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ABSTRACT
FPGA-enabled cloud computing is getting more and more com-
mon as cloud providers offer hardware accelerated solutions. In
this context, clients need confidential remote computing. However
Intellectual Properties and data are being used and communicated.
So current security models require the client to trust the cloud
provider blindly by disclosing sensitive information. In addition,
the lack of strong authentication and access control mechanisms,
for both the client and the provided FPGA in current solutions,
is a major security drawback. To enhance security measures and
privacy between the client, the cloud provider and the FPGA, an
additional entity needs to be introduced: the trusted authority. Its
role is to authenticate the client-FPGA pair and isolate them from
the cloud provider. With our novel OAuth 2.0-based access delega-
tion solution for FPGA-accelerated clouds, a remote confidential
FPGA environment with a token-based access can be created for
the client. Our solution allows to manage and securely allocate het-
erogeneous resource pools with enhanced privacy & confidentiality
for the client. Our formal analysis shows that our protocol adds a
very small latency which is suitable for real-time application.

CCS CONCEPTS
• Security andprivacy→Authorization;Access control;Privacy-
preserving protocols;Multi-factor authentication; •Networks→
Cloud computing; • Hardware → Hardware accelerators; Re-
configurable logic applications.
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1 INTRODUCTION
FPGAs are more and more popular in cloud computing as accel-
erators thanks to their high flexibility and performance. Due to
their inherent nature, FPGAs can deal with high computational
load and are highly interesting regarding performance and power
consumption compared to General Purpose Processors [1] or GPUs.
FPGAs are highly investigated for applications requiring intensive
computations (e.g., fully homomorphic encryption algorithm). Fur-
thermore, multi-tenancy enables efficiency and flexibility in a cloud
usage. In FPGA, a multi-tenancy context allows multiple users to
share the single FPGA component, introducing new security chal-
lenges.

Cloud security is critical for a client when choosing a commer-
cial Cloud Provider (CP). Commercial cloud users expect secure
remote computation and access to FPGA accelerators with minimal
impact on their design performance. Security mechanisms need to
be adapted for an appropriate cloud usage. First, the client needs
to ensure that its data is kept private. The client does not want to
disclose sensitive Intellectual Property (IP) and data to the cloud
provider. To ensure that, the client needs an encrypted channel
with the FPGA isolated from the CP. Furthermore, authentication
is another important security aspect to establish secure remote con-
nection between a client and the hardware acceleration material.
The client needs to ensure that the correct FPGA is used and that
no other users may access the allocated resources. Authentication
is necessary to manage FPGAs and different cloud service accesses
to mitigate client impersonations and data breaches.

Methods used by different CPs lack of transparency concerning
data encryption methods, bitstream protection and IP theft. To
remove this drawback, it is necessary to use methods and protocols
which respect user privacy and intellectual property. A solution to
reinforce these aspects is to introduce an intermediate authority
between the client and the CP. This authority would be similar to
already existing entities in the Public Key Infrastructure mechanism
(e.g., certificate authority). Thus, we need an entity that the CP and
the client can trust so they do not have to trust each other. The
Trusted Authority (TA) serves this purpose in our proposal. Often,
the TA would implicitly be the chip manufacturer for practical and
security reasons. It can safely implement security mechanisms and
store shared secrets inside FPGAs in the production phase. The chip
manufacturer is responsible of the FPGA manufacturing security.
It ensures that FPGAs and implemented security primitives are not
tampered or stolen. From a client’s perspective, the TA achieves
device authentication and isolation from the CP by using the shared
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secret inside the FPGA. Thus, the client can protect its sensitive IP
and data from the CP. From the CP’s perspective, the TA achieves
tasks like FPGA access management and authentication.

OAuth 2.0 is a secure access delegation open standard where
a resource owner can share resources with a client thanks to a
common trust placed in a third party (i.e., the TA) [2]. Our solution
adapts this protocol for a cloud-enabled FPGA context.

This paper tackles the four-entity authentication problem (client,
FPGA, TA, and CP) with a novel OAuth 2.0-based access delegation
solution for FPGA-accelerated clouds.

The contributions of this paper are described as follows:
• A new OAuth 2.0-based authentication solution for cloud
enabled FPGA.

