
HAL Id: hal-03606524
https://hal.science/hal-03606524v1

Submitted on 24 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Impact of Cache and Dynamic Memory
Management in Static Dataflow Applications

Alemeh Ghasemi, Marcelo Ruaro, Rodrigo Cataldo, Jean-Philippe Diguet,
Kevin Martin

To cite this version:
Alemeh Ghasemi, Marcelo Ruaro, Rodrigo Cataldo, Jean-Philippe Diguet, Kevin Martin. The Impact
of Cache and Dynamic Memory Management in Static Dataflow Applications. Journal of Signal
Processing Systems, 2022, 94 (7), pp.721-738. �10.1007/s11265-021-01730-7�. �hal-03606524�

https://hal.science/hal-03606524v1
https://hal.archives-ouvertes.fr

Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-021-01730-7

The Impact of Cache and Dynamic Memory Management in
Static Dataflow Applications

Alemeh Ghasemi · Marcelo Ruaro · Rodrigo Cataldo · Jean-Philippe

Diguet · Kevin J. M. Martin

Received: 18 April 2021 / Revised: 28 September 2021 / Accepted: 30 November 2021

This document is the author version of the paper
“The Impact of Cache and Dynamic Memory Man-
agement in Static Dataflow Applications” by Ale-
meh Ghasemi, Marcelo Ruaro, Rodrigo Cataldo, Jean-
Philippe Diguet, Kevin J. M. Martin, accepted for
publication in Journal of Signal Processing Systems.

This version of the article has been accepted for
publication, after peer review (when applicable) but is
not the Version of Record and does not reflect post-
acceptance improvements, or any corrections. The Ver-
sion of Record is available online at:

https://doi.org/10.1007/s11265-021-01730-7.
Use of this Accepted Version is subject to the pub-

lisher’s Accepted Manuscript terms of use
https://www.springernature.com/gp/open-
research/policies/accepted-manuscript-terms.

Author version

Abstract Dataflow is a parallel and generic model
of computation that is agnostic of the underlying

Alemeh Ghasemi ID

Univ. Bretagne-Sud, UMR CNRS 6285, Lab-STICC, Lorient,
France
E-mail: alemeh.ghasemi@univ-ubs.fr

Marcelo Ruaro ID

Univ. Bretagne-Sud, UMR CNRS 6285, Lab-STICC, Lorient,
France
E-mail: marcelo.ruaro@univ-ubs.fr

Rodrigo Cataldo ID

Univ. Bretagne-Sud, UMR CNRS 6285, Lab-STICC, Lorient,
France
E-mail: cadorecataldo@gmail.com

Jean-Philippe Diguet ID

IRL 2010, CROSSING, Adelaide, Australia
E-mail: jean-philippe.diguet@cnrs.fr

Kevin J. M. Martin ID (corresponding author)
Univ. Bretagne-Sud, UMR CNRS 6285, Lab-STICC, Lorient,
France
E-mail: kevin.martin@univ-ubs.fr

multi/many-core architecture executing it. State-of-

the-art frameworks allow fast development of dataflow

applications providing memory, communicating, and

computing optimizations by design time exploration.

However, the frameworks usually do not consider cache

memory behavior when generating code. A generally

accepted idea is that bigger and multi-level caches im-

prove the performance of applications. This work eval-

uates such a hypothesis in a broad experiment cam-

paign adopting different multi-core configurations re-

lated to the number of cores and cache parameters

(size, sharing, controllers). The results show that big-

ger is not always better, and the foreseen future of

more cores and bigger caches do not guarantee software-

free better performance for dataflow applications. Ad-

ditionally, this work investigates the adoption of two

memory management strategies for dataflow applica-

tions: Copy-on-Write (CoW) and Non-Temporal Mem-

ory transfers (NTM). Experimental results addressing

state-of-the-art applications show that NTM and CoW

can contribute to reduce the execution time to -5.3%

and -15.8%, respectively. CoW, specifically, shows im-

provements up to -21.8% in energy consumption with

-16.8% of average among 22 different cache configura-

tions.

Keywords Multi-core · Dataflow · Cache memory ·
Compilers

1 Introduction

The multi/many-core architecture is a widespread on-

chip design, providing high computing power in a small

silicon area. The computation power is achieved by sup-

porting task-level parallelism, splitting the application

https://doi.org/10.1007/s11265-021-01730-7
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://orcid.org/0000-0001-7902-2437
https://orcid.org/0000-0001-5995-435X
https://orcid.org/0000-0003-4664-2909
https://orcid.org/0000-0003-0728-6040
https://orcid.org/0000-0002-8122-1192

2 Alemeh Ghasemi et al.

into parallel tasks running in different cores. A gener-

ally accepted expectation is that increasing the num-

ber of cores naturally leads to better application per-

formance. However, increasing the number of cores im-

pacts other aspects, especially the memories subsystem.

Since memories are costly in terms of area and power to

be embedded on the chip, the memory hierarchy (cache

memories) generally has a reduced on-chip size, making

it suffer from the high pressure in systems with a high

number of cores. This phenomenon is known as memory

wall [7].

From a software aspect, several efforts have been

made to allow the efficient development of parallel ap-

plications regarding memory footprint, communication

overhead, and computing parallelism. Existing for 40+

years, the dataflow programming model may eventu-

ally stand as the ideal approach to bridge the gap be-

tween application and architecture resources. Figure 1a

presents an overview of the principles of a dataflow-

based application. The application is represented by

a graph, where each node represents an actor having

a single computing function (as exemplified by actor

B1 code), and each edges representing the FIFO as a

data dependency between two actors. Actors commu-

nicate via producing/consuming data tokens. An actor

can start the execution only if required data tokens are

available in the input FIFOs and if enough space is

available in the output FIFOs.

Dataflow models can naturally make use of parallel

resources by means of actors that run in parallel while

consuming and producing tokens. Several tokens can be

produced and consumed at a time, but a token is pro-

duced and consumed only once. This feature favors data

spatial locality. While the cache hierarchy also exploits

temporal locality, a dataflow program may benefit from

the latter for instructions and spatial locality for data

as consecutive tokens are usually involved. Therefore,

dataflow applications performance should be improved

with the increasing size of caches. However, this paper

shows that such an assumption does not hold in regard

to multiple cache-based architecture designs.

Taking advantage of the generic principles of

dataflow applications, some rapid prototyping frame-

works have been proposed. Figure 1b addresses

PREESM [18], a state-of-the-art open-source frame-

work for rapid prototyping of dataflow applications in

multi/many-cores. It provides a graphical user inter-

face for the designer to generate the application source

code. Based on inputs provided by the designer includ-

ing algorithm (graph of the application) and system

constraints (mapping, scheduling and etc.), the frame-

work generates a deadlock-free source code of the appli-

cation (implemented in C language) and the respective

actor mapping on each core, based on spatial and tem-

poral requirements. Due to the well-defined modeling of

dataflow applications, it is possible to reach design-time

optimal scheduling for static applications.

Although the state-of-the-art techniques can lead to

theoretical optimal schedules, this article demonstrates

that even optimally scheduled applications do not scale

as desired with the increasing number of cores, cache

levels, size, and cache sharing factor. As expected, the

memory contention is of utmost importance, and the

CPU load-based actor mapping used in the experiments

does not lead to the best execution time. Therefore, the

first contribution of this work is to study dataflow ap-

plications according to different caches configurations,

providing experimental results that demonstrate their

impact on the application’s execution time performance

and cache miss. For this, we consider several configu-

rations, including non-available yet platforms or non-

realistic cache configurations, and use the Sniper sim-

ulator [4] to foresee the scalability of the considered

dataflow applications.

From such analysis, the second contribution of this

paper consists in the investigation of using two dynamic

memory management techniques for dataflow code

generation: Copy-on-Write (CoW) and Non-Temporal

Memory (NTM) copying. Those techniques are not new

since CoW is supported by Linux OS [3] and NTM

is supported by some processor designs, including In-

tel [11, 14]. The novelty here is the study of the bene-

fits and drawbacks of both approaches when applied to

the dataflow programming model, evaluating whether

they can contribute to speedup application’s execu-

tion, reduce cache misses, and save energy. Addition-

ally, those techniques can be used as runtime memory
optimization approaches, complementary to static tech-

niques [5]. Moreover, they are applied at the framework

level and do not require changes for the application

specification and code.

In summary, this work has two contributions:

– The evaluation of the impact of different cache pa-

rameters and number of cores over the performance

of static dataflow applications;

– The evaluation of two existing memory manage-

ment techniques (CoW and NTM) for three static

dataflow applications.

The next section addresses related works that inves-

tigate the behaviors of dataflow applications running

on systems with caches. Next, in Section 3 the multi-

core model assumed in this work is presented. Section 4

presents the experiments varying cache parameters and

the number of core. Section 5 details CoW and NTM

techniques, and section 6 presents the achieved results

The Impact of Cache and Dynamic Memory Management in Static Dataflow Applications 3

void B1(unsigned char *inputA, unsigned char *outputC){

//Read from inputA

//Do something

 //Write to outputC

}

(a) Example of

the cost function of actor B1 (b) Dataflow framework

Fig. 1 (a) Overview of a dataflow application model with four actors. (b) Workflow of PREESM framework [18].

Table 1 Related works studying the cache impact in parallel applications.

