
HAL Id: hal-03606367
https://hal.science/hal-03606367v1

Submitted on 11 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining polyhedral approaches and stochastic dual
dynamic integer programming for solving the

uncapacitated lot-sizing problem under uncertainty
Franco Quezada, Céline Gicquel, Safia Kedad-Sidhoum

To cite this version:
Franco Quezada, Céline Gicquel, Safia Kedad-Sidhoum. Combining polyhedral approaches and
stochastic dual dynamic integer programming for solving the uncapacitated lot-sizing problem under
uncertainty. INFORMS Journal on Computing, 2022, 34 (2), pp.1024-1041. �10.1287/ijoc.2021.1118�.
�hal-03606367�

https://hal.science/hal-03606367v1
https://hal.archives-ouvertes.fr

Combining polyhedral approaches and stochastic

dual dynamic integer programming for solving

the uncapacitated lot-sizing problem under

uncertainty

Franco Quezada1,2, Céline Gicquel3, Safia Kedad-Sidhoum4

1 Sorbonne Université, LIP6, Paris, France
2 Universidad de Santiago de Chile, LDSPS, Santiago, Chile
3 Université Paris Saclay, LISN, Orsay, France
4 CNAM, CEDRIC,Paris, France

Abstract: We study the uncapacitated lot-sizing problem with uncertain de-
mand and costs. The problem is modeled as a multi-stage stochastic mixed-
integer linear program in which the evolution of the uncertain parameters is
represented by a scenario tree. To solve this problem, we propose a new exten-
sion of the stochastic dual dynamic integer programming algorithm (SDDiP).
This extension aims at being more computationally efficient in the management
of the expected cost-to-go functions involved in the model, in particular by re-
ducing their number and by exploiting the current knowledge on the polyhedral
structure of the stochastic uncapacitated lot-sizing problem. The algorithm is
based on a partial decomposition of the problem into a set of stochastic sub-
problems, each one involving a subset of nodes forming a sub-tree of the initial
scenario tree. We then introduce a cutting-plane generation procedure that iter-
atively strengthens the linear relaxation of these sub-problems and enables the
generation of additional strengthened Benders’ cut, which improves the conver-
gence of the method. We carry out extensive computational experiments on
randomly generated large-size instances. Our numerical results show that the
proposed algorithm significantly outperforms the SDDiP algorithm at providing
good-quality solutions within the computation time limit.

Keywords: Multi-stage stochastic programming, stochastic lot-sizing, stochas-
tic dual dynamic integer programming, node aggregation, valid inequalities,
partial decomposition.

1

1 Introduction

The single-item deterministic uncapacitated lot-sizing problem (ULS) is a pro-
duction planning problem first introduced by Wagner and Whitin (1958). It
considers a single type of item and aims at determining the quantity to be pro-
duced in each time period in order to meet demand over a finite discrete-time
planning horizon. Producing a positive amount in a period incurs a fixed cost,
called setup cost, together with a production cost per unit produced and an
inventory holding cost per unit held in stock between two consecutive periods.
The objective is to build a production plan such that the customers’ demand is
met in each time period and the total costs, i.e. the sum of setup, production,
and inventory holding costs over the whole planning horizon, are minimized.
This fundamental problem naturally appears as an embedded sub-problem in
many practical production planning problems. Solving it efficiently is thus es-
sential to develop algorithms capable of dealing with real-world problems.

As such, the deterministic ULS is known to be solvable in strongly polyno-
mial time. A simple dynamic programming algorithm is proposed by Wagner
and Whitin (1958). It is based on the zero-inventory-ordering property, i.e.
production is undertaken in a period only if the entering inventory level drops
to zero, and runs in O(T 2) time, where T is the number of time periods. This
time complexity was later improved to O(T log T) by Aggarwal and Park (1993)
and Wagelmans et al. (1992). We refer the reader to Brahimi et al. (2017) for
an updated and comprehensive survey on the single-item dynamic lot-sizing
problem.

However, in many applications, assuming deterministic input data (demand
and costs) is not realistic. Examples of real-world lot-sizing problems with un-
certain input parameters can be found among others in Camargo et al. (2014) for
the spinning industry, Hu and Hu (2016) for a manufacturing company produc-
ing braking equipment, Ghamari and Sahebi (2017) for a chemical-petrochemical
case study, Kilic et al. (2018) for a remanufacturing system, Macedo et al. (2016)
for a hybrid manufacturing/remanufacturing system and Moreno et al. (2018)
for humanitarian logistics.

In the present paper, we thus investigate a stochastic extension of the ULS,
denoted SULS in what follows, in which the problem parameters are subject to
uncertainty. We consider a multi-stage decision process corresponding to the
case where the value of the uncertain parameters unfolds gradually following
a discrete-time stochastic process and the production decisions can be made
progressively as more and more information on the demand and cost realizations
are collected. In order to address this problem, we use a multi-stage stochastic
mixed-integer linear programming approach. We assume that the underlying
stochastic input process has a finite probability space so that the information
on the evolution of the uncertain parameters can be represented by a discrete
scenario tree. Moreover, throughout this work, we rely on the commonly used
assumption that the scenario tree is stage-wise independent.

2

1.1 Related literature

Scarf (1959) found that, when all cost parameters are deterministic and only
the demand is subject to uncertainty, the optimal solution of SULS can be
obtained by following a (s, S) inventory management policy. However, Halman
et al. (2009) showed that a special case of SULS in which the production and
inventory holding costs are stochastic, the setup costs are set to zero and the
uncertain demand can take only two possible values in each period is NP-Hard.
It is thus unlikely to find polynomial algorithms in the number of time periods
for the problem, unless P = NP . Guan and Miller (2008) developed a dynamic
programming algorithm for solving the SULS, which is polynomial in the number
of nodes of the scenario tree. However, this number increases exponentially fast
with the number of time periods so that using their algorithm to solve problems
with a medium to large size planning horizon might lead to numerical difficulties.
Moreover, this algorithm is based on some specific properties of the optimal
solutions of the SULS. As a consequence, its direct extension to more general
lot-sizing problems whose optimal solutions do not display these properties is
not straightforward. This is why other solution approaches based on mixed-
integer linear programming or nested Benders’ decomposition have also been
explored. In what follows, we provide an overview of the related literature.

Using a scenario tree to represent the evolution of the uncertain parameters
namely leads to the formulation of a Mixed-Integer Linear Program (MILP)
which can be solved using mathematical programming solvers. Consequently,
several works focused on the polyhedral study of this MILP in order to strengthen
its linear relaxation and improve the computational efficiency of the branch-and-
cut algorithms embedded in MILP solvers. Valid inequalities can be found in
Guan et al. (2006b), Di Summa and Wolsey (2008) and Guan et al. (2009). In
particular, Guan et al. (2009) proposed a general method for generating cut-
ting planes for multi-stage stochastic mixed-integer linear programs based on
combining valid inequalities previously known for the deterministic variant of
the corresponding problem and applied it on the SULS. Their numerical re-
sults showed that a branch-and-cut algorithm based on these new inequalities is
more effective at solving instances on medium-size scenarios than a stand-alone
mathematical programming solver. Some extended formulations have also been
studied. An extended formulation using variable disaggregation was proposed
by Ahmed et al. (2003). More recently, Zhao and Guan (2014) developed an
extended formulation that provides integral solutions for the general SULS.
However, the size of this formulation grows exponentially fast with the number
of time periods, making its use computationally unpractical for solving instances
defined on large-size scenario trees.

In general, solution approaches based on strengthening MILP formulations
do not scale up well with the size of the scenario tree. They namely entail solv-
ing very large-scale (mixed-integer) linear programs, with millions of variables
and constraints, which leads to memory issues and/or prohibitive computation
times in practice. Decomposition methods, such as the nested Benders’ decom-
position algorithm, are thus an attractive alternative to tackle instances with

3

large-size scenario trees. In particular, the Stochastic Dual Dynamic Program-
ming (SDDP) approach proposed by Pereira and Pinto (1991) has been widely
used to solve large-size multi-stage stochastic linear programs. This approach
relies on a dynamic programming formulation of the stochastic problem and
leads to a decomposition of the overall problem into a series of small deter-
ministic sub-problems. Each of these problems focuses on making decisions for
a small subset of nodes belonging to the same scenario and the same decision
stage, taking into account not only the current cost of these decisions but also
their future cost which is represented by an expected cost-to-go function. In a
linear setting, the expected cost-to-go functions are convex and piecewise linear
and can thus be under-approximated through a set of supporting hyperplanes.
The SDDP algorithm builds such an approximation by iteratively adding Ben-
ders’ cuts to each sub-problem and converges to an optimal solution in a finite
number of iterations.

Recently, Zou et al. (2019) proposed a new extension of the SDDP algorithm,
called the Stochastic Dual Dynamic integer Programming (SDDiP) algorithm,
capable of solving multi-stage stochastic mixed-integer linear programs in which
the state variables, i.e. the variables linking the nodes to one another, are
restricted to be binary. One of their main contributions was to introduce a
new class of cutting planes, called Lagrangian cuts, which satisfies the validity,
tightness and finiteness conditions ensuring the convergence of the algorithm
to optimality. For problems in which the state variables are not binary but
continuous, the authors propose to introduce auxiliary binary variables in order
to make a binary approximation of the state variables. However, for large size
scenario trees, this approximation might be computationally inefficient and leads
to large optimality gaps as shown e.g. by the numerical results presented by
Quezada et al. (2019).

1.2 Contributions

In the present work, we propose a new extension of the SDDiP algorithm. This
extension aims at being more computationally efficient in the management of
the expected cost-to-go functions involved in the problem, in particular by re-
ducing their number and by exploiting the current knowledge on the polyhedral
structure of the SULS. It relies on the following three main ideas:

• Similar to the SDDiP algorithm, we exploit a dynamic programming for-
mulation and decompose the problem into smaller sub-problems. How-
ever, whereas the SDDiP algorithm fully decomposes the original problem
into small deterministic sub-problems, we partially decompose the prob-
lem into a set of somewhat larger stochastic sub-problems, each one in-
volving a subset of nodes forming a sub-tree of the initial scenario tree.
These sub-problems are more computationally demanding to solve than
the deterministic sub-problems involved in the original SDDiP algorithm.
However, this computational effort might be counterbalanced by an im-
provement in the quality of the feasible solution found at each iteration of

4

the algorithm. Namely, when each sub-problem covers a larger portion of
the planning horizon and the number of expected cost-to-go functions for
which an approximation has to be iteratively built is reduced, the feasible
solution obtained at a given iteration of the algorithm will be based on a
better representation of the future costs, i.e. will be less myopic, and will
tend to be of better quality. This might have a positive impact on the
global convergence speed of the algorithm.

• In the SDDiP algorithm proposed by Zou et al. (2019), three classes of cuts
are used to under-approximate the expected cost-to-go functions, namely
the Integer optimality cuts, the Lagrangian cuts and the strengthened Ben-
ders’ cuts. In particular, the strengthened Benders’ cuts generated at a
given node of the scenario tree are linear inequalities for which part of
the coefficients are obtained by solving the linear relaxation of the sub-
problems corresponding to its children nodes and by recording the dual
values of the constraints linking the sub-problems to one another. In ad-
dition to the strengthened Benders’ cuts generated using the initial linear
relaxation of the children sub-problems, we propose to generate additional
strengthened Benders’ cuts using an improved linear relaxation of these
sub-problems. We thus introduce a cutting-plane generation procedure
that takes advantage of previously published results on the polyhedral
structure of the SULS to iteratively strengthen the relaxation of these
sub-problems. Our computational results show that the joint use of the
strengthened Benders’ cuts obtained using the initial relaxation and the
ones obtained using an improved relaxation of the sub-problems leads to
a significant improvement of the computational efficiency of the SDDiP
algorithm.

• Finally, as proposed e.g. by Hjelmeland et al. (2018) and Quezada et al.
(2019), before actually running the SDDiP algorithm as defined by Zou
et al. (2019), we introduce an initial phase in which only strengthened
Benders’ cuts are generated on a dynamic programming formulation us-
ing the initial continuous state variables. This strategy relies on the idea
that, even if the obtained cuts do not satisfy the tightness condition
necessary to theoretically ensure the global convergence of the SDDiP
algorithm, they enable to build a first under-approximation of the ex-
pected cost-to-go functions with a reduced computational effort as each
sub-problem involves a limited number of binary variables. This initial
under-approximation is then further refined in a second phase based on
a dynamic programming formulation using a binary approximation of the
state variables.

Note that the use of a sub-tree decomposition (or node aggregation) has been
explored by several authors in the context of stochastic dynamic programming.
Cerisola and Ramos (2000) studied a multistage stochastic linear problem for
hydro-power generation scheduling. They proposed to decompose the scenario
tree into connected sub-trees and presented several node aggregation protocols

5

to generate these sub-trees. Later, Cristobal et al. (2009) considered multi-stage
stochastic mixed-integer programs and developed a stochastic dynamic program-
ming approach in which the original scenario tree is decomposed into sub-trees.
However, their algorithm significantly differs from the SDDiP algorithm as it
builds an upper envelope of the expected cost-to-go functions and only provides
a heuristic solution whereas the SDDiP algorithm under-approximates the ex-
pected cost-to-go functions and is capable of providing both a lower and an
upper bound of the optimal value. Note that Aldasoro et al. (2015) and Escud-
ero et al. (2018) recently presented an extension on the algorithm proposed by
Cristobal et al. (2009) aiming at exploiting parallel computing to further reduce
the computation time.

