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multi/many-core architecture executing it. State-ofthe-art frameworks allow fast development of dataflow applications providing memory, communicating, and computing optimizations by design time exploration. However, the frameworks usually do not consider cache memory behavior when generating code. A generally accepted idea is that bigger and multi-level caches improve the performance of applications. This work evaluates such a hypothesis in a broad experiment campaign adopting different multi-core configurations related to the number of cores and cache parameters (size, sharing, controllers). The results show that bigger is not always better, and the foreseen future of more cores and bigger caches do not guarantee softwarefree better performance for dataflow applications. Additionally, this work investigates the adoption of two memory management strategies for dataflow applications: Copy-on-Write (CoW) and Non-Temporal Memory transfers (NTM). Experimental results addressing state-of-the-art applications show that NTM and CoW can contribute to reduce the execution time to -5.3% and -15.8%, respectively. CoW, specifically, shows improvements up to -21.8% in energy consumption with -16.8% of average among 22 different cache configurations.

Introduction

The multi/many-core architecture is a widespread onchip design, providing high computing power in a small silicon area. The computation power is achieved by supporting task-level parallelism, splitting the application into parallel tasks running in different cores. A generally accepted expectation is that increasing the number of cores naturally leads to better application performance. However, increasing the number of cores impacts other aspects, especially the memories subsystem. Since memories are costly in terms of area and power to be embedded on the chip, the memory hierarchy (cache memories) generally has a reduced on-chip size, making it suffer from the high pressure in systems with a high number of cores. This phenomenon is known as memory wall [START_REF] Furtunato | When parallel speedups hit the memory wall[END_REF].

From a software aspect, several efforts have been made to allow the efficient development of parallel applications regarding memory footprint, communication overhead, and computing parallelism. Existing for 40+ years, the dataflow programming model may eventually stand as the ideal approach to bridge the gap between application and architecture resources. Figure 1a presents an overview of the principles of a dataflowbased application. The application is represented by a graph, where each node represents an actor having a single computing function (as exemplified by actor B1 code), and each edges representing the FIFO as a data dependency between two actors. Actors communicate via producing/consuming data tokens. An actor can start the execution only if required data tokens are available in the input FIFOs and if enough space is available in the output FIFOs.

Dataflow models can naturally make use of parallel resources by means of actors that run in parallel while consuming and producing tokens. Several tokens can be produced and consumed at a time, but a token is produced and consumed only once. This feature favors data spatial locality. While the cache hierarchy also exploits temporal locality, a dataflow program may benefit from the latter for instructions and spatial locality for data as consecutive tokens are usually involved. Therefore, dataflow applications performance should be improved with the increasing size of caches. However, this paper shows that such an assumption does not hold in regard to multiple cache-based architecture designs.

Taking advantage of the generic principles of dataflow applications, some rapid prototyping frameworks have been proposed. Figure 1b addresses PREESM [START_REF] Pelcat | Preesm: A dataflow-based rapid prototyping framework for simplifying multicore dsp programming[END_REF], a state-of-the-art open-source framework for rapid prototyping of dataflow applications in multi/many-cores. It provides a graphical user interface for the designer to generate the application source code. Based on inputs provided by the designer including algorithm (graph of the application) and system constraints (mapping, scheduling and etc.), the framework generates a deadlock-free source code of the application (implemented in C language) and the respective actor mapping on each core, based on spatial and temporal requirements. Due to the well-defined modeling of dataflow applications, it is possible to reach design-time optimal scheduling for static applications.

Although the state-of-the-art techniques can lead to theoretical optimal schedules, this article demonstrates that even optimally scheduled applications do not scale as desired with the increasing number of cores, cache levels, size, and cache sharing factor. As expected, the memory contention is of utmost importance, and the CPU load-based actor mapping used in the experiments does not lead to the best execution time. Therefore, the first contribution of this work is to study dataflow applications according to different caches configurations, providing experimental results that demonstrate their impact on the application's execution time performance and cache miss. For this, we consider several configurations, including non-available yet platforms or nonrealistic cache configurations, and use the Sniper simulator [START_REF] Carlson | Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulation[END_REF] to foresee the scalability of the considered dataflow applications.

From such analysis, the second contribution of this paper consists in the investigation of using two dynamic memory management techniques for dataflow code generation: Copy-on-Write (CoW) and Non-Temporal Memory (NTM) copying. Those techniques are not new since CoW is supported by Linux OS [START_REF] Bovet | Understanding the Linux kernel[END_REF] and NTM is supported by some processor designs, including Intel [START_REF]Intel Corporation: Intel® 64 and IA-32 Architectures Software Developer's Manual Combined Volumes[END_REF][START_REF] Le | Fast memcpy with SPDK and Intel® I/OAT DMA Engine[END_REF]. The novelty here is the study of the benefits and drawbacks of both approaches when applied to the dataflow programming model, evaluating whether they can contribute to speedup application's execution, reduce cache misses, and save energy. Additionally, those techniques can be used as runtime memory optimization approaches, complementary to static techniques [START_REF] Desnos | On memory reuse between inputs and outputs of dataflow actors[END_REF]. Moreover, they are applied at the framework level and do not require changes for the application specification and code.

In summary, this work has two contributions:

-The evaluation of the impact of different cache parameters and number of cores over the performance of static dataflow applications; -The evaluation of two existing memory management techniques (CoW and NTM) for three static dataflow applications.

The next section addresses related works that investigate the behaviors of dataflow applications running on systems with caches. Next, in Section 3 the multicore model assumed in this work is presented. Section 4 presents the experiments varying cache parameters and the number of core. Section 5 details CoW and NTM techniques, and section 6 presents the achieved results 

Related Work

This section highlights studies that target the behavior of dataflow applications running on systems with a memory hierarchy. In Domagala et al. [START_REF] Domagala | Generalized Cache Tiling for Dataflow Programs[END_REF], researchers extended the concept of tiling to the dataflow model to increase the data locality of applications for better performance by splitting iterations of nested loops. However, this type of optimization does not address the coarse-grain inter-actor (i.e., inter-tasks) relation. In Maghazeh et al. [START_REF] Maghazeh | Cache-Aware Kernel Tiling: An Approach for System-Level Performance Optimization of GPU-Based Applications[END_REF], a method is proposed for GPU-based applications by splitting both the GPU kernel into sub-kernels and input data into tiles in size of GPU L2 cache. Their work is intended to accelerate applications whose performance is bound to memory latency. The method increases data locality, as the subkernels are scheduled in a way to have the least cache miss rate, for GPU applications over various settings. However, the method requires source code modification and does not target the dataflow model. Research about the cache effect on the performance of multiple application types is presented in Garcia et al. [START_REF] García | Evaluating the effect of last-level cache sharing on integrated GPU-CPU systems with heterogeneous applications[END_REF]. Garcia et al. have evaluated the impact of Last Level Cache (LLC) sharing in GPU-CPU co-design platform for heterogeneous applications. According to their study, applications with low data interaction between GPU and CPU are sped up slightly by sharing the LLC. Data sharing of LLC minimizes memory access time and dynamic power, and accelerates synchronization for fine-grained synchronization applications.