• Authentication method for 4 entities: TA, CP, FPGA and
client.
– Adapted to cloud usage to ensure isolation between the
client and the CP.

– Low latency single sign-on tokenized FPGA access.
• Client’s design and data isolated from CP.
– Token-based FPGA access for the client produced with a
shared secret between the TA and the FPGA.

This paper is organized as follows. The state of the art of Cloud
FPGA security and mechanisms is introduced in Section 2. Then,
the proposed OAuth2.0-based authentication solution is described
in Section 3. A performance analysis of the presented solution is
provided in Section 4.

2 RELATEDWORKS
2.1 Trusted authority for cloud-enabled FPGA
Some cloud virtualization or attestation solutions like [3], [4], [5]
do not make use of a trusted authority. In [3], authors propose a
self attestation mechanism for FPGA devices. Without needing a
trusted third party, the hardware and software stacks inside the
FPGA device are proven tamper resistant thanks to a prover-verifier
relation between an FPGA and an external verifier. However client
privacy and security are not optimal, the CP has the verifier role
and has access to security primitives inside the FPGA. In [4] authors
propose a unified FPGA resource pool with virtualization meth-
ods to achieve high abstraction and flexibility for end users. This
implies that a user needs to disclose its source code to the cloud
provider to generate multiple bitstreams for every FPGA region.
This is necessary because a bitstream is generated for a targeted
partially reconfigurable FPGA region. This brings privacy, security
and IP theft concerns for the client and a trusted authority could
be one solution to solve these issues. The authors of [5] propose a
virtualized execution runtime for cloud FPGAs. Even though the
goal of their paper is not security oriented, the potential end user of
the proposed framework is dependent of the cloud provider’s tools
and APIs. Some functions like bitstream verification and access
management could be migrated to a trusted authority to achieve
greater privacy and security for the client.

To enable FPGAs in cloud computing, several authors agreed
on the necessity of a trusted authority different from the cloud
provider [6], [7], [8], [9], [10]. For practical reasons, the FPGA man-
ufacturer is usually considered as the trusted authority and has an
important role in the security of the remote connection between

the client and the FPGA. By managing and securing the production
process of their FPGAs, the manufacturer can securely implement
unique keys storage and/or Physical Unclonable Function (PUF).
That makes the FPGA manufacturer a legitimate candidate for be-
ing a trusted authority in cloud computing. Also, security sensitive
services like bitstream verification and FPGA authentication can
be delegated to the TA to achieve isolation between the client and
the cloud provider. Currently, AWS and Microsoft Azure propose
bitstream verification, but both their respective methods have pri-
vacy concerns on user bitstream. In fact, the client needs to disclose
its bitstream or netlist to the CP for security purposes using the
provided scripts. Few design patterns like combinatorial loops are
prohibited because they lead to security problems in a cloud usage.
Even if the data is encrypted during transport, it is decrypted on
the CP’s side which is not optimal.

2.2 Security of cloud-enabled FPGA
In [6] and [7], secure FPGA enclaves are proposed. A TA is present
in the communication scheme alongside the CP and the client, but
their approach and achievements differ. Both solutions, and [10]
agree to use a PUF or stored keys inside an FPGA. Authors in [9]
use stored key values for symmetric encryption of client bitstream
and data, isolating the client from the CP.

In [6] and [9], the FPGA device is bootstrapped and introduced
into a Public Key Infrastructure (PKI). In [6] device unique keys (e.g.,
PUF) are derived to constitute a key hierarchy and obtain key-pairs
for bitstream encryption and enclave communication/identification.
Unlike [7], the solution for FPGA authentication proposed here
is an SGX-inspired attestation mechanism endorsed by the TA.
The latter offers services like bitstream certification and boot code
authentication. To provide a secure FPGA environment, security
critical components like the device unique key and bitstream loader
are controlled by the TA. This way, the TA controls the root of the
key hierarchy and can update/revoke keys depending on security
threats and system update. Thus, the CP is much more isolated
from the client design.

