N
N

N

HAL

open science

A novel Network-on-Chip security algorithm for
tolerating Byzantine faults

Soultana Ellinidou, Gaurav Sharma, Olivier Markowitch, Jean-Michel Dricot,

Guy Gogniat

» To cite this version:

Soultana Ellinidou, Gaurav Sharma, Olivier Markowitch, Jean-Michel Dricot, Guy Gogniat. A novel
Network-on-Chip security algorithm for tolerating Byzantine faults. 2020 IEEE International Sympo-
sium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Oct 2020, Frascati,
Italy. pp.1-6, 10.1109/DFT50435.2020.9250906 . hal-03606356

HAL Id: hal-03606356
https://hal.science/hal-03606356

Submitted on 11 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03606356
https://hal.archives-ouvertes.fr

A novel Network-on-Chip security algorithm for
tolerating Byzantine faults

Soultana Ellinidou*, Gaurav Sharma*, Olivier Markowitch*, Guy GogniatT, and Jean-Michel Dricot*
*Cybersecurity Research Center, Université Libre de Bruxelles, Brussels, Belgium
J‘Lab-STICC, Université de Bretagne Sud, Lorient, France
Email:{soultana.ellinidou, gsharma, olivier.markowitch, jdricot} @ulb.ac.be, guy.gogniat@univ-ubs.fr

Abstract—Since the number of processors and cores on a
single chip is increasing, the interconnection among them be-
comes significant. Network-on-Chip (NoC) has direct access to
all resources and information within a System-on-Chip (SoC),
rendering it appealing to attackers. Malicious attacks targeting
NoC are a major cause of performance depletion and they can
cause arbitrary behavior of links or routers, that is, Byzantine
faults. Byzantine faults have been thoroughly investigated in the
context of Distributed systems however not in Very Large Scale
Integration (VLSI) systems. Hence, in this paper we propose a
novel fault model followed by the design and implementation of
lightweight algorithms, based on Software Defined Network-on-
Chip (SDNoC) architecture. The proposed algorithms can be used
to build highly available NoCs and can tolerate Byzantine faults.
Additionally, a set of different scenarios has been simulated and
the results demonstrate that by using the proposed algorithms the
packet loss decreases between 65% and 76% under Transpose
traffic, 67% and 77 % under BitReverse and 55% and 66% under
Uniform traffic.

Index Terms—Byzantine Faults, BFT, Network-on-Chip, NoC

I. INTRODUCTION

Byzantine Fault Tolerance (BFT) is the ability of a net-
work to function as desired and correctly reach a sufficient
consensus, despite malicious nodes of the system failing or
propagating incorrect information to the other nodes. The
design of BFT algorithms originates from the introduction
of the Byzantine Generals problem by Lamport et al. [1], in
which the components of a computer system are abstracted
as generals of an army. Loyal generals, which are non-faulty
components need to find a way to reach to an agreement (e.g.
to attack or retreat), while traitors or faulty components are
trying to confound others by sending incorrect messages.

In Distributed systems, the communication process and the
behavior of networks in the presence of Byzantine faults have
been meticulously studied. Interestingly, Very Large Scale In-
tegration (VLSI) circuits can be viewed as Distributed systems
at several levels of abstraction: from gates that communicate
via binary signals, to components in a NoC. However, the ma-
jority of the existing BFT algorithms cannot be implemented
within VLSI systems due to the unavailability of the large
amount of resources that is required.

The faults can be classified into transient, intermittent, or
permanent faults [2]. Regarding System-on-Chip (SoC), all of
the three types of faults can occur in the chip’s life cycle.
Transient faults appear randomly for one or several cycles.

978-1-7281-9457-8/20/$31.00 (©2020 IEEE

Intermittent faults, which are easily confused with transient
faults, occur repeatedly at the same location. They can be
tackled by replacing the faulty component hence by removing
the fault. Permanent faults can be either logic faults, where
transistors or wires are permanently open, or delay faults,
where transistors are very slow causing set up and hold timing
violation.