Author (et al.) Proposal Contribution Benchmark

Slingerland (2001) [21] N.A. (Evaluation work)
Cache profile of multimedia
applications

Multimedia applications

Alvez (2009) [1] N.A. (Evaluation work) Evaluation of L2 properties Heterogeneous applications
Garcia (2016) [8] N.A. (Evaluation work) Evaluation of impact of LLC sharing Heterogeneous applications
Domagala (2016) [6] Splitting nested loops Increased Data locality StreamIt

Maghazeh (2019) [17]
Splitting GPU kernels to
sub-kernel and data input
into L2 size

Increased Data locality +
Decreased cache miss rate

GPU-based applications

Stoutchinin (2019) [22] Novel framework (StreamDrive)
New communication protocol
(zero-copy communication channel)

Dynamic Dataflow applications

Fraguela (2021) [2]
Strategy to improve cache
usage in dataflow

Minimize communication among
threads

Cholesky decomposition

This work
Use of two dynamic memory
manag. methods (CoW, NTM)

Cache configuration evaluation +
Reduction in memory copy penalties

Static Dataflow applications

from those techniques. Finally, Section 7 concludes this

work.

2 Related Work

This section highlights studies that target the behav-

ior of dataflow applications running on systems with a

memory hierarchy. In Domagala et al. [6], researchers

extended the concept of tiling to the dataflow model

to increase the data locality of applications for bet-

ter performance by splitting iterations of nested loops.

However, this type of optimization does not address the

coarse-grain inter-actor (i.e., inter-tasks) relation.

In Maghazeh et al. [17], a method is proposed for

GPU-based applications by splitting both the GPU ker-

nel into sub-kernels and input data into tiles in size of

GPU L2 cache. Their work is intended to accelerate

applications whose performance is bound to memory

latency. The method increases data locality, as the sub-

kernels are scheduled in a way to have the least cache

miss rate, for GPU applications over various settings.

However, the method requires source code modification

and does not target the dataflow model. Research about

the cache effect on the performance of multiple applica-

tion types is presented in Garcia et al. [8]. Garcia et al.

have evaluated the impact of Last Level Cache (LLC)

sharing in GPU-CPU co-design platform for heteroge-

neous applications. According to their study, applica-

tions with low data interaction between GPU and CPU

are sped up slightly by sharing the LLC. Data sharing

of LLC minimizes memory access time and dynamic

power, and accelerates synchronization for fine-grained

synchronization applications.

The cache behavior of multimedia workloads is eval-

uated by Slingerland and Smith [21]. They appraised

data miss rate of applications considering data cache

size, associativity, and line size parameters. The au-

thors observed that multimedia applications benefit

from longer data cache lines and have more data than

instruction miss rate in comparison to other workloads.

The experiment results reveal that most of the multi-

media applications just need 32 KB data cache size to

have less than 1% cache miss rate, while other types

of applications (3D graphic, document processing) do

not reach the same behavior. As the results of our work

will show, sharing cache levels among more cores with

larger sizes, up to 256 MB for LLC, does not help the

performances of dataflow applications, but also results

in data access latency overhead.

The work of Alvez et al. [1] investigates the impact

of L2 sharing in order to find the best cache organiza-

tion at this level. Assuming the NAS Parallel Bench-

mark, with heterogeneous workload set, and a 32-core

4 Alemeh Ghasemi et al.

SMP with two levels of caches (private L1-I and L1-D)

and an L2, the work changes the sharing, size, associa-

tivity, and line size in the L2. Among the mains results,

it was observed an execution time decrease when more

cores share the L2 cache, even when 2 cores share the

same L2. Increasing line size (64 bytes to 128 bytes)

contributed to -32% in cache misses and +1.95% in

speedup. The work does not address 3-level caches ei-

ther dataflow applications.

Stoutchinin et al. [22] present a novel framework,

called StreamDrive, for dynamic dataflow applications.

StreamDrive proposes a new communication protocol,

reserve-push-pop-release, for dataflow model instead of

the standard send-receive. This protocol allows their

solution to employ a zero-copy communication chan-

nel for actors. It employs a blocking mechanism to ac-

cess FIFOs directly in shared memory; hence, no local

copies are needed, which are commonly used in software

dataflow model. This study is specific since it focuses

on computer vision applications running on a special

embedded multi-core platform (P2012) with dedicated

hardware computer vision engines. Meanwhile, we pro-

pose two solutions to general-purpose architectures that

do not require novel hardware components.

Fraguela et al. [2] propose the concept of a soft-

ware cache with an autotuning method to configure

its size according to each application. The approach

is built upon Unified Parallel C++ (UPC++) library.

It consists of an algorithm called in periodic intervals,

which dynamically re-allocates the software cache size.

Results show that the software cache can reduce the

communication among actors due to the efficient cache

sizing and allocation, presenting a hit rate just 0.27%

lower than an optimal scenario. Similar to CoW and

NTM, that proposal also implements the algorithm

as part of a library, however, with a limited evalua-

tion without varying hardware parameters and adopt-

ing just one application.

Table 1 summarizes the main characteristics of the

related works addressing the cache impact in parallel

applications running in SMPs. The main novelties of

this work regarding the related works are twofold: (i) we

evaluate a wide range of cache configuration in a multi-

core architecture, including realistic and non-realistic

configurations; and (ii) two existing memory manage-

ment methods are proposed to be used in dataflow ap-

plication, which can reduce the memory copies penalties

in numbers and latency, leading to an improved appli-

cation execution time and energy consumption.

Regarding contribution (i), works of [1, 8, 21] are

also evaluation works. However, in [21] the benchmark

is limited to multimedia applications, in [8] the focus is

the iteration between the CPU and GPU by addressing

a heterogeneous set of applications but not consider-

ing dataflow, and in [1] the Authors did not consider

a 3-level cache either the dataflow application profile.

Therefore, to the best of the Author’s knowledge, the

present research is the first to perform a comprehensive

evaluation of the cache impact with 3-level and target-

ing dataflow applications.

Regarding contribution (ii), it fills different gaps

from related works focused on proposals [2, 6, 17, 22].

Specifically, we are interested in: (i) keeping the original

dataflow modeling granularity (differently from [6, 17]);

(ii) not making modification in the Linux-based kernel,

or any part of the OS (contrary to [2]); and (iii), tar-

geting generic SMP (differently from [22]). We endorse

that the techniques of CoW and NTM are not new, and

the goal of this study is to replace them in memcpys

procedures in order to observe the impact in the cache

and in the overall performance of dataflow applications,

a study that is lacking in the literature.

3 Multi-core Model

This section presents the multi-core architecture model

adopted in this work.

3.1 Architecture Overview

Figure 2 presents the architecture overview. We focus

on detailing the memory hierarchy since it is the target

of this work. The architecture is based on the Intel Xeon

X5500 chip. Each core implements the Nehalem Intel

microarchitecture [13], having a private L1 cache with

32KB, a private L2 cache with 256KB, and a shared by

four cores L3 cache with 8MB. The chip also includes

a triple channel DRAM memory controller to interface

with off-chip DRAM memories.

The interconnection is bus-based with 20-bits width,

and provides 12.8 GB/s per link in each direction (25.6

GB/s total).

The architecture depicted in Figure 2 is the refer-

ence multi-core model. The actual goal is to exploit dif-

ferent core counts and cache configurations by changing

the following parameters:

– C: the number of cores (e.g., 4, 8, 16, 32)

– L2 (xC): sharing of L2 cache, where C represents

the number of cores sharing one L2 cache. For in-

stance, in the baseline architecture, the L2 is (x1),

since each core has one L2 cache. An L2(x2) indi-

cates that two cores are sharing the L2. The size

of L2 for each core is fixed in 256KB, therefore, in

L2(x2), two cores are sharing an L2 with 512KB.

The Impact of Cache and Dynamic Memory Management in Static Dataflow Applications 5

... Nehalem

Core N

L1 32KB L1 32KB L1 32KB

L2 256KB

DDR3 Memory Controller

L3 8MB

Nehalem

Core 0

Nehalem

Core 1

Nehalem

Core 0

Nehalem

Core 1

L2 256KB L2 256KB

Fig. 2 Architecture overview of the baseline multi-core
model.

– L3 (xC): sharing of L3 cache, where C represents

the number of cores sharing one L3 cache. It adopts

the same rule used in L2. For instance, the base-

line architecture (assuming that there are 4 cores in

total), adopts an L3 (x4) configuration.

– L2 size: the size of the L2 cache dedicated for each

core. When a core shares the L2 cache with another

core, i.e, L2 (x2 or more), the final size of the L2

cache will be multiplied by the number of shared

cores.

– L3 size: same rule than L2 size.

3.2 Model description

This work adopts the Sniper multi-core simulator [4].

Sniper includes the description of the Nehalem cores as

well as cache, memory controller, and DRAM.

Sniper is a consolidated system simulator for multi-

core architectures, used in many state-of-the-art works

to evaluate application’s performance and, mainly,

power and energy consumption [12, 20]. Sniper adopts

an interval-based core model simulation, which allows

fast and accurate simulation. The Nehalem cores are by

default provided within Sniper distribution. Sniper core

model and cache hierarchy are validated against actual

Xeon processor using Splash2 benchmarks. Sniper takes

as input configuration files that allow the user to set pa-

rameters as cache sizes, cache sharing, number of cores,

core frequency, among many others.

Next, in the experimental setup subsection, we

present further details about the multi-core setup sim-

ulated on Sniper.

4 Experiments on cache configurations

This section addresses the first contribution of this

work: experiments evaluating the cache limits for

dataflow applications. The first subsection describes the

experimental setup. The remaining subsections address

the analyses of application’s performance varying the

following parameters: C, L2(xC), L3(xC), L2 size, and

L3 size.