The authors of [7] propose a framework where FPGA authentica-
tion is achieved and a secure channel is created for the client using
a modular exponentiation and Diffie-Hellman Ephemeral algorithm.
The client compares the FPGA PUF output with the response known
by the TA. If valid, the client now has a shared secret with the FPGA
and the session key is established. Thus, client bitstream and data
will be protected against the CP and bitstream integrity will be
achieved. But unlike [6], multi-tenancy is not enabled, and this
represents a major drawback for dynamic and flexible cloud usage.

None of the previously cited works proposes a client authen-
tication mechanism. Existing communication and authentication
schemes lack a client-side authentication. In [7], a user requests
access to an FPGA from the CP and obtains in return the FPGA
serial number. The client sends it to the TA and proceeds to FPGA
authentication. A malicious user can impersonate a client and get
access to the provided FPGA before the client. In fact, the client
obtains access to the FPGA after the session key is set up, but the
client is not authenticated. This means the session key is security
critical and must be kept secret. The whole security of the remote
access and computing lies on the session key. Attack vectors for
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this use case are well known (i.e., man in the middle, client-side
malware...).

If this client authentication process is ignored, malicious users
could have a backdoor access to assigned FPGAs and this could lead
to IP theft and data leak. In fact client authentication is a security
critical process as it is the base of the remote and secure compu-
tation. Every other security mechanisms coming after a missing
authentication process would be useless.

3 NEW THIRD PARTY AUTHENTICATION
MECHANISM FOR CLOUD ENABLED
MULTI-TENANT FPGA

3.1 Problem Statement
3.1.1 The absence of a trusted authority.
Without a TA, the client accesses the FPGA with tools provided
by the CP (most frequently a virtual machine). The CP has every
right on its resource. Bitstream and data can be recovered by the CP
because disclosing the bitstream to the CP is mandatory for security
checks on user program. The encryption keys or certificates could
be generated by the CP for the FPGA so the connection would not
be private between the client and its allocated resources.

By introducing a trusted authority that both the client and the
cloud provider can trust, it is possible to create a secure remote
computation for the client and meet the cloud provider’s security
requirements at the same time. With four entities in the authen-
tication scheme, the client can use the FPGA owned by the cloud
provider without disclosing sensitive data.

The cloud provider does not lose the control of its devices. They
can still be managed, and clients’ requests can be accepted or de-
clined. The cloud provider still has an important role in the allo-
cation of FPGAs. Instead of having a single entity controlling the
FPGA (i.e., CP), two entities (i.e., CP and TA) have rights over the
allocated resource. Now the CP does not have full privilege over the
allocated resource, some of its operations are delegated to the TA.
As mentioned in Section 1, the TA should be the chip manufacturer.
Security elements can be privately implemented without giving the
CP access to them. By splitting the roles and responsibilities, we
ensure that one entity does not own all the privileges of an FPGA.
3.1.2 Lack of FPGA user authentication.
Additionally, in existing solutions, only the client authenticates
with the cloud provider. To establish a trust relation, the trusted
authority needs to be introduced to the client and have a way to
authenticate him without requiring the cloud provider’s services.
The client needs a transparent authentication scheme with the
trusted authority to establish the basis of the secure and remote
FPGA access. In current FPGA cloud solutions, clients use virtual
machines to access their resources. There are no other security
measures to protect the resource. Thus, a compromised virtual
machine can lead to malicious behavior and client impersonation.

With the introduction of a TA, we plan to solve problems like
user privacy, user and hardware authentication with third party
implication, and create a private channel between the FPGA and the
client, isolated from the CP and the TA. Finally, bypassing current
tools like virtual machines and offering a direct secure client-FPGA
channel ensures privacy and data protection.

3.2 Access delegation open standard: OAuth 2.0
OAuth 2.0 is an open standard authorization framework which
enables a third party to get limited access to an HTTP service on
behalf of the Resource Owner (RO) [2]. Often it is used by companies
such as Amazon and Google to share user information with third
party websites or applications.

This framework works with four different entities: an Authoriza-
tion Server (AS), a Resource Owner (RO), a Resource Server (RS)
and a client. A use case of OAuth 2.0 could be a third party website
allowing visitors to register themselves using another website’s
account information. The third party website (client) would need
the user’s permission (resource owner) to get access to the personal
information stored in the other website’s servers (resource server).

The high level protocol flow is described in Fig. 1.