Different types of faults, coming from the initial three
categories, have been introduced, like crash failures, which are
permanent faults occurred when a tile halts prematurely or a
link disconnects [3]. However, arbitrary failures (also called
Byzantine), which are transient faults, have not been explored
in the context of Network-on-Chip (NoC). Since the NoC has
direct access to all communication resources and information
flow within the SoC, attackers have a strong motivation to
exploit its possible vulnerabilities. Unfortunately, malicious
attacks and malicious hardware modifications of a circuit
during the design or fabrication process are common causes
of failure and they can cause faulty nodes to exhibit arbitrary
behavior, that is, Byzantine faults. Malicious attacks that can
cause arbitrary faults within NoC are: Hardware Trojan (HT)
[4], DoS [5], HT-Denial of Service (DoS) [6], etc.

Since there is a big gap in the literature of Byzantine faults
on NoC, in this paper we address the problem and propose a
novel security algorithm for tolerating Byzantine faults. This
algorithm is specifically designed for a NoC alternative, called
Software Defined Network (SDNoC) [7]. SDNoC provides
secure paths in presence of untrusted routers and assures that
packets will be successfully delivered to their destination. Our
contribution is summarized as:

o a new fault model, in order to introduce the Byzantine
faults within NoC,

« a novel algorithm relying on SDNoC for tolerating the
Byzantine faults,

o the evaluation and implementation of 3 scenarios within
the system by obtaining performance measurements.

The rest of the paper is organized as follows: In Section
II we discuss the related work. Thereafter, in Section III the
architectural model of SDNoC concept is presented. In Section
IV the fault model is introduced, followed by our proposed
secure algorithm in Section V. The evaluation results are
discussed in Section VI and finally, the conclusion and future
work in Section VII.

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on March 11,2022 at 16:13:39 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

There is no existing literature on BFT algorithms for NoC,
however there is a large number of contributions in Distributed
systems following Wireless Sensor Networks (WSN) and
Cloud computing. At the end of the 90s, the pioneers Miguel
Castro and Barbara Liskov introduced the practical Byzan-
tine Fault Tolerance” (pBFT) algorithm [8], which provides
practical Byzantine state machine replication by tolerating
malicious nodes within a network by assuming that there
are independent node failures and manipulated messages are
propagated by specific independent nodes. The algorithm is
designed to work in asynchronous systems and can process
thousands of requests per second with impressive overhead and
a slight increase in latency. However it is worth mentioning
that the communication between the nodes within the system
is heavy and each node not only has to prove that the messages
came from a specific peer node but additionally needs to verify
that the messages were not modified during the transmission.

Following pBFT, several BFT protocols were introduced to
improve its robustness, cost and performance [9, 10, 11], while
alternative protocols were introduced that leverage trusted
components in order to reduce the number of replicas [12].
Furthermore, WSNs are prone to Byzantine faults because of
their limited energy, low calculation capability and dynamic
topology. In [13], the authors propose a Byzantine fault-
tolerant routing algorithm for large-scale WSN, by ensuring
the resistance of timing and energy attacks with help of elliptic
curve digital signatures. Afterwards, in [14] a novel distributed
fault detection algorithm is presented in order to detect the soft
faulty sensor nodes in sparse WSNs, where every sensor node
gathers the information only from their neighboring nodes in
order to reduce communication overhead.

Cloud-based systems have a more complex architecture
in comparison to Distributed systems, they potentially have
multiple trust levels and the dynamic change of resources
allocated to a service is an easy task in the Cloud. As a
result, new BFT algorithms specifically designed for Cloud-
based systems have been developed, such as the BFTCloud
[15], which is a BFT framework for cloud computing that
uses replication techniques to provide the basic fault tolerance
and selects voluntary nodes based on Quality of Service (QoS)
characteristics and reliability performance. Another interesting
contribution by Guisheng Fan et al. [16], proposes a fault
detection strategy for cloud module and cloud application,
which can make the cloud application to dynamically detect
faults at runtime.