The cache behavior of multimedia workloads is evaluated by Slingerland and Smith [START_REF] Slingerland | Cache Performance for Multimedia Applications[END_REF]. They appraised data miss rate of applications considering data cache size, associativity, and line size parameters. The authors observed that multimedia applications benefit from longer data cache lines and have more data than instruction miss rate in comparison to other workloads. The experiment results reveal that most of the multimedia applications just need 32 KB data cache size to have less than 1% cache miss rate, while other types of applications (3D graphic, document processing) do not reach the same behavior. As the results of our work will show, sharing cache levels among more cores with larger sizes, up to 256 MB for LLC, does not help the performances of dataflow applications, but also results in data access latency overhead.

The work of Alvez et al. [START_REF] Alves | Investigation of shared l2 cache on many-core processors[END_REF] investigates the impact of L2 sharing in order to find the best cache organization at this level. Assuming the NAS Parallel Benchmark, with heterogeneous workload set, and a 32-core SMP with two levels of caches (private L1-I and L1-D) and an L2, the work changes the sharing, size, associativity, and line size in the L2. Among the mains results, it was observed an execution time decrease when more cores share the L2 cache, even when 2 cores share the same L2. Increasing line size (64 bytes to 128 bytes) contributed to -32% in cache misses and +1.95% in speedup. The work does not address 3-level caches either dataflow applications.

Stoutchinin et al. [START_REF] Stoutchinin | Streamdrive: A dynamic dataflow framework for clustered embedded architectures[END_REF] present a novel framework, called StreamDrive, for dynamic dataflow applications. StreamDrive proposes a new communication protocol, reserve-push-pop-release, for dataflow model instead of the standard send-receive. This protocol allows their solution to employ a zero-copy communication channel for actors. It employs a blocking mechanism to access FIFOs directly in shared memory; hence, no local copies are needed, which are commonly used in software dataflow model. This study is specific since it focuses on computer vision applications running on a special embedded multi-core platform (P2012) with dedicated hardware computer vision engines. Meanwhile, we propose two solutions to general-purpose architectures that do not require novel hardware components.

Fraguela et al. [START_REF] Basilio | A software cache autotuning strategy for dataflow computing with upc++ depspawn[END_REF] propose the concept of a software cache with an autotuning method to configure its size according to each application. The approach is built upon Unified Parallel C++ (UPC++) library. It consists of an algorithm called in periodic intervals, which dynamically re-allocates the software cache size. Results show that the software cache can reduce the communication among actors due to the efficient cache sizing and allocation, presenting a hit rate just 0.27% lower than an optimal scenario. Similar to CoW and NTM, that proposal also implements the algorithm as part of a library, however, with a limited evaluation without varying hardware parameters and adopting just one application.

Table 1 summarizes the main characteristics of the related works addressing the cache impact in parallel applications running in SMPs. The main novelties of this work regarding the related works are twofold: (i) we evaluate a wide range of cache configuration in a multicore architecture, including realistic and non-realistic configurations; and (ii) two existing memory management methods are proposed to be used in dataflow application, which can reduce the memory copies penalties in numbers and latency, leading to an improved application execution time and energy consumption.

Regarding contribution (i), works of [START_REF] Alves | Investigation of shared l2 cache on many-core processors[END_REF][START_REF] García | Evaluating the effect of last-level cache sharing on integrated GPU-CPU systems with heterogeneous applications[END_REF][START_REF] Slingerland | Cache Performance for Multimedia Applications[END_REF] are also evaluation works. However, in [START_REF] Slingerland | Cache Performance for Multimedia Applications[END_REF] the benchmark is limited to multimedia applications, in [START_REF] García | Evaluating the effect of last-level cache sharing on integrated GPU-CPU systems with heterogeneous applications[END_REF] the focus is the iteration between the CPU and GPU by addressing a heterogeneous set of applications but not considering dataflow, and in [START_REF] Alves | Investigation of shared l2 cache on many-core processors[END_REF] the Authors did not consider a 3-level cache either the dataflow application profile. Therefore, to the best of the Author's knowledge, the present research is the first to perform a comprehensive evaluation of the cache impact with 3-level and targeting dataflow applications.

Regarding contribution (ii), it fills different gaps from related works focused on proposals [START_REF] Basilio | A software cache autotuning strategy for dataflow computing with upc++ depspawn[END_REF][START_REF] Domagala | Generalized Cache Tiling for Dataflow Programs[END_REF][START_REF] Maghazeh | Cache-Aware Kernel Tiling: An Approach for System-Level Performance Optimization of GPU-Based Applications[END_REF][START_REF] Stoutchinin | Streamdrive: A dynamic dataflow framework for clustered embedded architectures[END_REF]. Specifically, we are interested in: (i) keeping the original dataflow modeling granularity (differently from [START_REF] Domagala | Generalized Cache Tiling for Dataflow Programs[END_REF][START_REF] Maghazeh | Cache-Aware Kernel Tiling: An Approach for System-Level Performance Optimization of GPU-Based Applications[END_REF]); (ii) not making modification in the Linux-based kernel, or any part of the OS (contrary to [START_REF] Basilio | A software cache autotuning strategy for dataflow computing with upc++ depspawn[END_REF]); and (iii), targeting generic SMP (differently from [START_REF] Stoutchinin | Streamdrive: A dynamic dataflow framework for clustered embedded architectures[END_REF]). We endorse that the techniques of CoW and NTM are not new, and the goal of this study is to replace them in memcpys procedures in order to observe the impact in the cache and in the overall performance of dataflow applications, a study that is lacking in the literature.

Multi-core Model

This section presents the multi-core architecture model adopted in this work.

Architecture Overview

Figure 2 presents the architecture overview. We focus on detailing the memory hierarchy since it is the target of this work. The architecture is based on the Intel Xeon X5500 chip. Each core implements the Nehalem Intel microarchitecture [START_REF] Kurd | Next generation intel¯core microarchitecture (nehalem) clocking[END_REF], having a private L1 cache with 32KB, a private L2 cache with 256KB, and a shared by four cores L3 cache with 8MB. The chip also includes a triple channel DRAM memory controller to interface with off-chip DRAM memories.

The interconnection is bus-based with 20-bits width, and provides 12.8 GB/s per link in each direction (25.6 GB/s total).

