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Comprehending the dynamical behaviour of quantum systems driven by time-varying Hamiltoni-
ans is particularly difficult. Systems with as little as two energy levels are not yet fully understood
as the usual methods including diagonalisation of the Hamiltonian do not work in this setting. In
fact, since the inception of Magnus’ expansion in 1954, no fundamentally novel mathematical ap-
proach capable of solving the quantum equations of motion with a time-varying Hamiltonian has
been devised. We report here of an entirely different non-perturbative approach, termed path-sum,
which is always guaranteed to converge, yields the exact analytical solution in a finite number of
steps for finite systems and is invariant under scale transformations of the quantum state space.
Path-sum can be combined with any state-space reduction technique and can exactly reconstruct
the dynamics of a many-body quantum system from the separate, isolated, evolutions of any chosen
collection of its sub-systems. As examples of application, we solve analytically for the dynamics of
all two-level systems as well as of a many-body Hamiltonian with a particular emphasis on NMR
(Nuclear Magnetic Resonance) applications: Bloch-Siegert effect, coherent destruction of tunneling
and N -spin systems involving the dipolar Hamiltonian and spin diffusion.

I. INTRODUCTION

The unitary evolution operator U(t′, t) describing the
time dynamics of quantum systems is defined as the
unique solution of Schrödinger’s equation with quantum
Hamiltonian H, i.e. (~ = 1)

− iH(t′)U(t′, t) =
d

dt′
U(t′, t), (1)

and such that U(t′ = t, t) = Id is the identity matrix at
all times. Evidently, this operator plays a crucial role
at the heart of quantum mechanics, including for spin
dynamics in Nuclear Magnetic Resonance (NMR) [1–3].
As is typically the case in NMR, the Hamiltonian may
be time-dependent and might furthermore not commute
with itself at various times, H(t)H(t′)−H(t′)H(t) 6= 0 for
t′ 6= t. In this situation, the evolution operator no longer
has a simple calculable form in terms of the Hamiltonian,
e.g. it cannot even be evaluated via direct diagonalisation
of H. Rather, U is formally described by the action of a
time-ordering operator on the Dyson series representa-
tion of the quantum evolution [4], a formulation which
does not permit concrete calculations to be carried out.

As a consequence, only approximate expressions of
U(t′, t) are obtained and these are only accurate for short
times. A major breakthrough in the description and un-
derstanding of solid state NMR was the inception of Av-
erage Hamiltonian Theory [5]. This relies exclusively on
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the Magnus expansion [6] of U(t′, t). However, higher
order terms of the series remain highly cumbersome to
write down explicitly so that practically, only low orders
of the expansion are useable. Most importantly, Magnus
expansion suffers from severe and incurable divergences
as already mentioned by Magnus [6] and Fel’dman [7].
In the more specific case of periodically time-dependent
Hamiltonian, such as those encountered in Magic Angle
Spinning (MAS) experiments, it is well known that Mag-
nus expansion suffers from a further two limitations, i.e.
the stroboscopic detection of the NMR events, and the
impossibility to take into account more than one charac-
teristic period.

In the case of periodic Hamiltonian, Floquet the-
ory dictates that the evolution operator takes on the
form U(t, 0) = P(t) exp(Ft), with P(t) a periodic time-
dependent matrix and F a constant matrix, both of which
are determined perturbatively when working analytically
[8], or otherwise via numerical procedures [9, 10]. Floquet
formalism was first used by Shirley [11], who applied it
to the case of a linearly polarised excitation in magnetic
resonance and to give low orders analytical expressions
for the Bloch-Siegert effect [12].

We also mention numerical methods: (i) Fer and
Magnus-Floquet hybrids proposed recently as potential
expansions for the evolution operator [13, 14], (ii) Zassen-
haus and Suzuki-Trotter propagator approximations [15–
17]. The expansions presented above all suffer from var-
ious drawbacks including: the divergence of the series
at long times; the perturbative nature of the numerical
or theoretical approach; the non-avoidable propagation
of errors at long time; the failure to find exact solutions
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even for small, one spin 1/2, 2×2 Hamiltonians. See also
Appendix A for more litterature background.

In this contribution, the path-sum method is applied
for the very first time to NMR Hamiltonians to deter-
mine the corresponding evolution operators U(t′, t). The
rigorous underpinnings of this approach were laid out
in [18, 19] within the general mathematical framework
of systems of coupled linear differential equations with
non-constant coefficients. So far, no physical applications
of these works has been presented. Consequently, they
remained unnoticed outside of a specialised mathemati-
cal community, and their applicability to long-standing
questions pertaining to quantum systems driven by time-
dependent Hamiltonians went completely unrecognised.
It thus appears important to introduce path-sum to the
physics community via illustrative examples bearing di-
rectly on currently open problems. Overall, it appears
that the present work is the first fundamentally new ap-
proach to the problem of simulating quantum dynam-
ics induced by time-varying Hamiltonians since Magnus’
1954 seminal results.

Path-sum is firmly established on three fundamentally
novel concepts, insofar never applied within the quan-
tum physics framework: (i) the representation of U(t′, t)
as the inverse of an operator with respect to certain
∗-product; (ii) a mapping between this inverse, and sums
of weighted walks on a graph; and (iii) fundamental
results on the algebraic structure of sets of walks which
exactly transform any infinite sum of weighted walks
on any graph into a single branched continued fraction
of finite depth and breadth with finitely many terms.
Taken together, these three results imply that, for finite
dimensional Hamiltonians, any entry or block of entries
of U(t′, t) has an exact, unconditionally convergent an-
alytical expression that always involves a finite number
of terms. We emphasise that throughout this work,
the time t is and remains a continuous variable, in
particular path-sum does not rely on time-discretisation.
As a corollary, path-sum yields a non-perturbative
formulation of U(t′, t), as will be illustrated below with
the Bloch-Siegert effect. Further properties of path-sums
ensures its scalability to multi-spin systems, for example
allowing it to recover the exact dynamics of an entire
system from the separate, isolated, evolutions of any
chosen collection of its sub-systems. In its general form,
path-sum is best understood as a method to exactly and
analytically solve systems of coupled linear differential
equations with non-constant coefficients.

This article is structured as follows. We first present
the mathematical background of [18] culminating in the
path-sum formulation of quantum dynamics. In a sec-
ond part, we detail applications in connection with gen-
eral quantum theory and then more specifically with
NMR. The first one provides the general solution of
Schrödinger’s equation to all 2×2 time-dependent Hamil-
tonians, a problem of current and central importance to
quantum computing. As an example of application, we
solve for the celebrated Bloch-Siegert dynamics of a lin-

early polarised RF excitation with no approximation at
all. The validity of the path-sum analytical solution is
demonstrated over the entire driving range, and physical
interpretations for the various terms of the solution are
provided.