Figure 1: OAuth 2.0 high level execution flow

(1) The client requests a resource from the RO through its inter-
face (e.g., website)

(2) According to the grant scheme employed, the RO issues (if
he accepts the request) an authorization grant.

(3) The client authenticates himself with the AS and uses the
authorization grant previously provided.

(4) If the client is successfully authenticated, the AS issues an
access token for the granted resource.
• Issued tokens have an expiration date (few hours or days).
• Tokens are associated with client credentials.

(5) The client uses the token with the RS.
(6) The RS gives an access to the requested resource.

3.3 Authorization & access delegation
framework

3.3.1 Introduction.
Our proposed solution is based on OAuth 2.0 and adapted for a

cloud usage including FPGA devices. This solution aims to provide
an authentication solution for 4 entities simultaneously (FPGA,
client, TA and CP) and achieves perfect isolation between the client
and the CP.
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Figure 2: High level view of our solution.

The protocol seen in Section 3.2 must be adapted for the cloud
use case for several reasons. In the first case, the RO was using the
client’s website and was willing to share information with the client
who would then ask authorization for resource access and start
the whole access delegation procedure. This scheme is no longer
valid in an FPGA-accelerated cloud use case as the client uses RO’s
website to earn access to hardware owned by the RO.

In this situation, the cloud provider is considered as the resource
owner, the trusted authority is referred as the authorization server
and the FPGA is a part of the resource server.

Fig. 2 is a high level view of the proposed solution. Colors show
the responsibility and the decision making of the respective entity.
For example, the resource pool is split between the TA and the CP
because the TA has an interface with each FPGA (e.g., PUF, shell).

3.3.2 Client request & certificate creation.

Figure 3: CP introduces the client to the TA, generates and
manages authorization code. Client authenticates himself
with the TA and obtains its authorization code.

To request resource from the CP, the client first sends a message
to the CP’s user-agent as shown in step 1 of Fig. 3. In this request
message, the client includes its identifiers, certificate (or produces it
online as stated below) and a redirection Unique Resource Identifier
(URI). Those information are sent to the TA on the next step. The
URI is used by the TA to send back redirected messages to the client
via the CP’s user-agent.

There are two different scenarios for client certification. Upon
receiving the client’s resource request, the CP would authenticate

himself to the TA with its certificate, request a certificate for the
client and share it with the client as shown on step 2 in Fig. 3. The
client certificate is created from the CP’s website. The client has
to interact with the web browser to create the certificate and add
randomness to the generated keys. A similar mechanism is seen in
Microsoft Azure’s key-pair generation for SSH channel protection.

It is also possible to create the client certificate offline from this
protocol. The client would have the responsibility to generate a
key-pair for himself. By doing that, the client would make the
resource request to the CP with its certificate. Then, the certificate
generation step would be skipped and as a result the protocol would
be faster.

3.3.3 HTTP redirection and authorization grants.
Still on the second step in Fig. 3, after the CP’s authentication,

the client’s request is accepted or declined. If the request is accepted,
the TA generates the authorization code. By using the previously
provided URI, the TA redirects the CP’s user-agent back to the client
to authenticate him directly. By doing that, the CP has authenticated
and introduced the client to the TA.

At this time, the TA knows the client’s certificate and the au-
thorization code associated to the client’s identifiers. To obtain its
authorization code, the client needs to authenticate with the TA for
the first time. A certificate-based TLS authentication is done [11].
If the client credentials are valid, the authentication is successful
and the TA sends an HTTP redirection code to the CP’s user-agent
(HTTP code 302) alongside the client redirection URI. The client
receives the authorization code from the CP’s user-agent on the
last step of Fig. 3.

In this protocol, the authorization code cannot be used as an
attack vector. In fact, the authorization code is associated to a client
credentials and URI. It is not a secret code because the CP’s user-
agent shares the authorization code through the HTTP redirection.
The authorization code can be found in the user-agent history. In
case of an authorization code redirection attack, which aims to get
a backdoor access to the client’s resource, a simple redirection URI
check from the TA is sufficient. The URI used when requesting
the authorization code must match the URI used for the access
token generation as explained in Section 3.3.4. Hence, a malicious
client cannot gain access to resources attributed to another client
by intercepting the authorization code.