4.1 Experimental Setup

4.1.1 Application set

Table 2b (1st column) lists the applications benchmark

addressed in this work. We adopt three real applications

named Stabilization, Stereo, and scale-invariant feature

transform (SIFT), taken from PREESM repository [19].

Stabilization is used for video stabilization. Its principle

is to compensate for the movements of a video recorded

with a shaky camera. The main two steps of this process

consist of tracking the movement of the image using

image processing techniques and creating a new video

where the tracked motion is compensated. The input

video adopted in experiments comes from PREESM’s

github repository [19] and has 40.9 MB of size with a

resolution of 360x202 pixels.

Stereo is a computer stereo vision application that

extracts 3D information from images. Stereo matching

algorithms are used in many computer vision applica-

tions to process a pair of images, taken by two separated

cameras at a small distance, and produce a disparity

map that corresponds to the 3rd dimension (the depth)

of the captured scene. Stereo matching algorithms and

their implementations are still heavily studied as they

raise important research problems [9]. The two input

images [19] adopted in experiments have the size of

506.3 KB with a resolution of 405x375 pixels.

SIFT is used to object recognition in cluttered real-

world 3D scenes [16]. The extracted features are in-

variant to image scaling, translation, and rotation, and

partially invariant to illumination changes and affine or

3D projection. The application behavior shares a num-

ber of properties in common with the responses of neu-

rons in the inferior temporal cortex in primate vision.

The input image [19] used in SIFT has a size of 512

KB with a resolution of 800x640 pixels, with 4 levels of

parallelism and 1400 number of keypoints.

These three applications are specified through the

PREESM framework, which is responsible for the code

generation, actors scheduling and mapping, as shown

in Figure 1b.

6 Alemeh Ghasemi et al.

Table 2 Experimental setup settings.

Core Model Intel Xeon X5550 4/8/16/32 @ 2.66 GHz (base clock)

L1-I Cache 32KB 8way 1 cyc. tag lat. 4 cyc. data lat. LRU
L1-D Cache 32KB 8way 1 cyc. tag lat. 4 cyc. data lat. LRU
L2 Cache 256KB 8way 3 cyc. tag lat. 8 cyc. data lat. LRU
L3 Cache (LLC) 8MB 16way 10 cyc. tag lat. 30 cyc. data lat. LRU

cyc = cycles; lat = latency; LRU = Least Recently Used.

(a) Hardware model settings.

Application Actors
PREESM
FIFOs

PREESM
FIFOs size

Memory copyinga

PREESM Actors

Stabilization 30 607 0.92 MB 21 MB 0.2 MB

Stereo 36 811 29.09 MB 5 MB 13 MB

SIFT 77 2183 188.6 MB 12 MB 308.6 MB

(a) sum of all copied memory using the memcpy procedure.

(b) Dataflow applications benchmark profile.

Table 2b highlights that the applications have het-

erogeneous memory requirements. Specifically, the 4th

column details the sum of PREESM FIFOs size, which

can be understood as the memory footprint of inter-

actor communication. SIFT is memory bounded and

has high synchronization demands (high number of ac-

tors and FIFOs), Stereo is computational and memory

bounded, and Stabilization is computational bounded

but with low memory and synchronization demands.

The heterogeneous memory requirements lead to differ-

ent cache locality and memory footprints, making such

applications appropriated candidates for the evaluation

of cache impact intended in this work.

We use the optimal scheduling and mapping deci-

sion provided by PREESM [18], which is focused on

workload balancing. The memory allocation adopts ad-

vanced memory optimization proposed in [5], which

considerably reduces the applications’ memory over-

head. The selected memory allocation uses the FirstFit

algorithm with MixedMerged distributions and none

data alignment. These features were selected because

they have presented the lowest memory footprint at

the same time that they are suitable to the target multi-

core architecture used in this work. After the generation

of C code by PREESM, the applications were compiled

using GCC v7.5.0 optimization -O2 (default optimiza-

tion adopted by PREESM), and simulated on Sniper.

4.1.2 Hardware Setup

The experimental setup adopts the multi-core model

described in subsection 3, configured on Sniper. Ta-

ble 2a presents the hardware setup. These parameters

are based on the real Xeon X5500 multi-core.

To evaluate the number of cores and cache sharing

we created 22 multi-core cache configurations, varying

the parameters C, L2(xC), and L3(xC). Figure 3 ex-

press graphically the reasoning behinds these configu-

rations. Each configuration is a black spot in the fig-

ure. The configurations can be divided into 4 groups

(different background color on the figure) according to

the number of cores (C = 4, 8, 16, 32) in which a given

configuration was simulated. Note that the 22 config-

Fig. 3 Overview of the reasoning behind the 22 cache con-
figuration adopted in the experiments. C = number of cores
simulated for each configuration.

urations were not simulated for each C configuration.

The minimal C evaluated for each configuration is dic-

tated according to the sharing factor of the LLC. For

instance, we do not evaluate a system with 4 cores for

config. 9 (which have L3(x8) as LLC), since it is unfea-

sible because the L3 sharing (LLC sharing) requires at

least 8 cores to meet the sharing factors of L3(x8).

The L2 sharing comprises configurations from

L2(x1) up to L2(x32), with most of them (36%) ad-

dressing a private L2 cache (since this L2 design choice

is found in real architectures like Xeon Nehalem and

AMD K10). Some configurations are unrealistic, spe-

cially those that have a big L2, as the case of configu-

rations 8, 16, 21, where L2 = 2MB; configurations 12,

22, where L2 = 4MB; and configuration 17, where L2

= 8MB. However, our goal is to address the trend in

multi-core processor design, which features always big-

ger L2 caches.

The L3 sharing also adopts a very heterogeneous

configuration set, including no L3 (e.g. configuration

1), one private L3 cache (e.g. configuration 4), up to 32

cores sharing the same L3 (configuration 18-22).

The number of memory controllers is equal to the

number of LLC. For instance, configuration 6 executed

for 8 cores has two L3 shared by 4 cores (L3(x4)).

The Impact of Cache and Dynamic Memory Management in Static Dataflow Applications 7

0

100

200

300

400

500

600

700

(1)
L2 (x1)
No L3

(2)
 L2 (x2)
No L3

(3)
L2 (x4)
No L3

(4)
L2 (x1)
L3 (x1)

(5)
L2 (x1)
L3 (x2)

(6)
L2 (x1)
L3 (x4)

(7)
L2 (x2)
L3 (x4)

Configuration

SIFT

(c)

0

50

100

150

200

250

300

350

(1)
L2 (x1)
No L3

(2)
 L2 (x2)
No L3

(3)
L2 (x4)
No L3

(4)
L2 (x1)
L3 (x1)

(5)
L2 (x1)
L3 (x2)

(6)
L2 (x1)
L3 (x4)

(7)
L2 (x2)
L3 (x4)

Configuration

Stereo

(b)

0

5

10

15

20

25

(1)
L2 (x1)
No L3

(2)
 L2 (x2)
No L3

(3)
L2 (x4)
No L3

(4)
L2 (x1)
L3 (x1)

(5)
L2 (x1)
L3 (x2)

(6)
L2 (x1)
L3 (x4)

(7)
L2 (x2)
L3 (x4)

Configuration

Stabilization

(a)

4 cores 8 cores 16 cores 32 cores

A
p

p
.

it
e

ra
ti
o

n
ti
m

e
 (

m
s
)

Fig. 4 Application iteration time over different number of cores for three applications: (a) Stabilization, (b) Stereo, (c) SIFT.

Therefore, this configuration has two memory con-

trollers (one for each L3).

Although the results achieved are based on Xeon

architecture, the presence of 22 different hardware con-

figurations, varying the core count and cache sharing

and size, helps to project the behavior of the bench-

marks in architectures different from Xeon, especially

those that adopt similar cache organizations.

4.2 Number of cores – C

Figure 4 shows the application iteration time (time for

the application to complete the execution of one loop),

for Stabilization (a), Stereo (b), and SIFT (c). The x-

axis contains groups of bars, where each group repre-

sents one configuration (only the ones that support C

varying from 4 to 32 were shown), and each bar repre-

sents a different C to that configuration.

The main evaluation to be extracted from these re-

sults is related to scalability with the number of cores

C. It is possible to observe that Stabilization presents

a continuous reduction in the execution time according

to a higher C, reducing its execution time on average

-46% from 4 to 8 cores, -43% from 8 to 16 cores, and

-39% from 16 to 32 cores. However, the same does not

occurs to Stereo and SIFT, which have a moderate or

even worst improvement in C ≥ 16, with Stereo pre-

senting an execution time of -22%, -1.3%, +2.6%, for

an increase in C of 4 to 8, 8 to 16, and 16 to 32, respec-

tively.

Observing Table 2b, it is possible to note that Stereo

and SIFT have a higher FIFOs size compared to Sta-

bilization, which puts more pressure on the cache sub-

system and does not allow the application to entirely

benefit from a higher core count (reaching a memory

wall).

It is also possible to observe that there are different

performances among the configurations of the x-axis.

Such performance is impacted due to the different L2

and L3 sharing configurations. The next two subsec-

tions enter into details about the impact of L2 and L3

sharing.

4.3 L2 Sharing

Figure 5 presents a comprehensive evaluation of the L2

sharing impact over the execution time, L2 miss rate,

and L2 miss rate for the three applications. The left

y-axis of each plot represents the application iteration

time, the right y-axis represents the miss rate, and the

x-axis represents the configurations.

Each application has 4 plots, one for each simulated

C. As the purpose is to evaluate the results only varying

L2 sharing, the plots have the L3 sharing fixed accord-

ing to the maximum number of cores (as well as in the

Xeon architecture).