The architecture depicted in Figure 2 is the reference multi-core model. The actual goal is to exploit different core counts and cache configurations by changing the following parameters:

-C: the number of cores (e.g., [START_REF] Carlson | Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulation[END_REF] 

Model description

This work adopts the Sniper multi-core simulator [START_REF] Carlson | Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulation[END_REF]. Sniper includes the description of the Nehalem cores as well as cache, memory controller, and DRAM.

Sniper is a consolidated system simulator for multicore architectures, used in many state-of-the-art works to evaluate application's performance and, mainly, power and energy consumption [START_REF] Kim | Energy and lifetime optimizations for dark silicon manycore microprocessor considering both hard and soft errors[END_REF][START_REF] Rathore | Longevity framework: Leveraging online integrated aging-aware hierarchical mapping and vfselection for lifetime reliability optimization in manycore processors[END_REF]. Sniper adopts an interval-based core model simulation, which allows fast and accurate simulation. The Nehalem cores are by default provided within Sniper distribution. Sniper core model and cache hierarchy are validated against actual Xeon processor using Splash2 benchmarks. Sniper takes as input configuration files that allow the user to set parameters as cache sizes, cache sharing, number of cores, core frequency, among many others.

Next, in the experimental setup subsection, we present further details about the multi-core setup simulated on Sniper.

Experiments on cache configurations

This section addresses the first contribution of this work: experiments evaluating the cache limits for dataflow applications. The first subsection describes the experimental setup. The remaining subsections address the analyses of application's performance varying the following parameters: C, L2(xC), L3(xC), L2 size, and L3 size.

Experimental Setup

Application set

Table 2b (1 st column) lists the applications benchmark addressed in this work. We adopt three real applications named Stabilization, Stereo, and scale-invariant feature transform (SIFT), taken from PREESM repository [START_REF] Preesm | PREESM Applications Repository[END_REF]. Stabilization is used for video stabilization. Its principle is to compensate for the movements of a video recorded with a shaky camera. The main two steps of this process consist of tracking the movement of the image using image processing techniques and creating a new video where the tracked motion is compensated. The input video adopted in experiments comes from PREESM's github repository [START_REF] Preesm | PREESM Applications Repository[END_REF] and has 40.9 MB of size with a resolution of 360x202 pixels.

Stereo is a computer stereo vision application that extracts 3D information from images. Stereo matching algorithms are used in many computer vision applications to process a pair of images, taken by two separated cameras at a small distance, and produce a disparity map that corresponds to the 3rd dimension (the depth) of the captured scene. Stereo matching algorithms and their implementations are still heavily studied as they raise important research problems [START_REF] Hamzah | Literature Survey on Stereo Vision Disparity Map Algorithms[END_REF]. The two input images [START_REF] Preesm | PREESM Applications Repository[END_REF] adopted in experiments have the size of 506.3 KB with a resolution of 405x375 pixels.

SIFT is used to object recognition in cluttered realworld 3D scenes [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF]. The extracted features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. The application behavior shares a number of properties in common with the responses of neurons in the inferior temporal cortex in primate vision. The input image [START_REF] Preesm | PREESM Applications Repository[END_REF] used in SIFT has a size of 512 KB with a resolution of 800x640 pixels, with 4 levels of parallelism and 1400 number of keypoints.

These three applications are specified through the PREESM framework, which is responsible for the code generation, actors scheduling and mapping, as shown in Figure 1b. (a) sum of all copied memory using the memcpy procedure.

(b) Dataflow applications benchmark profile.

Table 2b highlights that the applications have heterogeneous memory requirements. Specifically, the 4 th column details the sum of PREESM FIFOs size, which can be understood as the memory footprint of interactor communication. SIFT is memory bounded and has high synchronization demands (high number of actors and FIFOs), Stereo is computational and memory bounded, and Stabilization is computational bounded but with low memory and synchronization demands. The heterogeneous memory requirements lead to different cache locality and memory footprints, making such applications appropriated candidates for the evaluation of cache impact intended in this work.

We use the optimal scheduling and mapping decision provided by PREESM [START_REF] Pelcat | Preesm: A dataflow-based rapid prototyping framework for simplifying multicore dsp programming[END_REF], which is focused on workload balancing. The memory allocation adopts advanced memory optimization proposed in [START_REF] Desnos | On memory reuse between inputs and outputs of dataflow actors[END_REF], which considerably reduces the applications' memory overhead. The selected memory allocation uses the FirstFit algorithm with MixedMerged distributions and none data alignment. These features were selected because they have presented the lowest memory footprint at the same time that they are suitable to the target multicore architecture used in this work. After the generation of C code by PREESM, the applications were compiled using GCC v7.5.0 optimization -O2 (default optimization adopted by PREESM), and simulated on Sniper.

Hardware Setup

The experimental setup adopts the multi-core model described in subsection 3, configured on Sniper. Table 2a presents the hardware setup. These parameters are based on the real Xeon X5500 multi-core.

To evaluate the number of cores and cache sharing we created 22 multi-core cache configurations, varying the parameters C, L2(xC), and L3(xC). Figure 3 urations were not simulated for each C configuration. The minimal C evaluated for each configuration is dictated according to the sharing factor of the LLC. For instance, we do not evaluate a system with 4 cores for config. 9 (which have L3(x8) as LLC), since it is unfeasible because the L3 sharing (LLC sharing) requires at least 8 cores to meet the sharing factors of L3(x8).

The L2 sharing comprises configurations from L2(x1) up to L2(x32), with most of them (36%) addressing a private L2 cache (since this L2 design choice is found in real architectures like Xeon Nehalem and AMD K10). Some configurations are unrealistic, specially those that have a big L2, as the case of configurations 8, 16, 21, where L2 = 2MB; configurations 12, 22, where L2 = 4MB; and configuration 17, where L2 = 8MB. However, our goal is to address the trend in multi-core processor design, which features always bigger L2 caches.

The L3 sharing also adopts a very heterogeneous configuration set, including no L3 (e.g. configuration 1), one private L3 cache (e.g. configuration 4), up to 32 cores sharing the same L3 (configuration [START_REF] Pelcat | Preesm: A dataflow-based rapid prototyping framework for simplifying multicore dsp programming[END_REF][START_REF] Preesm | PREESM Applications Repository[END_REF][START_REF] Rathore | Longevity framework: Leveraging online integrated aging-aware hierarchical mapping and vfselection for lifetime reliability optimization in manycore processors[END_REF][START_REF] Slingerland | Cache Performance for Multimedia Applications[END_REF][START_REF] Stoutchinin | Streamdrive: A dynamic dataflow framework for clustered embedded architectures[END_REF].