We then show that path-sum is invariant against scale-
transformations in the quantum state space, making it
scalable to large quantum systems. Thanks to this, we
consider N like-spins coupled by the homonuclear dipolar
coupling and spin diffusion under MAS. The effects of
MAS frequency and chemical shift offsets are illustrated
analytically on an organometallic molecule exhibiting 42
protons.

II. QUANTUM EVOLUTION AND WALKS ON
GRAPHS

Quantum systems with discrete degrees of freedom
such as spin systems, obey a discrete analog to Feyn-
man’s path integrals. To illustrate this, define one history
of a quantum system as a temporal succession of orthog-
onal quantum states h : |s1〉 7→ |s2〉 7→ |s3〉 · · · , each
transition |si〉 7→ |si+1〉 happening at a specified time ti.
Overall the history h acquires a complex weight which is
the product of the weights of all the transitions in the his-
tory. The weight of an individual transition |si〉 7→ |si+1〉
is dictated by the Hamiltonian as 〈si+1|H(ti)|si〉.

A natural representation of such discrete histories is
as walks on a graph. To see this, let Gt be the graph
such that each vertex vi corresponds to one member |si〉
of an orthonormal basis for the entire state-space and
give the directed edge vi 7→ vj the time-dependent weight
〈sj |H(t)|si〉. In this picture, a system history as defined
earlier is a walk on Gt and H(t) is the adjacency matrix
of Gt. Because the Hamiltonian is time-dependent, the
graph itself is dynamical, see Fig 2(a,b) for an example.

Now just as for Feynman’s path-integrals, the exact
evolution of the system is obtained from the superposi-
tion of all its possible histories. Equivalently, every ele-
ment 〈sj |U(t)|si〉 of the evolution operator U(t) is given
by the sum over all walks from vi to vj on Gt, including
all possible jumping times for each transition between
vertices. While individual walks are the discrete coun-
terpart of Feynman diagrams, their algebraic structure
is much better understood. Indeed, walks essentially be-
have as the natural integers [19], in particular they can
be uniquely factored into products of prime walks: the
simple cycles (C) and paths (P) of the graph which do
not visit any vertex more than once. Since, by nesting
simple cycles and paths into one another there is a unique
way of reconstructing any walk, summing over all walks is
achieved upon summing over all possible nestings of sim-
ple cycles and paths. For example, in a graph with a sin-
gle simple cycle c1, all closed walks from a vertex α to it-
self are of the form cn1 , i.e. c1 repeated n times. Therefore
the sum of all such walks is formally

∑
n c

n
1 = 1/(1− c1)

(Fig. 1). In case another cycle c2 is accessible to a walker
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a
Figure 1. Graph illustrating the use of path-sum.

while walking along c1, then the sum of all walks will take
on the form 1/

(
1− c1/(1− c2)

)
. If instead, both c1 and

c2 are immediately accessible from the starting point α,
the sum of all walks will be 1/(1−c1−c2). Finally, if two
cycles c2 and c3 with different starting points are both ac-
cessible while walking along c1, then the sum of all walks
will be 1/

(
1−c1/(1−c2)×1/(1−c3)

)
. There is a unique

way to combine these constructions to describe the sum
of all walks with chosen starting and ending points on
any graph. For example, the walks from α to itself on
the graph of Fig. 1 formally sum up to

∑
wwalk:α→α

w =
1

1− c1 1
1−c2

1
1−c3 1

1−c4

.

This procedure yields any 〈sj |U(t)|si〉 as branched con-
tinued fractions comprising only the weights of the simple
cycles and paths of the graph. See Fig 2(c,d,e). Because
the graph is finite, there are finitely many such cycles
and paths and the fraction is finite in both depth and
breadth. It is thus unconditionally convergent when cal-
culated numerically. The same principles apply regard-
less of whether the Hamiltonian depends on time or not,
in the former case however the theory relies on two-times
functions f(t′, t) that multiply via a non-commutative
convolution-like product

(
f ∗ g

)
(t′, t) :=

∫ t′

t

f(t′, τ)g(τ, t) dτ. (2)

This means that for general time-dependent Hamiltoni-
ans the continued fraction formulation for U(t) involves
products and resolvent with respect to the ∗ multiplica-
tion and that the order of traversal of the edges along
the cycles must be respected. The ∗-resolvents such as
(1∗−f)∗−1 with 1∗ ≡ δ(t′−t) the Dirac delta distribution,
are solutions to linear Volterra equations of the second
kind. They concentrate most of the analytical complex-
ity of the problem, rarely having a closed form expression
in terms of algebraic mathematical functions. Yet, such
∗-resolvent can be always represented analytically by the
super-exponentially convergent Neumann expansion [18]
1∗ +

∑
n>0 f

∗n.

III. TWO-LEVEL SYSTEMS WITH
TIME-DEPENDENT HAMILTONIANS

A. General solution

Determining the dynamics of two-level systems driven
by time-dependent Hamiltonians is still an open prob-
lem, which continues to be a very active area of research
[8, 20–29]. This is because of the experimental relevance
of such systems; their role as theoretical models; and the
need to master the internal evolution of qubits undergo-
ing quantum gates [27, 30]. The most general two-level
Hamiltonian is

H(t) =

(
h↑(t) h↑↓(t)
h↓↑(t) h↓(t)

)
. (3)

In this expression we only require that h↓↑(t), h↑↓(t),
h↑(t) and h↓(t) be bounded functions of time over the
interval [t, t′] of interest. So far, no analytical expression
has been found for the corresponding evolution opera-
tor U(t) defined as the unique solution of Eq. (1) with
the Hamiltonian of Eq. (3). It is known that particular
choices for H(t) lead to evolution operators that involve
higher transcendantal functions [21, 31]. Thus the best
possible result for the general U(t) is that each of its
entries be described as solving a defining equation, and
that an analytical mean of generating this solution be
presented.