III. ARCHITECTURE MODEL: SDNOC

Byzantine faults may appear independently in different
NoC architectures. In this paper however, we target a NoC
alternative called, SDNoC [17, 7, 18]. The SDNoC concept is
derived from Software Defined Network (SDN) technology
and targets as a main goal the minimization of router’s
complexity. Precisely, with the help of SDNoC, the routing
logic of the routers is exported to a centralized controller

: Router

Fig. 1: Software Define Network-on-Chip (SDNoC) architec-
ture

which has a general view of the network and can take routing
decisions efficiently.

According to the researchers [17, 18], SDNoC could be a
potential solution for SoCs due to its advantages: 1) reduction
of hardware complexity, 2) high re-usability, and 3) flexible
management of communication policies.

Fig. 1 depicts an SDNoC architecture which consists of 16
routers and a centralized controller. The routers are intercon-
nected with the neighboring routers through links and with a
Processing Element (PE) through the Network Interface (NI).
The centralized controller is interconnected with the routers
through direct links and sends configuration packets to the
routers in order to manage the routing of the packets in an
efficient manner.

IV. FAULT MODEL

Malicious attacks and malicious hardware modifications
of a circuit during the design or fabrication often lead to
arbitrary failures and can cause faulty nodes to exhibit arbitrary
behavior, these are Byzantine failures. Byzantines failures
occur when the system is under specific attacks like HT, DoS,
HT-DoS, etc.

HT attacks introduce a malicious circuit modification during
the design or fabrication process in an untrusted design house
or foundry, in which untrusted people, design tools, or com-
ponents are involved [4]. Such modifications can lead to ab-
normal functional behavior of a system, degrade performance
and provide covert channels or backdoors by which an attacker
can leak sensitive information. More precisely, if a router is
infected with a HT, it can maliciously change the flit source
or destination address or flit type information of a packet. If
a Trojan payload modifies the destination address of a packet,
that packet could be directed to an unauthorized IP core.

DoS attacks can make the resources of a system unavailable
to legitimate nodes. They can also mis-route packets to de-

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on March 11,2022 at 16:13:39 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Faulty Node Algorithm

Data: n, source, destination
if control_reply[n] # n then
for i=1:n do
while control_reply[i] == 0 do
faulty_node = check_node(i);

control_check(nroute[]);
end

end

else
| control_done();
end

nroute[]=new_route(source, destination, faulty_node);

grade the network performance causing deadlock and virtually
link failure [6].

HT can also launch DoS attacks against the NoC [19] of a
many-core chip by causing serious damages, including drop-
ping of packets, leaking sensitive information, or modification
of functionalities, etc. The consequence of HT-DoS attacks
includes bandwidth depletion, incorrect path routing, deadlock
and livelock [5].

There is a big number of detection and defense mechanisms
specifically designed for each attack separately in literature,
however there is no abstract algorithm that can tackle all these
attacks at the same time, ensure the right consensus of the
network despite the malicious nodes within the system and
the correct functionality of the network.

By taking into account the previously mentioned attacks, in
this paper we investigate the arbitrary routers by leaving the
arbitrary links as a future work. When a NoC is under the
above mentioned attacks, the possible arbitrary behavior of a
router can include:

« arbitrary deviation from its specification,
o packet redirection,

o packet modification,

« (partial) packet dropping,

 deadlocks or livelocks.

V. ALGORITHM

Following the architecture and fault model, we design the
following algorithm, which consists of 2 cases: a) the Normal
Case Operation, where the system has no faults and b) the
Byzantine fault Case Operation, where the system has faults.