The contributions of this work are threefold following these three main ideas.
First, we propose a new extension of the SDDiP algorithm in which a partial
decomposition of the scenario tree is used to generate sub-problems. To the
best of our knowledge, this is the first time such an extension is studied in
the context of the SDDiP algorithm. Second, we propose to take advantage
of the tree structure of the sub-problems to exploit results on the polyhedral
structure of the SULS and generate additional strengthened Benders’ cuts to
approximate the expected cost-to-go functions. Third, we carry out extensive
computational experiments to assess the performance of the proposed algorithm
at solving the SULS. We thus compare its performance with the one of a stand-
alone mathematical solver and the one of the SDDiP algorithm proposed by
Zou et al. (2019). The results show that this new algorithm outperforms ILOG-
CPLEX and the SDDiP algorithm at solving large-size instances of the SULS.

The remaining part of this paper is organized as follows. Section 2 introduces
a deterministic equivalent mixed-integer linear programming formulation and a
stochastic dynamic programming formulation of the SULS. Section 3 presents
the extension of the SDDiP algorithm in which a partial decomposition of the
scenario tree is used. Section 4 then describes two further enhancements of the
algorithm. Finally, the results of our computational experiments are reported
in Section 5. Conclusions and directions for further works are discussed in
Section 6.

2 Mathematical formulations

We aim at planning the production of a single type of item on a single resource
over a planning horizon T = {1, ..., T} of T periods under uncertain demand
and costs. We consider a decision process involving Σ decision stages and denote
by S = {1, ...,Σ} the set of stages. A stage may correspond to one or several
consecutive planning periods. This is of particular interest in the context of
lot-sizing problems as the time discretization used by the decision-makers to
plan production activities is indeed usually finer than the one used to update
the demand and cost forecasts and readjust the production plan. A planning
period may thus typically correspond to an 8-hours shift or a day whereas a
stage may correspond to a week or a month. Let T σ be the set of time periods

6

belonging to stage σ ∈ S. Note that the sets {T σ, σ ∈ S} form a partition of T .
We assume a stochastic input process with finite probability space. The

resulting information structure can be represented by a scenario tree. With a
slight abuse of notation, we will refer to this scenario tree (and all other scenario
sub-trees involved in the present work) by mentioning only its set of nodes V.
Each node n ∈ V corresponds to a single time period tn and a single-stage σn.
Let Vt be the set of nodes belonging to time period t. Each node n represents
the state of the system that can be distinguished by the information unfolded
up to time period tn. Each node n has a unique predecessor node denoted an

belonging to time period tn − 1. By convention, the root node of the scenario
tree is indexed by 1 and a1 is set to 0. At any non-leaf node of the tree, one or
several branches indicate future possible outcomes of the random variables from
the current node. Let C(n) be the set of immediate children of node n, V(n) the
sub-tree of V rooted in n and L(n) the set of leaf nodes belonging to V(n). The
probability associated with the state represented by node n is denoted by ρn.
A scenario is defined as a path from the root node to a leaf node in the scenario
tree and represents a possible outcome of the stochastic input parameters over
the whole planning horizon. The set of nodes on the path from node n to node
m is denoted by P(n,m). The reader can refer to Figure 1 for an illustration of
these notations on a small scenario tree.

1 2 3

4

7

5

8

6

9

10

13

16

19

11

14

17

20

12

15

18

21

22 23 24

25 26 27

28 29 30

31 32 33

34 35 36

37 38 39

40 41 42

43 44 45

1 2 3 4

t =

σ =

1 2 3 4 5 6 7 8 9 10 11 12

V = {1, ..., 45}

V(7) = {7, 8, 9, 16, ..., 21, 34, ..45}

C(9) = {16, 19}

P(4, 31) = {4, 5, 6, 13, 14, 15, 31}

L(7) = {36, 39, 42, 45}

V8 = {11, 14, 17, 20}

a31 = 15, σ31 = 4, t31 = 10

T = 12,Σ = 4

T 2 = {4, 5, 6}

Figure 1: Scenario tree structure

7

The stochastic input parameters are defined as follows:

• dn: demand at node n ∈ V,

• fn: setup cost at node n ∈ V,

• hn: unit inventory holding cost at node n ∈ V,

• gn: unit production cost at node n ∈ V.

Moreover, we assume that at each stage, the realization of the random pa-
rameters happens before we have to make a decision for this stage. This means
that the values of dn, fn, hn and gn, for all n ∈ T σ, are assumed to be known
at the beginning of the first period belonging to stage σ.

2.1 Extensive MILP formulation

Based on the uncertainty representation described above, the SULS can be
reformulated as a deterministic equivalent model in the form of an MILP. We
introduce the following decision variables:

• xn: quantity produced at node n ∈ V,

• yn = 1 if a setup for production is carried out at node n ∈ V, yn = 0
otherwise,

• sn: inventory level at node n ∈ V,

This leads to the following MILP formulation:

min
∑
n∈V

ρn(fnyn + hnsn + gnxn) (1)

xn ≤Mnyn ∀n ∈ V (2)

sn + dn = xn + sa
n

∀n ∈ V (3)

xn, sn ≥ 0, yn ∈ {0, 1} ∀n ∈ V (4)

The objective function (1) aims at minimizing the expected total setup,
inventory holding and production costs over all nodes of the scenario tree. Con-
straints (2) link the production quantity variables to the setup variables. Note
that the value of constant Mn can be set by using an upper bound on the quan-
tity to be processed at node n, usually defined as the maximum future demand
as seen from node n, i.e. Mn = max`∈L(n) d

n`, where dn` =
∑
m∈P(n,`) d

m.

Constraints (3) are the inventory balance constraints. Constraints (4) provide
the decision variables domain.

Several MILP formulation strengthening techniques have been investigated
for this problem: see Appendix A in the online supplement of this work for a
detailed presentation of the valid inequalities proposed by Guan et al. (2009).

8

Problem (1)-(4) can thus be solved using MILP solvers. Nonetheless, the
size of the formulation grows exponentially fast with the number of nodes |V| in
the scenario tree, leading to prohibitive computation times in practice. We thus
investigate in what follows a dynamic programming formulation which serves as
a basis to develop a decomposition algorithm to solve the problem.

2.2 Dynamic programming formulation

An alternative to the extensive formulation of the SULS discussed above is a
dynamic programming formulation involving nested expected cost-to-go func-
tions. This approach decomposes the original problem into a series of smaller
sub-problems linked together by dynamic programming equations. When ap-
plying the SDDiP algorithm proposed by Zou et al. (2019) on the SULS, a full
decomposition of the problem is carried out, resulting in a large number of small
sub-problems. Each of these sub-problems is a small deterministic lot-sizing
problem aiming at planning production on a subset of nodes corresponding to
a single scenario and a single decision stage. In what follows, we propose to
consider a partial decomposition of the problem resulting in a smaller number
of larger sub-problems, each one being a stochastic lot-sizing problem aiming at
planning production on a sub-tree of the original scenario tree.

We introduce some additional notation in order to explain how this partial
decomposition is carried out. We first partition the set of decision stages S =
{1, . . . ,Σ} into a series of macro-stages G = {1, . . . ,Γ}, where each macro-stage
γ ∈ G contains a number of consecutive stages denoted S(γ). We let t(γ) (resp.
t′(γ)) represent the first (resp. the last) time period belonging to macro-stage
γ.

Using the set of macro-stages G defined above, we can decompose the scenario
tree V into a series of smaller sub-trees as follows. For a given macro-stage γ,
each node η belonging to the first time period in γ, i.e. each node η ∈ Vt(γ), is the
root node of a sub-tree defined by the set of nodesWη = ∪t=t(γ),...,t′(γ)Vt∩V(η).
We recall that V(η) is the sub-tree of V rooted in η, Wη is thus the restriction
of V(η) to the nodes belonging to macro-stage γ. Let L(η) =Wη ∩Vt′(γ) be the
set of leaf nodes of sub-tree Wη. Finally, we denote as f = ∪γ∈GVt(γ) the set
of sub-tree root nodes induced by G.

To illustrate the notation related to the macro-stages, we use the scenario
tree depicted in Figure 1. The set of stages S is partitioned into Γ = 2 macro-
stages with S(1) = {1, 2} and S(2) = {3, 4}. The first time period of macro-
stage γ = 1 is t(1) = 1, its last time period is t′(1) = 6. Similarly, we have
t(2) = 7 and t′(2) = 12. In this case, the set of sub-tree root nodes is f =
{1, 10, 13, 16, 19}. With this partition, node η = 1 is the root node of the
subtreeW1 = {1, 2, 3, 4, 5, 6, 7, 8, 9} involving the set of leaf nodes L(1) = {6, 9}.
Node η = 10 is the root node of sub-treeW10 = {10, 11, 12, 22, 23, 24, 25, 26, 27}
involving the set of leaf nodes L(10) = {24, 27}. Sub-trees W13, W16 and W19

are defined in the same way as sub-tree W10.

9

For each node η ∈ f, sub-problem P η is formulated as:

Qη(sa
η

) = min
∑
n∈Wη

ρn(fnyn + hnsn + gnxn) +
∑
`∈L(η)

∑
m∈C(`)

Qm(s`) (5)

xn ≤Mnyn ∀n ∈ Wη (6)

sn + dn = sa
n

+ xn ∀n ∈ Wη (7)

xn, sn ≥ 0, yn ∈ {0, 1} ∀n ∈ Wη (8)

Sub-problem P η thus focuses on defining the production plan on sub-tree
Wη based on the entering stock level sa

η

imposed by the parent node of η in the
scenario tree. The objective function comprises two terms: a term related to the
expected setup, production and inventory holding costs over sub-tree Wη and
a term which represents the expected future costs incurred by the production
decisions made in sub-tree Wη.

In (5), Qη(sa
η

) denotes the optimal value of sub-problem P η as a function
of the entering stock level sa

η

and Qm(s`) the optimal value of sub-problem Pm

as a function of the entering stock level s`. The expected cost-to-go function
at node ` ∈ L(η) is defined as the expected value of Qm(·) over all the children
of ` in the initial scenario tree V, i.e. over all m ∈ C(`), which gives Q`(·) =∑
m∈C(`)Q

m(·). The expected future costs of the decisions made inWη are thus

computed as the sum, over all nodes ` ∈ L(η), of Q`(s`).
We note that in case of G ≡ S, i.e. in case each macro-stage corresponds

to a single initial decision stage, each sub-tree Wη reduces to a set of nodes
belonging to a single deterministic scenario involving Tσ

η

periods and we obtain
a decomposition similar to the one used by Zou et al. (2019).

3 Sub-tree-based SDDiP algorithm

We now present the proposed extension of the SDDiP algorithm applied to the
SULS. This extension relies on the dynamic programming formulation (5)-(8)
and corresponds to a partial decomposition of the original problem into a set
of smaller problems, each one expressed on a sub-tree of the scenario tree. As
described in the SDDiP proposed by Zou et al. (2019), the main idea is to
solve a sequence of sub-problems in which the expected cost-to-go functions
Q`(·), ` ∈ L(η), of each sub-problem P η, η ∈ f, are iteratively approximated by
a piece-wise linear function. However, whereas the original SDDiP considers a
large number of small deterministic sub-problems, we use a smaller number of
medium-size stochastic sub-problems.

Note that a key assumption for developing a sampling-based nested de-
composition algorithm such as the SDDiP or the proposed extension is that
the scenario tree displays the stage-wise independence property. When there
are several time periods per decision stage, this property can be defined as
follows. For any two nodes m and m′ belonging to stage σ − 1 and such

10

that tm = tm
′

= max{t, t ∈ T σ−1}, the set of nodes ∪t∈T σVt ∩ V(m) and
∪t∈T σVt ∩ V(m′) are defined by identical data and conditional probabilities.

Straightforwardly, when the stage-wise independence property holds, for any
two nodesm andm′ belonging to the last period t′(γ−1) of macro-stage γ−1, the
two sets {Wη, η ∈ C(m)} and {Wη, η ∈ C(m′)} contain Rγ = |C(m)| = |C(m′)|
sub-trees defined by identical data and conditional probabilities. The stochastic
process can thus be represented at macro-stage γ by a set Rγ = {1, . . . , Rγ}
of independent realizations. Each realization X γ,r corresponds to a subtree
describing one of the possible evolutions of the uncertain parameters over periods
t(γ), . . . , t′(γ). Let ξγ,r denote the root node of X γ,r and L(γ, r) denote the set
of its leaf nodes.

The expected cost-to-go functions thus depend only on the macro-stage
rather than on the node, i.e. we have Qm(·) ≡ Qγ(·), for all m ∈ Vt′(γ). Hence,
only one expected cost-to-go function has to be approximated per macro-stage
and the cuts generated at different nodes m ∈ Vt′(γ) are added to a single set
of cuts defining the piece-wise linear approximation of function Qγ(·). As a
consequence, we can define a single sub-problem P γ per macro-stage and each
sub-problem P η, η ∈ f, will be described as P γ

η

(sa
η

,X γη,r) where X γη,r is the
realization corresponding to Wη.

3.1 Sub-problem reformulation

We first describe how each sub-problem P γ(sm,X γ,r), for m ∈ Vt′(γ−1) and
r ∈ Rγ , can be reformulated to introduce binary state variables.

Namely, in the SULS, the state variables are the continuous inventory vari-
ables sn. As the SDDiP developed by Zou et al. (2019) requires the state
variables to be binary, we first carry out a binary approximation of the state
variables before applying the algorithm to our problem. This binary approxi-
mation is obtained by replacing the continuous variable sn by a set of binary
variables un,β such that sn =

∑
β∈B 2βun,β , where B = {1, . . . , B}. We have

un,β = 1 if coefficient 2β is used to compute the value of sn and un,β = 0 oth-
erwise. We note however that this binary approximation is not needed for all
inventory variables, but only for those coupling the sub-problems P γ(·, ·), to one
another. Thus, in sub-problem P γ(sm,X γ,r), we use a binary approximation for
the entering stock sm at root node ξγ,r and for the leaving stock s` at each leaf
node ` ∈ L(γ, r). Note that for the instances considered in our numerical ex-
periments, introducing this binary approximation of the inventory variables will
not lead to a sub-optimal solution. Namely, the randomly generated demand
vectors only comprise integer components and the optimal leaving inventory at
each node is known to take an integer value in this case: see Guan and Miller
(2008).