The number of memory controllers is equal to the number of LLC. For instance, configuration 6 executed for 8 cores has two L3 shared by 4 cores (L3(x4)). Therefore, this configuration has two memory controllers (one for each L3).

(x1) No L3 (2) L2 (x2) No L3 (3) L2 (x4) No L3 (4) L2 (x1) L3 (x1) (5) L2 (x1) L3 (x2) (6) L2 (x1) L3 (x4) (7) L2 (x2) L3 (x4) Configuration Stereo (b) 0 5 10 15 20 25 (1) L2 (x1) No L3 (2) L2 (x2) No L3 (3) L2 (x4) No L3 (4) L2 (x1) L3 (x1) (5) L2 (x1) L3 (x2) (6) L2 (x1) L3 (x4) (7) L2 (x2) L3 (x4) Configuration Stabilization (a)
Although the results achieved are based on Xeon architecture, the presence of 22 different hardware configurations, varying the core count and cache sharing and size, helps to project the behavior of the benchmarks in architectures different from Xeon, especially those that adopt similar cache organizations.

Number of cores -C

Figure 4 shows the application iteration time (time for the application to complete the execution of one loop), for Stabilization (a), Stereo (b), and SIFT (c). The xaxis contains groups of bars, where each group represents one configuration (only the ones that support C varying from 4 to 32 were shown), and each bar represents a different C to that configuration.

The main evaluation to be extracted from these results is related to scalability with the number of cores C. It is possible to observe that Stabilization presents a continuous reduction in the execution time according to a higher C, reducing its execution time on average -46% from 4 to 8 cores, -43% from 8 to 16 cores, and -39% from 16 to 32 cores. However, the same does not occurs to Stereo and SIFT, which have a moderate or even worst improvement in C ≥ 16, with Stereo presenting an execution time of -22%, -1.3%, +2.6%, for an increase in C of 4 to 8, 8 to 16, and 16 to 32, respectively.

Observing Table 2b, it is possible to note that Stereo and SIFT have a higher FIFOs size compared to Stabilization, which puts more pressure on the cache subsystem and does not allow the application to entirely benefit from a higher core count (reaching a memory wall).

It is also possible to observe that there are different performances among the configurations of the x-axis. Such performance is impacted due to the different L2 and L3 sharing configurations. The next two subsec-tions enter into details about the impact of L2 and L3 sharing.

L2 Sharing

Figure 5 presents a comprehensive evaluation of the L2 sharing impact over the execution time, L2 miss rate, and L2 miss rate for the three applications. The left y-axis of each plot represents the application iteration time, the right y-axis represents the miss rate, and the x-axis represents the configurations.

Each application has 4 plots, one for each simulated C. As the purpose is to evaluate the results only varying L2 sharing, the plots have the L3 sharing fixed according to the maximum number of cores (as well as in the Xeon architecture).

The L2 miss rate decreases for all applications, more sharply for Stabilization (-59%), and less significantly for SIFT (-23%), and Stereo (-22%), considering the average between the leftmost configuration and the rightmost configuration. This decrease in L2 miss rate happens because a high L2 sharing increases the probability of an actor to share a FIFO inside the same L2 that is being shared with another actor (without the need to retrieve the data at the L3 cache level). The decrease is less significant in high memory demand applicationsas SIFT and Stereo -since they naturally require more memory than Stabilization.

The L3 miss rate increases for all applications according to the higher L2 sharing. Such increase makes the L3 reach high miss rates of 84.3% for SIFT, 84% for Stereo, and 66.32% for Stabilization in configuration 22. Again, the memory demands of each application play an important role to stress the cache. The number of L3 accesses helps to justify this L3 miss rate increase. With a more shared L2, the L3 accesses consequently decreases, reaching, on average of -39.7% for Stabilization, -32.3% for Stereo, and -17.6% for SIFT. This makes the L3 lose temporal and spatial locality and increasing its miss rate, which transfers the data access to DRAM level and delays the execution time.

The execution time remains constant for Stabilization regardless of higher L2 sharing. For Stereo and SIFT, it remains constant for C = 4, 8, but for C ≥ 16, the execution time starts to increase from L2(x2), reaching up to +56% of increase for Stereo and to +17% for SIFT L2(x32). This increase in execution time is attributable to the significant increase of the L3 miss rate compared to a not-so-high decrease of the L2 miss rate, which generates miss penalties from both sides (L2 and L3 caches).

In summary, increasing L2 cache sharing is not beneficial to dataflow applications, specifically those that demand more memory as in the case of Stereo and SIFT. This is in compliance with the cache design choices of some processor architectures as Intel Nehalem and AMD K10, which use private L2 caches. As can be observed from the results, assigning to each core a private L2 reduces the execution time since this allows a more balanced rate of L2 and L3 misses, which reduces cache contention earlier avoiding data to be fetched in a higher level of caches or even DRAM.

L3 Sharing

Figure 6 presents a similar set of plots of L2 sharing analysis, but now varying L3 sharing. The L2 sharing is fixed in L2(x1) since the previous subsection has shown that this is the best L2 sharing configuration.

The results show three trends: (i) L2 miss rate remains constant; (ii) L3 miss rate decreases significantly according to the increasing of L3 sharing; and (iii) the execution time can benefit from a higher L3 sharing.

Regarding the L2 miss rate, it is expected that it remains constant since the L2 was not changed. Regarding the L3 miss rate, it decreases significantly for all applications according to higher L3 sharing, reaching a miss rate in the L3(xC) of, on average, 9.3% for Stabilization (-87.34%), 8.4% for Stereo (-87%), and 37.8% for SIFT (-38%). This result is expected since a higher L3 sharing allows all application data to fit on the L3 cache (note that SIFT presented the lowest improvement due to its higher memory demands). Consequently, the execution time also benefits from this L3 miss rate decrease, specifically for the applications with higher memory demands such as Stereo and SIFT. In summary, increasing L3 cache sharing is beneficial to dataflow applications, specifically those that demand more memory. A single L3 cache is slower but larger, allowing it to store all application data on it.

Cache Size

In the previous L2 and L3 sharing analysis, it was possible to conclude that an private L2 and an L3 shared by all cores presents the best results related to application speedup and L2/L3 miss rate. To the cache size evaluation, we keep this sharing configuration, and changed only the size of L2 or L3 per core, creating 15 new cache configurations (3 varying L2 size × 5 varying L3 sizes). Besides, the evaluation only addresses configurations with 32 cores, since lower core count have presented the same trend and are not interesting in terms of a state-of-the-art analysis.

Figure 7 shows the results varying the L2 size (256KB, 512KB, and 1MB) at x-axis. The left y-axis represents the application iteration time, and the right y-axis represents the cache miss rate. Each plot repre-sents one application, with each one having 3 sets of results representing different L3 sizes.