A. Normal Case Operation

The main network entities are the source router, the destina-
tion router, the controller and the routers along the route from
source to the destination. The source router is linked with the
source PE, which wants to send a packet to a destination PE.
The source router will contact the controller, to request a route.
Afterwards the controller, with the help of a routing algorithm
described on [17], will find a route and it will check all the
routers along the route for faulty behavior, after which it will
inform the source router for the next hop of the packet. Finally,

ROUTE CONTROL CONTROL CONTROL ACK
REQUEST CHECK REPLY DONE REPLY

O\ /
N e /
\ /

Fig. 2: Messages under Normal Case operation

the source router will wait for a final acknowledgment of the
packet by the destination in order to ensure that the packet
was successfully delivered. More precisely, each round of the
algorithm consists of 6 steps:

o Step 1: The source node sends a request to the controller.

o Step 2: The controller multicasts the request to the other
nodes along the path based on the routing technique that
was chosen.

o Step 3: The nodes send a reply to the controller.

o Step 4: The controller waits for n replies from the nodes.
(n is the number of nodes).

« Step 5: The controller sends a message to the source node
in order to inform him that the nodes along the path are
not faulty and to initiate the routing process.

o Step 6: The Destination Node sends an acknowledgment
to the source node.

In order to implement our algorithm within NoC, a set of 6
network messages were designed (Table I). Network messages
are exchanged between the nodes through physical links
following the steps of the Normal Case operation algorithm.

Fig. 2 provides an overview of the algorithm, in which the
network messages are integrated, in the normal case of no
faults. S stands for Source node, C for Controller, N for Nodes
along the route and D for Destination node.

B. Byzantine fault Case Operation

In the second scenario, we consider that the system is
equipped with Byzantine faults by following the previously
described fault model. In this case, the Normal Case Operation

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on March 11,2022 at 16:13:39 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Designed Network messages

Type Type Value Description Contents
ROUTE_REQ 0x01 Sent by source router to controller, SRC_ID, DST_ID, Packet_ID, TS
which asks a route for a packet.
CONTROL_ CHECK 0x02 Sent by controller to the ACK
nodes along the chosen path.

CONTROL_REP 0x03 Sent by the nodes on the path to controller. NODE_ID, TS
CONTROL_DONE 0x04 Sent by controller to the source router. PACKET_ID, NEXT_HOP, TS
ACK 0x05 Sent by destination router to the source router. PACKET_ID, TS
Sent by source router to the controller
ALERT 0x05 in order to inform him that he didn’t DST_ID, Packet_ID, TS
receive an ACK from the destination.

algorithm needs to be enhanced with other 2 algorithms,
specifically designed for the controller.

Taking into account the Normal Case Operation algorithm,
if a faulty router is present, the first scenario to be considered
is that the controller will not receive a reply, CONTROL_REP,
from the faulty routers along the route. Thus, we designed
Algorithm 1, that is executed by the controller. More precisely,
the controller first checks if it received a reply from all the
routers along the route. If so, it continues to the next step of the
Normal Case algorithm, otherwise it considers the router, from
which it did not receive a reply, as faulty one and recomputes
a new route for the given source and destination of the packet,
excluding this router.

The second scenario to be considered is that a faulty router,
along the route, could pretend to be legitimate by replying
to the controller. However, it sinks the received packet, such
that it can never reach its final destination. As a result the
destination will not receive any packet and it will not send an
ACK to the source. Thus, we designed the ALERT messages,
which will be sent from the source to the controller in order
to inform that the packet may not have been received by the
destination. When the controller receives an ALERT message,
it initiates Algorithm 2.

Based on our architecture, we equipped each router with
a counter in each port (north, east, south, west), which is
incremented every time that a new packet is imported and
decremented every time that a packet is exported. The results
are saved in a TrustTable, which includes all the values for
the different ports. When the controller receives an ALERT
message, it requests from all the routers to send their Trust-
Table along with their RouterID. The controller calculates and
chooses the routes for each individual source-destination pair
by storing them in the table Routes. The value k indicates the
4 different directions north, east, south, west.

Algorithm 2 is mainly used to identify which are the faulty
routers with the help of the table Suspect. First the controller
checks, whether any input of the TrustTable is less than
a threshold value (¢tv). This threshold value can be chosen
depending on traffic pattern or buffer holding capacity of
the system. If so, then it is searching for the previous hop
(neighbor), in order to identify the possible suspect router.
Since the controller calculates the table of Suspect of the
given RouterID, it will also check the tables of Suspect of the
other RouterID’s. If a suspect appears at least in two different
Suspect tables, because each router could have at least two
neighbor routers, this router will be considered as faulty.

