) and  Bj(r) = 55,0,55(@), (62)

(2

where aj is a characteristic value of the activity of H*. After dropping tildes, we introduce

N
NW) =" zni(¥)  with ny(¥) = ae "
i=1
The surface charge X7, is still defined by (28) and, in particular, ¥ — X7,(¥) is monotone increasing
from R into (0, 1), according to Lemma 3. The system (26) becomes in the adimensional ideal case

N
—AV¥ = Tszl(\P) in Qp,
=1 (63)
VU -v=—71%,(¥) on 9IQp,

x— ¥U(x) is (0, 1)%-periodic,

where 7 and 7p are defined by (27). The existence and uniqueness of a solution to (63) is quite
similar to the case of a single ion in Subsection 3.1. The variational formulation of problem (63) is:
find ¥ € H#(QD) N L*>(2p), such that

/ V¥ - Vo dm+/ BY5,(V)¢ dsf/ TN (V)¢ de =0, V¢ € Hy(Qp). (64)
Qp o0 p Qp

Note that the solution is required to be bounded so that the nonlinear term involving N (¥) is
integrable.

Lemma 20. The function N*¢(¥) is monotone decreasing on R.

Remark 21. According to Remark 2, there is at least one z; > 0, so the range of N'4(¥) contains
R*. In most practical cases, as we assumed, the solution contains both anions and cations, that is
positive and negative values of the valences z;, and thus the range of N'4(¥) is R. However, if all
valences were positive, then the range of N*(¥) would be just RY.

Proof. A simple computation shows that

N
(N (W) =Y —zae " <0,
=1

18
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Similarly, a primitive of —N%(¥) is
N
i=1

which is a convex function of W. O

By virtue of Lemma 20, Remark 4 still applies, meaning that (64) is the Euler-Lagrange equation
for the minimization of a convex energy.

Theorem 22. There exists a unique solution ¥ € Hy(p) N L>(Qp) of problem (64).
The proof of Theorem 22 requires to first introduce a cut-off function for N*¢. For M > 0 define
. N(z) for — M <z< M,
Nif(z) = ¢ Ni(=M) for z < —M, (65)
N(M)  for M < z.

The truncated version of (64) reads: find Wy, € H(Qp) such that

V\I!M~V¢dx+/

. T555,(Uar)e ds — / TN (Wa)p de =0, Vo e Hy(Qp).  (66)

Qp Qp

First, we construct a subsolution and a supersolution for problem (66). Recall that U(x) is the
solution of the auxiliary Neumann problem (33).

Lemma 23. Define, for x € Qp,

_ _ max iav—1 (10Qp|78B
() = ((U(0) - max) + () (158272 ), (67
and
T(r) = L ) — min max syt 1 idy—1 M
W) = 3 (U60) = min0 ) (5207 ) (v (G272 ) (63)
Assume
M > (Niy-1 (1200l ) (69)

2|QD|T
Then, ¥ is a subsolution and ¥ is a supersolution for problem (66).

Proof. The calculation is analogous to (36): for any ¢ > 0, ¢ € H%E (Q2p)

VU . .Vodr —7 N}L’}(Ewdx-%TB/ (W) ds =

Qp Qp Qp
)9 -
- / (Z2(2) — 1) pds + / (122005 Nid () di < 0, (70)
oQp ap 19D
because, since Ni? is decreasing and M > (N*4)~}( \8‘3?':3 ),

|6QD\7—B
[Qplr

‘aQDhB :|8QDVB
|Qp|r Qpl|T

Ni7(¥) = Nj7(max @) = Nz ((N*) 7 )) = NN~
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We conclude that ¥ is a subsolution for problem (66).
Again we use definition of U and the strict monotonicity of ¥7; and it is enough to go through
the calculation at the last line of (37). It yields, for any ¢ >0, ¢ € H},(Qp)