The L2 miss rate decreases for all applications, more

sharply for Stabilization (-59%), and less significantly

for SIFT (-23%), and Stereo (-22%), considering the av-
erage between the leftmost configuration and the right-

most configuration. This decrease in L2 miss rate hap-

pens because a high L2 sharing increases the probability

of an actor to share a FIFO inside the same L2 that is

being shared with another actor (without the need to

retrieve the data at the L3 cache level). The decrease is

less significant in high memory demand applications –

as SIFT and Stereo – since they naturally require more

memory than Stabilization.

The L3 miss rate increases for all applications ac-

cording to the higher L2 sharing. Such increase makes

the L3 reach high miss rates of 84.3% for SIFT, 84%

for Stereo, and 66.32% for Stabilization in configura-

tion 22. Again, the memory demands of each applica-

tion play an important role to stress the cache. The

number of L3 accesses helps to justify this L3 miss rate

increase. With a more shared L2, the L3 accesses con-

sequently decreases, reaching, on average of -39.7% for

Stabilization, -32.3% for Stereo, and -17.6% for SIFT.

This makes the L3 lose temporal and spatial locality

8 Alemeh Ghasemi et al.

C
a

c
h

e
 m

is
s

ra
te

0

0.2

0.4

0.6

0.8

1

0

100

200

300

400

500

(18)
L2 (x1)

(19)
L2 (x2)

(20)
L2 (x4)

(21)
L2 (x8)

(22)
L2

(x16)
Configuration

32 cores - L3(x32)

0

0.2

0.4

0.6

0.8

1

0

100

200

300

400

500

(6)
L2 (x1)

(7)
L2 (x2)

Configuration

4 cores - L3(x4)

(b)(b)

0

0.2

0.4

0.6

0.8

1

0

100

200

300

400

500

(9)
L2 (x1)

(10)
L2 (x2)

(11)
L2 (x4)

Configuration

8 cores - L3(x8)

0

0.2

0.4

0.6

0.8

1

0

100

200

300

400

500

(13)
L2 (x1)

(14)
L2 (x2)

(15)
L2 (x4)

(16)
L2 (x8)

Configuration

16 cores - L3(x16)

Stereo

C
a

h
c
e

 m
is

s
ra

te

0

0.2

0.4

0.6

0.8

1

0

100

200

300

400

500

(18)
L2 (x1)

(19)
L2 (x2)

(20)
L2 (x4)

(21)
L2 (x8)

(22)
L2

(x16)
Configuration

32 cores - L3(x32)

0

0.2

0.4

0.6

0.8

1

0

100

200

300

400

500

(6)
L2 (x1)

(7)
L2 (x2)

Configuration

4 cores - L3(x4)

(c)(b)(c)

0

0.2

0.4

0.6

0.8

1

0

100

200

300

400

500

(9)
L2 (x1)

(10)
L2 (x2)

(11)
L2 (x4)

Configuration

8 cores - L3(x8)

0

0.2

0.4

0.6

0.8

1

0

100

200

300

400

500

(13)
L2 (x1)

(14)
L2 (x2)

(15)
L2 (x4)

(16)
L2 (x8)

Configuration

16 cores - L3(x16)

SIFT

BIGGER L2 SHARING BIGGER L2 SHARING BIGGER L2 SHARING BIGGER L2 SHARING

A
p

p
.

it
e

ra
ti
o

n
ti
m

e
 (

m
s
)

A
p

p
.

it
e

ra
ti
o

n
ti
m

e
 (

m
s
)

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

(18)
L2 (x1)

(19)
L2 (x2)

(20)
L2 (x4)

(21)
L2 (x8)

(22)
L2

(x16)
Configuration

32 cores - L3(x32)

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

(6)
L2 (x1)

(7)
L2 (x2)

Configuration

4 cores - L3(x4)

(a)

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

(9)
L2 (x1)

(10)
L2 (x2)

(11)
L2 (x4)

Configuration

8 cores - L3(x8)

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

(13)
L2 (x1)

(14)
L2 (x2)

(15)
L2 (x4)

(16)
L2 (x8)

Configuration

16 cores - L3(x16)

StabilizationExec. Time L2 miss rate L3 miss rate

C
a

c
h

e
 m

is
s

ra
te

A
p

p
.

it
e

ra
ti
o

n
ti
m

e
 (

m
s
)

Fig. 5 L2 sharing evaluation for three applications. (a) Stabilization, (b) Stereo, (c) SIFT.

and increasing its miss rate, which transfers the data

access to DRAM level and delays the execution time.

The execution time remains constant for Stabiliza-

tion regardless of higher L2 sharing. For Stereo and

SIFT, it remains constant for C = 4, 8, but for C ≥
16, the execution time starts to increase from L2(x2),

reaching up to +56% of increase for Stereo and to +17%

for SIFT L2(x32). This increase in execution time is at-

tributable to the significant increase of the L3 miss rate

compared to a not-so-high decrease of the L2 miss rate,

which generates miss penalties from both sides (L2 and

L3 caches).

In summary, increasing L2 cache sharing is not ben-

eficial to dataflow applications, specifically those that

demand more memory as in the case of Stereo and

SIFT. This is in compliance with the cache design

choices of some processor architectures as Intel Ne-

halem and AMD K10, which use private L2 caches. As

can be observed from the results, assigning to each core

a private L2 reduces the execution time since this allows

a more balanced rate of L2 and L3 misses, which reduces

cache contention earlier avoiding data to be fetched in

a higher level of caches or even DRAM.

4.4 L3 Sharing

Figure 6 presents a similar set of plots of L2 sharing

analysis, but now varying L3 sharing. The L2 sharing is

fixed in L2(x1) since the previous subsection has shown

that this is the best L2 sharing configuration.

The results show three trends: (i) L2 miss rate re-

mains constant; (ii) L3 miss rate decreases significantly

according to the increasing of L3 sharing; and (iii) the

execution time can benefit from a higher L3 sharing.

Regarding the L2 miss rate, it is expected that it

remains constant since the L2 was not changed. Re-

garding the L3 miss rate, it decreases significantly for

all applications according to higher L3 sharing, reach-

ing a miss rate in the L3(xC) of, on average, 9.3% for

Stabilization (-87.34%), 8.4% for Stereo (-87%), and

37.8% for SIFT (-38%). This result is expected since

a higher L3 sharing allows all application data to fit

on the L3 cache (note that SIFT presented the lowest

improvement due to its higher memory demands). Con-

sequently, the execution time also benefits from this L3

miss rate decrease, specifically for the applications with

higher memory demands such as Stereo and SIFT.

The Impact of Cache and Dynamic Memory Management in Static Dataflow Applications 9

Stereo

0

0.2

0.4

0.6

0.8

1

0

100

200

300

(1)
No L3

(4)
L3

(x1)

(5)
L3

(x2)

(6)
L3

(x4)

(9)
L3

(x8)

(13)
L3

(x16)

(18)
L3

(x32)
Configuration

32 cores - L2(x1)

0

0.2

0.4

0.6

0.8

1

0

100

200

300

(1)
No L3

(4)
L3 (x1)

(5)
L3 (x2)

(6)
L3 (x4)

Configuration

4 cores - L2(x1)

(b)(a)(b)

0

0.2

0.4

0.6

0.8

1

0

100

200

300

(1)
No L3

(4)
L3 (x1)

(5)
L3 (x2)

(6)
L3 (x4)

(9)
L3 (x8)

Configuration

8 cores - L2(x1)

0

0.2

0.4

0.6

0.8

1

0

100

200

300

(1)
No L3

(4)
L3 (x1)

(5)
L3 (x2)

(6)
L3 (x4)

(9)
L3 (x8)

(13)
L3

(x16)
Configuration

16 cores - L2(x1)

A
p

p
.

it
e

ra
ti
o

n
ti
m

e
 (

m
s
)

C
a

c
h

e
 m

is
s

ra
te

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

(1)
No L3

(4)
L3

(x1)

(5)
L3

(x2)

(6)
L3

(x4)

(9)
L3

(x8)

(13)
L3

(x16)

(18)
L3

(x32)
Configuration

32 cores - L2(x1)

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

(1)
No L3

(4)
L3 (x1)

(5)
L3 (x2)

(6)
L3 (x4)

Configuration

4 cores - L2(x1)

(a)

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

(1)
No L3

(4)
L3 (x1)

(5)
L3 (x2)

(6)
L3 (x4)

(9)
L3 (x8)

Configuration

8 cores - L2(x1)

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

(1)
No L3

(4)
L3 (x1)

(5)
L3 (x2)

(6)
L3 (x4)

(9)
L3 (x8)

(13)
L3

(x16)
Configuration

16 cores - L2(x1)

Stabilization

A
p

p
.

it
e

ra
ti
o

n
ti
m

e
 (

m
s
)

C
a

c
h

e
 m

is
s

ra
te

0

0.2

0.4

0.6

0.8

1

0

200

400

600

800

(1)
No L3

(4)
L3

(x1)

(5)
L3

(x2)

(6)
L3

(x4)

(9)
L3

(x8)

(13)
L3

(x16)

(18)
L3

(x32)
Configuration

32 cores - L2(x1)

0

0.2

0.4

0.6

0.8

1

0

200

400

600

800

(1)
No L3

(4)
L3 (x1)

(5)
L3 (x2)

(6)
L3 (x4)

Configuration

4 cores - L2(x1)

(c)

0

0.2

0.4

0.6

0.8

1

0

200

400

600

800

(1)
No L3

(4)
L3 (x1)

(5)
L3 (x2)

(6)
L3 (x4)

(9)
L3 (x8)

Configuration

8 cores - L2(x1)

0

0.2

0.4

0.6

0.8

1

0

200

400

600

800

(1)
No L3

(4)
L3 (x1)

(5)
L3 (x2)

(6)
L3 (x4)

(9)
L3 (x8)

(13)
L3

(x16)
Configuration

16 cores - L2(x1)
SIFT

BIGGER L3 SHARING BIGGER L3 SHARING BIGGER L3 SHARING BIGGER L3 SHARING

A
p

p
.

it
e

ra
ti
o

n
ti
m

e
 (

m
s
)

C
a

c
h

e
 m

is
s

ra
te

Exec. Time L2 miss rate L3 miss rate

Fig. 6 L3 sharing evaluation for three applications. (a) Stabilization, (b) Stereo, (c) SIFT.