Then, as indicated by Zou et al. (2019), we introduce local copies of the
binary state variables relative to root node ξγ,r. More precisely, ûξ

γ,r,β is an
auxiliary continuous decision variable representing the value of the state variable
um,β at the parent node m. It is thus a local copy in problem P γ(sm,X γ,r) of the

11

state variable um,β , the value of which is considered as a given input parameter
for this problem.

This leads to the following reformulation of sub-problem P γ(um,X γ,r) :

Qγ,r(um) = min
∑

n∈Xγ,r
ρn(fnyn + hnsn + gnxn) +

∑
`∈L(γ,r)

Qγ(u`) (9)

xn ≤Mnyn ∀n ∈ X γ,r (10)

sξ
γ,r

+ dξ
γ,r

=
∑
β∈B

2β ûξ
γ,r,β + xξ

γ,r

(11)

ûξ
γ,r,β = um,β ∀β ∈ B (12)

sn + dn = sa
n

+ xn ∀n ∈ X γ,r \ {ξγ,r} (13)

s` =
∑

β∈B
2βu`,β ∀` ∈ L(γ, r) (14)

ûξ
γ,r,β ∈ [0, 1] ∀β ∈ B (15)

u`,β ∈ {0, 1} ∀` ∈ L(γ, r),∀β ∈ B (16)

xn, sn ≥ 0, yn ∈ {0, 1} ∀n ∈ X γ,r (17)

where un denotes the vector of binary variables un = (un0, . . . , unβ , . . . , unB).
In this reformulation, Constraint (11) corresponds to the inventory balance

at node ξγ,r in which the entering stock level sm is computed using the auxiliary
variables ûξ

γ,rβ . Equalities (12) are copy constraints ensuring that the value
of each auxiliary variable ûξ

γ,r,β is equal to the value of the corresponding
state variable um,β imposed by the parent node m. Constraints (13) ensure
the inventory balance at each node of sub-tree X γ,r except the root node
ξγ,r. Constraints (14) define, for each leaf node ` ∈ L(γ, r), the value of the
binary variables u`,β , which will be used to compute the future expected costs
as Qγ(u`) =

∑
r′∈Rγ+1 Qγ+1,r′(u`). Note that, although variables ûξ

γ,r,β and
constraints (12) are redundant for sub-problem P γ(um,X γ,r), they will play a
key role in the generation of the Lagrangian and strengthened Benders’ cuts
used in the SDDiP algorithm to approximate the expected cost-to-functions.

The main components of the proposed sub-tree-based SDDiP algorithm ap-
plied to the SULS are described in the following.

3.2 Sampling step

In the sampling step, a subset of K scenarios, i.e. a set of paths going from the
root node to a leaf node, are randomly selected. Let Ωi = {ω1

i , . . . , ω
k
i , . . . , ω

K
i }

be the set of sampled scenarios, ωki be the set of nodes belonging to scenario

k at iteration i and rk,γi be the index of the realization in Rγ containing the
values of the uncertain parameters in scenario ωki at macro-stage γ.

12

3.3 Forward step

At iteration i, the forward step proceeds stage-wise from γ = 1 to Γ. For each

sampled scenario ωki and each macro-stage γ, we solve problem P γi (umi ,X γ,r
k,γ
i)

where m = ωki ∩Vt
′(γ−1) is the node in the sampled scenario ωki belonging to the

last period of γ. To solve this problem, the expected future costs are computed
using an approximate representation of the expected cost-to-go functions Qγ(·).

Let ψγi (·) be the approximation of the expected cost-to-go function Qγ(·)
available at iteration i for macro-stage γ. It is defined by the set of supporting
hyperplanes generated until iteration i. We thus have:

ψγi (u`) = min{θγ` : θγ` ≥
∑

r∈Rγ+1

νγ+1,r
j + πγ+1,r

j u` ∀j ∈ {1, . . . , i− 1}} (18)

where νγ+1,r
j and πγ+1,r

j are the coefficients of the cut generated at iteration

j < i by considering realization r ∈ Rγ+1. This leads to the following sub-

problem P̂ γi (umi , ψ
γ
i ,X γ,r

k,γ
i):

Q̂
γ,rk,γi
i (umi) = min

∑
n∈Xγ,r

k,γ
i

ρn(fnyn + hnsn + gnxn) +
∑

`∈L(γ,rk,γi)

θγ` (19)

θγ` ≥
∑

r∈Rγ+1

νγ+1,r
j + πγ+1,r

j u` ∀j = 1, . . . , i− 1, ∀` ∈ L(γ, rk,γi)

(20)

Constraints (10)− (17) for r = rk,γi

The forward step at iteration i ends when sub-problem P̂ γi (umi , ψ
γ
i ,X γ,r

k,γ
i)

has been solved for all sampled scenarios and all macro-stages. Its output is
a feasible production plan for all nodes belonging to a sampled scenario. In
particular, it provides a value umi for all state variables um such that m ∈
ωki ∩ Vt

′(γ), γ ∈ G, k = 1, . . . ,K. These values will be used in the backward
step to generate additional cuts and improve the approximation of the expected
cost-to-go functions Qγ(·), γ ∈ G.

3.4 Backward step

The aim of the backward step is to update the current approximation ψγi (·)
of the expected cost-to-go function Qγ(·) for each macro-stage γ by generating
new supporting hyperplanes and obtain a better approximation which is denoted
ψγi+1(·).

This step starts from macro-stage Γ and goes back to macro-stage 1. Note
that the sub-problems relative to macro-stage Γ do not have any expected fu-
ture costs, therefore ψΓ

i ≡ 0, for all i. At each macro-stage γ = Γ− 1, . . . , 1, the
updating of the approximation of Qγ(·) is carried out as follows. For each sce-
nario k = 1, . . . ,K, each node m ∈ ωki ∩ Vt

′(γ) and each realization r ∈ Rγ+1,

13

we solve a suitable relaxation of P̂ γ+1
i (umi , ψ

γ+1
i+1 ,X γ+1,r) and collect the cut

coefficients {νγ+1,r
i , πγ+1,r

i }. These coefficients are then used to generate a
new linear inequality of type (18) to be added to the current approximation
of Qγ(·). The backward step continues iteratively until the approximation of
the expected cost-to-go function at macro-stage γ = 1 is updated. Since ψ1

i+1

is an under-approximation of the expected cost-to-go function Q1(·), the opti-
mal value Q̂1,1

i+1(0) of problem P̂ 1
i (0, ψ1

i+1,X 1,1), provides a lower bound of the
optimal value of the stochastic problem.

3.4.1 Cut families

We now briefly recall the three types of cutting planes used in Zou et al. (2019)
to improve the approximation of the expected cost-to-go functions during the
backward step. Let us consider a macro-stage γ, a scenario index k and the
node m = ωki ∩ Vt

′(γ). Let umi be the value of the state variables um in the

solution of problem P̂ γi (umi , ψ
γ
i ,X γ,r

k,γ
i) solved in the forward step of iteration

i. The three following cuts can be added to compute the approximation ψγi of
Qγ(·).

Integer optimality cut: The algorithm solves problem P̂ γ+1
i (umi , ψ

γ+1
i+1 ,X γ+1,r),

for each r ∈ Rγ+1, with an updated approximation ψγ+1
i+1 of Qγ+1(·). Let νγ+1,r

i+1

be its optimal objective value and ν̄γ+1
i+1 =

∑
r∈Rγ+1 ν

γ+1,r
i+1 . The integer opti-

mality cut takes the following form:

θγ,m ≥ ν̄γ+1
i+1

(B∑
β=0

(um,βi − 1)um,β +

B∑
β=0

(um,β − 1)um,βi

)
+ ν̄γ+1

i+1

Lagrangian cut: We consider, for each r ∈ Rγ+1, the Lagrangian relax-
ation of problem P̂ γ+1

i (umi , ψ
γ+1
i+1 ,X γ+1,r) in which the copy constraints (12) are

dualized. Each corresponding Lagrangian dual problem is solved to optimality.
The generated Lagrangian cut takes the form of inequality (18), where νγ+1,r

i

corresponds to the optimal value of the Lagrangian dual problem and coeffi-
cient πγ+1,r,β

i of variable um,β to the optimal value of the Lagrangian multiplier

relative to copy constraint ûξ
γ,r,β = um,βi .

Strengthened Benders’ cut: We solve, for each r ∈ Rγ+1, the linear
relaxation of problem P̂ γ+1

i (umi , ψ
γ+1
i+1 ,X γ+1,r). The value of each coefficient

πγ+1,r,β
i is set to the dual value of the copy constraint ûξ

γ,r,β = um,βi in this

linear relaxation. The value of νγ+1,r
i is obtained by solving the Lagrangian

relaxation of problem P̂ γ+1
i (umi , ψ

γ+1
i+1 ,X γ+1,r) in which each copy constraint

ûξ
γ,r,β = um,βi is dualized and its Lagrangian multiplier set to πγ+1,r,β

i .

3.5 Theoretical convergence and stopping criteria

The following property shows the theoretical convergence of the sub-tree-based
SDDiP algorithm.

14

Proposition 1 The forward step of the sub-tree-based SDDiP algorithm pro-
vides, with probability one, an optimal solution of Problem P 1(0,X 1,1) after a
finite number of iterations.

The proof relies on Theorem 2 of Zou et al. (2019) and is straightforward.
The sub-tree-based SDDiP algorithm namely complies with the three condi-
tions which, according to this theorem, are sufficient to guarantee the finite
convergence of a stochastic nested decomposition algorithm with probability
one. More precisely, we have:

1. The sampling procedure in the forward step is done with replacement.

2. All the state variables involved in Problem P 1(0,X 1,1) are binary. This
ensures that the Lagrangian and integer optimality cuts discussed in Sub-
section 3.4 have the required validity, tightness and finiteness properties
defined by Zou et al. (2019).

3. Each sub-problem P̂ γi (umi , ψ
γ
i ,X γ,r

k,γ
i) is solved with a deterministic mixed-

integer linear programming solver. Hence, we can rely on the practical as-

sumption that, given the same parent umi , the same realization X γ,r
k,γ
i and

the same approximate cost-to-go function ψγi , P̂ γi (umi , ψ
γ
i ,X γ,r

k,γ
i) will be

solved to the same optimal solution.

However, even if the finite convergence of the algorithm is guaranteed in
theory, the number of iterations needed to obtain an optimal solution in practice
may be prohibitively large. Hence, we introduce two stopping criteria commonly
used for the SDDiP in the literature. The first one is based on a maximum
number of consecutive iterations without any improvement of the lower bound,
the second one on a maximum total number of iterations.

3.6 Summary

As a synthesis, the main steps of the proposed sub-tree-based SDDiP algorithm
applied to the stochastic ULS are summarized in Algorithm 1.

Note that depending on the partition of S, the number of macro-stages Γ
can take any value between 1 and Σ. For Γ = 1, the forward step corresponds
to solving the original problem (1)-(4) defined on the whole scenario tree V and
no backward step is needed: Algorithm 1 thus directly solves the stochastic
problem as a MILP, without any decomposition. For Γ = Σ, Algorithm 1
corresponds to the SDDiP algorithm of Zou et al. (2019). In general, we will have
Γ < Σ, which means that the number of expected cost-to-go functions Qγ(·) to
be approximated will be smaller in Algorithm 1 than the one to be handled in the
SDDiP algorithm. This may have a positive impact on the global convergence of
the algorithm. Namely, with Γ < Σ, each sub-problem P̂ γi (·, ψγi ,X γ,r) covers a
larger portion of the planning horizon and uses an approximation of its expected
future costs which will be globally better as it will rely on a smaller number
of approximate expected cost-to-go functions. As a consequence, the feasible

15

Algorithm 1: SDDiP algorithm

1 Initialize LB ← −∞, UB ← +∞, i← 1
2 while no stopping criterion is satisfied do
3 Sampling step

4 Randomly select K scenarios Ωi = {ω1
i , ..., ω

K
i }

5 Forward step
6 for k = 1, ...,K do
7 for γ = 1, ...,Γ do

8 Solve P̂ γi (umi , ψ
γ
i ,X

γ,r
k,γ
i) for m = ωki ∩ Vt

′(γ−1)

9 Record u`i for ` = ωki ∩ L(γ, rk,γi)

10 end

11 υk ←
∑
n∈ωki

(fnyni + hnsni + gnxni)

12 end

13 µ̂←
∑K
k=1 υ

k and χ̂2 ← 1
K−1

∑K
k=1(υk − µ̂)2

14 UB ← µ̂+ zα/2
χ̂√
K

15 Backward step
16 for γ = Γ− 1, ..., 1 do
17 for k = 1, ...,K do

18 Let m = ωki ∩ Vt
′(γ)

19 for r ∈ Rγ+1 do

20 Solve the linear relaxation of P̂ γ+1
i (umi , ψ

γ+1
i+1 ,X

γ+1,r) and
collect the coefficients of the strengthened Benders’ cut

21 Solve the Lagrangian relaxation of P̂ γ+1
i (umi , ψ

γ+1
i+1 ,X

γ+1,r)
and collect the constant value of the strengthened Benders’ cut

22 Solve P̂ γ+1
i (umi , ψ

γ+1
i+1 ,X

γ+1,r) and collect the coefficients of
the Integer optimality cut

23 Solve the Lagrangian dual problem and collect the coefficients
of the Lagrangian cut

24 end

25 end
26 Add the three generated cuts to ψγi to get ψγi+1

27 end

28 LB ← Q̂1,1
i+1(0)

29 i← i+ 1

30 end

16

solution obtained by solving P̂ γi (·, ψγi ,X γ,r) at a given iteration of the algorithm
will tend to be less myopic and thus to provide lower and upper bounds LB
and UB of better quality. However, each sub-problem P̂ γi (·, ψγi ,X γ,r) is now
an MILP expressed on a small sub-tree. In particular, the large number of
binary variables u`,β needed to carry out the binary approximation of the leaving
inventory at each leaf node ` ∈ L(γ, r) makes its resolution computationally
more expensive than the one of a sub-problem expressed on a deterministic
scenario involving a single leaf node. In what follows, we thus discuss two
algorithmic enhancements aiming at further improving the numerical efficiency
of Algorithm 1.