This is exactly what path-sum achieves for all time-
dependent two-level systems. Following the process of
Fig. (2) we get:

U(t′, t)↑↑ =

∫ t′

t

G↑(τ, t)dτ, U(t′, t)↓↓ =

∫ t′

t

G↓(τ, t)dτ,

(4)

U(t′, t)↓↑ =

− i
∫ t′

t

∫ τ0

t

∫ τ0

τ1

(
δ(τ0 − τ2)− ih↓(τ0) e

−i
∫ τ0
τ2

h↓(τ3)dτ3
)
×

× h↓↑(τ2)G↑(τ1, t) dτ2 dτ1 dτ0,

U(t′, t)↑↓ =

− i
∫ t′

t

∫ τ0

t

∫ τ0

τ1

(
δ(τ0 − τ2)− ih↑(τ0) e

−i
∫ τ0
τ2

h↑(τ3)dτ3
)
×

× h↑↓(τ2)G↓(τ1, t) dτ2 dτ1 dτ0.

while the ‘usual’ U(t) is actually U(t, 0). The two-times
Green’s functions G↑ := (1∗ −K↑)∗−1 and G↓ := (1∗ −
K↓)

∗−1 solve linear Volterra equations of the second kind,
e.g. for G↑

G↑(t
′, t) = δ(t′, t) +

∫ t′

t

K↑(t
′, τ)G↑(τ, t) dτ, (5)

and similarly forG↓. The kernelK↑ of the above equation
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Figure 2. The path-sum continued fraction for the exact calculation of the entries of U(t′, t) is always of finite depth
and breadth. (a) Illustrative example of a 2 × 2 time-dependent Hamiltonian H(t), involved for instance in spin dynamics.
(b) Dynamical graph Gt = K2 with adjacency matrix H(t). Circles correspond to self-loops (diagonal terms of H(t)) and
directed edges to off-diagonal terms. The associated weights are the entries of H(t). (c) Evolution operator U(t′, t) as seen
by path-sum, with integrals of the GK2,ii quantities. (d) Step by step evaluation of GK2,11(t′, t) (dashed rectangle) showing
the finite character of the continued fraction. The sum is performed on the simple cycles (C) of length 1 and 2 (these are
indicated in red—other edges are indicated in dashed grey lines). At each step of the continued fraction, a vertex is removed
(grey cross) and we work on subgraphs of less and less complexity. The calculation of entry U21 from GK2,11 is also illustrated,
it includes a single term with two ∗-products as the graph has a single simple path (P) from 2 to 1 (red arrow). (e) A pictorial
representation of the ”descending ladder principle”. The calculation starts at the top of the ladder with each ∗-inverse leading
to the step below and ending in all cases on the ground. For 2 × 2 Hamiltonians there are only 2 steps on the ladder, i.e.
all continued fractions stop at depth 2. For all 3 × 3 and 4 × 4 Hamiltonians the continued fractions stop at depth 3 and 4,
respectively.

is

K↑(t
′, t) = −ih↑(t′) (6)

−
∫ t′

t

∫ t′

τ1

h↑↓(t
′)
(
δ(τ2 − τ1)− ih↓(τ2) e

−i
∫ τ2
τ1

h↓(τ3)dτ3
)
×

× h↓↑(τ1)dτ2dτ1.

while kernel K↓ entering G↓ is obtained upon replacing
up arrows by down arrows and vice-versa in Eq. (6).

Should a closed form expression for the solution the
Volterra equation be out of reach–e.g. because it is
a transcendental function as is typically the case [21]–
the solution is at least analytically available from its
Neumann expansion; in the case Eq. (5) it is G↑ =
1∗ +

∑
n>0K

∗n
↑ . If every entry of the Hamiltonian is a

bounded function of time, this series representation con-
verges super-exponentially and uniformly [18]. Alterna-
tively, Volterra equations can also be solved numerically
[32].

B. Bloch-Siegert dynamics

1. Background

The Bloch-Siegert Hamiltonian, here denoted HBS(t),
is possibly the simplest model to exhibit non-trivial phys-

ical effects due to time-dependencies in the driving radio-
frequency fields. The detailed study of these effects is
of paramount importance in the broad field of quan-
tum computing, as they have a deleterious impact on
qubit driving and stored quantum information [33]. The
Hamiltonian reads

HBS(t) =

(
ω0/2 2β cos(ωt)

2β cos(ωt) −ω0/2

)
. (7)

In these expressions, the coupling parameter β is the am-
plitude of the radio-frequency field.

Continuing research over the last decades has produced
perturbative expressions for the Bloch-Siegert shifts and
evolution operator, starting from Shirley’s seminal work
[11]. Beyond the rotating wave approximation–which
omits the field’s counter-rotating terms and is limited to
near resonant ω ∼ ω0 ultra-weak couplings β/ω � 1–one
of the most successful approaches used a combination of
Floquet formalism and almost degenerate perturbation
theory [34]. Still, this could only approximate the tem-
poral dynamics in the vicinity of resonance in the weak
coupling regime β/ω . 0.6.

In the case of quantum systems driven by large ampli-
tude fields β/ω > 1 to β/ω � 1 [23], these approaches
are no longer sufficient. Yet, such systems are of current
fundamental interest, as short associated electromagnetic
pulses can manipulate qubits on a large bandwidth. Re-
cently, several methods have thus been designed to over-
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come the limitations of the theoretical treatment [28, 35–
37]. These are based on various unitary transforma-
tions leading to approximate analytical expressions over
an extended driving range. Although these methods
are clearly beyond perturbation theory and what Flo-
quet formalism can realistically achieve, they still ne-
glect terms corresponding to multi-photon transitions.
Although not dominant, these terms lead to real features
in the true Bloch-Siegert dynamics that are as yet unac-
counted for [35]. These are visible in qubit driving and
time-optimal quantum control experiments, for which de-
termining the Bloch-Siegert dynamics exactly is thus still
full of promises [38]. In spite of the theoretical efforts,
a non-perturbative truly analytical solution at all orders
over the entire coupling range, on and off resonance, is
ultimately lacking.