In summary, increasing L3 cache sharing is bene-

ficial to dataflow applications, specifically those that

demand more memory. A single L3 cache is slower but

larger, allowing it to store all application data on it.

4.5 Cache Size

In the previous L2 and L3 sharing analysis, it was possi-

ble to conclude that an private L2 and an L3 shared by

all cores presents the best results related to application

speedup and L2/L3 miss rate. To the cache size evalu-

ation, we keep this sharing configuration, and changed

only the size of L2 or L3 per core, creating 15 new cache

configurations (3 varying L2 size × 5 varying L3 sizes).

Besides, the evaluation only addresses configurations

with 32 cores, since lower core count have presented

the same trend and are not interesting in terms of a

state-of-the-art analysis.

Figure 7 shows the results varying the L2 size

(256KB, 512KB, and 1MB) at x-axis. The left y-axis

represents the application iteration time, and the right

y-axis represents the cache miss rate. Each plot repre-

sents one application, with each one having 3 sets of

results representing different L3 sizes.

It is possible to observe that the increase in L2 and

L3 size has a low influence on the L2 and L3 miss rate

for all applications. The execution time has a small re-

duction according to higher L2 sizes, however, this value

is insignificant, representing an average reduction from

the lower L2 size (256KB) to the higher L2 size (1MB),

of -0,49% for Stereo, -1.76% for SIFT, and -4.62% for

Stabilization.

The results varying the L3 sizes follows the same

trend observed for L2. Figure 8 shows an example with

the L2 size fixed in 512KB (other L2 sizes present very

similar behavior). It is possible to see that both L2 and

L3 cache misses remains stable, and with an insignifi-

cant reduction in the execution time (not better than

-0.26% for all applications).

In summary, increasing the L2 and L3 sizes does

not guarantee an automatic improvement for dataflow

applications. In such a case, when a higher amount of

hardware resources cannot provide speedup to the ap-

plication, other aspects must be taken into considera-

tion, specifically at the software level, by allowing the

10 Alemeh Ghasemi et al.

0

0.2

0.4

0.6

0.8

1

0

50

100

150

200

250

300

256 KB 512 KB 1 MB

L2 cache size

Stereo

(b)
BIGGER L2 SIZE

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

256 KB 512 KB 1 MB

L2 cache size

Stabilization

(a)
BIGGER L2 SIZE

0

0.2

0.4

0.6

0.8

1

0

100

200

300

400

500

256 KB 512 KB 1 MB

L2 cache size

SIFT

(c)
BIGGER L2 SIZE

C
a

c
h
e

 m
is

s
ra

te

Exec. Time (L3=2MB)

Exec. Time (L3=8MB)

Exec. Time (L3=32MB)

L2 miss (L3=2MB)

L2 miss (L3=8MB)

L2 miss (L3=32MB)

L3 miss (L3=2MB)

L3 miss (L3=8MB)

L3 miss (L3=32MB)

A
p

p
.

it
e

ra
ti
o

n
ti
m

e
 (

m
s
)

Fig. 7 L2 cache size comparison varying L2 size over multiples L3 sizes. (a) Stabilization, (b) Stereo, (c) SIFT.

0

0.2

0.4

0.6

0.8

1

0

100

200

300

400

500

2 MB 4 MB 8 MB 16 MB 32 MB
L3 cache size

SIFT

(c)

BIGGER L3 SIZE

1 2 3

Exec. Time (L2=512KB)

L2 miss rate (L2=512KB)

L3 miss rate (L2=512KB)

C
a
c
h
e
 m

is
s

ra
te

0

0.2

0.4

0.6

0.8

1

0

100

200

300

400

500

2 MB 4 MB 8 MB 16 MB 32 MB
L3 cache size

Stereo

(b)

BIGGER L3 SIZEBIGGER L3 SIZE

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

2 MB 4 MB 8 MB 16 MB 32 MB
L3 cache size

Stabilization

(a)

A
p
p
.
it
e
ra

ti
o
n

ti
m

e
 (

m
s
)

Fig. 8 L3 cache size comparison varying L3 size with an private L2 of 512KB. (a) Stabilization, (b) Stereo, (c) SIFT.

mapping and scheduling algorithms to make better use

of such availability of resources and improving the par-

allel workload of the application.

4.6 Summary of findings

Bigger is not always better with dataflow; increasing the

number of cores, cache levels, size, does not guarantee

a faster application execution. This finding is especially

significant for working sets that demand more than the

total cache size.

The next items summarize the finding for each anal-

ysis:

– Number of cores: increasing the number of cores

does not guarantee automatic improvement in the

execution time, since the overhead of cache proto-

cols and required synchronization does not allow ap-

plications to increasingly speed-up, specifically the

ones with more memory demands.

– Cache sharing: reducing L2 sharing and increasing

L3 sharing was the most beneficial configuration for

the addressed dataflow applications.

– Cache size: increasing the L2 and L3 sizes have an

insignificant effect on the adopted dataflow bench-

marks.

One interesting finding is that private L2 and L3

shared by all cores was the configuration that pre-

sented the best results related to application speedup

and L2/L3 miss rate. While this conclusion can sound

similar as Intel had reached some years ago, justifying

its current cache organization with L3 shared by all

cores, it was not so apparent from our point of view.

First, our focus was to evaluate the impact specifically

for dataflow applications, research that, to the best of

our knowledge, was not addressed yet. Secondly, our

initial hypothesis was that when two actors – sharing

the same FIFO – are mapped on different processors

that share an L2 cache (increased sharing factor), this

will improve performance due to the reduction in the

coherence traffic and the L2 miss rate reduction. This

behavior is supported by the results (Figure 5). How-

ever, this leads to a higher miss rate for L3, which has

higher penalties than L2, and consequently, has a higher

influence on the execution time, as shown in the case of

the three applications studied (Figure 6).

Table 2b shows that PREESM uses memory copy-

ing mechanisms extensively for FIFO handling. Some

memory copying is expected in a dataflow design; how-

ever, memory copying is done to the degree that negates

the cache hierarchy benefits. Therefore, alternative ap-

proaches must be investigated to allow reducing mem-

ory copies penalties at runtime. The next sections detail

the research made in this sense.

5 Dynamic Memory Management Techniques

This section presents the second contribution of this

work: the evaluation of two dynamic memory manage-

ment techniques and its impact when used in the con-

The Impact of Cache and Dynamic Memory Management in Static Dataflow Applications 11

text of static dataflow applications. These techniques

are Copy-on-Write (CoW) and Non-Temporal Memory

(NTM) copying. They are not novel in their principle,

CoW is a well-known approach supported by Linux OS

by the mmap() syscall [3], and NTM is essentially a di-

rect RAM-to-RAM copy, supported in some Intel pro-

cessors [11]. The novelty here is to exploit opportunities

of using such techniques in dataflow frameworks, and

quantify how much they can improve the applications

execution time and system energy by saving memory

transfers.

First, subsection 5.1 presents the motivation to em-

ploy these techniques in dataflow applications. In se-

quence, the subsection 5.2 presents CoW, and subsec-

tion 5.3 presents NTM.

5.1 Motivation

Figure 9a shows a fork-join actor graph implemented as

a dataflow application. Actor A produces data tokens

t1 and t2 to actors B1 and B2, which access those data,

process, and generate a token to actor C, which merges

the data and generates the application output.

(a) Classical dataflow fork-join application

(b) Memory optimization proposed by [5]

Fig. 9 Communication overview among actors of a dataflow-
based fork-join application.

A memcpy is used to transfer a data token be-

tween actors. A non-overlapping memory space (ded-

icated buffer), is required for each actor, since producer

actors (for instance, actor A), can, during its process-

ing, modify the data produced but not consumed yet in

its output buffer. And the other way round, a consumer

actor can use the input buffer for temporary values. Be-

sides this fork and join pattern, dataflow applications

can also have broadcast and round-buffer actors which

also assumes non-overlapping memory spaces between

actors [5].

Taking advantage of this high waste of memory and

time by applying memory copies, Desnos et al. [5] pro-

posed memory reuse techniques over those dataflow ap-

plications. In summary, the designer can inform the

framework which buffers can be merged in the same

memory space, resulting in the graph presented by Fig-

ure 9b. Thus, the memcpy are avoided, helping to sig-

nificantly save memory footprint and execution time.

However, such design-time approach only works as-

suming two conditions: (i) the designer must know the

framework and the application very well in order to

extract applications behavior and to model into the

framework the desired memory reuse; (ii) it only works

for buffers that are known to be read-only over all the

actor lifetime, as the case of buffer t1 of actor B1 of

Figure 9a. If the actor – due to a branch in its algo-

rithm flow – chooses to write in t1 buffer space, these

memory reuses cannot be adopted. Even if the actor

has a probability of less than 1% to write in this buffer,

the memory reuse cannot be applied since it is funda-

mentally a design-time exploration technique.