VU -Vé dx — / TN}&(@)(? dz -|—/ 835,(V)¢ ds = (71)
Qp Qp 121975
s (0 1 |aQD| id (s
/aQD (S3(T) — )0 ds + /QD (527 — TN ()0 d > 0 (72)

because, for the first term in the right hand side of (72), ¥(z) > (25,)7'(3) and X3, is increasing,

while for the second term, ¥(z) > (Nid)*l(%) and Ni¢(¥) is decreasing so that

|8QD|TB
2|QD|’T

|6QD|TB _ |3QD|TB
2‘QD|T 2|QD| '

TNE(T) < TNV )) = TNH((V)

Hence V is a supersolution for problem (66). O

Having found a subsolution and a supersolution, and since N}g and X7, are bounded and mono-
tone, the existence and uniqueness of a solution Wy € H(Qp) N L®(Qp) of (66) is classical, as
already explained for Proposition 8.

Proof of Theorem 22. Since the solution ¥js of (66) satisfies
T<Uy <V,

choosing M large enough implies that N3¢ (¥ps) = N*¥(¥yr) and, as a consequence, ¥ = W)y is a
solution for problem (64). By the strict monotonicity of the nonlinearities N*¢ and >?,, the solution
is unique. Therefore, problem (64) has a unique solution in H#(QD) N L>*(2p), O

4.2 MSA equilibrium solution in the multiple ion case

We first perform an adimensionalization of the equations of Subsection 2.3, mixing arguments from
Subsections 3.2.1 and 4.1. Without entering too much into details, we introduce the adimensional
unknowns (62), as well as the characteristic values (38), (39) and (40). Defining a non-linear function
N for the electrical charge density

N() = 3 zmi (),

i=1
it yields the following system
—AV = 7N () in Qp,
VU .v=—7m3(¥) on 0Qp, (73)
x— U(x) is (0, 1)?-periodic,

where 7 and 75 are defined by (27), the surface charge, 0 < X¢(¥) < 1 is defined by the adimen-
sionalized version of (14), i.e.,

oY 1 KO
v = THomarys 050 —In(— — 1) —In 74
26C a0l —In(z5 = 1) = o (74)
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while the ion density is given by the adimensionalized version of (25), together with (21) and (23),
ie.,

asTz2 N
ni (W) = age—= Ve ttmt o P(PNO(D)  ith Ny (W) = > ni (). (75)
j=1

Recall that o and 8 are defined in (40) and that § = v/&. is a small parameter. It remains to define
the MSA screening parameter I". To simplify the analysis, we make the assumption that all ions
have the same diameter, namely o; = o for any 4. Such an hypothesis was already made in [2]
for a seemingly different reason (proving the well-posedness of the linearization of (73)) and thus is
both not unusual and fundamentally important. Since the diameters of all ions are assumed to be
equal, o; = oy for any i, equation (22) defining the MSA screening parameter has a unique positive
root, given by

24/ N2 (V)

14+ 4/1+465\/Nao(¥)

Eventually, the MSA model is the combination of system (73) with the algebraic equations (74),
(75) and (76). We first prove that these nonlinear algebraic equations have a solution, namely that,

for a given value ¥ € R, they allow us to compute the ion densities n;(¥) and the surface charge
().

N
r= with  Na(W) =Y z7ni(¥) (76)

Lemma 24. The algebraic equations (75) and (76) define functions ¥ +— n;(¥), for 1 < i < N.
Furthermore, the function No(¥), defined in (75), takes values in (0,672).

Remark 25. Lemma 24 does not say anything about uniqueness of the solution to the nonlinear
algebraic equations (75) and (76). Its proof explains which solution is chosen.