VI. EVALUATION

Simulations were performed with Garnet2.0 [20], which
is a NoC model implementation within the gem5 simulator.
We implemented and simulated different scenarios in order to
show how a Byzantine fault can affect NoC and also to show
the improvements of throughput and packet loss as a result
to our proposed algorithms. The first scenario represents the
Normal Case Operation which is described in Section V-A.
Afterwards various scenarios were implemented, where 1, 3
and 6 Byzantines faults were imported within the NoC and
the Byzantine fault Operation algorithms V-B were tested.

Within the simulations the traffic generated by the process-
ing cores depends on the traffic injection rate (tir). The tir
is the average number of packets injected by the cores into
the network per clock cycle (0 < tir < 1). An 8 X 8 topol-
ogy is simulated, by implementing 0, 1, 3 and 6 Byzantine
faults within the network. Furthermore, three different traffic
scenarios have been evaluated: Transpose, Uniform and Bit-
Reverse. It should be noted that for each scenario we perform
40 iterations, of which the average value of throughput and
latency are calculated.

The results of the first scenario, which represent the Normal
Case Operation of our algorithm, are depicted in Fig. 3a, 3b,
3c. Precisely, in the figures the average throughput and the
average packet latency, under different injection rates (0.015-
0.024), are presented for Transpose, Uniform and BitReverse
traffic respectively. The average throughput and latency tend to
be identical for Transpose and Bit-Reverse traffic. The average
throughput is in the range of 0.075-0.115 flits/cycle/core and
the average latency is between 20-180 cycles. As a result,
the controller relies on an accurate view of the network state
and it is able to balance the traffic across the network by
avoiding the form of congested network areas. However, under
Uniform traffic the controller is unable to balance the traffic
under high injection because of the source-destination pair
is randomly chosen hence, in conjunction with the routing
algorithm restrictions applied to the routes, the average latency
is in the range of 0-400 cycles and the average throughput in
the range of 0.0075-0.0095 flits/cycle/core.

In Fig. 4, three different scenarios are presented in each
graph. In the first scenario, a single Byzantine fault is im-
ported, the second scenario considers three Byzantine faults
and in the third instance, there are six Byzantine faults. Fig.
4a 4b 4c depict the normalized average throughput under
Transpose, Uniform and BitReverse traffic respectively. Fig.

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on March 11,2022 at 16:13:39 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Alert Algorithm

Data: Routes[][], TrustTable[][], RouterID, a=0
for k=1:4 do

if TrustTable[k][2] < tv then

for j=1:Routes.rows() do

for r=1:Routes.column() do

if Routes[j][t] == RouterID then
neighbor == Routes[j-1] [t];

a=a+l;
Suspect[a]=neighbor;
end
end

end
end

if TrustTable[k][1] == direction.neighbor() then

20

0.016 0.018

20
0.024

0.016 0.018 0.02 0.022
Traffic injection rate [packets/cycle/core]

Traffic injection rate [packets/cycle/core]

. . . . 0
0.016 0.018 0.02 0.022 0.024
Traffic injection rate [packets/cycle/core]

0.02 0.022 0.024

(a) Throughput and Latency under Transpose (b) Throughput and Latency under BitRe- (c) Throughput and Latency under Uniform

Traffic.

Fig. 3: Normal Case Operation Scenario measurements.

Traffic. verse Traffic.
TABLE II: Packet loss improvement.
Byzantine Faults 1 3 6
Algorithm 1 [2 1 [2 1 [2
Transpose traffic 24% | 15% | 56% | 47% | 76% | 65%
BitReverse traffic 24% | 14% | 55% | 46% | 77% | 67%
Uniform traffic 19% | 10% | 50% | 42% | 66% | 55%

4d 4e 4f show the normalized packet loss rate and Fig. 4g
4h 4i illustrate the normalized packet loss. By taking into
account these results, the packet loss improvement is shown
in Table II. As far as the throughput is concerned, it improved
between 62-64% for Uniform traffic and 87-89% for Transpose
and BitReverse traffics. However with the implementation of
the algorithms within the system, there is an increase in the
functionalities of the network and hence, there is also a latency
increase between 10% and 40%.