2. Path-sum solution

Although this is not required by the path-sum method,
we pass in the interaction picture to alleviate the nota-
tion, yielding the Bloch-Siegert Hamiltonian as

HBS(t) = 2β cos(ωt) cos(ω0t)σx − 2β cos(ωt) sin(ω0t)σy.
(8)

Since in the rotating frame, h↑(t) = h↓(t) = 0, the graph
K2 of Fig. (2) has no self-loops and Eqs (4–5) thus give

U(t)↑↑ =

∫ t

0

G↑(τ, 0)dτ, U(t)↓↓ =

∫ t

0

G↓(τ, 0)dτ,

U(t)↓↑ = (9)

− 2iβ

∫ t

0

∫ τ1

0

cos(ωτ1)eiω0τ1G↑(τ0, 0)dτ0dτ1,

U(t)↑↓ =

− 2iβ

∫ t

0

∫ τ1

0

cos(ωτ1)e−iω0τ1G↓(τ0, 0)dτ0dτ1,

while G↑(t
′, t) = (1∗ −K↑)∗−1, G↓ =

(
1∗ −K↓)∗−1 with

K↑(t
′, t) =

4β2

ω2 − ω2
0

cos(ωt′)
(
k↑(t)e

−iω0(t
′−t) − k↑(t′)

)
,

K↓(t
′, t) =

iβ2

ω2 − ω2
0

(
1 + e−2iωt

′
)(

k↓(t
′)− k↓(t)ei(ω+ω0)(t

′−t)
)
,

where k↑(t) = iω0 cos(ωt) + ω sin(ωt) and k↓(t) =
e2iωt(ω + ω0) − (ω − ω0). In spite of the apparent di-
vergences in the resonant case ω0 → ω, the kernels K↑
and K↓ are actually well defined in this limit where they
simplify to

K↑(t
′, t) =

β2

ω

(
ie2iωt

′
− ie2iωt − 2ω(t′ − t)

)
e−iωt

′
cos(ωt′),

and

K↓(t
′, t) =

β2

ω

(
−i+ ie2i(t

′−t)ω + 2ω(t− t′)e2iωt
′
)
e−iωt

′
cos(ωt′).

The peculiar mathematical nature of the resonant
limit ω0 → ω is responsible for the apparence of the
term 2ω(t′−t) which is proportional to time in the kernel.

The quantity G↑ as obtained from K↑ has no closed
form, rather it is a hitherto unknown higher special func-
tion. It is nonetheless analytically available thanks to the
Neumann expansion G↑ = δ +

∑
kK
∗k
↑ = δ +K↑ +K↑ ∗

K↑ + · · · , which is unconditionally convergent [18]. This
observation holds for all N × N time-dependent Hamil-
tonians treated by path-sum.

The Neumann expansion is well suited to analytical
computations: observe that at order n of this series,

G
(n)
↑ = δ +

∑n
k=1K

∗k is simply given as

G
(n)
↑ (t, 0) =

∫ t

0

K↑(t, τ)G
(n−1)
↑ (τ, 0)dτ.

Equivalently, it is sufficient to integrate the last term of

the series at order n− 1, namely K∗n−1↑ , to get G
(n)
↑ :

G
(n)
↑ (t, 0) =

∫ t

0

K↑(t, τ)K∗n−1↑ (τ, 0)dτ +G(n−1)(t, 0).

These integrals are all analytically available and easily ac-
cessible: we reached order 13 in a minute on an ordinary
laptop treating all parameters as formal variables [39].
Vastly faster computations are achieved upon assigning
parameter values before performing the integrals. This
calculations give (here displaying the first two orders on
resonance ω0 = ω),

G↑(t, 0) = δ(t)− β2

ω
e−iωt cos(ωt)

(
−ie2iωt + 2ωt+ i

)
+

β4

24ω3
e−3iωt cos(ωt)

(
3ie6iωt

+ 6e4iωt(−2iω2t2 + 2ωt+ i)

+ e2iωt(8ω3t3 + 12iω2t2 + 12ωt− 15i)

− 12ωt+ 6i
)

+ · · ·

Of particular interest for qubit-driving experiments is
the evolution of the transition probability P↑7→↓(t) :=
|U↓↑(t)|2 between the two levels [30, 35, 40]. This quan-
tity is usually found perturbatively using Floquet theory
[11] as Magnus series again suffer from divergences [41].
It is here easily accessible–U↓↑ being given by Eq. (9).
We find that P↑→↓(t) takes on the form of a Fourier-like
series

P↑→↓(t) =

∞∑
k=0

sin(2kωt)S2k(β, t) + cos(2kωt)C2k(β, t),

(10)
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Figure 3. Bloch-Siegert dynamics: resonant ω0 = ω transition probability P↑7→↓(t) as a function of time in the weak to
ultra-strong coupling regimes: with (a) β/ω = 0.5, (b) β/ω = 0.7, (c) β/ω = 0.9, (d) β/ω = 1.2, (e) β/ω = 1.6, (f) β/ω = 2,
(g) β/ω = 3.5, (h) β/ω = 5 and (i) β/ω = 15. Shown here are the numerical solution (dashed black line) and the fully

analytical formulas for the Neumann expansions of the exact path-sum solution P
(3)
↑→↓(t) (dotted red line), P

(7)
↑→↓(t) (dotted

blue line) and P
(13)
↑→↓(t) (solid blue line), see Appendix B. As seen here, each of these formulas are equally valid throughout the

coupling regimes, from weak to ultra-strong. Whenever longer times are desired, higher orders of the path-sum solution are
readily available analytically. Also shown in figures (a) and (b) are the second order Floquet theory [11] (solid green line and
green points). The Floquet result is not shown in subsequent figures, where it is wildly inaccurate. Parameters : two level
system driven by the Bloch-Siegert Hamiltonian of Eq. (8) [11, 12] starting in the |↑〉 state at t = 0.

with S2k and C2k functions of β and t, a representation
of which is analytically available (see Appendix B). This
form of P↑→↓(t) is due to the path-sum integral of Eq. (9),
which resembles a Fourier transform. We emphasize that
this is not a general feature of path-sum nor of 2 × 2
Hamiltonians, but solely of the present Hamiltonian with
linearly polarized driving.

3. Visualizing the solution

Calculating G↑ up to a finite order n as indicated ear-

lier G↑ ≡ G
(n)
↑ , yields an expression P

(n)
↑→↓(t) which in-

cludes all terms of Eq. (10) up to sin
(
(4n + 2)ωt

)
and

cos
(
(4n+ 2)ωt

)
, while S

(n)
2k≤4n+2 and C

(n)
2k≤4n+2 are poly-

nomials in β and t including up to β4n+2 and t4n+3−2k

and t4n+2−2k, respectively. Finally, we found analytically

that at all orders n ≥ 0, P
(n)
↑→↓(0) = 0 as expected, al-

though this is non-trivial to check. For t large enough

P
(n)
↑→↓(t) may diverge: truncated path-sums are not nec-

essarily unitary.