4 Algorithmic Enhancements

In this section, we aim at enhancing the numerical efficiency of Algorithm 1,
mostly through a more efficient building of the approximation of the expected
cost-to-go functions. In what follows, we detail the two proposed algorithmic
enhancements.

4.1 Approximate sub-tree-based SDDiP

Hjelmeland et al. (2018) and Quezada et al. (2019) both proposed to use an
approximate variant of the SDDiP algorithm in which the state variables may
be continuous. In this case, the finite convergence of the algorithm is not theo-
retically guaranteed but, as this approximation leads to a significant reduction
of the computational effort required at each iteration of the algorithm, it may
positively impact the solution quality in practice. We thus explain in what fol-
lows how this approximate SDDiP algorithm can be adapted to the case where
a partial sub-tree-based decomposition of the scenario tree is used.

The algorithm is based on a reformulation of problem P γ(sm,X γ,r) in which
a single auxiliary variable s̃ξ

γ,r

is introduced. Variable s̃ξ
γ,r

can be seen as a
local copy of the inventory variable at the parent node sm in P γ(sm,X γ,r). This
results in the following reformulation of P γ(sm,X γ,r):

Qγ,r(sm) = min
∑

n∈Xγ,r
ρn(fnyn + hnsn + gnxn) +

∑
`∈L(γ,r)

Qγ(s`) (21)

sξ
γ,r

+ dξ
γ,r

= s̃ξ
γ,r

+ xs̃
ξγ,r

(22)

s̃ξ
γ,r

= sm (23)

sn + dn = sa
n

+ xn ∀n ∈ X γ,r \ {ξγ,r} (24)

Constraints (6), (8) (25)

In this reformulation, the expected cost-to-go functionQγ(s`) =
∑
r′∈Rγ+1 Qγ+1,r′(s`)

is a function of the continuous state variable s`. We thus build an under-
approximation of Qγ(·) through a set of linear cuts involving continuous vari-
ables s` instead of binary variables u`,β . Let ψ̃γi (·) be the approximation of the

17

expected cost-to-go function Qγ(·) available at iteration i for macro-stage γ in
the approximate SDDiP algorithm. We have:

ψ̃γi (s`) = min{θγ` : θγ` ≥
∑

r′∈Rγ+1

(ν̃γ+1,r′

j + π̃γ+1,r′

j s`) ∀j ∈ {1, ..., i− 1}}

(26)

where ν̃γ+1,r′

j and π̃γ+1,r′

j are the coefficients of the cut generated at iteration j <

i by considering realization r′ ∈ Rγ+1. This leads to the following approximate
sub-problem P̃ γi (smi , ψ̃

γ
i ,X γ,r):

Q̃γ,ri (sm) = min
∑

n∈Xγ,r
ρn(fnyn + hnsn + gnxn) +

∑
`∈L(γ,r)

θγ` (27)

θγ` ≥
∑

r′∈Rγ+1

(ν̃γ+1,r′

j + π̃γ+1,r′

j s`) ∀j = 1, ..., i− 1, ∀` ∈ L(γ, r) (28)

Constraints (22)− (25) (29)

In the backward step of the approximate SDDiP algorithm, only strengthened
Benders’ cuts are generated. More precisely, for each macro-stage γ = Γ −
1, . . . , 1, the updating of the approximation ofQγ(·) is carried out as follows. For
each node m ∈ Ωi∩Vt

′(γ) and each realization r′ ∈ Rγ+1, we first solve the linear
relaxation of P̃ γ+1

i (smi , ψ̃
γ+1
i+1 ,X γ+1,r′), get the dual value of constraint (23) in

its optimal solution and set π̃γ+1,r′

j to this value. We then solve a Lagrangian

relaxation of P̃ γ+1
i (smi , ψ̃

γ+1
i+1 ,X γ+1,r′) in which constraint s̃ξ

γ,r

= sm has been

dualized with a Lagrangian multiplier set to π̃γ+1,r′

j . We record the optimal

value of this Lagrangian relaxation and set ν̃γ+1,r′

j to this value. Once this

procedure is carried out for all realizations in Rγ+1, we get the cut θγ,m ≥∑
r′∈Rγ+1(ν̃γ+1,r′

j + π̃γ+1,r′

j sm) to be added to ψ̃γi to get ψ̃γi+1.
In our numerical experiments, this approximate sub-tree-based SDDiP al-

gorithm is used in an initial phase which is carried out before actually run-
ning Algorithm 1. The objective of this initial phase is to build a first under-
approximation of each expected cost-to-go functions Qγ(·) and obtain a good
initial lower bound for the problem with a reduced computational effort. This
initial lower bound will then be further improved during a second phase in which
Algorithm 1 is run and all integer optimality, Lagrangian and strengthened Ben-

ders’ cuts are generated. Note that any cut of type θγ` ≥
∑
r′∈Rγ+1(ν̃γ+1,r′

j +

π̃γ+1,r′

j s`) generated during the first phase provides a cut of type θγ` ≥
∑
r′∈Rγ+1(νγ+1,r′

j +

πγ+1,r′

j u`) which can be used in the second phase by setting νγ,r
′

j = ν̃γ,r
′

i and

πγ,r
′,β

j = π̃γ,r
′

i , for β ∈ B.

18

4.2 Leveraging the current knowledge on the polyhedral
structure of the SULS

The second enhancement of the algorithm seeks to exploit the alternative MILP
formulations currently known for SULS to generate additional strengthened
Benders’ cuts (and improve the approximation of the expected cost-to-go func-
tions at a relatively limited computational effort) and speed up the resolution
of the numerous MILPs to be solved over the course of Algorithm 1.

4.2.1 Generation of additional strengthened Benders’ cuts

Recall that to, generate a strengthened Benders’ cut to be added at a given
iteration i to the approximation of Qγ−1(·), the algorithm first solves, for each
r ∈ Rγ , the linear relaxation of problem P̂ γi (umi , ψ

γ
i+1,X γ,r), where m is a

node belonging to Vt′(γ−1). This linear relaxation can be computed using dif-
ferent formulations of P̂ γi (umi , ψ

γ
i+1,X γ,r). A first option is to use the initial

MILP formulation defined in Subsection 3.3. Other options consist in using the
initial MILP formulation strengthened by path inequalities (31) or the initial
MILP formulation strengthened by tree inequalities (32). Then, the algorithm

collects the dual value of the copy constraint ûξ
γ,r,β = um,βi in the linear re-

laxation and set coefficient πγ,r,βi to it. The Lagrangian relaxation of problem

P̂ γi (umi , ψ
γ
i+1,X γ,r) in which each copy constraint ûξ

γ,r,β = um,βi is dualized with

a Lagrangian multiplier set to πγ,r,βi is then solved. Its optimal value provides
coefficient νγ,ri .

A key observation here is that the dual value of constraint ûξ
γ,r,β = um,βi

in the linear relaxation will vary according to the MILP formulation used for
P̂ γi (umi , ψ

γ
i+1,X γ,r). Hence, for a given value of the entering stock described

by the binary vector umi , by considering the three alternative MILP formula-

tions available for P̂ γi (umi , ψ
γ
i+1,X γ,r), it is possible to generate three different

strengthened Benders’ cuts, i.e. three cuts corresponding to different values of
coefficients {νγ,ri , πγ,ri },

We point out here that, in general, there does not seem to be a dominance
relationship between these three cuts. In other words, a cut generated using a
stronger formulation of P̂ γi (umi , ψ

γ
i+1,X γ,r) does not necessarily lead to a better

approximation of Qγ−1(·). The reader is referred to Appendix B in the online
supplement of this work for a small example illustrating this point. We thus
propose an extension of Algorithm 1 in which strengthened Benders’ cuts based
on the three MILP formulations available for P̂ γi (umi , ψ

γ
i+1,X γ,r) are sequentially

generated.
Before presenting this extension, we first note that valid inequalities gener-

ated for sub-problem P̂ γi (umi , ψ
γ
i ,X γ,r) at a given iteration i are valid for any

sub-problem P̂ γj (·, ψγj ,X γ,r) to be solved at iteration j ≤ i. Namely, let us con-
sider reformulation (9)-(17) of sub-problem P γ(um,X γ,r). Valid inequalities of

19

type (31) and (32) can be expressed as follows:∑
β∈B

2β ûξ
γ,rβ +

∑
n∈SO

xn +
∑
n∈S̄O

∆n(O)yn ≥ d1nO (30)

for any subset O of X γ,r.
Note that inequalities (30) only use local copy variables û and thus remain

valid for any value of the entering stock level described by the state variable um.
Moreover, sub-problem P γ(·,X γ,r) and P̂ γi (·, ψγi ,X γ,r) only differ with respect
to the objective function evaluation and have the same feasible space. Thus,
any inequality valid for P γ(·,X γ,r) is also valid for P̂ γi (·, ψγi ,X γ,r).

Let φγ,ri = {
∑
β∈B 2β ûξ

γ,rβ+
∑
n∈SOc

xn+
∑
n∈S̄Oc

∆n(Oc)yn ≥ d1nOc ,Oc ⊂
X γ,r, c = 1, . . . , Cγ,ri } denote the set of Cγ,ri inequalities (31) and/or (32) related
to sub-problem P γ(·,X γ,r) generated until the beginning of iteration i. Let
P̂ γi (·, ψγi ,X γ,r, F) denote problem P̂ γi (·, ψγi ,X γ,r) expressed using formulation
F where F = IF (∅) denote the initial formulation without any strengthening
and F = IF (φγ,ri) the initial formulation strengthened by a set of inequalities
φγ,ri .

We propose the following strategy to sequentially add strengthened Benders’
cuts based on the three available MILP formulations to the approximations of
the expected cost-to-go functions. This strategy is based on three increasing
levels of formulation strengthening :

• Level λ = 0: Algorithm 1 is run as described in Section 3, i.e. we solve
the linear relaxation of sub-problems P̂ γi (·, ψγi ,X γ,r, IF (∅)) to obtain the
cut coefficients. The algorithm moves to the next level after a predefined
number of consecutive iterations.

• Level λ = 1: Algorithm 1 is run using the linear relaxation of sub-problems
P̂ γi (·, ψγi ,X γ,r, IF (φγ,ri)) to obtain the cut coefficients. In this level, at
each iteration, only path inequalities (31) are added to φγ,ri using a sin-
gle run of a cutting plane generation procedure based on the separation
algorithm presented in Barany et al. (1984). The algorithm moves to the
next level after no violated path inequalities have been found during a
predefined number of consecutive iterations.

• Level λ = 2: Algorithm 1 is run using the linear relaxation of sub-problems
P̂ γi (·, ψγi ,X γ,r, IF (φγ,ri)) to obtain the cut coefficients. In this level, at
each iteration, tree inequalities (32) are added to φγ,ri using a single run
of the cutting plane generation procedure presented in Guan et al. (2009).

As will be shown by the numerical results to be presented in Section 5, the
joint use of strengthened Benders’ cuts generated using the three alternative
MILP formulations available for the sub-problems allows to significantly improve
the quality of the solution provided by the algorithm. Note that an alternative
strategy could be to simultaneously add strengthened Benders’ cuts based on
these three MILPs formulations at each iteration of the algorithm. However, this

20

would significantly increase the computational effort carried out at each iteration
as it would require the resolution of many additional linear and Lagrangian
relaxations of problem P̂ γi (·, ψγi ,X γ,r, ·), namely one for each formulation F =
{IF (∅), IF (φγ,ri)}, each set of inequalities φγ,ri , each realization r ∈ Rγ and
each macro-stage γ ∈ G. This would lead to a strong decrease in the number
of iterations carried out by the algorithm within the allotted computation time,
which could negatively impact its performance. We thus chose to implement
a strategy in which the strengthened Benders’ cuts based on the alternative
MILPs formulations are added sequentially to the expected cost-to-go functions
approximations.

4.2.2 Sub-problem resolution with strengthened MILP formulations

Over the course of Algorithm 1, a rather large number of MILPs have to be
solved. More precisely, at each iteration of the algorithm, there are one MILP
to be solved for each scenario and each macro-stage in the forward step and
two MILPS (the sub-problem itself and its Lagrangian relaxation) to be solved
for each scenario, each macro-stage and each realization per macro-stage in the
backward step. Thus, even if each of these MILPs is of moderate size, their
resolution might be computationally expensive.

Valid inequalities (31) and (32) can be used to speed up the resolution of the
various MILPs involved in Algorithm 1 through a strengthening of their linear
relaxation and an improvement of the lower bounds used at each node of the
Branch & Bound search tree. In order to save the computational effort needed
to run the related cutting plane generation procedures, we propose to strengthen
the MILP formulation of each sub-problem P̂ γi (·, ψγi ,X γ,r) using only the valid
inequalities already added to the current set of inequalities φγ,ri and to solve
each sub-problem using formulation IF (φγ,ri).

For the sake of clarity, in Subsection 4.2, we focused on explaining how this
second algorithmic enhancement is carried out in Algorithm 1. It can, how-
ever, be straightforwardly adapted for the approximate version of Algorithm 1
described in Subsection 4.1.

In what follows, we will refer to the version of Algorithm 1 in which the
two proposed enhancements discussed in this section have been implemented as
extSDDiP. A detailed description of this algorithm is provided in Appendix C
in the online supplement of this work.