Proof. Summing (75) over 4 leads to

N aoT2
No(P) = =P (87 No(¥)) Z aie_ziwe%. (77)

i=1

Multiplying (75) by 22 and summing over i leads to

which can be rewritten as
asTz2

E 22a;e %Y eTHAST

Na(W) = No(W) = -
adl'z}
=1

Equations (77) and (78) form a system of two equations for the two unknowns No(¥) and No (),

depending on the parameter ¥. From (76) I' is clearly a function of N3(¥) only, namely I' =

T'(N2(P)) in (77) and (78). Fix any values of ¥ € R and No(¥) € R and consider (77) as a non-

linear fixed point equation for the unknown No(¥). Since, in view of the definition (23) of p(&) for
8—2¢

¢ € (0,1), p(¢) = g7 > 0, the map ¢ — eP(9%0) g strictly decreasing from (0,572) into its

(78)
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range, we deduce the uniqueness of a solution Ny(¥), as well as the bound 0 < No(¥) < 62, Plug
this value of No(¥) (which depends on ¥ and N2(¥)) in (78) which is now a nonlinear equation
for No(¥) in terms of U. The right hand side of (78) is a very complicated continuous function
of ¥ and Ny(¥), but it is bounded by §~?max; 22. On the contrary, the left hand side of (78) is
linear increasing in No(W¥). Therefore, starting from 0, if the value of No(¥) is increased, there is
always a first root of (78). We choose this solution (there may be other ones larger but still less
than 62 max; 27). Having determined No(¥) and Na(¥) as functions of ¥, (75) defines n;(¥) as a
function solely of W. O

Remark 26. In the special case of N = 2 ions with opposite valences zy = —z2, Lemma 24 can be
slightly improve. Indeed, in such a case, No(¥) = 22 No(¥) and rewriting (77) as

2
asrz3

2
No(q,)ep((s?No(\l/))e—W _ Zaie—zi\p’
i=1

one can prove that the left hand side is a monotone increasing function of No(V), at least if the Bjer-
rum parameter satisfies bi < 4(1 ++/2)2/22 (the proof involves similar arguments as in Proposition
29 below). Therefore, the nonlinear algebraic equations (75) and (76) have a unique solution.

Lemma 27. The algebraic equation (74) uniquely defines a function ¥ — 35 (), from R into (0,1).
Proof. Rewrite (74) as

oS 1 KO
THZmazsys _Jn(— — 1) = ¥ + adl + In —
26¢ (s D =¥+adl 4+l

where the right hand side is a function of ¥, as a consequence of Lemma 24. It is easily seen that
the left hand side is a strictly increasing function of X® from (0,1) into R. Therefore, it admits a
unique solution (). O

Theorem 28. The MSA model (73), with the algebraic equations (74), (75) and (76), admits a
solution W € Hy(Qp).

Proof. As a consequence of Lemma 24 the non-linearity in the right hand side of (73) is uniformly
bounded for any ¥ € H;E (Qp) since

IN(¥)| < max |z|No(¥) <62 max |z].
1<i<N 1<i<N
Similarly the non-linear boundary condition >*(¥) is bounded between 0 and 1, by definition.
Then, under these conditions the existence of at least one solution is classical by using a fixed point
argument (see e.g. chapter 9 in [8]). O

Theorem 28 does not say anything on the uniqueness of solutions of the MSA model (73).
Contrary, to the ideal case of Subsection 4.1 we are unable to prove uniqueness of the solution,
even under additional assumptions on the physical parameters. Actually, we can only prove the
monotonicity of the charge density N(¥) but not of the surface charge 3°(¥) (Lemma 27 does not
say anything about its monotonicity).
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Proposition 29. Assume the Bjerrum parameter bi = Lg /o satisfies the upper bound

bi max 22 < 4(1+v/2)2
1<i<N

Then, W — N (W) is a strictly monotone decreasing function on R.

Remark 30. For a solution of Ca(OH)2, as studied in the numerical section, since maxi<;<n zf =
4 and bi = 1.786, according to the data of Table 1, the assumption of Proposition 29 is satisfied.

Proof. Taking the logarithm of the definition (75) of n; yields
adlz?