It is possible to observe that the increase in L2 and L3 size has a low influence on the L2 and L3 miss rate for all applications. The execution time has a small reduction according to higher L2 sizes, however, this value is insignificant, representing an average reduction from the lower L2 size (256KB) to the higher L2 size (1MB), of -0,49% for Stereo, -1.76% for SIFT, and -4.62% for Stabilization.

The results varying the L3 sizes follows the same trend observed for L2. Figure 8 shows an example with the L2 size fixed in 512KB (other L2 sizes present very similar behavior). It is possible to see that both L2 and L3 cache misses remains stable, and with an insignificant reduction in the execution time (not better than -0.26% for all applications).

In summary, increasing the L2 and L3 sizes does not guarantee an automatic improvement for dataflow applications. In such a case, when a higher amount of hardware resources cannot provide speedup to the application, other aspects must be taken into consideration, specifically at the software level, by allowing the mapping and scheduling algorithms to make better use of such availability of resources and improving the parallel workload of the application.

Summary of findings

Bigger is not always better with dataflow; increasing the number of cores, cache levels, size, does not guarantee a faster application execution. This finding is especially significant for working sets that demand more than the total cache size.

The next items summarize the finding for each analysis:

-Number of cores: increasing the number of cores does not guarantee automatic improvement in the execution time, since the overhead of cache protocols and required synchronization does not allow applications to increasingly speed-up, specifically the ones with more memory demands. -Cache sharing: reducing L2 sharing and increasing L3 sharing was the most beneficial configuration for the addressed dataflow applications. -Cache size: increasing the L2 and L3 sizes have an insignificant effect on the adopted dataflow benchmarks.

One interesting finding is that private L2 and L3 shared by all cores was the configuration that presented the best results related to application speedup and L2/L3 miss rate. While this conclusion can sound similar as Intel had reached some years ago, justifying its current cache organization with L3 shared by all cores, it was not so apparent from our point of view. First, our focus was to evaluate the impact specifically for dataflow applications, research that, to the best of our knowledge, was not addressed yet. Secondly, our initial hypothesis was that when two actors -sharing the same FIFO -are mapped on different processors that share an L2 cache (increased sharing factor), this will improve performance due to the reduction in the coherence traffic and the L2 miss rate reduction. This behavior is supported by the results (Figure 5). However, this leads to a higher miss rate for L3, which has higher penalties than L2, and consequently, has a higher influence on the execution time, as shown in the case of the three applications studied (Figure 6).

Table 2b shows that PREESM uses memory copying mechanisms extensively for FIFO handling. Some memory copying is expected in a dataflow design; however, memory copying is done to the degree that negates the cache hierarchy benefits. Therefore, alternative approaches must be investigated to allow reducing memory copies penalties at runtime. The next sections detail the research made in this sense.

Dynamic Memory Management Techniques

This section presents the second contribution of this work: the evaluation of two dynamic memory management techniques and its impact when used in the con-text of static dataflow applications. These techniques are Copy-on-Write (CoW) and Non-Temporal Memory (NTM) copying. They are not novel in their principle, CoW is a well-known approach supported by Linux OS by the mmap() syscall [START_REF] Bovet | Understanding the Linux kernel[END_REF], and NTM is essentially a direct RAM-to-RAM copy, supported in some Intel processors [START_REF]Intel Corporation: Intel® 64 and IA-32 Architectures Software Developer's Manual Combined Volumes[END_REF]. The novelty here is to exploit opportunities of using such techniques in dataflow frameworks, and quantify how much they can improve the applications execution time and system energy by saving memory transfers.

First, subsection 5.1 presents the motivation to employ these techniques in dataflow applications. In sequence, the subsection 5.2 presents CoW, and subsection 5.3 presents NTM.

Motivation

Figure 9a shows a fork-join actor graph implemented as a dataflow application. Actor A produces data tokens t1 and t2 to actors B1 and B2, which access those data, process, and generate a token to actor C, which merges the data and generates the application output. A memcpy is used to transfer a data token between actors. A non-overlapping memory space (dedicated buffer), is required for each actor, since producer actors (for instance, actor A), can, during its processing, modify the data produced but not consumed yet in its output buffer. And the other way round, a consumer actor can use the input buffer for temporary values. Besides this fork and join pattern, dataflow applications can also have broadcast and round-buffer actors which also assumes non-overlapping memory spaces between actors [START_REF] Desnos | On memory reuse between inputs and outputs of dataflow actors[END_REF].

Taking advantage of this high waste of memory and time by applying memory copies, Desnos et al. [START_REF] Desnos | On memory reuse between inputs and outputs of dataflow actors[END_REF] proposed memory reuse techniques over those dataflow applications. In summary, the designer can inform the framework which buffers can be merged in the same memory space, resulting in the graph presented by Figure 9b. Thus, the memcpy are avoided, helping to significantly save memory footprint and execution time.

However, such design-time approach only works assuming two conditions: (i) the designer must know the framework and the application very well in order to extract applications behavior and to model into the framework the desired memory reuse; (ii) it only works for buffers that are known to be read-only over all the actor lifetime, as the case of buffer t1 of actor B1 of Figure 9a. If the actor -due to a branch in its algorithm flow -chooses to write in t1 buffer space, these memory reuses cannot be adopted. Even if the actor has a probability of less than 1% to write in this buffer, the memory reuse cannot be applied since it is fundamentally a design-time exploration technique.

Thinking about how to fulfill this lack, our idea is to investigate two dynamic memory management techniques which are CoW and NTM. Differently from static memory management, they were designed to be used at runtime, and have the potential to avoid unnecessary memory copies (CoW), and cache trashing (NTM). In the next subsections, we present the details of each one and how they were implemented in our multi-core model, as well as, the evaluation of its drawbacks and benefits.

Copy-on-Write (CoW)

Figure 10 details the CoW concept. The principle of CoW is simple. It consists in allowing two or more threads (actors in our case) to share to the same memory space. When one thread attempts to write in that space a new memory space is dynamically created, bringing the data with it (a copy on write). It thus prevents the writing thread from overwriting the data in the first memory space [START_REF] Bovet | Understanding the Linux kernel[END_REF]. Figure 10 depicts at time t1 thread A and thread B pointing to the same memory space 1. At the time t2, thread B writes in the memory space 1. At the time t3, the OS detects this write and makes a copy of the memory space, creating the memory space 2 and making thread B point to it. Now, any data written/read by thread B will be placed/accessed in memory space 2.

This functionality can be implemented in a dataflow application by making the buffers involved in a given Table 3 Core change for supporting the CoW mechanism, assuming: (1) src buffer is the source buffer, (2) dst buffer is the destination buffer, (3) copy length is the copy length, ( 4) shm open fd is a file descriptor created with the shm open system call.