We plot on Fig. 3 the transition probabilities P
(3)
↑→↓(t),

P
(7)
↑→↓(t) and P

(13)
↑→↓(t) as calculated analytically from the

third, seventh and thirteenth orders of the Neumann ex-
pansion of the exact path-sum solution from the weak
to the ultra-strong coupling regimes and always in the
resonant case ω0 = ω. Here this situation was chosen
because: i) it is mathematically the most difficult to ap-
proach exactly owing to the peculiar form of K↑ which
slows down convergence; and ii) it yields ‘compact’ ex-
pressions more suitable for a ‘concise’ presentation (Ap-
pendix B). Higher order terms of the Neumann expansion
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Figure 4. Bloch-Siegert dynamics: off-resonance ω0 6= ω transition probability P↑7→↓(t) as a function of time in the weak
to strong coupling regimes: with (a) ω0 = 2ω, β/ω = 0.7, (b) ω0 = 2ω, β/ω = 1.6, (c) ω0 = 2ω, β/ω = 3.5, (d) ω0 = 8ω,
β/ω = 0.7, (e) ω0 = 8ω, β/ω = 1.6, and (f) ω0 = 8ω, β/ω = 3.5. Shown here are the numerical solution (dashed black line)

and the fully analytical formula for the Neumann expansion of the exact path-sum solution at the fourth order P
(4)
↑→↓(t) (solid

blue line). Parameters : two level system driven by the Bloch-Siegert Hamiltonian of Eq. (8) [11, 12] starting in the | ↑〉 state
at t = 0.

are readily and analytically available, enabling precise
evaluation of P↑7→↓(t) up to any desired target time. Re-

call that, as discussed above, P
(13)
↑→↓(t) is actually a single

analytical formula involving all even frequencies sines and
cosines up to sin(54ωt) and cos(54ωt) with coefficients up
to β54. We stress here that the Neumann expansion of
the path-sum solution is profoundly different from a Tay-
lor series representation, as is e.g. manifest even at order
0, see Eq. (12) below and Appendix. (B)

The fact that the same expression for P
(n)
↑7→↓(t) is an

equally good approximation to the exact transition prob-
ability in all parameter regimes, i.e. from β/ω0 � 1 to
β/ω0 � 1 is a signature that the path-sum approach is
non-perturbative. For the same reason, we observe that

P
(n)
↑7→↓(t) captures roughly the same number of spin flips

in time regardless of β: empirically order 3 reproduces
1–2 flips, order 7 gets 2–3 flips, order 13 captures 4–5. At
the opposite, Floquet theory, which is inherently pertur-
bative, only works for β/ω � 1 [11], while the diverging
Magnus series is limited to very short times.

In Fig. (4) we show the off-resonance ω0 6= ω dynamics

of the analytical transition probability P
(4)
↑→↓(t) obtained

from the fourth order Neumann expansion. Irrespec-
tively of the coupling strength, at any fixed finite order

n, P
(n)
↑→↓(t) is reliable for longer times as we get farther

from resonance, for which convergence of the Neumann
expansion is slowed by the presence of a linear term in
K↑. Once again, this is purely a feature of the Bloch-
Siegert Hamiltonian and not of the path-sum approach.

4. Physical insights

Now that we have analytical formulas for the transition
probability without the rotating wave approximation, we
may gain novel insights into the Bloch-Siegert dynamics.
For example, we can calculate the spin-flip duration tsf ,
i.e. the time at which P↑→↓(t) first peaks close to 1 when
on resonance ω0 = ω. Analysis of Eq. (10) with e.g. the
analytic expressions of Appendix B shows that C0(β, t)
is the dominant contribution to tsf in the weak coupling
regimes β/ω . 1/2, while the C2k>0 and S2k functions
describe further oscillations smaller by a factor of at least
β2. Extracting tsf from C0 leads to

tsf = (11)

1

2
√

2

√
12

β2
− 15

ω2
+

√
3

β4ω2

√
91β8 − 88β6ω2 + 16β4ω4

=
1

β

√
1

2

(
3 +
√

3
)
− β

8ω2

√
1

2

(
129 + 67

√
3
)

− β3

128ω4

√
1

2

(
16131 + 5545

√
3
)

+O
(
β4
)
.

This is remarkably close to the results obtain from
numerical calculations, see Fig. (5). Mathematically,

Eq. (11) assumes β/ω < 2
√

1
91

(
11−

√
30
)
' 0.49. Be-

yond this point the above estimate yields a complex num-
ber as the real solution switches to another root of the
derivative of C0.
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Figure 5. Bloch-Siegert dynamics: Resonant ω0 = ω spin-
flip duration tsf , at which P↑→↓(t) first peaks at or close to 1,
as a function of the coupling strength β. Shown here are the
exact formula of Eq. (11) (solid red line) and fully numerical
results (blue dots). Discontinuities in the numerical results
are due to small oscillations of P↑→↓(t), which make tsf un-
dergo discrete jumps as one wins over the others. These are
well captured analytically by a more advanced analysis in-
cluding the S2k and C2k>0 functions. In insets: two examples
of time evolution of P↑→↓(t), the straight red lines are the
predictions of Eq. (11).

Even better analytical formulas for tsf with domains
of validity that go much further into the stronger
coupling regimes and accurately reflect its discrete
jumps are immediately available, however they cannot
be expressed in terms of radicals anymore and are not
reproduced here owing to length concerns.

Also of interest are the changes affecting the dynamics
of the transition probability P↑→↓(t) as β/ω is increased
from the weak to strong regimes. For example, in the
ultra-weak coupling regime β/ω � 1, the path-sum so-
lution reproduces small oscillations around the Floquet
calculations which are present in the numerical solution,
see Fig. (6). In fact, these small oscillations are already
captured by the order 0 of the Neumann expansion of the

path-sum solution (!), for which G
(0)
↑ = δ(t′, t) and

P
(0)
↑→↓(t) =

β2t

ω
sin(2ωt) +

β2

2ω2
+ β2t2 − β2

2ω2
cos(2ωt).

(12)
This shows that the oscillations missed by earlier treat-
ments have a linearly-growing amplitude at short times
on the order of β2t, originate purely from the counter-
rotating terms, and never trully vanish as long as β 6= 0.
The diverging parabola in β2t2 reflects the humble be-
ginning of the Rabi oscillation, unsurprisingly missed by
order 0. As β is increased the small oscillations compete
with the background Rabi oscillations, thereby giving rise
to intricate intermediary effects seen in Fig. (3). This
competition also explains why P↑→↓(t) does not always
peak at 1, as it results from a complicated superposition

0 2 4 6 8

0.00

0.05

0.10

0.15

ωt

P
↦
↓
(t
)

Figure 6. Bloch-Siegert dynamics: resonant ω0 = ω tran-
sition probability P↑→↓(t) in the ultra-weak coupling regime
β/ω = 0.05 for short times. Shown here are the order 0

formula P
(0)
↑→↓(t) of Eq. (12) (solid blue line), second order

Floquet theory [11] (solid green line and green points) and
the numerical solution (dashed black line).

of oscilatory terms, in agreement with Eq. (10).