Inn; = —2z¥Y +1Ina; + 1+ gor —-p (52]\70(\1/)) )
Differentiating (79) with respect to ¥ yields
1 dn; adz?  dU 9 N dn;
- i S o (5 / (SQN P S
mdv AT Tz an o v

7:1

3 L adz2z? Z3
Z+Z ( 8%p (6% No(¥ ))+2(1+55p) 2(1+286T) NQ(‘I’)>’

since differentiating (76) (and using the proof of Lemma 9) leads to

N

dr dl' d+/N3 dNo 1 Z anl

AV~ dyN, dN, d¥ 1+2ﬁ6F2«ﬁNg

Therefore, (80) is equivalent to the linear system

d’ﬂi -
A(d\ll) - N_( 27) =1,....N >

EEREE)

where A is a N x N symmetric matrix defined by its entries

8 adz22?
Aij = J + 62[)/ (52N0(\I’)) — 5 L J s
n; 2(1 + BOT)2(1 + 286T)/No(¥)

where d;; is the Kronecker symbol. If A is invertible, then

dN _
qv =—-A"" (Z’i)izl,...,N ) (Z’i)i:L...,N

(79)

(82)

and the decreasing character of N(¥) is proved if A1 is positive. This is equivalent to prove that

A is positive definite. For any vector y = (y;),_; 5, compute

.....

yz 2,/ 2 _ a6 (Zl 1 Zyz)
Ay y_z n, TOVEN (Zy> 2(1+ BOT)2(1 + 23T)

> [I7]”

2(1 + BOT)2(1 + 266T)
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Figure 2: The periodic domain @ in green with its solid part (in white) and its pore volume Qp (in
black). By symmetry all calculations are performed in the smaller set Y (right).

because p’(£) > 0 and using the change of variables §; = v;//n; with Cauchy-Schwarz inequality.
Recalling definition (76) of I' and introducing a new variable t = /1 4+ 4851/ N2(¥) leads to

(t — 1)0& maxi<;<nN 2:12
4B8t(1 +t)

Ay-y > gl (1= () with  f(t) =

Some simple optimization with respect to ¢ € (1;+00) yields the desired result because bi = a/3. O

5 Numerical results

5.1 Geometrical setting

We consider a periodic domain in the plane (d = 2) for which the pore or fluid part Qp is a
honeycomb. Because of this special structure, the periodic domain is not a square but a rectangle
Q = (0,L;) x (0, L,) with dimensions L, = 652 nm and L, = 723 nm (see the green rectangle in
Figure 2). In the middle of the cell, the solid part (in white) is a hexagon of width 200 nm, while
the fluid channels (in black) have a cross-section of width 30 nm. Because of mirror symmetries
with respect to the vertical and horizontal axes, the fluid domain 2 can be restricted to the subset
denoted by Y on Figure 2. The boundary 9Y is composed of the solid/pore interface 9Qp, where the
non-linear boundary condition takes place, and its complement 9Y;, where homogeneous Neumann
boundary condition are imposed for symmetry reasons. Because of these symmetries, no periodic
boundary conditions have to be enforced. This subset Y is the computational domain, meshed by
61,334 triangles with a mesh refinement near the solid/pore interface. The number of degree of
freedom is 136, 987. All our numerical results are obtained with the FreeFem++ package [11], using
Lagrange P, finite elements. The dashed axis shown on the right of Figure 2 is placed right in the
middle of the channel and it is where the cross-sections of the potential are plotted (see below).
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5.2 Newton algorithm

To solve the non-linear partial differential equation (73) we use a Newton algorithm which is briefly
recalled. Because of the geometric setting, (73) boils down to

—A¥ = 7N(V) in Y,
VU .v = —1p¥°(¥) ondp,
VU.v = 0 on 9Y \ 092p.