Original Code

CoW mechanism memcpy(dst buffer, src buffer, copy length); void *dst buffer = mmap(NULL, copy length, PROT READ | PROT WRITE, MAP PRIVATE, shm open fd, 0); Table 4 Core change for supporting the NTM mechanism, assuming: (1) src buffer is the source buffer, dst buffer is the destination buffer, copy length is the copy length.

Original Code NTM mechanism memcpy(dst buffer, src buffer, copy length);

for (i = 0; i < copy length/4; i++){ mm stream si32(dst buffer operation (like a fork, join, and broadcast) point to the same memory space after the producer actor writes data in this space. If the destination buffer receives a write attempt by any actor, a CoW happens, preserving the original values of the buffer to the consumer actor.

The core code change to support CoW is shown on the right side of Table 3 as a single line. Initialization and termination has been omitted for this example. The CoW mechanism is achieved by mapping all destination buffers (named dst buffer) into the same physical address, which is referenced by file descriptor shm open fd. This latter address was initialized by the shm open procedure. Besides, we map the region as private (MAP PRIVATE) with read and write permissions (PROT READ | PROT WRITE). The combination of these two flags will create a new copy of the physical address when a write has been made to the memory area (in other words, a copy-on-write). Finally, we allow the OS to decide the virtual address of this new buffer by passing nil (NULL) as the first parameter to mmap.

The CoW procedure is typically handled by the OS kernel. Unfortunately, the Sniper simulator has limited operating system modeling capabilities to evaluate kernel-based strategies [START_REF] Carlson | Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulation[END_REF]. Thus, for our experiments, we used a combination of user-and kernel-space interaction so that Sniper can account OS overhead accurately. Specifically, in our implementation a buffer is mapped to CoW without the PROT WRITE flag. Any future attempts to write in the buffer will trigger an exception (SIGSEGV signal1 ), which interrupts the causing thread. Then, an exception handler implemented at user space changes the offending memory page to use CoW. In regard to the code presented in Table 3, we change the capability of the memory regions to read-only (removing flag PROT WRITE), and install a signal handler to re-enable the write capability for this mapping.

Non-Temporal Memory (NTM) Copying

NTM copying is ideal for memory spaces known to be write-mostly or rarely used (i.e., poor temporal locality). This approach uses either (i) instructions that bypass the cache hierarchy or (ii) userspace RAM-to-RAM DMA. For the x86 architecture, (i) is available using SSE extensions [START_REF]Intel Corporation: Intel® 64 and IA-32 Architectures Software Developer's Manual Combined Volumes[END_REF], and (ii) through the I/OAT DMA engine available in some processor designs [START_REF] Le | Fast memcpy with SPDK and Intel® I/OAT DMA Engine[END_REF]. In any case, the memcpy procedure is replaced by another procedure that uses either technique specialized for memory transfer and therefore, avoiding CPU to be executing instruction of data transfers. Another benefit of employing the NTM mechanism is that cached data from other applications are not trashed due to the copying required by any given application.

Since these approaches avoid the cache hierarchy, their operation is slower compared to memcpy. Intel shows that RAM-to-RAM achieves approximately half the speed of memcpy for large transfers (≥ 8 MiB) and many times slower for smaller transfers on x86 [START_REF] Le | Fast memcpy with SPDK and Intel® I/OAT DMA Engine[END_REF]. Table 4 depicts the results obtained by using NTM instructions.

The core code change to support NTM is shown on the right side of Table 4 as a for-loop structure. Initialization and termination has been omitted from this table. The procedure mm stream si32 is provided by Intel to call the appropriate assembly instruction for NTM operations. It copies 32 bits from a value (src buffer[i]) to a given pointer (dst buffer[i]). After the end of the for-loop, the data is copied to the area pointed by dst buffer. Thus, the result is the same as calling memcpy but the related data will not be present in the caches if they were not already there before mm stream si32 is first called.

Results

This section presents the results about CoW and NTM using the three dataflow benchmarks and the 22 configurations.

Experimental Setup

All applications used in these experiments were generated using the PREESM framework (version 3.4), compiled using GCC v7.5.0 optimization -O2, and executed on Sniper simulator. The energy estimation is performed with McPAT [START_REF] Li | Mcpat: An integrated power, area, and timing modeling framework for multicore and manycore architectures[END_REF], which is integrated into Sniper and provides reliable power and energy figures broadly used in state-of-the-art works [START_REF] Kim | Energy and lifetime optimizations for dark silicon manycore microprocessor considering both hard and soft errors[END_REF][START_REF] Rathore | Longevity framework: Leveraging online integrated aging-aware hierarchical mapping and vfselection for lifetime reliability optimization in manycore processors[END_REF].

We develop an algorithm implemented in Python script language, which has as input the generated code of PREESM and has as output the new application code using the CoW or NTM technique. This algorithm detects in the code the memcpy patterns, which are candidates to be replaced by CoW or NTM. The algorithm is fully automatized, in the sense that it detects the memcpy patterns by looking for join-broadcast, and broadcast dataflow patterns [START_REF] Desnos | On memory reuse between inputs and outputs of dataflow actors[END_REF]. The algorithm can also be tuned with a parameter ψ, which allows defining a minimum threshold in the data size of a memcpy operation. By using ψ it is possible to eliminate small-size memcpy and only target the ones which transfer a large amount of data.

Algorithm 1 presents the method to detect the memcpy patterns which are candidates to be used in CoW and NTM. As input, the algorithm has three parameters: src o: the application source code generated by PREESM; t: a flag that selects between CoW or NTM; and ψ: the parameter that indicates the minimum memcpy data size. Line 1 and 2 initialize two sets, called join broad set and broad set, which will store the destination buffers' names of memcpys related to joinbroadcast and broadcast-only, respectively. In line 3, the function extract memcpy extracts from src o all memcpy instance generated by PREESM, achieving the following information from each memcpy: data transfer size, source buffer, destination buffer, and the type (JOIN, BROADCAST, FORK, and ROUNDBUFFER [START_REF] Pelcat | Preesm: A dataflow-based rapid prototyping framework for simplifying multicore dsp programming[END_REF]). The type is easily extracted due to a PREESM's characteristic in which it classifies the memcpy during its code generation, inserting its type as a comment in the line above each memcpy. All the memcpy instances are inserted in the list called memcpy list.

Lines 5-14 identify join-broadcast patterns evaluating each element mj of memcpy list. The condition of line 6 checks if the mj is a JOIN, if its destination buffer is not already in join broad set, and if the memcpy data size meets ψ. Once this check is true, the algorithm advances to the phase (lines 7 and 8) to confirm that the destination buffer of JOIN operation is also involved in BROADCAST. Once the buffer matches a join-broadcast pattern, it is inserted in the join broad set in line 9.