The role of this code is to ensure that the CP is authenticated and
cannot be impersonated. By using the CP’s user-agent to redirect
the code, it can be confirmed that the CP which authenticated
himself and gave authorizations for resource allocation to the TA is
the same entity that communicates with the client in the protocol.

3.3.4 Access management & token generation phase.
After receiving the redirected authorization code, the client

needs to authenticate himself again with the TA with its certificate,
authorization code and redirection URI to request an access token
from the TA. A certificate-based TLS authentication is done one
last time to confirm client identity. This second authentication is
necessary because it is a security measure to verify the client’s
identity.
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Figure 4: The TA generates the access token for the client.

The client needs to submit its authorization code to request the
access token. If the client’s credentials are registered and associated
with the authorization code used, the TAwill be able to authenticate
the FPGA device and generate the access token using a shared secret
with the FPGA as shown in Fig. 4. Access tokens have scopes and
duration of access. They are managed by the RO and endorsed by
the TA [2]. These options are requested by the client during the first
step of Fig. 3. Then, the RO accepts or declines the requested scopes
and duration and notifies the TA (i.e., authorization server) on step
2. The client can decline an issued token if the scope requested does
not match with its requests.

The access token’s content may also be extended to contain in-
formation like FPGA serial number, partially reconfigurable region
identifier and so on. This feature gives flexibility for the implemen-
tation phase as additional mechanisms can be developed. Moreover,
thanks to the shared secret and the TLS session between the client
and the FPGA, a secure and tokenized confidential remote access
can be set up for the client. The CP is isolated from the client’s
computation but can still manage access scopes and duration.

3.4 Client & FPGA secure channel
After the token issuance, the client contacts the FPGA to earn access
for resources he has been authorized. A TLS session is set up for
secure communication with perfect forward secrecy between the
FPGA and the client. The client and the FPGA create their shared
secret with algorithms like DHE, ECDHE and then use symmetric
encryption algorithms like AES-256-GCM.Once the TLS connection
is established, the client sends its token to be authenticated. The
FPGA proceeds to token parsing and gives access to the resources
the client is authorized to. Further communications between the
client and the FPGA will be encrypted. User privacy will be greatly
enhanced and isolation from other entities will be achieved.

3.5 Access Control using OAuth 2.0 tokens
When all the entities are authenticated and the authorizations are
granted, the client can access the FPGA with the access token. The
token needs to be decrypted, parsed and actions are taken by the
FPGA to program and allocate resources inside the device. Thanks
to its resource server, the CP explicitly specifies the attributed
resource information to the TA during the second step of Fig. 3.

According to OAuth 2.0 protocol, token content can be extended
according to user preference [2]. to take advantage of this feature
in a cloud FPGA context, critical information needs to be selected.
These information will reinforce the access control of the client and
ensure device/infrastructure security. It is up to the CP to decide the

content of the token, but we think that the following details should
be added to an issued token. Those information include FPGA serial
numbers (or a specific challenge-response pair for a PUF) and some
sort of partial reconfiguration region (PRR) identifier in case of a
multi-tenant FPGA usage. A client identifier could also be useful to
use accelerator blocks placed inside the FPGA. These are useful to
identify the device, the client and the allocated PRR. Additionally,
bitstream identifications, and bitstream signatures are stored in the
token. The FPGA would be able to verify if one specific bitstream is
cleared to be used for reconfiguration. The token must have validity
timestamps for the FPGA to take action upon token expiration.

4 PERFORMANCE ANALYSIS
4.1 Theoretical Performance

TLS v1.2 algorithm implementations
Related work Approach Paradigm LUT Total time
[12] Bellemou et. al SW/HW IoT/low cost 8503 67.5 ms

[13] Hamilton et. al HW High performance 90644 0.62 ms

[14] Wang et. al HW High performance 39052 11.3 ms

Table 1: Table shows different TLS 1.2 implementationswith
approaches and paradigms.