Define its variational form
R(T,v) 2/ V\II-VUdJU+TB/
Y o

Y (P)vds — 7'/ N(P)vdx
Qp Y

and its differential

S

by N
Dy R(T,v)[07] :/ V5\I/-Vvdx+73/ d—(‘ll)vds—T/ d—(\ll)vda:.
Y oo, AV y dV

The formulas for the derivatives are implicitly given in the theoretical analysis of the previous
sections. If (?) is some initialization for the potential ¥, a sequence of approximate solutions is
defined by

o™ = gD 4 5w

where 0V is the solution of the linear equation
DgR(T™Y )[60] = —R(T™ D v)  VoeeHY(Y).

Convergence is detected when the relative residual ||0%||/[| ¥~V |, computed in the H'(Y)-norm,
is smaller than 10~7. Furthermore, the electroneutrality between the bulk and surface charges is
checked.

5.3 Numerical results for the single ion case

We first perform a numerical computation for system (45) for the single H™ ion in the MSA case.
We choose pH = 7 meaning that the activity is agy = l.e — 7 mole/liter (see Table 1). Figure 3
shows the isovalues of the potential ¥, the maxima of which are located at the pore junctions. It
is interesting to see if there is a noticeable difference with the same computation performed with a
constant surface charge density >V, defined by

1

D = 25 (W)ds. 83
990] Joa. (W) (83)

Figure 4 shows the difference between the surface charge density 3° obtained with the nonlinear
boundary condition for a pH = 7 and its average X" on the boundary. The variation of ¥° around
its average X is of the order of one percent. The plot on Figure 4 is along the lower left solid
boundary of Y, which exhibits two corners where the surface charge density has clearly a peak.
For the sake of comparison, we thus perform the same computation as for Figure 3, except that
the non-linear boundary condition %#(¥) is replaced by the constant Neumann boundary condition
3% The difference between the potential ¥ in these two cases is plotted on Figure 5 where it
can be checked that the relative difference is very small, less than 5.e~®. This is confirmed by the
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Figure 3: Isovalues of ¥ (Volts) for a single ion with pH = 7 in the MSA case.
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Figure 4: Surface charge density %% (eC/nm?) on the lower left part of the boundary of Y for
pH = 7 in MSA case. The dotted line shows its mean value X,

comparison on Figure 6 of the two profiles of the potential ¥ along a cross-section of a channel (cf.
the dashed line on the right of Figure 2), which are very close. For completeness, we plot on Figure
7 the profile of ¥ for the MSA model on two cross-sections: one in the middle of the channel (as in
Figure 6) and the other at the extremity of the channel. The higher value of ¥ at the end rather
than at the middle of the channel is consistent with the peak of ¥*(¥) at the corners or end points
of the fluid channels.

We now perform some comparisons between the ideal and MSA models as a function of pH
varying from 1 to 14. Note that the single ion model was established for pH = 7 but it makes sense,
at least from a numerical point of view, to test its numerical output when the pH varies. The activity
ag of the H™ ion is equal to 1077 (mole/liter). The coefficient 7 = (L/\p)? takes into account the
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Figure 5: Isovalues of the differences in ¥ (Volts), computed with the non-linear boundary condition
() and its constant average 37, for a single ion with pH = 7 in the MSA case.
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Figure 6: Cross-sections of the Potentials ¥ (Volts) for the non-linear boundary condition (NLBC)
5 (P) and for its constant average (Cst) X% with pH = 7 in the MSA case.