5 Computational Experiments

In this section, we focus on assessing the performance of the extSDDiP algorithm
proposed in Sections 3 and 4. This is done by comparing it with the performance
of a stand-alone mathematical programming solver ILOG-CPLEX using the
extensive MILP formulation (1)-(4) and the one of the SDDiP algorithm using
the dynamic programming reformulation (5)-(8) with G ≡ S.

In what follows, we first describe the scheme used to randomly generate

21

instances of the SULS and the experimental setup. We then discuss the results
of our computational experiments. All the instances and results can be found
at https://github.com/FrancoQuezada/SULS-IJOC2021.

5.1 Instance Generation

We randomly generated instances following the same procedure as the one used
by Guan et al. (2009). This procedure considers various scenario tree structures,
several ratios of the production cost to inventory holding cost and several ratios
of the setup cost to the inventory holding cost.

Regarding the scenario tree structure, we used only balanced trees with Σ
stages, a constant number b = |T σ|, for all σ ∈ S, of time periods per stage and
a constant number R = Rσ, for all σ ∈ S, of equiprobable realizations per stage.
We generated four sets of instances corresponding to four types of scenario tree
structures:

• Instances of Set 1 involve a short planning horizon and a small number
of stages, but a relatively large number of realizations per stage: Σ = 4,
b = 1 and R ∈ {10, 20}.

• Instances of Set 2 involve a short planning horizon and a medium number
of stages, but a relatively large number of realizations per stage: Σ = 6,
b = 1 and R ∈ {10, 20}.

• Instances of Set 3 involve a long planning horizon with a medium number
of stages and a medium number of realization per stage: Σ = 8, b ∈ {2, 5}
and R = 5.

• Instances of Set 4 involve a medium-size planning horizon with a large
number of decision stages and a small number of realizations per stage:
Σ = 12, b = 1 and R = 3.

As for the costs, we used the same numerical values as Guan et al. (2009),
i.e. a production to holding cost ratio g/h ∈ {2, 4} and a setup to holding
cost ratio f/h ∈ {200, 400}. More precisely, the holding cost hn at node n
of the tree was generated from the uniform distribution U [0, 10]. The pro-
duction cost gn was randomly generated from U [0.8(g/h)h̄, 1.2(g/h)h̄], where
h̄ =

∑
n∈V h

n/|V| is the average holding cost. The setup cost fn was randomly
generated from U [0.8(f/h)h̄, 1.2(f/h)h̄]. The demand dn was generated from
the discrete uniform distribution DU [0, 100]. The probability ρn of node n is
given by ρn = (1

R)σ
n−1. Finally, for each set and each considered combination

of Σ, b, R, g/h and f/h, five random instances were generated, resulting in a
total of 140 instances.

5.2 Experimental setup

Each instance is first solved with the mathematical programming solver CPLEX
12.8 using the extensive MILP formulation (1)-(4). For the Set 1 instances which

22

involve less than 8000 scenarios, we use the cutting-plane generation strategy
proposed by Guan et al. (2009) to strengthen this formulation by adding violated
path inequalities (31) and tree inequalities (32) at each node of the branch-
and-cut search tree. For the other instances, we use the standard branch-and-
cut algorithm of solver CPLEX 12.8 using the initial formulation (1)-(4). Our
preliminary experiments namely showed that this was more efficient than using
the customized branch-and-cut algorithm based on valid inequalities (31) and
(32) for the large instances. This solution method is denoted by CPX in what
follows.

Each instance is then solved by the SDDiP algorithm proposed by Zou et al.
(2019) and by the extSDDiP algorithm. For both algorithms, the number of
scenarios sampled at each iteration is set to K = 1. The computational results
presented by Zou et al. (2019) namely showed that, on average, the SDDiP
algorihm is more efficient when sampling a small number of scenarios at each
iteration. Moreover, the binary approximation of the continuous state variables
sn is carried out as follows. For each instance, we compute an upper bound of
the inventory level at node n as smax = max`∈L(1)d

1,`. The number B of binary

variables un,β is set to B = dlog2(smax)e.
Regarding the partition of the set of decision stages S into macro-stages G,

we consider only decompositions in which the number of stages per macro-stage,
denoted by G, is constant, i.e. G = |S(γ)|, for all γ ∈ G. For each instance,
depending on the value of Σ, we consider values of G = Σ/Γ in the set {2, 3, 4, 6}.

Furthermore, in order to better assess the impact of the two enhancements
presented in Section 4, several variants of the extSDDiP algorithm are imple-
mented.

First, to evaluate the usefulness of the approximate subtree-based SDDiP
algorithm discussed in Subsection 4.1, we consider the following three imple-
mentations of the extSDDiP algorithm:

• extSDDiP-I corresponds to the case where only the approximate subtree-
based SDDiP algorithm based on formulation (5)-(8) with continuous state
variables sn is run.

• extSDDiP-II corresponds to the case where only Algorithm 1 is run.

• extSDDiP-I/II corresponds to a 2-phase algorithm in which phase I first
runs the approximate subtree-based SDDiP algorithm to build an initial
approximation of the expected cost-to-go functions and phase II runs Al-
gorithm 1 to further improve these approximations.

Second, we also seek to assess the impact on the algorithmic performance of
exploiting alternative MILP formulations of the SULS, as presented in Subsec-
tion 4.2. Each considered setting is described by the maximum level of formula-
tion strengthening λmax used to strengthen the sub-problem formulation. Thus,
extSDDiP-I/II-λmax denotes for instance a 2-phase implementation of the extS-
DDiP in which the sub-problem formulation strengthening levels 0, . . . , λmax are
sequentially used following the strategy described at the end of Subsection 4.2.1.

23

Regarding the stopping criteria, the maximum number of consecutive iter-
ations without any improvement of the lower bound LB is set to 30 and the
maximum total number of iterations to 1000. The algorithm stops as soon as
one of these two conditions is reached. Note that at this point, the upper bound
UB is computed considering only K = 1 scenario and thus might not be sta-
tistically representative. Thus, after the algorithm has stopped, we compute
an updated upper bound based on a larger number of scenarios. For Set 1 in-
stances, a true upper bound is obtained by computing a feasible production plan
for the |L(1)| scenarios. For the other instances, a statistical upper bound is
computed as follows. We randomly sample K ′ = 1000 scenarios and compute a
feasible solution for each of them using the final approximation of the expected
cost-to-go functions to evaluate the objective function at each (macro)-stage.
We then construct a 95% confidence interval and report the right endpoint of
this interval as the statistical upper bound of the optimal value.

Each algorithm was implemented in C++ using the Concert Technology
environment. All (mixed-integer) linear programs were solved using CPLEX
12.8 with the default settings and the Lagrangian dual problems were solved by
a sub-gradient algorithm. All tests were run on the computing infrastructure of
the Laboratoire d’Informatique de Paris VI (LIP6), which consists of a cluster of
Intel Xeon Processors X5690. We set the cluster to use two 3.46GHz cores and
12GB RAM to solve each instance. Nevertheless, when additional RAM was
required for solving large MILP models with method CPX, we allowed memory
overflow to obtain consistent results for all the experiments. We impose a time
limit of 1800 seconds to method CPX to solve each instance. For the SDDiP
and extSDDiP algorithms, we impose a time limit of 900 seconds to compute a
lower bound and 900 seconds to compute the true or statistical upper bound.

5.3 Results

Tables 1-4 display the numerical results. Columns R and b describe the struc-
ture of the scenario tree when needed. The corresponding number of nodes in
the scenario tree, |V|, and the number of scenarios, |L(1)|, are then provided.
Column G indicates the number of stages per macro-stage in the partial de-
composition of the scenario tree and Column “Method” indicates the algorithm
used to solve each instance. Each line in the table thus provides the average
results of the indicated resolution method over the 20 instances corresponding
to the given scenario tree structure with various values of the ratios f/h and
g/h. Column “Gap” displays the gap between the lower bound (LB) and the
upper bound (UB) found by each method, i.e. Gap = |UB − LB|/UB. The
average total computation time in seconds is reported in Column “Time (s)”,
the average number of iterations in Column “# ite” and the total number of
valid inequalities of type (31) and (32) generated are provided in Column “#
VI”.

Results from Table 1 first show that, when using the extensive formula-
tion (1)-(4) strengthened by valid inequalities (31) and (32), method CPX out-
performs the other methods for the smallest considered instances, i.e. the in-

24

stances corresponding to Σ = 4, R = 10 and b = 1, providing an average gap of
1.36% within the allotted time limit. When the number of realizations per stage
increases, i.e. for the instances corresponding to Σ = 4, R = 20 and b = 1, the
relative performance of method CPX deteriorates but the average gap remains
below 5%. However, when the number of stages, and consequently the size of
the scenario tree, increases, the performance of method CPX strongly deterio-
rates. This can be seen from the results displayed in Tables 2-4: method CPX
namely provides gaps between 19% for the instances with Σ = 6, R = 10 and
b = 1 and 94% for the instances with Σ = 6 and R = 20 and b = 1.

We also observe from the results displayed in Tables 1-4 that method SDDiP
compares well with method CPX. It namely consistently provides average gaps
between 9% and 30% for all instances and significantly outperforms method
CPX in terms of solution quality for the largest instances.

Furthermore, these results show that, on average, algorithm extSDDiP signif-
icantly outperforms methods CPX and SDDiP. Indeed, we note that, whatever
the partial decomposition and the formulation strengthening setting used, i.e.
whatever the value of G ∈ {2, 3, 4, 6} and λmax ∈ {0, 1, 2}, the gap provided by
algorithm extSDDiP-I/II is significantly smaller than the one provided by algo-
rithm SDDiP. In particular, if we consider the results obtained with algorithm
extSDDiP-I/II-2 with a partial decomposition using G = 2 stages per macro-
stage, we obtain an average gap over the 140 instances of 5.07% as compared to
an average gap of 19.69% obtained with algorithm SDDiP and an average gap of
41.16% obtained with CPX. Moreover, we would like to point out that, by con-
sidering, for each set of instances, the values of G and λmax providing the lowest
gap, algorithm extSDDiP-I/II is able to provide a solution within an average
gap of 3.76%. This clearly shows that jointly using the partial decomposition of
the scenario tree into sub-trees discussed in Section 3 and the two algorithmic
enhancements presented in Section 4 leads to a significant improvement of the
performance of the SDDiP algorithm proposed by Zou et al. (2019).

We now discuss the individual impact of each of these three elements on the
performance of algorithm extSDDiP.

The separate impact of the partial decomposition of the scenario tree into
sub-trees on the algorithmic performance can be evaluated by looking at the
results obtained by algorithm extSDDiP-II-0: see Tables 10-13 in Appendix D
in the online supplement of this work. We thus observe that the average gap
can be reduced from 19.68% with algorithm SDDiP to 11.16% with algorithm
extSDDiP-II-0 using a partial decomposition involving G = 2 stages per macro-
stage. Moreover, increasing the value of G further improves the performance
of algorithm extSDDiP-II-0 as long as the size of the obtained sub-problems
remains small enough to enable a MILP solver to solve them in a short compu-
tation time. Thus, in Tables 10-13, we observe that the average gap is reduced
to 7.50% when using algorithm extSDDiP-II-0 with G ∈ {3, 4, 6}. However,
for the instances corresponding to Σ = 6, R = 20 and b = 1, the increase of
G from 2 to 3 leads to a strong deterioration of the algorithmic performance:
see Table 11. This might be explained by the fact that, for these instances,
when G = 3, each sub-tree involves 421 nodes, among which 400 are leaf nodes.

25

A binary approximation of the leaving inventory level has to be used for each
of these 400 nodes so that each sub-problem comprises a rather large number
of binary variables and requires a large computational effort to be solved. It
is thus not possible to carry out one full iteration of algorithm extSDDiP-II-0
within the allotted computation time. This observation is confirmed by the
results reported in Table 14 in Appendix E in the online supplement of this
work. These results were obtained while solving an additional set of instances
involving a large number (Σ = 20) of decision stages with the extSDDiP-I/II
algorithm. They show that the algorithm performs better when using a value
of G in {2, 4, 5} than when using a value of G equal to 10.

We focus on the impact of the first considered enhancement: the introduction
of an initial phase based on an approximate sub-tree-based SDDiP algorithm.
This impact can be measured by comparing the results obtained with algorithm
extSDDiP-II-0 (see Appendix D in the online supplement of this work) with the
ones obtained with algorithm extSDDiP-I/II-0. When using a partial decom-
position involving G = 2 stages per macro-stage, the average gap over the 140
instances is thus reduced from 11.16% with algorithm extSDDiP-II-0 to 10.37%
with algorithm extSDDiP-I/II-0. In case larger values of G ∈ {3, 4, 6} are used,
a similar reduction of the gap from 7.50% with algorithm extSDDiP-II-0 to
6.60% with algorithm extSDDiP-I/II-0 is observed. Even if the gap reduction
seems to be rather limited on average, we note that the use of this initial phase
seems to be particularly interesting when the partial decomposition of the sce-
nario tree leads to sub-trees involving a large number of leaf nodes, as it is the
case for the instances corresponding to Σ = 6, R = 20 and b = 1. Namely, for
these instances, when G = 2, the average gap is reduced from 17.35% with algo-
rithm extSDDiP-II-0 to 13.88% with algorithm extSDDiP-I/II-0. Furthermore,
when G = 3, algorithm extSDDiP-I/II-0 provides solutions within an average
gap of 12.14% whereas algorithm extSDDiP-II-0 does not provide any feasible
solution. The main reason for this is that the approximate sub-tree-based SD-
DiP algorithm does not require the introduction of additional binary variables
for the binary approximation of the state variables. As a consequence, each
sub-problem is a small-size MILP which can be solved in a limited computa-
tion time. This enables the algorithm to carry out more iterations, to generate
more cutting-planes to approximate the expected cost-to-go functions and thus
to provide better lower bounds.