Lines 15-22 identify broadcast-only patterns evaluating each element mb of memcpy list. Line 16 tests if mb's type is BROADCAST. Another important verification is to check if the buffer is not in the join broad set, eliminating it if true. The same test of line 16 also seeks to eliminate the memcpys with a size lower than ψ. In case all conditions are meet, the destination buffer is added to the broad set at line 18.

The last part of algorithm (lines 23-27) focused in verifying the value of t, calling the respective function which will applies CoW (line 24) or NTM (line 26). These functions evaluate all memcpys from memcpy list, selecting those one containing the buffers name in join broad set and broad set. The output of the algorithm is src t, comprising the src o with the matched memcpys replaced by the code presented in Table 3 and Table 4.

Table 5 details the values of ψ (2 nd column) used for each application. The table also details the number of memcpy addressed in CoW and NTM (3 rd column), and its respective total size (4 th column).

Table 5 shows that SIFT has more available memcpy to be optimized. The ψ was defined as 400KB for SIFT and Stereo. Stabilization does not have such a large memcpy, therefore we reduce the value of ψ to allow the algorithm to consider the bigger memcpy size of the application. These values of ψ were achieved after a design-time analysis and represent to the best execution times achieved for each application.

The next subsections present the results achieved by replacing the memcpy either using NTM or CoW for the three applications.

Non-Temporal Memory Copying (NTM)

Figure 11a presents the iteration execution time for all benchmarks using NTM. It is noticeable that execution NTM also provided a small energy reduction, in average -0.84% (σ=0.7) for Stabilization, -0.2% (σ=0.5) for Stereo, and -1.03 (σ=1.1) for SIFT, reaching up to -2.7% for SIFT at configuration 16.

(x1) No L3 (2) L2 (x2) No L3 (3) L2 (x4) No L3 (4) L2 (x1) L3 (x1) (5) L2 (x1) L3 (x2) (6) L2 (x1) L3 (x4) (7) L2 (x2) L3 (x4) (8) L2 (x8) No L3 (9) L2 (x1) L3 (x8) (10) L2 (x2) L3 (x8) (11) L2 (x4) L3 (x8) (12) L2 (x16) No L3 (13) L2 (x1) L3 (x16) (14) L2 (x2) L3 (x16) (15) L2 (x4) L3 (x16) (16) L2 (x8) L3 (x16) (17) L2 (x32) No L3 (18) L2 (x1) L3 (x32) (19) L2 (x2) L3 (x32) (20) L2 (x4) L3 (x32) 
Figure 11b focuses on SIFT (high memory footprint application) and presents a perspective between the bars: L3 miss rate, execution time, and energy, with the lines that show the absolute number of DRAM accesses without NTM and with NTM. It is possible to observe that energy is reduced in most configurations, reaching up to -2,7% to configuration 16. The L3 cache miss was barely affected, presenting an average decrease of -0.13% with a slight DRAM increase compared to its respective version without NTM (+0.14%).

Figure 12 presents results for all applications on configuration number 18 (private L2 and L3 shared by all cores), which was the cache configuration that, in general, presented the best results considering speed-up and L2/L3 miss rate from previous cache analysis (see section 4). NTM has presented improvements for all applications on this configuration, specifically for SIFT and Stabilization. Note that, despite Stabilization has a low memory footprint, the execution time reduction is higher than SIFT and Stereo, at cost of more L3 miss rate. On another side, SIFT presents a modest execution time reduction, but also achieves reduction in all cache hierarchy, and specifically, in L1-D and L1-I access. In summary of all results, it was possible to observe that NTM can improve the execution time and reduce energy, however, the gains were modest, not better than -1.9% in execution time and -2,7% in energy consumption considering all results.

6.3 Copy-on-Write (CoW) Figure 13(a) presents the iteration execution time for all benchmarks using CoW. An average execution time reduction can be observed for Stabilization (-2%) and, most importantly, to SIFT (-10%), which reaches up to -15.8% for configuration 10. It is expected that SIFT benefits more from CoW since it has a large number of buffers used in memcpy compared to the other applications. On the other side, Stereo presents an average execution time increase of 1.3%. Stereo is known to be computation-intensive, and, therefore, the access to buffer mapped as CoW is less frequent than in Stabilization and SIFT, which makes the overheads of CoW (create shared memory and call of mmap()) overcome its benefits.

An energy reduction was achieved for all applications (-7.6% on average), with an average reduction of -2% for Stabilization, and -1.3% for Stereo. Again, SIFT is the application that benefits the most from CoW regarding energy. Figure 13b shows an overview of energy consumption for SIFT (bar graph) to the 22 configurations. On average, the energy reduction was -16.8%, reaching the best result of -21.8% to configuration 8. Again, SIFT benefits greatly from the CoW which allows data to be used without having to wait for the memcpy to complete. This behavior significantly affects the use of the CPU, which saves instructions in memcpy. This result can be observed following the dotted line of Figure 13b, which shows a significant reduction of L1-I (instruction cache) accesses of, on average, -62.3% (σ=3.4).

Figure 14 presents results for all applications in configuration 18. As expected, all applications have a reduction in the number of instruction access from the L1-I cache, which is justified by the saved memcpy instructions by using CoW. The instruction access gains progresses accordingly with the size of application's memcpy (as depicted in Table 5 (4 th column)), with Stabilization presenting -0.41% less L1-I access, Stereo -29.8%, and SIFT -46.5%. This effect impacts the energy consumption and execution time, especially for SIFT, which benefits more from CoW due to its larger memory transfer profile.

Conclusion

This work presents a broad analysis of the impact of cache hierarchy configuration over static dataflow applications. In total, 37 different cache configurations (resulting in 213 simulations with 3 real applications) were adopted to evaluate variations in core count, L2/L3 sharing, and L2/L3 sizes. From this analysis, it is possible to conclude that bigger is not always better in terms of core count, L2 sharing, and L2/L3 size, since other aspects as efficient parallel workload division and computation/communication profile can prevent the application to benefit from more cache memory resources. This analysis shows that private L2 and L3 shared among all cores provide the best results in terms of application speed-up and L2/L3 cache miss for the adopted dataflow applications. As the second contribution, this work investigates the benefits of using copy-on-write (CoW) and non-temporal memory transfer copies (NTM) in dataflow applications. Results have shown that both techniques can contribute to improve execution time and save energy. NTM presents a mod-est reduction in execution time (up to -5.3%) and energy (up to -2.7%). CoW -specifically when used in applications with bigger memcpy transfers (≥ 400KB) -shows important reductions, achieving up to -15.8% in execution time and -21.8% in energy consumption. These techniques are complementary to static state-ofthe-art memory optimization approaches like [START_REF] Desnos | On memory reuse between inputs and outputs of dataflow actors[END_REF], acting at runtime to reduce cache thrashing (NTM) and unnecessary data movements (CoW) among dataflow actors.