The theoretical hardware resource and latency used by a TLS im-
plementation is greatly impacted by the implementation as seen in
Table 1. The total time in Table 1 is for a single TLS handshake. For
a commercial FPGA-enabled cloud usage, the hardware overhead
should be minimal but the latency as well. The implementation
of TLS should be optimized for cryptographic function accelera-
tors and recurrently used functions and kept lightweight for other
blocks like key exchange protocols. The purpose of Table 1 is to
provide a theoretical basis and benchmark for future implementa-
tions of the novel authentication solution proposed in this paper.
Analytically, we can show that the required time to generate the
authorization code as described in Fig. 3 is as follows:

𝑡𝑐𝑜𝑑𝑒 = 𝑡𝐶𝑙 (𝑎𝑢𝑡ℎ.) + 𝑡𝐶𝑃 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑎𝑢𝑡ℎ.)
+ 𝑡𝑇𝐴 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) + 𝑡𝐶𝑙−𝐶𝑃 (𝑛𝑒𝑡 .)

+ 𝑡𝐶𝑙−𝑇𝐴 (𝑛𝑒𝑡 .) + 𝑡𝑇𝐴−𝐶𝑃 (𝑛𝑒𝑡 .) + (𝑡𝑐𝑒𝑟𝑡 ) (1)

Internal tasks are not computationally expensive, for example,
𝑡𝐶𝑃 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) refers to the time needed by the CP’s virtualization
tools to check for available resources and allocate them to a client.
The TA would only read/write values and generate the authoriza-
tion code during 𝑡𝑇𝐴 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙). The certificate creation time 𝑡𝑐𝑒𝑟𝑡
can be skipped if the client already has a certificate. 𝑡𝑐𝑙𝑖𝑒𝑛𝑡 (𝑎𝑢𝑡ℎ.)
and 𝑡𝐶𝑃 (𝑎𝑢𝑡ℎ.) are respectively the client and the CP authentica-
tion as explained at the beginning of Section 3.3.3. 𝑡𝑛𝑒𝑡 . represents
the cumulated network latencies and transport. Assuming that ev-
ery entity has a low latency with each other (i.e., small 𝑡𝐴−𝐵 (𝑛𝑒𝑡 .)
where A and B are the communicating entities), the client could
obtain the authorization code in few seconds. The time required
for the token generation phase shown in Fig. 4 can be described as
follows:

𝑡𝑡𝑜𝑘𝑒𝑛 = 𝑡𝐶𝑙 (𝑎𝑢𝑡ℎ.) + 𝑡𝑇𝐴 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙)
+ 𝑡𝐶𝑙−𝑇𝐴 (𝑛𝑒𝑡 .) + 𝑡𝐹𝑃𝐺𝐴−𝑇𝐴 (𝑛𝑒𝑡 .) + 𝑡𝐹𝑃𝐺𝐴 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) (2)
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𝑡𝑡𝑜𝑘𝑒𝑛 should be very small because there is only a certificate-
based TLS authentication of the client and an FPGA authenti-
cation using either a PUF or by reading a value stored in a se-
cure FPGA memory. Then the TA proceeds with the token gen-
eration procedure, that involves few read and write operations.
Every bit of information necessary for the token generation is
stored in the TA’s database. It is important to note that the value
𝑡𝐹𝑃𝐺𝐴−𝑇𝐴 (𝑛𝑒𝑡 .) +𝑡𝐹𝑃𝐺𝐴 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) is only for a PUF use case. If the
TA has another authentication solution, these delays are no longer
present in the token generation.

𝑡𝑎𝑐𝑐𝑒𝑠𝑠 = 𝑡𝑐𝑙𝑖𝑒𝑛𝑡−𝐹𝑃𝐺𝐴 (𝑛𝑒𝑡 .) + 𝑡𝐹𝑃𝐺𝐴 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) << 𝑡𝑐𝑜𝑑𝑒 + 𝑡𝑡𝑜𝑘𝑒𝑛
(3)

𝑡𝑎𝑐𝑐𝑒𝑠𝑠 is the time required to confirm that a generated token has
a valid FPGA access. To confirm this, we need one TLS authentica-
tion between the client and the FPGA and a token verificationwhich
is represented by 𝑡𝐹𝑃𝐺𝐴 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙). This value is greatly smaller
than the time required by our protocol to generate an authorization
code and an access token. 𝑡𝑎𝑐𝑐𝑒𝑠𝑠 requires less communications,
whereas 𝑡𝑐𝑜𝑑𝑒 and 𝑡𝑡𝑜𝑘𝑒𝑛 include internal computing times and ac-
cumulated communication latencies between entities present in
this protocol.