We conclude the discussion on physical insights into
the Bloch-Siegert dynamics by studying Coherent De-
struction of Tunneling (CDT) [10] in the strong coupling
β/ω0 � 1. This situation is well suited to the use of a
general property of Neumann series that allows for arbi-
trary accelerations of their convergence in the presence
of dominant terms [42]. Note that this procedure is al-
ways available when expanding path-sum solutions, and
is thus not specific to the Bloch-Siegert Hamiltonian.

Concretely, we get a closed form expression for the evo-
lution operator U(t) at the 0th order of the accelerated
Neumann expansion of the path-sum solution that leads
to perfect or near-perfect fits for any physical quantity
of interest both on and off CDT resonances. See Ap-
pendix C for details of the calculations. For example,
the return probability to the |↑〉 state is found to be

P
(acc,0)
↑→↑ (t) =

∣∣∣∣cos

(
2β

ω
sin(ωt)

)
+ e−

1
2 itω0 − 1 (13)

+

∫ t

0

iω0e
− 1

2 iτω0 sin2

(
β

ω

(
sin(ωτ)− sin(ωt)

))
dτ

∣∣∣∣2 ,
This formula becomes exact when either ω0 → 0 or
β → 0, as expected from the acceleration procedure. In
general, it provides excellent approximations when β/ω0

is large, see Fig. (7 a, b, c). The remaining integral in

P
(acc,0)
↑→↑ (t) has no closed form but can be evaluated ex-

plicitely via an infinite series of sines and cosines with
Bessel coefficients (Appendix C). This expansion also in-
dicates that the time-average of the return probability
is

〈P (acc,0)
↑→↑ (t)〉t =

1

2

(
1 + J0

(
4β

ω

))
, (14)
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Figure 7. Coherent destruction of tunneling: Top line, return probability P↑→↑(t) in the ultra-strong coupling regime

β/ω0 = 30 for (a) ω = 4ω0; (b) ω = 20ω0; and (c) ω = 100ω0. Shown here are P
(acc,0)
↑→↑ (t) as given by Eq. (13) (solid blue line),

the numerical solution (dashed black line), and its predicted time-average Eq. (14) (solid red straight line, indistinguishable
from the numerically computed time-average). Middle line: transition probability Pψ−→ψ+(t) for a system starting in the
|ψ−〉 state at t = 0 with: (d) 4β/ω = 2.404..., first zero of J0(4β/ω); (e) 4β/ = 11.79..., fourth zero of J0(4β/ω); and (f)
4β/ω = 27.49..., ninth zero of J0(4β/ω). Note the changes of scales. Shown here are the formula of Eq. (15) (solid blue line)
and the numerical solution (dashed black line), these two being completely indistinguishable. Bottom line: far off-resonance
ω = 100ω0 expectation value of σx for a system starting in the | ↑〉 state at t = 0 with: (g) 4β/ω = 2.404..., first zero of
J0(4β/ω); (h) 4β/ω = 11.79..., fourth zero of J0(4β/ω); and (i) 4β/ω = 27.49..., ninth zero of J0(4β/ω). Note the changes of
scales in 〈σx〉. Shown here are the formula of Eq. (16) (solid blue line) and the numerical solution (dashed black line), these
two being indistinguishable.

which is exactly 1/2 on CDT resonances where
J0(4β/ω) = 0, consistent with the current understand-
ing of CDT. To be more precise let us study CDT di-
rectly by considering the states |ψ±〉 = 1√

2
(| ↑〉 ± | ↓〉).

The probability of transition between these states, de-
noted Pψ−→ψ+

(t), is found in the situation where ω0 �
(β/ω)1/2, as (Appendix C)

P
(acc,0)
ψ−→ψ+

(t) =
ω2
0

4

(∫ t

0

sin
(4β

ω

(
sin(ωt)− sin(ωτ)

))
dτ

)2

+
ω2
0

4

(∫ t

0

cos
(4β

ω

(
sin(ωt)− sin(ωτ)

))
dτ

)2

. (15)

This expression flawlessly reproduces the numerical so-
lution in its finest details, details which had hitherto not

been captured with such accuracy [35]. Minimizing the
time-average of this formula confirms that the CDT con-
dition is exactly J0(4β/ω) = 0, i.e. this is not changed
by the non-perturbative corrections. Mathematically, the
reason for this is simple: the J0 function is quadratically
dominant over the other terms of the Bessel-series ex-
pansion of Eq. (15) because it stems from the sole term
of that expansion which does not depend on τ in both
integrals.

While these results are as expected from the standard
theory of CDT, it not so for all physical quantities. Con-
sider for example, the expectation value of σx for a sys-
tem initially prepared in the | ↑〉 state. As observed by
[43], 〈σx〉 presents anomalous fluctuations on CDT reso-
nances, a fact that was interpreted as a hallmark of and
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resulting from a crossing Floquet states. This interpre-
tation is in fact not correct. Indeed, at order 0 of the
accelerated expansion of the path-sum solution we get
(Appendix C), when ω0 � (β/ω)1/2,

〈σx〉(acc,0) = ω0

∫ t

0

sin

(
4β

ω
sin(ωτ)

)
dτ. (16)

This simple expression fits once again absolutely flaw-
lessly with the numerically computed expectation 〈σx〉,
see Fig. (7 d, e, f). Now evaluating the integral remain-
ing in Eq. (16) via Bessel functions shows that the time
average of 〈σx〉 is

〈〈σx〉(acc,0)〉t =
2ω0

ω

∞∑
n=0

J2n+1

(
4β

ω

)
1

2n+ 1
,

whose extrema are reached whenever

1− π

2
HHH1

(
4β

ω

)
= 0, (17)

with HHH1(.) the first Struve function. Remarquably,
the difference ∆n between the location of the nth
zero of J0(.) and of the nth zero of Eq. (17) tends
asymptotically to 0 as ∆n ∼ 1/(2πn) for n � 1. This
asymptotics develops quite quickly: while ∆1 ' 0.4,
already ∆2 ' 0.03. The fact that the anomalous
fluctuations in the expectation value of σx peak at the
zeroes of Eq. (17) rather than on CDT resonances is
confirmed by the numerical simulations. This analysis
indicates that while 〈σx〉 does indeed seem to fluctuate
the most on CDT resonances, it is in fact not true and
the phenomenon driving these fluctuations is subtly
different from that behind CDT.