To get an assessment of the usefulness of exploiting the alternative MILP
formulations available for SULS, we first look at the results provided in Ta-
bles 10-13 in Appendix D. We thus note that when G = 2, the average gap is
reduced from 11.16% with algorithm extSDDiP-II-0 to 7.43% with algorithm
extSDDiP-II-1. This clearly shows the positive impact of generating strength-
ened Benders’ cut using a linear relaxation of the sub-problems strengthened by
path inequalities (31). However, for larger values of G ∈ {3, 4, 6}, we observe
that the average gap is increased from 7.50% with algorithm extSDDiP-II-0 to
8.88% with algorithm extSDDiP-II-1. This deterioration might be explained by
the large number of valid inequalities added to the sub-problem formulations:
see e.g. the instances corresponding to Σ = 6, R = 20 and b = 1 for which more

26

than 20,000 path inequalities are added to the various sub-problems. Thus,
adding too many valid inequalities leads to an increase in the size of the MILPs
to be solved at each iteration of the extSDDiP algorithm so that fewer iterations
can be carried out and weaker lower bounds are provided. Moreover, results
from Tables 10-13 also seem to indicate that the use of additional sub-problem
formulation strengthening techniques does not enable algorithm extSDDiP-II-2
to provide better quality solutions. Finally, we note that the proposed addi-
tional strengthened Benders’ cuts may positively impact the performance of the
SDDiP algorithm of Zou et al. (2019), even when there is no partial decom-
position. Namely, provided that the number of periods per stage is greater
than 1, each sub-problem to be solved in the SDDiP algorithm is a small multi-
period deterministic lot-sizing problem whose formulation can be strengthened
by path inequalities (31). Line 2 of Table 12 in Appendix D in the online sup-
plement of this work reports the results obtained with the SDDiP-1 algorithm
in which additional strengthened Benders’ cuts based on sub-problem formula-
tions strengthened by path inequalities (31) are generated. These results show
the positive impact of these additional cuts on the algorithmic performance,
reducing the gap from over 20% (resp. 13%) with the SDDiP algorithm to less
than 10% (resp. 6%) with the SDDiP-1 algorithm for the instances with b = 2
(resp. b = 5) periods per stage.

Thus, each of the two enhancements proposed for the extSDDiP algorithm,
when used separately, has a moderate positive impact on the solution quality.
However, their combined use, in particular the use of alternative MILP formula-
tions of the SULS to generate additional strengthened Benders’ cuts in Phase I
of the extSDDiP algorithm, seems to significantly improve the algorithmic per-
formance. Namely, when G = 2, the average gap is reduced from 10.37% with
algorithm extSDDiP-I/II-0 to 5.89% with algorithm extSDDiP-I/II-1 and 5.06%
with algorithm extSDDiP-I/II-2. Similarly, when G ∈ {3, 4, 6}, the average gap
is reduced from 8.34% with algorithm extSDDiP-I/II-0 to 5.32% with algorithm
extSDDiP-I/II-1 and 5.47% with algorithm extSDDiP-I/II-2. This improvement
might be explained by the fact that, when running algorithm extSDDiP-I/II
with the formulation strengthening settings 1 or 2, more iterations of phase I
of the algorithm are carried out than when running algorithm extSDDiP-I/II-
0. This enables algorithms extSDDiP-I/II-1 and extSDDiP-I/II-2 to generate
more strengthened Benders’ cut in Phase I than algorithm extSDDiP-I/II-0 and
consequently to obtain a better initial lower bound at the end of phase I. All
three algorithms will improve this lower bound during phase II. However, a
phase II iteration is more computationally demanding than a phase I iteration
so that only a limited number of phase II iterations might be carried out within
the allotted time. Thus, using algorithm extSDDiP-I/II-0, does not enable to
generate enough cutting planes during phase II to make up for the difference
with algorithms extSDDiP-I/II-1 and extSDDiP-I/II-2 in the lower bound value
obtained at the end of phase I.

Finally, we would like to point out that the approximate sub-tree based algo-
rithm, i.e. extSDDiP-I, when combined with the use of sub-problem strength-
ening techniques to generate additional strengthened Benders’ cuts, shows a

27

remarkable computational performance. The results provided in Tables 6-9 (see
Appendix D in the online supplement of this work) namely show that using
algorithm extSDDiP-I-2 with G = 2, enables to provide solutions displaying
an average gap of 6.27% within an average computation time of only 166.71s.
This suggests that algorithm extSDDiP-I, even if it does not have any theoret-
ical guarantee of convergence, could be used as a heuristic solution approach
capable of providing in practice near-optimal solutions in reduced computation
times.

6 Conclusions and perspectives

We investigated a multi-stage stochastic mixed-integer linear programming ap-
proach for the SULS problem and focused on the resolution of instances involving
large-size scenario trees. We presented a new extension of the SDDiP algorithm
proposed by Zou et al. (2019). This new extension is based on three main fea-
tures: the partial decomposition of the stochastic problem into smaller stochas-
tic sub-problems (rather than into deterministic sub-problems), the introduction
of an initial phase in which the state variables are kept continuous and the ex-
ploitation of alternative MILP formulations of the stochastic sub-problems to
generate additional strengthened Benders’ cuts. Computational experiments
carried out on randomly generated instances show that the proposed extended
algorithm significantly outperforms the original SDDiP algorithm.

A first interesting direction for further research could be to extend this work
to single-item single-echelon stochastic lot-sizing problems involving complicat-
ing features such as the possibility of backlogging the demand, a limited produc-
tion capacity or upper bounds on the inventory level. These extensions of the
SULS problem would comprise a limited number of continuous state variables
at each node and valid inequalities that could be used to obtain alternative
MILP formulations. These inequalities are known for most of them (see e.g.
Pochet and Wolsey (2006)). It should thus be possible to adapt the two-phase
algorithm extSDDiP-I/II for these problems. It might also be worth investigat-
ing whether the proposed extended algorithm could be used to solve multi-item
and/or multi-echelon stochastic lot-sizing problems. For such problems, the
number of continuous state variables for which a binary approximation would
have to be built will be much larger so that the use of the one-phase algorithm
extSDDiP-I might be more appropriate. Finally, in many practical settings,
assuming a stage-wise independent stochastic process may not be suitable and
there may be temporal correlations, in particular in the demand parameter. It
would thus be interesting to study how the algorithmic enhancements proposed
in the present work for the SDDiP may be exploited to improve the computa-
tional efficiency of extensions of the SDDiP dealing with stage-wise dependent
stochastic processes such as the ones investigated by Shapiro et al. (2013) and
Philpott and de Matos (2012).

Acknowledgment: The authors are grateful for the partial support pro-

28

vided by the French Gaspard Monge Program for Optimization, Operational
research and their interactions with data science (PGMO) and the Fondation
Mathématique Jacques Hadamard (FMJH). This work was also partially funded
by the Agencia Nacional de Investigación y Desarrollo (ANID) / Becas de doc-
torado en el extranjero / BECAS CHILE/2018 - 72190160. The authors also
would like to thank the anonymous referees who spotted errors and provided
important suggestions to improve this manuscript.

References

Aggarwal A, Park JK (1993) Improved algorithms for economic lot size problems.
Operations Research 41:549–571.

Ahmed S, King AJ, Parija G (2003) A multi-stage stochastic integer programming ap-
proach for capacity expansion under uncertainty. Journal of Global Optimization
26(1):3–24.

Aldasoro U, Escudero LF, Merino M, Monge JF, Pérez G (2015) On parallelization of
a stochastic dynamic programming algorithm for solving large-scale mixed 0–1
problems under uncertainty. TOP 23(3):703–742.

Barany I, Van Roy TJ, Wolsey LA (1984) Strong formulations for multi-item capaci-
tated lot sizing. Management Science 30(10):1255–1261.

Brahimi N, Absi N, Dauzère-Pérès S, Nordli A (2017) Single-item dynamic lot-
sizing problems: An updated survey. European Journal of Operational Research
263(3):838–863.

Camargo VC, Toledo FM, Almada-Lobo B (2014) HOPS–Hamming-oriented partition
search for production planning in the spinning industry. European Journal of
Operational Research 234(1):266–277.

Cerisola S, Ramos A (2000) Node aggregation in stochastic nested Benders decom-
position applied to hydrothermal coordination. PMAPS2000: 6th International
Conference on Probabilistic Methods Applied to Power Systems.

Cristobal MP, Escudero LF, Monge JF (2009) On stochastic dynamic programming
for solving large-scale planning problems under uncertainty. Computers & Op-
erations Research 36(8):2418–2428.

Di Summa M, Wolsey LA (2008) Lot-sizing on a tree. Operations Research Letters
36(1):7–13.

Escudero LF, Monge JF, Morales DR (2018) On the time-consistent stochastic domi-
nance risk averse measure for tactical supply chain planning under uncertainty.
Computers & Research 100:270–286.

Ghamari A, Sahebi H (2017) The stochastic lot-sizing problem with lost sales: A
chemical-petrochemical case study. Journal of Manufacturing Systems 44:53–
64.

Guan Y, Ahmed S, Miller AJ, Nemhauser GL (2006a) On formulations of the stochastic
uncapacitated lot-sizing problem. Operations Research Letters 34(3):241–250.

Guan Y, Ahmed S, Nemhauser GL (2009) Cutting planes for multistage stochastic
integer programs. Operations Research 57(2):287–298.

29

Guan Y, Ahmed S, Nemhauser GL, Miller AJ (2006b) A branch-and-cut algorithm
for the stochastic uncapacitated lot-sizing problem. Mathematical Programming
105(1):55–84.

Guan Y, Miller AJ (2008) Polynomial-time algorithms for stochastic uncapacitated
lot-sizing problems. Operations Research 56(5):1172–1183.

Halman N, Klabjan D, Mostagir M, Orlin J, Simchi-Levi D (2009) A fully polynomial-
time approximation scheme for single-item stochastic inventory control with dis-
crete demand. Mathematics of Operations Research 34(3):674–685.

Hjelmeland MN, Zou J, Helseth A, Ahmed S (2018) Nonconvex medium-term hy-
dropower scheduling by stochastic dual dynamic integer programming. IEEE
Transactions on Sustainable Energy 10(1):481–490.

Hu Z, Hu G (2016) A two-stage stochastic programming model for lot-sizing and
scheduling under uncertainty. International Journal of Production Economics
180:198–207.

Kilic OA, Tunc H, Tarim SA (2018) Heuristic policies for the stochastic economic lot
sizing problem with remanufacturing under service level constraints. European
Journal of Operational Research 267(3):1102–1109.

Macedo PB, Alem D, Santos M, Junior ML, Moreno A (2016) Hybrid manufacturing
and remanufacturing lot-sizing problem with stochastic demand, return, and
setup costs. International Journal of Advanced Manufacturing Technology 82(5-
8):1241–1257.

Moreno A, Alem D, Ferreira D, Clark A (2018) An effective two-stage stochastic multi-
trip location-transportation model with social concerns in relief supply chains.
European Journal of Operational Research 269(3):1050–1071.

Pereira MV, Pinto LM (1991) Multi-stage stochastic optimization applied to energy
planning. Mathematical Programming 52(1-3):359–375.

Philpott AB, de Matos VL (2012) Dynamic sampling algorithms for multi-stage
stochastic programs with risk aversion. European Journal of Operational Re-
search 218(2):470 – 483.

Pochet Y, Wolsey LA (2006) Production planning by mixed-integer programming
(Springer).

Quezada F, Gicquel C, Kedad-Sidhoum S (2019) A stochastic dual dynamic integer
programming for the uncapacitated lot-sizing problem with uncertain demand
and costs. Proceedings of the International Conference on Automated Planning
and Scheduling, volume 29, 353–361.

Scarf H (1959) The optimality of (s, S) policies in the dynamic inventory problem.
Technical report, Stanford University.

Shapiro A, Tekaya W, Costa J, Soares M (2013) Risk neutral and risk averse stochastic
dual dynamic programming method. European Journal of Operational Research
224:375–391.

Wagelmans A, Van Hoesel S, Kolen A (1992) Economic lot sizing: an O(n logn) algo-
rithm that runs in linear time in the Wagner-Whitin case. Operations Research
40(1-supplement-1):S145–S156.

Wagner HM, Whitin TM (1958) Dynamic version of the economic lot size model.
Management Science 5(1):89–96.

30

Zhao C, Guan Y (2014) Extended formulations for stochastic lot-sizing problems.
Operations Research Letters 42(4):278–283.

Zou J, Ahmed S, Sun XA (2019) Stochastic dual dynamic integer programming. Math-
ematical Programming 175(1-2):461–502.

A Strengthening of the extensive MILP formu-
lation

This section recalls previously published results on the polyhedral structure of
the extensive formulation (1)-(4) and their use to strengthen its linear relaxation.
Formulation (1)-(4) can be strengthened by applying valid inequalities known
for the deterministic ULS to each path of the scenario tree.

Proposition 2 Guan et al. (2006b).
Given ` ∈ V and S ⊆ P(1, `), the following (`, S) inequality is valid for problem
(1)-(4):

s0 +
∑
n∈S

xn +
∑
n∈S̄

dn`yn ≥ d1` (31)

with dn` =
∑
m∈P(n,`) d

m and S̄ = P(1, `) \ S.

For the deterministic ULS, the (`, S) inequalities provide a full description of
the convex hull of the feasible space. It is however not the case for the SULS.
Guan et al. (2009) thus proposed to further strengthen formulation (1)-(4) by
exploiting its tree structure.