Thinking about how to fulfill this lack, our idea

is to investigate two dynamic memory management

techniques which are CoW and NTM. Differently from

static memory management, they were designed to be

used at runtime, and have the potential to avoid un-

necessary memory copies (CoW), and cache trashing

(NTM). In the next subsections, we present the de-

tails of each one and how they were implemented in

our multi-core model, as well as, the evaluation of its

drawbacks and benefits.

5.2 Copy-on-Write (CoW)

Figure 10 details the CoW concept. The principle of

CoW is simple. It consists in allowing two or more

threads (actors in our case) to share to the same mem-

ory space. When one thread attempts to write in that

space a new memory space is dynamically created,

bringing the data with it (a copy on write). It thus

prevents the writing thread from overwriting the data

in the first memory space [3]. Figure 10 depicts at time

t1 thread A and thread B pointing to the same memory

space 1. At the time t2, thread B writes in the memory

space 1. At the time t3, the OS detects this write and

makes a copy of the memory space, creating the mem-

ory space 2 and making thread B point to it. Now, any

data written/read by thread B will be placed/accessed

in memory space 2.

This functionality can be implemented in a dataflow

application by making the buffers involved in a given

12 Alemeh Ghasemi et al.

Table 3 Core change for supporting the CoW mechanism, assuming: (1) src buffer is the source buffer, (2) dst buffer is
the destination buffer, (3) copy length is the copy length, (4) shm open fd is a file descriptor created with the shm open system
call.

Original Code CoW mechanism

memcpy(dst buffer, src buffer, copy length);
void *dst buffer = mmap(NULL, copy length,

PROT READ | PROT WRITE, MAP PRIVATE, shm open fd, 0);

Table 4 Core change for supporting the NTM mechanism, assuming: (1) src buffer is the source buffer, dst buffer is the
destination buffer, copy length is the copy length.

Original Code NTM mechanism

memcpy(dst buffer, src buffer, copy length);

for (i = 0; i < copy length/4; i++){
mm stream si32(dst buffer[i], *(src buffer[i]));

}

Thread B ±�write(&MemorySpace1)

Memory

Space 1

Thread A

Thread B

Memory

Space 1

Thread A

Thread B

Memory

Space 1

Thread A

Thread B

Memory

Space 2

Memory

Space 1

Thread A

Thread B

Memory

Space 2

t1

t2

t3

time

Copy on Write

Fig. 10 Principle of the Copy-on-Write (CoW) mechanism.

operation (like a fork, join, and broadcast) point to the

same memory space after the producer actor writes data

in this space. If the destination buffer receives a write

attempt by any actor, a CoW happens, preserving the

original values of the buffer to the consumer actor.

The core code change to support CoW is shown

on the right side of Table 3 as a single line. Initial-

ization and termination has been omitted for this ex-

ample. The CoW mechanism is achieved by mapping all

destination buffers (named dst buffer) into the same

physical address, which is referenced by file descriptor

shm open fd. This latter address was initialized by the

shm open procedure. Besides, we map the region as pri-

vate (MAP PRIVATE) with read and write permissions

(PROT READ | PROT WRITE). The combination of these

two flags will create a new copy of the physical address

when a write has been made to the memory area (in

other words, a copy-on-write). Finally, we allow the OS

to decide the virtual address of this new buffer by pass-

ing nil (NULL) as the first parameter to mmap.

The CoW procedure is typically handled by the OS

kernel. Unfortunately, the Sniper simulator has lim-

ited operating system modeling capabilities to evaluate

kernel-based strategies [4]. Thus, for our experiments,

we used a combination of user- and kernel-space interac-

tion so that Sniper can account OS overhead accurately.

Specifically, in our implementation a buffer is mapped

to CoW without the PROT WRITE flag. Any future at-

tempts to write in the buffer will trigger an exception

(SIGSEGV signal1), which interrupts the causing thread.

Then, an exception handler implemented at user space

changes the offending memory page to use CoW. In re-

gard to the code presented in Table 3, we change the

capability of the memory regions to read-only (remov-

ing flag PROT WRITE), and install a signal handler to

re-enable the write capability for this mapping.

5.3 Non-Temporal Memory (NTM) Copying

NTM copying is ideal for memory spaces known to

be write-mostly or rarely used (i.e., poor temporal lo-

cality). This approach uses either (i) instructions that

bypass the cache hierarchy or (ii) userspace RAM-to-

RAM DMA. For the x86 architecture, (i) is available

using SSE extensions [11], and (ii) through the I/OAT

DMA engine available in some processor designs [14].

In any case, the memcpy procedure is replaced by an-

other procedure that uses either technique specialized

for memory transfer and therefore, avoiding CPU to be

executing instruction of data transfers. Another ben-

efit of employing the NTM mechanism is that cached

data from other applications are not trashed due to the

copying required by any given application.

Since these approaches avoid the cache hierarchy,

their operation is slower compared to memcpy. Intel

shows that RAM-to-RAM achieves approximately half

the speed of memcpy for large transfers (≥ 8 MiB) and

many times slower for smaller transfers on x86 [14].

Table 4 depicts the results obtained by using NTM in-

structions.

The core code change to support NTM is shown

on the right side of Table 4 as a for-loop structure.

Initialization and termination has been omitted from

this table. The procedure mm stream si32 is provided

by Intel to call the appropriate assembly instruction

1 SIGSEGV is a synchronously-generated signal and is guar-
anteed to be delivered to the causing POSIX thread [10].

The Impact of Cache and Dynamic Memory Management in Static Dataflow Applications 13

for NTM operations. It copies 32 bits from a value

(src buffer[i]) to a given pointer (dst buffer[i]).

After the end of the for-loop, the data is copied to the

area pointed by dst buffer. Thus, the result is the

same as calling memcpy but the related data will not

be present in the caches if they were not already there

before mm stream si32 is first called.

6 Results

This section presents the results about CoW and NTM

using the three dataflow benchmarks and the 22 con-

figurations.

6.1 Experimental Setup

All applications used in these experiments were gen-

erated using the PREESM framework (version 3.4),

compiled using GCC v7.5.0 optimization -O2, and ex-

ecuted on Sniper simulator. The energy estimation is

performed with McPAT [15], which is integrated into

Sniper and provides reliable power and energy figures

broadly used in state-of-the-art works [12, 20].

We develop an algorithm implemented in Python

script language, which has as input the generated code

of PREESM and has as output the new application

code using the CoW or NTM technique. This algorithm

detects in the code the memcpy patterns, which are

candidates to be replaced by CoW or NTM. The algo-

rithm is fully automatized, in the sense that it detects

the memcpy patterns by looking for join-broadcast, and

broadcast dataflow patterns [5]. The algorithm can also

be tuned with a parameter ψ, which allows defining a

minimum threshold in the data size of a memcpy oper-

ation. By using ψ it is possible to eliminate small-size

memcpy and only target the ones which transfer a large

amount of data.

Algorithm 1 presents the method to detect the mem-

cpy patterns which are candidates to be used in CoW

and NTM. As input, the algorithm has three param-

eters: src o: the application source code generated by

PREESM; t: a flag that selects between CoW or NTM;

and ψ: the parameter that indicates the minimum mem-

cpy data size. Line 1 and 2 initialize two sets, called

join broad set and broad set, which will store the des-

tination buffers’ names of memcpys related to join-

broadcast and broadcast-only, respectively. In line 3,

the function extract memcpy extracts from src o all

memcpy instance generated by PREESM, achieving the

following information from each memcpy: data transfer

size, source buffer, destination buffer, and the type

(JOIN, BROADCAST, FORK, and ROUNDBUFFER

[18]). The type is easily extracted due to a PREESM’s

characteristic in which it classifies the memcpy during

its code generation, inserting its type as a comment in

the line above each memcpy. All the memcpy instances

are inserted in the list called memcpy list.

Lines 5–14 identify join-broadcast patterns evalu-

ating each element mj of memcpy list. The condition

of line 6 checks if the mj is a JOIN, if its destina-

tion buffer is not already in join broad set, and if the

memcpy data size meets ψ. Once this check is true,

the algorithm advances to the phase (lines 7 and 8)

to confirm that the destination buffer of JOIN opera-

tion is also involved in BROADCAST. Once the buffer

matches a join-broadcast pattern, it is inserted in the

join broad set in line 9.

Lines 15-22 identify broadcast-only patterns evalu-

ating each element mb of memcpy list. Line 16 tests

if mb’s type is BROADCAST. Another important

verification is to check if the buffer is not in the

join broad set, eliminating it if true. The same test of

line 16 also seeks to eliminate the memcpys with a size

lower than ψ. In case all conditions are meet, the des-

tination buffer is added to the broad set at line 18.

The last part of algorithm (lines 23–27) focused

in verifying the value of t, calling the respective

function which will applies CoW (line 24) or NTM

(line 26). These functions evaluate all memcpys from

memcpy list, selecting those one containing the buffers

name in join broad set and broad set. The output of

the algorithm is src t, comprising the src o with the

matched memcpys replaced by the code presented in

Table 3 and Table 4.

Table 5 details the values of ψ (2nd column) used

for each application. The table also details the number

of memcpy addressed in CoW and NTM (3rd column),

and its respective total size (4th column).

Table 5 shows that SIFT has more available memcpy

to be optimized. The ψ was defined as 400KB for SIFT

and Stereo. Stabilization does not have such a large

memcpy, therefore we reduce the value of ψ to allow

the algorithm to consider the bigger memcpy size of

the application. These values of ψ were achieved after a

design-time analysis and represent to the best execution

times achieved for each application.