These results demonstrate the power of various expan-
sions of the path-sum solution, enabling very precise and
hitherto unequaled analytical analysis of subtle phenom-
ena, e.g. Pψ−→ψ+

(t) is on the order of 10−5 on CDT
resonances and is fitted to within machine precision by
the formulae provided. This is not because of special
features of the Bloch-Siegert Hamiltonian. Rather, the
path-sum approach is generally valid for any driving field,
as showed by the general solution provided in §III A. This
same solution is valid for dissipative non-Hermitian oper-
ators [44], and will always be amenable to analytic Neu-
mann and accelerated Neumann expansions, should it
lack a closed form.

IV. FEW- TO MANY-BODY HAMILTONIANS

A. Few-body, N>2 -level Hamiltonians

The path-sum approach is by no mean limited to two-
level systems: e.g. solutions to all time-dependent 3× 3
and 4× 4 Hamiltonians are readily available and will be
presented in a future work. The number of steps in the

exact solution is always finite and the terms involved get
progressively simpler because of the ”descending ladder
principle” (see Fig. 2 e).

For many body systems N � 1, a further problem ap-
pears, namely the exponential growth in the size of the
Hamiltonian. While path-sum does not, in itself, solve
the challenges posed by this well-known scaling, it of-
fers tools to manage it via its scale invariance properties,
which we now briefly present as we will use it to treat a
many-body molecular system from NMR.

B. Scale invariance

Path-sums stem from formal resummations of families
of walks. This principle does not depend on what those
walks represent. In particular, it remains unchanged by
the nature of the evolving system. To exploit this obser-
vation, consider a more general type of system histories
made of temporal successions of orthogonal vector spaces
h̃ : V1 7→ V2 7→ V3 · · · . Physically such histories can de-
scribe an evolving subsystem, such as a group of protons
in a large molecule. Mathematically they correspond to
walks on a coarse-grained representation of the quantum
state space, a subgraph G̃t of Gt. To see this, take a
complete family of orthogonal spaces, i.e.

⊕
i=1 Vi = V ,

where V is the entire quantum state space. To each Vi
associate a vertex vi and give the edge vi 7→ vj the time-
dependent weight PVj .H(t) .PVi . Here PVk is the projec-
tor onto Vk. Observe then that these edge weights are
generally non-Abelian. Yet, because path-sums funda-
mentally retain the order and time of the transitions in
histories when performing resummations of walks, this
setup poses no further difficulty. It follows that the sub-
matrix PVj .U(t′, t) .PVi of the evolution operator is again
given as a matrix-valued branched continued fraction of
finite depth and breadth. While the shape of this frac-
tion depends on the particular choice of vector spaces,
its existence and convergence properties do not. If the
vector spaces are chosen so that the shape of the fraction
itself is unchanged, and such a choice is always possible,
then the path-sum formulation is truly invariant under
scale changes in the quantum state space.

An immediate consequence of scale-invariance is that
there is always a path-sum calculation rigorously relat-
ing the global evolution of a system to that of any en-
semble of its subsystems, such as clusters of spins in a
large molecule (see below). In this scheme, we can evolve
each subsystem separately from one-another using any
preferred method (Magnus, Floquet, path-sum, Zassen-
haus for short times etc.); only to then combine these
isolated evolutions exactly via a path-sum to generate
the true system evolution.

While thorough exploitation of the scale-invariance
property is beyond the scope of this work, we demon-
strate below how it can be used to tackle many-body
Hamiltonians, with an emphasis on examples from NMR,
i.e. 42 spins coupled by the homonuculear dipolar inter-
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Figure 8. Analytical spin-diffusion on a cationic tin oxo-cluster with N = 42 protons (shown in inset) submitted to the
time-dependent high-field dipolar Hamiltonian under MAS (rotor angular velocity ωr = 2π × 10kHz). The figure shows the
time evolution of the probability |〈ψ(t)| ↑z,i〉|2 of finding a spin-up along z on proton i for three protons: a hydroxyl proton
H1 (solid red line), on which the excitation starts; a nearby hydroxyl proton H2 (dashed blue line); and a methyl proton H3
(dot-dashed black line).

action and spin diffusion under MAS.

V. LARGE MOLECULE IN NMR

We now turn to the general problem of determining
the temporal dynamics of spin diffusion as effected by
the time-dependent high-field dipolar Hamiltonian for N
homonuclear spins:

HII =
∑
i,j

1

2
ωij(t)

(
3IizIjz − Ii . Ij

)
, (18)

where the interaction amplitude ωij(t) is time-dependent
due to the MAS rotation, see D for more details. We con-

sider a cationic tin oxo-cluster
[
(MeSn)12O14(OH)6

]2+
[45] exhibiting N = 42 protons belonging to hydroxyl
and methyl groups, see Fig. 8. This structure is ide-
alised and exhibits the main characteristics of already
synthesised clusters (distances, angles, crystal packing).
The methyl groups are supposed fixed as is the case at
low temperature, although this is no requirement of the
path-sum method and methyl rotations can be tackled.
A single orientation of the molecule towards the prin-
cipal magnetic field B0 is considered. Path-sum yields
analytical expressions for the entries of the evolution op-
erator because the computational complexity of the cal-
culations can be made to be only linear in the system size
N depending on the initial state. We stress that this is
due primarily to the peculiar structure of the high-field
dipolar Hamiltonian, which allows for a particularly effi-
cient usage of the scale-invariance and graphical nature of
path-sums. In particular, we do not claim to have solved
the general many-body problem: there will be Hamil-
tonians for which this procedure cannot circumvent the

exponential explosion of the state space. The method-
ology we employed is presented below, after the results.