Proposition 3 Guan et al. (2009).
Given a subset O = {n1, ..., nO} ⊆ V which is partially ordered such that 0 =
d1n0 ≤ d1n1 ≤ ... ≤ d1nO and a subset SO of nodes belonging to ∪o=1...OP(1, nO),
the following inequality is valid for problem (1)-(4):

s0 +
∑
n∈SO

xn +
∑
n∈S̄O

∆n(O)yn ≥ d1nO (32)

with ∆n(O) =
∑
mo∈O∩V(n)(d

1mo − d1mo−1).

Note that inequalities (31) can be seen as a special case of inequalities (32)
in which O comprises a single node `. Guan et al. (2006a) showed that a
particular case of inequalities (32) suffices to fully describe the convex hull of
the two-period SULS. However, this is not the case anymore when more than
two planning periods are involved in the problem.

The number of valid inequalities (31) and (32) is too large to allow adding
all of them a priori to formulation (1)-(4). Hence, a cutting-plane generation
strategy is needed to add only a subset of these valid inequalities into the formu-
lation. Consequently, the corresponding separation problems must be solved in

31

order to identify which inequalities should be incorporated in the formulation.
For inequalities (31), the separation problem can be solved exactly by the poly-
nomial time algorithm proposed by Barany et al. (1984). For inequalities (32),
the complexity status of the separation problem remains unknown but Guan
et al. (2009) proposed a heuristic separation algorithm.

32

B Generation of strengthened Benders’ cuts us-
ing alternative MILP formulations of the sub-
problems

This section provides additional insights about the generation of additional
strengthened Benders’ cuts using alternative MILP formulations of the sub-
problems. We present a numerical example illustrating the fact that there is
no dominance between the strengthened Benders’ cuts generated while using
different MILP formulations of the SULS. To do this, we use formulation (21)-
(25) rather than formulation (9)-(17). It namely has a single continuous state
variable at each node, which facilitates the graphic representation of the ap-
proximation of the expected cost-to-go function.

Consider the following scenario tree involving S = 4 stages and Rσ = 3
realizations at stages 2 to 4. Each realization is described by its stage σ and its
realization index r ∈ {1, 2, 3}. The structure of the scenario tree is provided in
Figure 2 and the corresponding values of the uncertain parameters are provided
in Table 5.

Let us consider a partial decomposition involving Γ = 2 macro-stages with
S(1) = {1, 2} and S(2) = {3, 4}. At macro-stage γ = 1, we have a single realiza-
tion X 1,1 = {(1, 1), (2, 1), (2, 2), (2, 3)}. At macro-stage γ = 2, we have 3 real-
izations: X 2,1 = {(3, 1), (4, 1), (4, 2), (4, 3)}, X 2,2 = {(3, 2), (4, 1), (4, 2), (4, 3)},
X 2,3 = {(3, 3), (4, 1), (4, 2), (4, 3)}.

At the first iteration of Algorithm 1, as ψ1
1 ≡ 0, the feasible solution obtained

at the end of the forward step is such that the leaving inventory at nodes (2, 1),
(2, 2) and (2, 3) is equal to 0. The strengthened Benders’ cuts generated during
the backward step of the first iteration of Algorithm 1 to approximate Q1(s`)
are provided below:

• by solving the LP relaxation of sub-problems P̃ 2
1 (0, 0,X 2,r, IF (∅)), r ∈

{1, 2, 3}:

θ1 ≥ 682.18− 8.24s` (33)

• by solving the LP relaxation of sub-problems P̃ 2
1 (0, 0,X 2,r, IF (φ2,r

1)), r ∈

(1, 1)

(2, 1)

(2, 2)

(2, 3)

(3, 1)

(3, 2)

(3, 3)

(4, 1)

(4, 2)

(4, 3)

Figure 2: Scenario tree structure for Example 1

33

0 10 20 30

600

800

θ1 ≥ 887.88− 26.18s`

θ1 ≥ 882.55− 25.40s`

θ1 ≥ 682.18− 8.24s`

Figure 3: Illustration for Example B.

{1, 2, 3}, in which φ2,r
1 contains only path inequalities (31):

θ1 ≥ 882.55− 25.40s` (34)

• by solving the LP relaxation of sub-problems P̃ 2
1 (0, 0,X 2,r, IF (φ2,r

1)), r ∈
{1, 2, 3}, in which φ2,r

1 contains both path inequalities (31) and tree in-
equalities (32):

θ1 ≥ 887.88− 26.18s` (35)

Figure B provides a graphic representation of the three generated cuts. We
observe that there is no dominance amongst them, i.e. none of the cuts seems
to provide a better approximation of the expected cost-to-go function for all
possible values of the leaving inventory level s`. More specifically, when s` lies
in the interval [1, 7], the best approximation is obtained by the cut generated
using formulation IF (φγ,ri) strengthened by inequalities (31) and (32). When
s` lies in [7, 12], the best approximation is obtained by the cut generated using
formulation IF (φγ,ri) strengthened only by inequalities (31). Finally, when s` is
greater than 12, the best approximation is obtained by the cut generated using
formulation IF (∅). This shows the practical interest of generating strengthened
Benders’cuts based on alternative MILP formulation of the sub-problems.

34

C Detailed description of the proposed extSD-
DiP

Algorithm 2: Strengthening sub-problems algorithm

1 if λ = 0 then
2 F = IF (∅))
3 else if λ = 1 then
4 Run the cutting plane procedure to generate path inequalities (31)
5 Add the generated inequalities to φγ,ri to get φγ,ri+1

6 F = IF (φγ,ri)

7 else if λ = 2 then
8 Run the cutting plane procedure to generate tree inequalities (32)
9 Add the generated inequalities to φγ,ri to get φγ,ri+1

10 F = IF (φγ,ri)

35

Algorithm 3: Approximate extSDDiP algorithm

1 while no stopping criterion is satisfied do
2 Randomly select K scenarios Ωi = {ω1

i , ..., ω
K
i }

3 for k = 1, ...,K do
4 for γ = 1, ...,Γ do

5 Solve P̃ γi (smi , ψ̃
γ
i ,X

γ,r
k,γ
i , IF (φγ,ri)) for m = ωki ∩ Vt

′(γ−1)

6 Record s`i for ` = ωki ∩ L(γ, rk,γi)

7 end

8 end
9 for γ = Γ− 1, ..., 1 do

10 for k = 1, ...,K do
11 for r ∈ Rγ+1 do

12 Let m = ωki ∩ Vt
′(γ)

13 Run Algorithm 2
14 Solve the Linear relaxation of

P̃ γ+1
i (smi , ψ̃

γ+1
i+1 ,X

γ+1,r, F (φγ,ri+1)) and collect the coefficients
of the strengthened Benders’ cut

15 Solve the Lagrangian relaxation of

P̃ γ+1
i (smi , ψ̃

γ+1
i+1 ,X

γ+1,r, F (φγ,ri+1)) and collect the constant
value of the strengthened Benders’ cut

16 end

17 Add the generated cut to ψ̃γi to get ψ̃γi+1

18 end
19 if a criterion for Algorithm 2 is satisfied then
20 λ← λ+ 1
21 end

22 LB ← Q̃1,1
i+1(0)

23 i← i+ 1

24 end

25 end

D Computational assessment of the various com-
ponents of the extSDDiP algorithm

This section provides the results of additional computational experiments car-
ried out in order to assess the individual impact of each of the three main ele-
ments of algorithm extSDDiP, namely the partial decomposition of the stochas-
tic problem into smaller stochastic sub-problems, the introduction of an initial
phase in which the state variables are kept continuous and the exploitation of
alternative MILP formulations of the stochastic sub-problems to generate addi-
tional strengthened Benders’s cuts, on its overall performance.

Tables 6-9 provide the results obtained while running extSDDiP-I, i.e. run-
ning only the approximate sub-tree based algorithm. Tables 10-13 provide the
results obtained while running extSDDiP-II, i.e. running only Algorithm 1 with-

36

out an initial phase based on the approximate sub-tree based algorithm.

37

Table 1: Performance of each method at solving instances from Set 1 (Σ =
4, b = 1) of the SULS problem

R |V| |L(1)| G Method Gap Time (s) # ite # VI

10 1111 1000 1 SDDiP 9.59 1,100.96 135 0

2 extSDDiP-I/II-0 4.18 875.47 90 0

extSDDiP-I/II-1 3.21 869.66 105 823

extSDDiP-I/II-2 2.81 852.25 140 867

4 CPX 1.36 1590.96 - 2642

20 8420 8000 1 SDDiP 15.62 1,074.37 77 0

2 extSDDiP-I/II-0 5.10 967.10 60 0

extSDDiP-I/II-1 3.26 964.41 79 5,106

extSDDiP-I/II-2 2.98 961.24 133 7,283

4 CPX 4.67 1,801.45 - 3224

Table 2: Performance of each method at solving instances from Set 2 (Σ =
6, b = 1) of the SULS problem

R |V| |L(1)| G Method Gap Time (s) # ite # VI

10 111111 100000 1 SDDiP 21.49 1,241.18 80 0

2 extSDDiP-I/II-0 12.35 1,161.47 46 0

extSDDiP-I/II-1 7.93 1,155.39 76 1,331

extSDDiP-I/II-2 6.56 1,047.61 124 1,709

3 extSDDiP-I/II-0 7.19 1,065.16 36 0

extSDDiP-I/II-1 4.01 1,084.60 50 9,994

extSDDiP-I/II-2 4.18 1,100.41 72 22,039

6 CPX 19.28 1801.78 - 0

20 3.36× 106 3.2× 106 1 SDDiP 28.77 1,214.26 46 0

2 extSDDiP-I/II-0 13.88 1,150.22 38 0

extSDDiP-I/II-1 8.51 1,127.27 73 3,551

extSDDiP-I/II-2 7.88 1,050.58 138 11,805

3 extSDDiP-I/II-0 12.14 1,473.89 9 0

extSDDiP-I/II-1 12.01 1,526.49 8 996

extSDDiP-I/II-2 11.96 1,555.29 8 1,093

6 CPX 94.24 1,801.52 - 0

38

Table 3: Performance of each method at solving instances from Set 3 (Σ =
8, R = 5) of the SULS problem

b |V| |L(1)| G Method Gap Time (s) # ite # VI

2 195312 78125 1 SDDiP 20.08 1662.00 91 0

2 extSDDiP-I/II-0 13.08 1,669.77 52 0

extSDDiP-I/II-1 6.83 1,656.55 81 1,024

extSDDiP-I/II-2 6.21 1,604.36 115 1,121

4 extSDDiP-I/II-0 5.38 1,380.34 25 0

extSDDiP-I/II-1 2.89 1,438.71 31 7,762

extSDDiP-I/II-2 3.22 1,358.63 42 10,118

8 CPX 43.81 1,802.40 - 0

5 488280 78125 1 SDDiP 13.14 2075.09 70 0

2 extSDDiP-I/II-0 7.42 1,787.85 42 0

extSDDiP-I/II-1 2.90 1,591.52 82 4,124

extSDDiP-I/II-2 2.91 1,588.13 94 4,248

4 extSDDiP-I/II-0 4.32 1,726.38 16 0

extSDDiP-I/II-1 2.32 1,863.85 20 23,051

extSDDiP-I/II-2 1.82 1,841.01 21 26,621

8 CPX 71.04 1,803.99 - 0

Table 4: Performance of each method at solving instances from Set 4 (Σ =
12, b = 1, R = 3) of the SULS problem

|V| |L(1)| G Method Gap Time (s) # ite # VI

265720 177147 1 SDDiP 29.12 1,716.06 100 0

2 extSDDiP-I/II-0 16.61 1,742.85 72 0

extSDDiP-I/II-1 8.65 1,650.81 110 142

extSDDiP-I/II-2 6.12 1,526.16 175 144

3 extSDDiP-I/II-0 13.62 1,868.93 41 0

extSDDiP-I/II-1 6.67 1,746.58 67 687

extSDDiP-I/II-2 7.01 1,705.17 105 871

4 extSDDiP-I/II-0 10.46 1,853.51 28 0

extSDDiP-I/II-1 5.25 1,853.44 47 1,543

extSDDiP-I/II-2 6.20 1,821.16 72 3,017

6 extSDDiP-I/II-0 5.28 1,625.98 17 0

extSDDiP-I/II-1 4.11 1,677.38 21 4,260

extSDDiP-I/II-2 3.90 1,557.63 29 6,601

12 CPX 53.78 1,803.29 - 0

39

(σ, r) d f g h

(1,1) 87 934 10 0

(2,1) 69 1182 20 10

(2,2) 38 585 13 2

(2,3) 73 1259 11 1

(3,1) 7 1743 18 5

(3,2) 86 956 20 6

(3,3) 23 108 12 10

(4,1) 14 643 3 6

(4,2) 11 1583 9 0

(4,3) 91 1074 13 10

Table 5: Numerical values for Example 1

40

Algorithm 4: extSDDiP algorithm

1 Initialize LB ← −∞, UB ← +∞, i← 1, λ← 0
2 for γ = Γ− 1, ..., 1 do
3 for r ∈ Rγ+1 do
4 Initialize φγ,r ← ∅
5 end

6 end
7 Run Algorithm 3
8 while no stopping criterion is satisfied do
9 Randomly select K scenarios Ωi = {ω1

i , ..., ω
K
i }

10 for k = 1, ...,K do
11 for γ = 1, ...,Γ do

12 Solve P̂ γi (umi , ψ
γ
i ,X

γ,r
k,γ
i , IF (φγ,ri)) for m = ωki ∩ Vt

′(γ−1).