The next subsections present the results achieved

by replacing the memcpy either using NTM or CoW

for the three applications.

6.2 Non-Temporal Memory Copying (NTM)

Figure 11a presents the iteration execution time for all

benchmarks using NTM. It is noticeable that execution

14 Alemeh Ghasemi et al.

0

20

40

60

80

100

120

140

160

-4

-3

-2

-1

0

1

2

3

4

(1)
L2 (x1)
No L3

(2)
 L2 (x2)
No L3

(3)
L2 (x4)
No L3

(4)
L2 (x1)
L3 (x1)

(5)
L2 (x1)
L3 (x2)

(6)
L2 (x1)
L3 (x4)

(7)
L2 (x2)
L3 (x4)

(8)
L2 (x8)
No L3

(9)
L2 (x1)
L3 (x8)

(10)
L2 (x2)
L3 (x8)

(11)
L2 (x4)
L3 (x8)

(12)
L2 (x16)
No L3

(13)
L2 (x1)
L3 (x16)

(14)
L2 (x2)

L3 (x16)

(15)
L2 (x4)
L3 (x16)

(16)
L2 (x8)
L3 (x16)

(17)
L2 (x32)
No L3

(18)
L2 (x1)

L3 (x32)

(19)
L2 (x2)

L3 (x32)

(20)
L2 (x4)
L3 (x32)

(21)
L2 (x8)
L3 (x32)

(22)
L2 (x16)
L3 (x32)

N
u
m

b
e

r
o

f
D

R
A

M
 a

c
c
e

s
s
 (

x
 1

 M
e

g
a

)

R
e
d

u
c
ti
o

n
 c

o
m

p
a

re
d

 t
o

 w
it
h

o
u

t
N

T
M

 (
%

)

Configuration

SIFT

Best configuration from previous cache analysis

(b)

Fig. 11 Results using NTM. (a) Evaluation of execution time. (b) Detailed evaluation for SIFT application.

-4

-3

-2

-1

0

1

2

3

4

Stabilization
(a)

-4

-3

-2

-1

0

1

2

3

4

Stereo
(b)

-4

-3

-2

-1

0

1

2

3

4

SIFT
(c)

R
e

d
u

c
ti
o

n
 c

o
m

p
a

re
d

 t
o

 w
it
h

o
u

t
N

T
M

 (
%

)

Fig. 12 Results for configuration 18 using NTM. (a) Stabilization. (b) Stereo. (c) SIFT

time is slightly reduced in most of the cases, reaching

up to -5.3% for Stabilization in configuration 21. The

average execution time reduction was -1.9% for Stabi-

lization, -1% for SIFT, and -0.3% for Stereo.

NTM also provided a small energy reduction, in av-

erage -0.84% (σ=0.7) for Stabilization, -0.2% (σ=0.5)

for Stereo, and -1.03 (σ=1.1) for SIFT, reaching up to

-2.7% for SIFT at configuration 16.

Figure 11b focuses on SIFT (high memory footprint

application) and presents a perspective between the

bars: L3 miss rate, execution time, and energy, with

the lines that show the absolute number of DRAM ac-

cesses without NTM and with NTM. It is possible to

observe that energy is reduced in most configurations,

reaching up to -2,7% to configuration 16. The L3 cache

miss was barely affected, presenting an average decrease

of -0.13% with a slight DRAM increase compared to its

respective version without NTM (+0.14%).

Figure 12 presents results for all applications on con-

figuration number 18 (private L2 and L3 shared by all

cores), which was the cache configuration that, in gen-

eral, presented the best results considering speed-up

and L2/L3 miss rate from previous cache analysis (see

section 4). NTM has presented improvements for all

applications on this configuration, specifically for SIFT

and Stabilization. Note that, despite Stabilization has

a low memory footprint, the execution time reduction

is higher than SIFT and Stereo, at cost of more L3

miss rate. On another side, SIFT presents a modest ex-

ecution time reduction, but also achieves reduction in

all cache hierarchy, and specifically, in L1-D and L1-I

access.

The Impact of Cache and Dynamic Memory Management in Static Dataflow Applications 15

Algorithm 1: Patterning detection of CoW

and NTM memcpy

Input : src o (application source code generated
by PREESM),
t (techinique: CoW or NTM),
ψ (minimum data size of a memcpy)

Output: src t (application source code adopting
CoW or NTM)

1 join broad set ← ∅;
2 broad set ← ∅;
3 memcpy list ← extract memcpy(src o);
4 if memcpy list 6= ∅ then

/* Identify join-broadcast patterns */

5 foreach mj ∈ memcpy list do
6 if mj.type = JOIN & mj.destination /∈

join broad set & mj.size ≥ ψ then
7 foreach mb ∈ memcpy list do
8 if mb.type = BROADCAST &

mb.source = mj.destination &
mb.size ≥ ψ then

9 join broad set.insert(mj.destination);
10 break foreach;

11 end

12 end

13 end

14 end
/* Identify broadcast-only patterns */

15 foreach mb ∈ memcpy list do
16 if mb.type = BROADCAST &

mb.destination /∈ join broad set & mb.size
≥ ψ then

17 foreach mb ∈ memcpy list do
18 broad set.insert(mb.destination);
19 end

20 end

21 end

22 end
23 if t = CoW then
24 src t ← applies CoW(src o, join broad set,

broad set, memcpy list);
25 else
26 src t ← applies NTM(src o, join broad set,

broad set, memcpy list);
27 end

Table 5 Memcpy profile addressed in CoW and NTM.

Application ψ # memcpy Total memcpy size

Stabilization 200KB 1 0.21 MB
Stereo 400KB 5 2.4 MB
SIFT 400KB 8 24.4 MB

In summary of all results, it was possible to observe

that NTM can improve the execution time and reduce

energy, however, the gains were modest, not better than

-1.9% in execution time and -2,7% in energy consump-

tion considering all results.

6.3 Copy-on-Write (CoW)

Figure 13(a) presents the iteration execution time for

all benchmarks using CoW. An average execution time

reduction can be observed for Stabilization (-2%) and,

most importantly, to SIFT (-10%), which reaches up to

-15.8% for configuration 10. It is expected that SIFT

benefits more from CoW since it has a large number

of buffers used in memcpy compared to the other ap-

plications. On the other side, Stereo presents an aver-

age execution time increase of 1.3%. Stereo is known to

be computation-intensive, and, therefore, the access to

buffer mapped as CoW is less frequent than in Stabi-

lization and SIFT, which makes the overheads of CoW

(create shared memory and call of mmap()) overcome

its benefits.

An energy reduction was achieved for all applica-

tions (-7.6% on average), with an average reduction of

-2% for Stabilization, and -1.3% for Stereo. Again, SIFT

is the application that benefits the most from CoW re-

garding energy. Figure 13b shows an overview of energy

consumption for SIFT (bar graph) to the 22 configura-

tions. On average, the energy reduction was -16.8%,

reaching the best result of -21.8% to configuration 8.

Again, SIFT benefits greatly from the CoW which al-

lows data to be used without having to wait for the

memcpy to complete. This behavior significantly affects

the use of the CPU, which saves instructions in mem-

cpy. This result can be observed following the dotted

line of Figure 13b, which shows a significant reduction

of L1-I (instruction cache) accesses of, on average, -

62.3% (σ=3.4).

Figure 14 presents results for all applications in con-

figuration 18. As expected, all applications have a re-

duction in the number of instruction access from the

L1-I cache, which is justified by the saved memcpy in-

structions by using CoW. The instruction access gains

progresses accordingly with the size of application’s

memcpy (as depicted in Table 5 (4th column)), with

Stabilization presenting -0.41% less L1-I access, Stereo -

29.8%, and SIFT -46.5%. This effect impacts the energy

consumption and execution time, especially for SIFT,

which benefits more from CoW due to its larger mem-

ory transfer profile.

7 Conclusion

This work presents a broad analysis of the impact of

cache hierarchy configuration over static dataflow appli-

cations. In total, 37 different cache configurations (re-

sulting in 213 simulations with 3 real applications) were

adopted to evaluate variations in core count, L2/L3

sharing, and L2/L3 sizes. From this analysis, it is

16 Alemeh Ghasemi et al.

-16

-12

-8

-4

0

4

8

12

16

(1)
L2 (x1)
No L3

(2)
 L2 (x2)
No L3

(3)
L2 (x4)
No L3

(4)
L2 (x1)
L3 (x1)

(5)
L2 (x1)
L3 (x2)

(6)
L2 (x1)
L3 (x4)

(7)
L2 (x2)
L3 (x4)

(8)
L2 (x8)
No L3

(9)
L2 (x1)
L3 (x8)

(10)
L2 (x2)
L3 (x8)

(11)
L2 (x4)
L3 (x8)

(12)
L2

(x16)
No L3

(13)
L2 (x1)

L3
(x16)

(14)
L2 (x2)

L3
(x16)

(15)
L2 (x4)

L3
(x16)

(16)
L2 (x8)

L3
(x16)

(17)
L2

(x32)
No L3

(18)
L2 (x1)

L3
(x32)

(19)
L2 (x2)

L3
(x32)

(20)
L2 (x4)

L3
(x32)

(21)
L2 (x8)

L3
(x32)

(22)
L2

(x16)
L3

(x32)

R
e
d

u
c
.
c
o

m
p

a
re

d
 t
o

 w
it
h

o
u

t
C

o
W

(%

)

Configuration

Application iteration time

(a)(b)(a)

Best configuration from previous cache analysis

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

-24

-20

-16

-12

-8

-4

0

(1)
L2 (x1)
No L3

(2)
 L2
(x2)

No L3

(3)
L2 (x4)
No L3

(4)
L2 (x1)
L3 (x1)

(5)
L2 (x1)
L3 (x2)

(6)
L2 (x1)
L3 (x4)

(7)
L2 (x2)
L3 (x4)

(8)
L2 (x8)
No L3

(9)
L2 (x1)
L3 (x8)

(10)
L2 (x2)
L3 (x8)

(11)
L2 (x4)
L3 (x8)

(12)
L2

(x16)
No L3

(13)
L2 (x1)

L3
(x16)

(14)
L2 (x2)

L3
(x16)

(15)
L2 (x4)

L3
(x16)

(16)
L2 (x8)

L3
(x16)

(17)
L2

(x32)
No L3

(18)
L2 (x1)

L3
(x32)

(19)
L2 (x2)

L3
(x32)

(20)
L2 (x4)

L3
(x32)

(21)
L2 (x8)

L3
(x32)

(22)
L2

(x16)
L3

(x32)

L
1

 a
c
c
e

s
s
 r

e
d

u
c
ti
o

n
 (

%
)

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 r

e
d

u
c
ti
o

n
 (

%
)

Configuration

SIFT - instruction access and energy statistics

(a)(b)(b)

Fig. 13 Results using CoW. (a) Execution time evaluation. (b) Energy evaluation.