VII. CONCLUSION AND FUTURE WORK

Byzantine faults are a common problem in all systems and
can cause network performance decrease, higher packet loss
and arbitrary behavior of the nodes. However, it remains an un-
explored research problem in the context of VLSI systems and

more precisely in the NoC. In this paper we tried to address
this by introducing a new fault model in NoC context and by
designing and evaluating a novel lightweight algorithm, which
includes two cases of operation, and can tolerate Byzantine
faults based on SDNoC architecture.

From the results, it is obvious that there is a large throughput
decrease and packet loss increase due to the Byzantine faults.
Hence, we proposed two different algorithms in order to deal
with the reverse arbitrary behavior of the Byzantine fault
routers. By applying our algorithms, the NoC continues to
function normally by improving the overall packet loss 23%-
77% and the average throughput 62%-89%.

Our main goal was to achieve the right consensus of the
system and the delivery of the packet from the source to the
destination. Furthermore by using the SDNoC architecture,
we ensure the authenticity of the network, since there are
direct links between the controller and each router. However
the confidentiality and integrity of the network are still open
research problems and need further exploration.

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on March 11,2022 at 16:13:39 UTC from IEEE Xplore. Restrictions apply.

ERISDNoC Algorithm1
0.8 || I SDNoC Algorithm2
ESDNOC with faults

o
>

I
=

Average throughput

o
o

=)

1 3 6
Number of byzantine faults

(a) Throughput under Transpose Traffic.

1

[ERISDNoC Algorithml
0.8 | I SDNoC Algorithm2
I SDNoC with faults

Packet loss
e o
= (=]

I
o

1 3 6
Number of byzantine faults

(d) Packet loss under Transpose Traffic.

1

EISDNoC Algorithml
. 0.8 | IElSDNoC Algorithm2
I SDNoC with faults

Average latency
(=] (=]
S >

o
v

=)

1 3 6
Number of byzantine faults

(g) Latency under Transpose Traffic.

1

ERISDNoC Algorithm1
0.8 || I SDNoC Algorithm2
EISDNOC with faults

14
>

I
=

Average throughput

o
o

=)

1 3 6
Number of byzantine faults

(b) Throughput under BitReverse Traffic.

EISDNoC Algorithml
ISDNoC Algorithm2
I SDNoC with faults

1

0.8

Packet loss
e o
= (=]

I
o

1 3 6
Number of byzantine faults

(e) Packet loss under BitReverse Traffic.

1

EISDNoC Algorithml
>, 0.8 || I SDNoC Algorithm2
I SDNoC with faults

Average latency
S 2
= (=3

o
v

o

1 3 6
Number of byzantine faults

(h) Latency under BitReverse Traffic.

-

2038

<

Ed

306 SDNoC Algorithml1
4 SDNoC Algorithm2
o 0.4 |{IElSDNoC with faults
%ﬂ

&

£02

<

=)

1 3 6
Number of byzantine faults

(c) Throughput under Uniform Traffic.

EISDNoC Algorithm1
ISDNoC Algorithm2
ESDNoC with faults

Packet loss

1 3 6
Number of byzantine faults

(f) Packet loss under Uniform Traffic.

EISDNoC Algorithml
ISDNoC Algorithm2
ESDNoC with faults

Average latency
(=}
=

1 3 6
Number of byzantine faults

(1) Latency under Uniform Traffic.

Fig. 4: Byzantine fault case operation scenarios measurements.

[1]

[2]
[3]

[4]
[51

[6]

[7]

[8]
[9]

[10]

[11]

REFERENCES

L. LAMPORT, R. SHOSTAK, and M. PEASE, “The byzantine generals
problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382401, 1982.