4.2 Time estimation for token generation

Let’s set 𝑡𝐴−𝐵 (𝑛𝑒𝑡 .) to 30ms and use the delay time of [12] in
Table 1 for a standard TLS handshake (67.5 ms without network
latencies). We have 3 Client-authenticated TLS handshakes in Eq. 1.
There are 8messages in a client authenticated TLS handshakewhich
gives us 8𝑥3𝑥30 = 720𝑚𝑠 for network latency and 3𝑥67.5 = 202.5𝑚𝑠

for TLS handshake. If the client generates its certificate offline
and then requests an authorization code as stated in Section 3.3.2,
𝑡𝑐𝑜𝑑𝑒 = 720 + 202.5 = 922.5𝑚𝑠 . Tasks internal to CP and TA are
not expensive, so they are much smaller against values taken into
account for the previous estimation. We can round the previous
value to 1000 ms for the worst case scenario with a relatively low
cost TLS accelerator inside the FPGA.

Additionally for 𝑡𝑡𝑜𝑘𝑒𝑛 , 2𝑥8𝑥30 + 2𝑥67.5 = 682.5𝑚𝑠 just for two
TLS handshakes and network latencies without taking internal
tasks into account. Most of the time is going to be spent by network
latencies. During this phase we will have 3 message exchanges
between the TA and FPGA for the PUF challenge-response pair and
the token sent from the TA to the client. We have then 𝑡𝑡𝑜𝑘𝑒𝑛 =

682.5 + 3𝑥30 = 772.5𝑚𝑠 .
As a final value we have 𝑡𝑐𝑜𝑑𝑒 + 𝑡𝑡𝑜𝑘𝑒𝑛 = 1695.5𝑚𝑠 to obtain

authorization and generate an access token for the allocated FPGA.
As a worst case scenario, this procedure should not last more than
2 seconds. Finally we can estimate with the following equation :
𝑡𝑎𝑐𝑐𝑒𝑠𝑠 = 30 + 67.5 + 𝑡𝐹𝑃𝐺𝐴 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) = 97.5𝑚𝑠 + 𝑡𝐹𝑃𝐺𝐴 (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙).
Accessing an FPGA with a valid token is approximately 100 ms. For
this use case, Eq. 3 is true.

5 CONCLUSION
Static designs are necessary in FPGA-enabled clouds to implement
the CP’s FPGA shell. Other FPGA system primitives can also be
needed to enable partial reconfiguration. The static design could

be shared between the TA and the CP as proposed in [6]. By do-
ing that, the TA could implement the logic necessary to build the
OAuth 2.0-based solution presented in this paper. The TA would
have a design close to a hardware security manager where token
mechanisms would be implemented (token expiry, actions to take,
managing keys, PUFs, cryptographic function accelerators...). This
aspect needs further developments in future works.

Even if this paper focuses on authentication and resource alloca-
tion, the proposal is generic enough to be used in a multi-tenant
context. Multi-tenancy in FPGA allows multiple users to share the
same device at the same time. Each user is attributed a PRR, and
they can only use their own area. Currently, multi-tenancy in FPGA
is an active field of research and no commercial cloud provider uses
this technology. Common multi-tenancy problems are resource
sharing and user isolation. By combining PRR identifiers and token-
based FPGA access, multi-tenancy can be enabled with our solution.
The same thing can be said for services like bitstream certification
provided by the TA.

This paper proposes a novel OAuth 2.0-based authentication and
access delegation scheme for FPGA-enabled commercial cloud com-
puting. Client’s authentication protects its sensitive information
and the CP’s cloud infrastructure from malicious behaviors caused
by identity theft. Furthermore, by introducing a trusted authority,
the client’s FPGA access and sensitive operations are isolated from
the CP. The client benefits from a low latency single sign-on au-
thentication for its FPGA thanks to a tokenized access. Security and
privacy are enhanced for both the cloud provider and the client.
For future works, the performance of the presented solution will
be investigated.
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