different values of the pH via the Debye’s length Ap which depends on ay (see Table 1). It turns
out that there is almost no differences between the calculations of the two models, ideal and MSA,
whatever the value of pH. The reason is the very low salt concentration. Actually here the bulk salt
concentration is nill. Nevertheless, we can observe on Figure 8 the linear variation of the maximums
of U as a function of the pH. There is a change of sign of the potential maximum between the values
5.041 and 5.042 of the pH for the Ideal and MSA cases, see Figure 9. All cross-sections of potentials
obtained for other values of pH have roughly the same profile as those shown in Figure 9.
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Figure 7: Cross-sections of the Potentials ¥ (Volts) for the non-linear boundary condition %*(¥)
with pH = 7 in the MSA case: in the middle of the channel [1], at the extremity of the channel [2]. ’fig.PB—Qcoupes—col
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Figure 8: Evolution of the maximum of ¥ (Volts) in Y as a function of the pH in the MSA case.
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Figure 9: Cross-sections of the potential ¥ in the fluid channel for a single ion H* in the MSA case.
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5.4 Numerical results for the multiple ion case

We now consider a Ca(OH)s salt, meaning that there are 3 different ions, H*, OH~ and Ca?", in
the electrolyte. All computations are performed for the MSA model. We vary the bulk concentration
Npuire of Ca(OH)s from 1073 to 5.9 107! mM. From this reservoir concentration ny.;, we have to
deduce the activities a; of the three ions. In a first step, the activities of the ions Ca?T and OH~
are calculated following the process explained in section 3 of [2]. The main idea to compute these
activities is to impose a bulk electroneutrality condition, ensuring that a constant zero surface charge
density yields a zero potential. In a second step, knowing the activity apg of the ion OH~, the pH
of the solution is deduced from the autoprotolysis reaction of water

pH =14 + logyy(aon),

and aog = 2v0HNbuk- Eventually, the HY activity is obtained by ay = 107PH. The HT activity
is chosen as our characteristic concentration which is used in the adimensionalization process (62).
For a concentration ng,x = 1072 mM of Ca(OH), the potential ¥ is plotted on Figure 10. The
same computation is performed, replacing the non-linear boundary condition X*(¥) by its constant
average 2%, as defined in (83). The difference between the two resulting potentials is plotted on
Figure 11. The largest differences are located at the junctions of the channels, but everywhere the
relative difference is of the order of a few percent.

-6.8e-02
[ 007
L0072
— 0074

— 0076

Poisson-Bolfzmann

— 0078

-8.1e02
Figure 10: Isovalues of ¥ (Volts) for a concentration ny,, = 1072 mM of Ca(OH)s.

Increasing the bulk concentration ngp,;; we check that the average and the maximum of the
surface charge density is monotonically increasing (see Figure 12), while the averaged concentration
of the H™ ion is decreasing (see Figure 13). Of course, in the mean time the averaged concentrations
of the OH~ and Ca?T ions are increasing (see Figure 14). From Figure 12 it is obvious that the
surface charge is not constant when ny,;; varies, which is a clear indication that taking a constant
surface charge, as was done in most previous studies, was merely a rough approximation. Let us
note that, as in the single ion case, there is a change of sign for the maximum of the potential U:
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Figure 11: Isovalues of the difference of potential ¥ (Volts) between the non-linear boundary condi-

tion X*(¥) and its constant average Y% for a concentration ny,x = 1072 mM of Ca(OH ). fig.isomultidiff

it is positive for low concentrations nyur < 5.5 107 mM and negative for higher concentrations
Npuire > 6. 1077 mM.

“‘3""\“"I"“""I"II

——— Average Sigma

Figure 12: Average and maximum of the surface charge density ¥°(¥) as a function of the bulk
concentration npyx of Ca(OH)s. ‘ fig.SigmaMaxMSA

As a conclusion, our numerical experiments suggest that the non-linear boundary condition X%()
allows us to find the correct value of the surface charge density which is not the same for all salt
reservoir concentrations mp,,. Nevertheless, the relative difference between the resulting potentials
is quite small of the order of 1 or 2 percent.
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Figure 13: Averaged concentration of HT in the pore Y as a function of the bulk concentration
Npulk of CQ(OH)Q
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Figure 14: Averaged concentrations of Ca?" and OH~ in the pore Y as a function of the bulk
concentration np,x of Ca(OH)s.
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