C. Constantinescu, “Trends and challenges in vlsi circuit reliability,”
IEEE micro, vol. 23, no. 4, pp. 14-19, 2003.

T. Dumitras, S. Kerner, and R. Marculescu, “Towards on-chip fault-
tolerant communication,” in Proc. of the ASP-DAC Asia and South
Pacific Design Automation Conference, 2003., pp. 225-232, IEEE, 2003.
S. Bhunia and M. Tehranipoor, The Hardware Trojan War. Springer,
2018.

J.-P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin, “Noc-centric
security of reconfigurable soc,” in First International Symposium on
Networks-on-Chip (NOCS’07), pp. 223-232, 1IEEE, 2007.

L. Daoud and N. Rafla, “Routing aware and runtime detection for
infected network-on-chip routers,” in 2018 IEEE 61st International
Midwest Symposium on Circuits and Systems (MWSCAS), pp. 775-778,
IEEE, 2018.

K. Berestizshevsky, G. Even, Y. Fais, and J. Ostrometzky, “Sdnoc: Soft-
ware defined network on a chip,” Microprocessors and Microsystems,
vol. 50, pp. 138-153, 2017.

M. Castro, B. Liskov, et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, pp. 173-186, 1999.

M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J.
Wylie, “Fault-scalable byzantine fault-tolerant services,” ACM SIGOPS
Operating Systems Review, vol. 39, no. 5, pp. 59-74, 2005.

J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “Hq
replication: A hybrid quorum protocol for byzantine fault tolerance,”
in Proc. of the 7th symposium on Operating systems design and
implementation, pp. 177-190, 2006.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative byzantine fault tolerance,” ACM Transactions on Computer
Systems (TOCS), vol. 27, no. 4, pp. 1-39, 2010.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
append-only memory: Making adversaries stick to their word,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 189-204, 2007.
J. Xu, K. Wang, C. Wang, F. Hu, Z. Zhang, S. Xu, and J. Wu, “Byzantine
fault-tolerant routing for large-scale wireless sensor networks based on
fast ecdsa,” Tsinghua Science and Technology, vol. 20, no. 6, pp. 627—
633, 2015.

M. Panda and P. M. Khilar, “Distributed byzantine fault detection
technique in wireless sensor networks based on hypothesis testing,”
Computers & Electrical Engineering, vol. 48, pp. 270-285, 2015.

Y. Zhang, Z. Zheng, and M. R. Lyu, “Bftcloud: A byzantine fault
tolerance framework for voluntary-resource cloud computing,” in 2011
IEEE 4th International Conference on Cloud Computing, pp. 444-451,
IEEE, 2011.

G. Fan, H. Yu, L. Chen, and D. Liu, “Model based byzantine fault
detection technique for cloud computing,” in 2012 IEEE Asia-Pacific
Services Computing Conference, pp. 249-256, IEEE, 2012.

S. Ellinidou, G. Sharma, S. Kontogiannis, O. Markowitch, J.-M. Dricot,
and G. Gogniat, “Microlet: A new sdnoc-based communication protocol
for chiplet-based systems,” in 2019 22nd Euromicro Conference on
Digital System Design (DSD), pp. 61-68, IEEE, 2019.

L. Cong, W. Wen, and W. Zhiying, “A configurable, programmable
and software-defined network on chip,” in 2014 IEEE Workshop on
Advanced Research and Technology in Industry Applications (WARTIA),
pp- 813-816, IEEE, 2014.

L. Zhang, X. Wang, Y. Jiang, M. Yang, T. Mak, and A. K. Singh,
“Effectiveness of ht-assisted sinkhole and blackhole denial of service
attacks targeting mesh networks-on-chip,” Journal of Systems Architec-
ture, vol. 89, pp. 84-94, 2018.

N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Garnet: A detailed
on-chip network model inside a full-system simulator,” in 2009 IEEE
international symposium on performance analysis of systems and soft-
ware, pp. 33-42, IEEE, 2009.

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on March 11,2022 at 16:13:39 UTC from IEEE Xplore. Restrictions apply.