Future works include applying such evaluation in a different cache memory architecture, like distributed shared-memory systems. On the software side, some research can be conducted about source code generation from dataflow specification optimized to the cache hierarchy of the target SMP.

Declarations

  Fig. 1 (a) Overview of a dataflow application model with four actors. (b) Workflow of PREESM framework [18].

  express graphically the reasoning behinds these configurations. Each configuration is a black spot in the figure. The configurations can be divided into 4 groups (different background color on the figure) according to the number of cores (C = 4, 8, 16, 32) in which a given configuration was simulated. Note that the 22 config-

Fig. 3

 3 Fig. 3 Overview of the reasoning behind the 22 cache configuration adopted in the experiments. C = number of cores simulated for each configuration.

Fig. 4

 4 Fig. 4 Application iteration time over different number of cores for three applications: (a) Stabilization, (b) Stereo, (c) SIFT.

Fig. 5

 5 Fig. 5 L2 sharing evaluation for three applications. (a) Stabilization, (b) Stereo, (c) SIFT.

Fig. 6

 6 Fig. 6 L3 sharing evaluation for three applications. (a) Stabilization, (b) Stereo, (c) SIFT.

Fig. 7 Fig. 8

 78 Fig. 7 L2 cache size comparison varying L2 size over multiples L3 sizes. (a) Stabilization, (b) Stereo, (c) SIFT.

  (a) Classical dataflow fork-join application (b) Memory optimization proposed by[START_REF] Desnos | On memory reuse between inputs and outputs of dataflow actors[END_REF] 

Fig. 9

 9 Fig. 9 Communication overview among actors of a dataflowbased fork-join application.

Fig. 10

 10 Fig. 10 Principle of the Copy-on-Write (CoW) mechanism.

Fig. 11

 11 Fig. 11 Results using NTM. (a) Evaluation of execution time. (b) Detailed evaluation for SIFT application.

Fig. 12

 12 Fig. 12 Results for configuration 18 using NTM. (a) Stabilization. (b) Stereo. (c) SIFT

Fig. 13

 13 Fig. 13 Results using CoW. (a) Execution time evaluation. (b) Energy evaluation.

Fig. 14

 14 Fig. 14 Results for configuration 18 using CoW. (a) Stabilization. (b) Stereo. (c) SIFT

Table 1

 1 Related works studying the cache impact in parallel applications.

	Author (et al.)	Proposal	Contribution	Benchmark
	Slingerland (2001) [21]	N.A. (Evaluation work)	Cache profile of multimedia applications	Multimedia applications
	Alvez (2009) [1]	N.A. (Evaluation work)	Evaluation of L2 properties	Heterogeneous applications
	Garcia (2016) [8]	N.A. (Evaluation work)	Evaluation of impact of LLC sharing Heterogeneous applications
	Domagala (2016) [6]	Splitting nested loops	Increased Data locality	StreamIt
	Maghazeh (2019) [17]	Splitting GPU kernels to sub-kernel and data input into L2 size	Increased Data locality + Decreased cache miss rate	GPU-based applications
	Stoutchinin (2019) [22] Novel framework (StreamDrive)	New communication protocol (zero-copy communication channel)	Dynamic Dataflow applications
	Fraguela (2021) [2]	Strategy to improve cache usage in dataflow	Minimize communication among threads	Cholesky decomposition
	This work	Use of two dynamic memory manag. methods (CoW, NTM)	Cache configuration evaluation + Reduction in memory copy penalties	Static Dataflow applications

from those techniques. Finally, Section 7 concludes this work.

Table 2

 2 Experimental setup settings.

						Application	Actors	PREESM # FIFOs	PREESM FIFOs size	Memory copying a PREESM Actors
	L1-I Cache	32KB	8way	1 cyc. tag lat.	4 cyc. data lat. LRU						
	L1-D Cache	32KB	8way	1 cyc. tag lat.	4 cyc. data lat. LRU	Stabilization	30	607	0.92 MB	21 MB	0.2 MB
	L2 Cache	256KB	8way	3 cyc. tag lat.	8 cyc. data lat. LRU	Stereo	36	811	29.09 MB	5 MB	13 MB
	L3 Cache (LLC)					SIFT	77	2183	188.6 MB	12 MB 308.6 MB

Core Model

Intel Xeon X5550 4/8/16/32 @ 2.66 GHz (base clock) 8MB 16way 10 cyc. tag lat. 30 cyc. data lat. LRU cyc = cycles; lat = latency; LRU = Least Recently Used.

(a) Hardware model settings.

Algorithm 1 :

 1 Patterning detection of CoW and NTM memcpy

		Input : src o (application source code generated
		by PREESM),
		t (techinique: CoW or NTM),
		ψ (minimum data size of a memcpy)
		Output: src t (application source code adopting
		CoW or NTM)
	1 join broad set ← ∅;
	2 broad set ← ∅;
	3 memcpy list ← extract memcpy(src o);
	4 if memcpy list = ∅ then
		/* Identify join-broadcast patterns	*/
	5	foreach mj ∈ memcpy list do
	6	if mj.type = JOIN & mj.destination / ∈
		join broad set & mj.size ≥ ψ then
	7	foreach mb ∈ memcpy list do
	8	if mb.type = BROADCAST &
		mb.source = mj.destination &
		mb.size ≥ ψ then
	9	join broad set.insert(mj.destination);
	10	break foreach;
	11	end
	12	end
	13	end
	14	end
		/* Identify broadcast-only patterns	*/
	18	broad set.insert(mb.destination);
	19	end
	20	end
	21	end
	22 end
	23 if t = CoW then
	24	src t ← applies CoW(src o, join broad set,
		broad set, memcpy list);
	25 else
	26	src t ← applies NTM(src o, join broad set,
		broad set, memcpy list);
	27 end

15 foreach mb ∈ memcpy list do 16 if mb.type = BROADCAST & mb.destination / ∈ join broad set & mb.size ≥ ψ then 17 foreach mb ∈ memcpy list do

Table 5

 5 Memcpy profile addressed in CoW and NTM.

	Application	ψ	# memcpy Total memcpy size
	Stabilization	200KB	1	0.21 MB
	Stereo	400KB	5	2.4 MB
	SIFT	400KB	8	24.4 MB

SIGSEGV is a synchronously-generated signal and is guaranteed to be delivered to the causing POSIX thread[START_REF]IEEE: IEEE Standard for Information Technology-Portable Operating System Interface (POSIX(R)) Base Specifications[END_REF].
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