-50

-40

-30

-20

-10

0

10

20

Stabilization

+45%

(a)

-50

-40

-30

-20

-10

0

10

20

Stereo
(b)

-50

-40

-30

-20

-10

0

10

20

SIFT

-69%

(c)

R
e

d
u

c
ti
o

n
 c

o
m

p
a

re
d

 t
o

 w
it
h

o
u

t
C

o
W

 (
%

)

Fig. 14 Results for configuration 18 using CoW. (a) Stabilization. (b) Stereo. (c) SIFT

possible to conclude that bigger is not always better

in terms of core count, L2 sharing, and L2/L3 size,

since other aspects as efficient parallel workload divi-

sion and computation/communication profile can pre-

vent the application to benefit from more cache mem-

ory resources. This analysis shows that private L2 and

L3 shared among all cores provide the best results in

terms of application speed-up and L2/L3 cache miss for

the adopted dataflow applications. As the second con-

tribution, this work investigates the benefits of using

copy-on-write (CoW) and non-temporal memory trans-

fer copies (NTM) in dataflow applications. Results have

shown that both techniques can contribute to improve

execution time and save energy. NTM presents a mod-

est reduction in execution time (up to -5.3%) and en-

ergy (up to -2.7%). CoW – specifically when used in

applications with bigger memcpy transfers (≥ 400KB)

– shows important reductions, achieving up to -15.8%

in execution time and -21.8% in energy consumption.

These techniques are complementary to static state-of-

the-art memory optimization approaches like [5], act-

ing at runtime to reduce cache thrashing (NTM) and

unnecessary data movements (CoW) among dataflow

actors.

Future works include applying such evaluation in

a different cache memory architecture, like distributed

shared-memory systems. On the software side, some re-

search can be conducted about source code generation

The Impact of Cache and Dynamic Memory Management in Static Dataflow Applications 17

from dataflow specification optimized to the cache hi-

erarchy of the target SMP.

Declarations

Funding: This work is supported by the Agence Nationale
de la Recherche under Grant No.: ANR-17-CE24-0018.
We would like to give special thanks to the PREESM and
Sniper communities for actively participating in the develop-
ment of the tools which offer solid basements to this work.

Conflicts of interest/Competing interests: The authors
declare that they have no conflict of interest.

Availability of data and material: Not applicable.

Code availability: Not applicable.

Acknowledgement
First published in Journal of Signal Processing Systems, 2022
by Springer Nature

References

1. Alves, M.A.Z., Freitas, H.C., Navaux, P.O.A.: Investi-
gation of shared l2 cache on many-core processors. In:
International Conference on Architecture of Computing
Systems 2009, pp. 1–10 (2009)

2. Basilio B. Fraguela and Diego Andrade: A software cache
autotuning strategy for dataflow computing with upc++
depspawn. Comp. and Math. Methods 1(1), 1–14 (2021).
DOI 10.1002/cmm4.1148

3. Bovet, D.P., Cesati, M.: Understanding the Linux kernel,
3rd edn., chap. 10, p. 295. O’Reilly (2006)

4. Carlson, T.E., Heirman, W., Eeckhout, L.: Sniper: Ex-
ploring the level of abstraction for scalable and accu-
rate parallel multi-core simulation. In: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), pp. 1–12 (2011). DOI
10.1145/2063384.2063454

5. Desnos, K., Pelcat, M., Nezan, J.F., Aridhi, S.: On mem-
ory reuse between inputs and outputs of dataflow actors.
ACM Trans. Embed. Comput. Syst. 15(2) (2016). DOI
10.1145/2871744

6. Domagala, L., van Amstel, D., Rastello, F.: General-
ized Cache Tiling for Dataflow Programs. In: SIG-
PLAN/SIGBED, LCTES 2016, pp. 52–61. ACM, New
York (2016). DOI 10.1145/2907950.2907960

7. Furtunato, A.F.A., Georgiou, K., Eder, K., Xavier-De-
Souza, S.: When parallel speedups hit the memory wall.
IEEE Access 8, 79225–79238 (2020). DOI 10.1109/
ACCESS.2020.2990418

8. Garćıa, V., Gomez-Luna, J., Grass, T., Rico, A.,
Ayguade, E., Pena, A.: Evaluating the effect of last-level
cache sharing on integrated GPU-CPU systems with het-
erogeneous applications. In: IEEE International Sym-
posium on Workload Characterization (IISWC), pp. 1–
10. IEEE, New York (2016). DOI 10.1109/IISWC.2016.
7581277

9. Hamzah, R., Ibrahim, H.: Literature Survey on Stereo
Vision Disparity Map Algorithms. Journal of Sensors
16(1), 1–23 (2015). DOI 10.1155/2016/8742920

10. IEEE: IEEE Standard for Information Technology–
Portable Operating System Interface (POSIX(R)) Base
Specifications, Issue 7. IEEE Std 1003.1-2017 1(1), 1–
3951 (2020). DOI 10.1109/IEEESTD.2018.8277153

11. Intel Corporation: Intel® 64 and IA-32 Architectures
Software Developer’s Manual Combined Volumes. Intel
Corporation (2020)

12. Kim, T., Sun, Z., Chen, H., Wang, H., Tan, S.X..: En-
ergy and lifetime optimizations for dark silicon many-
core microprocessor considering both hard and soft er-
rors. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems 25(9), 2561–2574 (2017). DOI
10.1109/TVLSI.2017.2707401

13. Kurd, N., Mosalikanti, P., Neidengard, M., Douglas,
J., Kumar, R.: Next generation intel¯ core� micro-
architecture (nehalem) clocking. IEEE Journal of Solid-
State Circuits 44(4), 1121–1129 (2009). DOI 10.1109/
JSSC.2009.2014023

14. Le, Q.T., Stern, J., Brenner, S.: (2020). Fast
memcpy with SPDK and Intel® I/OAT
DMA Engine. Retrieved March 15, 2021, from
https://software.intel.com/content/www/us/en/develop
/articles/fast-memcpy-using-spdk-and-ioat-dma-
engine.html

15. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen,
D.M., Jouppi, N.P.: Mcpat: An integrated power, area,
and timing modeling framework for multicore and many-
core architectures. In: International Symposium on Mi-
croarchitecture (MICRO), pp. 469–480. IEEE, New York,
NY, USA (2009)

16. Lowe, D.G.: Object recognition from local scale-invariant
features. In: IEEE International Conference on Computer
Vision (ICCV), vol. 2, pp. 1150–1157 vol.2 (1999). DOI
10.1109/ICCV.1999.790410

17. Maghazeh, A., Chattopadhyay, S., Eles, P., Peng, Z.:
Cache-Aware Kernel Tiling: An Approach for System-
Level Performance Optimization of GPU-Based Appli-
cations. In: Design, Automation, and Test in Europe
(DATE), pp. 570–575. IEEE, Florence (2019). DOI
10.23919/DATE.2019.8714861

18. Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.,
Aridhi, S.: Preesm: A dataflow-based rapid prototyping
framework for simplifying multicore dsp programming.
In: European Embedded Design in Education and Re-
search Conference (EDERC), pp. 36–40 (2014). DOI
10.1109/EDERC.2014.6924354

19. PREESM: (2021). PREESM Applications
Repository. Retrieved April 10, 2021, from
https://github.com/preesm/preesm-apps

20. Rathore, V., Chaturvedi, V., Singh, A., Srikanthan,
T., Shafique, M.: Longevity framework: Leveraging on-
line integrated aging-aware hierarchical mapping and vf-
selection for lifetime reliability optimization in manycore
processors. IEEE Transactions on Computers pp. 1–1
(2020). DOI 10.1109/TC.2020.3006571

21. Slingerland, N., Smith, A.: Cache Performance for Multi-
media Applications. In: International Conference on Su-
percomputing (ICS), ICS ’01, pp. 204–217. ACM, New
York (2001). DOI 10.1145/377792.377833

22. Stoutchinin, A., Benini, L.: Streamdrive: A dynamic
dataflow framework for clustered embedded architec-
tures. J. Signal Process. Syst. 91(3–4), 275–301 (2019).
DOI 10.1007/s11265-018-1351-1

	Introduction
	Related Work
	Multi-core Model
	Experiments on cache configurations
	Dynamic Memory Management Techniques
	Results
	Conclusion