13 Record u`i for ` = ωki ∩ L(γ, rk,γi)

14 end

15 υk ←
∑
n∈ωki

(fnyni + hnsni + gnxni)

16 end

17 µ̂←
∑K
k=1 υ

k and χ̂2 ← 1
K−1

∑K
k=1(υk − µ̂)2

18 UB ← µ̂+ zα/2
χ̂√
K

19 for γ = Γ− 1, ..., 1 do
20 for k = 1, ...,K do
21 for r ∈ Rγ+1 do

22 Let m = ωki ∩ Vt
′(γ)

23 Run Algorithm 2
24 Solve the Linear relaxation of

P̂ γ+1
i (umi , ψ

γ+1
i+1 ,X

γ+1,r, F (φγ,ri+1)) and collect the coefficients
of the strengthened Benders’ cut

25 Solve the Lagrangian relaxation of

P̂ γ+1
i (umi , ψ

γ+1
i+1 ,X

γ+1,r, F (φγ,ri+1)) and collect the constant
value of the strengthened Benders’ cut

26 Solve P̂ γ+1
i (umi , ψ

γ+1
i+1 ,X

γ+1,r, F (φγ,ri+1)) and collect the
coefficients of the integer optimality cut

27 -Solve the Lagrangian dual problem and collect the coefficients
of the Lagrangian cut

28 end
29 Add the 3 generated cuts to ψγi to get ψγi+1

30 end
31 if a criterion for Algorithm 2 is satisfied then
32 λ← λ+ 1
33 end

34 LB ← Q̂1,1
i+1(0)

35 i← i+ 1

36 end

37 end

41

Table 6: Performance of the approximate algorithm at solving instances from
Set 1 (Σ = 4, b = 1) of the SULS problem

R |V| |L(1)| G Method Gap Time (s) # ite # VI

10 1111 1000 1 SDDiP 9.59 1,100.96 135 0

2 extSDDiP-I-0 9.44 7.42 16 0

extSDDiP-I-1 6.55 12.56 33 92

extSDDiP-I-2 5.61 21.26 64 678

4 CPX 1.36 1590 - 2642

20 8420 8000 1 SDDiP 15.62 1,074.37 77 0

2 extSDDiP-I-0 8.28 25.40 18 0

extSDDiP-I-1 5.25 36.50 35 377

extSDDiP-I-2 4.43 75.93 86 5,545

4 CPX 4.67 1,801 - 3224

Table 7: Performance of the approximate algorithm at solving instances from
Set 2 (Σ = 6, b = 1) of the SULS problem

R |V| |L(1)| G Method Gap Time (s) # ite # VI

10 111111 100000 1 SDDiP 21.49 1,241.18 80 0

2 extSDDiP-I-0 13.91 23.22 23 0

extSDDiP-I-1 8.93 44.99 54 286

extSDDiP-I-2 6.73 104.13 101 1,563

3 extSDDiP-I-0 7.66 146.98 18 0

extSDDiP-I-1 4.85 288.06 38 1,886

extSDDiP-I-2 4.56 787.07 71 20,829

6 CPX 19.28 1801 - 0

20 3.36 ×106 3.2× 106 1 SDDiP 28.77 1,214.26 46 0

2 extSDDiP-I-0 15.47 71.33 30 0

extSDDiP-I-1 8.88 198.51 67 1,132

extSDDiP-I-2 7.95 621.07 137 11,762

3 extSDDiP-I-0 10.67 1,349.91 8 0

extSDDiP-I-1 10.75 1,369.64 7 0

extSDDiP-I-2 11.81 1,386.40 7 0

6 CPX 94.24 1,801 - 0

42

Table 8: Performance of the approximate algorithm at solving instances from
Set 3 (Σ = 8, R = 5) of the SULS

b |V| |L(1)| G Method Gap Time (s) # ite # VI

2 195312 78125 1 SDDiP 20.08 1662.00 91 0

2 extSDDiP-I-0 15.16 40.83 21 0

extSDDiP-I-1 6.61 55.23 52 432

extSDDiP-I-2 6.30 76.85 84 1,002

4 extSDDiP-I-0 7.04 676.63 13 0

extSDDiP-I-1 3.49 1,011.61 28 6,008

extSDDiP-I-2 3.12 1,285.02 32 7,975

8 CPX 43.81 1,802.40 - 0

5 488280 78125 1 SDDiP 13.14 2075.09 70 0

2 extSDDiP-I-0 13.73 113.42 21 0

extSDDiP-I-1 2.56 130.48 49 2,196

extSDDiP-I-2 2.58 163.25 65 3,746

4 extSDDiP-I-0 6.39 1,179.24 12 0

extSDDiP-I-1 3.12 1,739.40 18 19,857

extSDDiP-I-2 2.89 1,765.80 19 21,455

8 CPX 71.04 1,803.99 - 0

Table 9: Performance of the approximate algorithm at solving instances from
Set 4 (Σ = 12, R = 3, b = 1) of the SULS

|V| |L(1)| G Method Gap Time (s) # ite # VI

265720 177147 1 SDDiP 29.12 1,716.06 100 0

2 extSDDiP-I-0 24.01 73.32 20 0

extSDDiP-I-1 11.15 88.51 53 86

extSDDiP-I-2 10.32 104.50 81 137

3 extSDDiP-I-0 15.78 23.95 19 0

extSDDiP-I-1 7.87 36.14 47 235

extSDDiP-I-2 6.43 59.33 84 775

4 extSDDiP-I-0 12.82 74.63 17 0

extSDDiP-I-1 4.84 99.06 38 627

extSDDiP-I-2 4.80 196.46 64 2,535

6 extSDDiP-I-0 7.72 1,009.62 10 0

extSDDiP-I-1 4.25 1,275.45 18 3,323

extSDDiP-I-2 4.11 1,361.15 23 4,747

12 CPX 53.78 1,803.29 - 0

43

Table 10: Performance of Algorithm 1 at solving instances from Set 1 (Σ =
4, b = 1) of the SULS problem

R |V| |L(1)| G Method Gap Time (s) # ite # VI

10 1111 1000 1 SDDiP 9.59 1,100.96 135 0

2 extSDDiP-II-0 4.86 951.89 74 0

extSDDiP-II-1 3.00 908.93 77 879

extSDDiP-II-2 3.16 928.67 72 875

4 CPX 1.36 1590 - 2642

20 8420 8000 1 SDDiP 15.62 1,074.37 77 0

extSDDiP-II-0 5.54 971.92 42 0

extSDDiP-II-1 3.58 961.21 41 5,075

extSDDiP-II-2 3.70 958.20 41 5,068

4 CPX 4.67 1,801 - 3224

Table 11: Performance of Algorithm 1 at solving instances from Set 2 (Σ =
6, b = 1) of the SULS problem

R |V| |L(1)| G Method Gap Time (s) # ite # VI

10 111111 100000 1 SDDiP 21.49 1,241.18 80 0

2 extSDDiP-II-0 12.42 1,182.40 25 0

extSDDiP-II-1 9.21 1,187.84 25 1,400

extSDDiP-II-2 8.84 1,176.92 25 1,389

3 extSDDiP-II-0 7.68 1,086.78 21 0

extSDDiP-II-1 6.11 1,179.83 15 10,557

extSDDiP-II-2 5.27 1,167.99 15 10,489

6 CPX 19.28 1801 - 0

20 3.36× 106 3.2× 106 1 SDDiP 28.77 1,214.26 46 0

2 extSDDiP-II-0 17.35 1,118.36 11 0

extSDDiP-II-1 17.50 1,274.20 10 4,081

extSDDiP-II-2 16.85 1,268.43 9 3,957

3 extSDDiP-II-0 - - - -

extSDDiP-II-1 - - - -

extSDDiP-II-2 - - - -

6 CPX 94.24 1,801 - 0

44

Table 12: Performance of Algorithm 1 at solving instances from Set 3 (Σ =
8, R = 5) of the SULS problem

b |V| |L(1)| G Method Gap Time (s) # ite # VI

2 195312 78125 1 SDDiP 20.08 1662.00 91 0

SDDiP-1 9.72 1,617.19 115 121

2 extSDDiP-II-0 13.42 1,653.96 33 0

extSDDiP-II-1 6.93 1,665.12 37 1,106

extSDDiP-II-2 7.21 1,667.20 35 1,101

4 extSDDiP-II-0 6.91 1,475.52 13 0

extSDDiP-II-1 9.29 1,645.23 9 10,933

extSDDiP-II-2 8.80 1,632.74 9 11,075

8 CPX 43.81 1,802.40 - 0

5 488280 78125 1 SDDiP 13.14 2075.09 70 0

SDDiP-1 5.71 2,025.49 100 1,204

2 extSDDiP-II-0 7.76 1,780.95 29 0

extSDDiP-II-1 3.66 1,730.56 35 4,815

extSDDiP-II-2 3.53 1,703.66 37 4,831

4 extSDDiP-II-0 6.41 1,629.26 10 0

extSDDiP-II-1 24.18 1,864.58 4 20,673

extSDDiP-II-2 26.63 1,862.54 4 18,764

8 CPX 71.04 1,803.99 - 0

Table 13: Performance of Algorithm 1 at solving instances from Set 4 (Σ =
12, R = 3, b = 2) of the SULS problem

|V| |L(1)| G Method Gap Time (s) # ite # VI

265720 177147 1 SDDiP 29.12 1,716.06 100 0

2 extSDDiP-II-0 16.32 1,693.26 60 0

extSDDiP-II-1 8.11 1,618.20 73 138

extSDDiP-II-2 8.32 1,651.21 72 138

3 extSDDiP-II-0 13.67 1,725.26 25 0

extSDDiP-II-1 7.76 1,726.47 27 741

extSDDiP-II-2 7.79 1,712.67 27 740

4 extSDDiP-II-0 11.67 1,853.11 13 0

extSDDiP-II-1 8.88 1,852.27 12 1,662

extSDDiP-II-2 8.78 1,865.50 12 1,657

6 extSDDiP-II-0 6.18 1,601.00 12 0

extSDDiP-II-1 6.28 1,760.09 10 7,264

extSDDiP-II-2 5.51 1,728.80 9 7,134

12 CPX 53.78 1,803.29 - 0

45

E Computational results on instances involving
a large number of stages

This section provides the results of additional computational experiments car-
ried out to assess the performance of the extSDDiP algorithm when using large
values of G.

We used the procedure described in Subsection 5.1 of the manuscript to
generate a new set of instances involving Σ = 20 stages, b = 1 period per
stage and R ∈ {2, 3} realizations per stage. We solve these instances with the
mathematical solver CPLEX using the extensive MILP formulation, with the
SDDiP algorithm proposed by Zou et al. (2019) and with the extSDDiP-I/II-2
algorithm for values of G in the set {2, 4, 5, 10}. The results are reported in
Table 14.

As already discussed in Subsection 5.3, we first note that increasing G from 1
to 2, 4 or 5 leads to a significant improvement in the solution quality. However,
further increasing G to 10 leads to a degradation of the algorithmic perfor-
mance. This can be seen in particular for the instances corresponding to R = 3:
on average, for these instances, the extSDDiP-I/II-2 algorithm with G = 10
provides solutions within a gap significantly larger than the one obtained using
the SDDiP algorithm.

This might be explained as follows. When G is large, the extSDDiP algo-
rithm decomposes the initial problem into a small number of large sub-problems.
Solving each one of these sub-problems is computationally demanding so that
the algorithm is able to perform only a limited number of iterations within the
allotted time. Note e.g. how, on average, the extSDDiP-I/II-2 algorithm with
G = 10 is able to carry out only 11 iterations when solving instances with R = 3
whereas the same algorithm solving the same instances with G = 2 carries out
an average of 286 iterations. This reduction in the number of iterations neg-
atively impacts the quality of the approximate expected cost-to-go functions
built over the course of the algorithm, and as a consequence, the quality of the
lower and upper bounds obtained by the algorithm.

Note that this phenomenon is also observed in the results reported in Tables
2 and 11 for the instances of Set 2 involving R = 20 realizations per stage. For
these instances, increasing G from 2 to 3 negatively impacts the solution gap.

46

Table 14: Performance of each method at solving instances with Σ = 20 and
b = 1 of the SULS problem

R |V| |L(1)| G Method Gap Time (s) # ite # VI

2 1,048,570 524,288 1 SDDiP 20.74 2,381.83 116 0

2 extSDDiP-I/II-0 16.21 1,171.41 151 0

extSDDiP-I/II-1 4.96 1,114.92 219 105

extSDDiP-I/II-2 8.37 1,188.19 216 105

4 extSDDiP-I/II-0 15.23 1,700.43 56 0

extSDDiP-I/II-1 5.63 1,288.44 95 639

extSDDiP-I/II-2 5.67 1,282.92 142 737

5 extSDDiP-I/II-0 11.98 1,820.73 42 0

extSDDiP-I/II-1 6.53 1,565.08 72 1,102

extSDDiP-I/II-2 6.17 1,553.27 103 1,495

10 extSDDiP-I/II-0 6.51 1,240.04 13 0

extSDDiP-I/II-1 7.05 1,396.39 20 3,978

extSDDiP-I/II-2 6.45 1,430.71 25 4,390

20 CPX 88.58 1,805.53 - -

3 1.74 ·109 1.16 ·109 1 SDDiP 24.23 2,212.64 93 0

2 extSDDiP-I/II-0 26.51 1,128.94 108 0

extSDDiP-I/II-1 9.52 1,013.80 229 276

extSDDiP-I/II-2 11.21 1,061.60 286 275

4 extSDDiP-I/II-0 18.45 1,862.04 53 0

extSDDiP-I/II-1 9.23 1,855.41 96 2,719

extSDDiP-I/II-2 8.03 1,605.79 127 5,697

5 extSDDiP-I/II-0 13.54 1,910.29 36 0

extSDDiP-I/II-1 7.05 1,861.89 62 4,304

extSDDiP-I/II-2 9.57 1,829.56 60 4,201

10 extSDDiP-I/II-0 75.37 1,787.26 10 0

extSDDiP-I/II-1 71.60 1,877.45 12 0

extSDDiP-I/II-2 61.54 1,773.12 11 0

20 CPX - - - -

47