In Fig. 8 and Movie 2 (See Supplemental Material at
[URL will be inserted by publisher] for this movie), ωr is
fixed at 2π× 10 kHz and the initial up-spin is located on
a hydroxyl proton, denoted H1. During the first 0.15ms
time period (or 1.5 rotor period), an oscillation is ob-
served between two close hydroxyl protons H1 and H2,
followed by a partial transfer to the closest methyl group
(t & 0.15ms), in particular proton H3. Inside the methyl
entity, the frequency of exchange is much faster as the
three protons are subjected to much stronger dipolar cou-
plings. In Fig. 9(a,b) and Movies 1, 3, 4, 5 and 6 for
ωr/2π = 5, 20, 40, 60 and 120 kHz ((See Supplemental
Material at [URL will be inserted by publisher] for these
movies), the return-probability to spin 1 is expressed as
a function of ωr and can be described analytically. These
results provide an exact justification to recently proposed
approximations in the context of the 1H line dependence
under ultra-fast MAS [46]. Finally in Fig. 9(c), strong
offsets (roughly 30 ppm at 1.5 GHz, currently the high-
est magnetic field available for high resolution solid state
NMR purposes) were added to all protons Hi, except the
two hydroxyl protons H1,2 (see inset of Fig. 8 for identi-
fication). As the chemical shift offset corresponds simply
to Iz,i operators, the solution of the spin diffusion prob-
lem remains analytical by using path-sum. For strong
offsets, spin diffusion is quenched. All of these results
are in perfect agreement with experimental observations
related to spin diffusion in NMR.
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Figure 9. Return probability for the spin excitation on the initial hydroxyl proton H1 as a function of ωR (one plot point
every 20Hz): (a) after a fixed time of t = 0.05ms, a situation exhibiting numerous peaks for small ωR values that are not all
resolved on this picture; and (b) after two rotor periods t = 2 × (2π/ωR). (c) Probability of finding the spin excitation on
hydroxyl protons H1 (solid red line) or H2 (dashed blue line) as a function of time for ωR = 10kHz and with a very strong offset
of roughly 30 ppm at 1.5 GHz on all protons except H1 and H2. The total probability of being either on H1 or H2 (dotted
black line) never goes below ' 0.94 over 3 rotor periods.

A. Setting up the path-sum: methodology

1. State-space reduction techniques

Simulating many-body quantum systems on classical
computers is doomed to be an impossible task, bar-
ring the use of approximations. A general class of such
approximations, called state-space reduction techniques,
bypass the exponential computational hurdle by consid-
ering only the most relevant corners of the quantum
state-space that the system is likely to explore. But path-
sum is, first and foremost, a mathematical technique for
analytically solving systems of coupled linear differen-
tial equations with non-constant coefficients. This holds
regardless of what this system means and how it came
about. Therefore, path-sum can be used in conjunction
with all state-space reduction techniques, as these inter-
vene earlier in selecting the system to be considered.

In the present work, which focuses on path-sum, we
achieve the desired reduction by choosing the initial den-
sity matrix ρ(0) to be a pure state with a small number k
of up- or down-spins. Indeed, since the high-field Hamil-
tonian of Eq. (18) conserves this number at all times, the
discrete graph structure Gt encoding the quantum state
space for path-sum consists of exactly N disconnected
components, of sizes

(
N
k

)
∼ Nk when k � N . Hence,

the computational cost of finding the evolution operator
using a path-sum here is O

(
Nk), i.e. linear in N for a

single initial up-spin. This procedure is different from ap-
proximate state space truncations approaches [15, 16, 47],
since here the Hamiltonian rigorously enforces the state-
space partition. As a result, our calculations retain quan-
tum correlations of up to N spins. More general initial
density matrices ρ(0) may be approximated with poly-
nomial cost on expanding them over pure states with
k � N . In the sector of the quantum space with a sin-
gle up-spin, the difficulty is thus solely due to the time-
dependent nature of the Hamiltonian. The evolution op-
erator is then strictly analytical for static experiments

and analytically soluble using path-sums for MAS exper-
iments. Physically, the time-dependent high-field dipolar
Hamiltonian of Eq. (18) implements a continuous time
quantum random walk of the spin on the molecule. This
interpretation remains true in the presence of more than
one initial up-spin, with the caveat that further interac-
tions happen when quantum walkers meet.

2. Dynamics at the molecular scale

As stated above, the sector of the quantum state space
that needs to be considered for an initial pure state with
a single up-spin is of dimension N . This reduces the
problem of calculating the evolution operator to (analyt-
ically) solving an N ×N system of coupled linear differ-
ential equations with non-constant coefficients. Since, in
principle, all pairs of spins interact directly, this system
is full. Consequently, if no further partition of the Hamil-
tonian is used, the graph Gt on which path-sum is to be
implemented is the complete graph on N vertices, which
entails a huge (yet finite) number of terms in the path-
sum continued fraction. The vast majority of these give
negligible contributions to the overall dynamics however,
because of the scales of the interactions involved: one
may therefore build up the path-sum continued fraction
by brute force, progressively including longer cycles until
convergence of the solution is obtained.

An alternative, physically motivated approach appeal-
ing once more to scale-invariance nonetheless appears
preferable as it yields further insights in the temporal
dynamics. First, remark that at least one further non-
trivial partition of the Hamiltonian is quite natural in the
case of the cationic tin oxo-cluster: that which puts to-
gether all spins belonging to the same methyl or 3 hydrox-
yls groups. Mathematically, this is equivalent to seeing
the Hamiltonian as a 14× 14 matrix with matrix valued
entries, each of size 3× 3. Then there is a path-sum con-
tinued fraction expressing any 3 × 3 block of the global
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evolution operator U(t′, t) in terms of the ”small” Hamil-
tonians of the corresponding proton groups.

At this point the path-sum continued fraction is al-
ready quite manageable without further approximations,
but we can gain additional (analytical) insights into
the spin dynamics by removing inter-group interactions
weaker than a chosen cut-off value IB,B′/Λ, with IB,B′
the maximum inter-group interaction. Here B indices
mean ”block”. The value of Λ is itself controlled by con-
vergence of the overall solution. This procedure sends
some off-diagonals blocks of the Hamiltonian to 0, giv-
ing G̃t a non-trivial topology which reveals the molecular
structure at the methyl and 3 hydroxyls scale, as experi-
enced by the spin excitation during diffusion. See Fig. 10
for an illustrative example, with ωr = 2π × 60 kHz and
Λ = 40. The corresponding path-sum continued fraction
takes on the topology of the molecule and establishes
mathematically the main pathways taken by the spin ex-
citation:

U(OH)3
=

∫ t′

t

(
Id∗ + iH(OH)3

+ H(OH)3Me1 ∗ Γ1 ∗ HMe1(OH)3

+ H(OH)3Me2 ∗ Σ2 ∗ HMe2(OH)3
+ H(OH)3Me3 ∗ Σ3 ∗ HMe3(OH)3

− iH(OH)3Me2 ∗ Γ2 ∗ HMe2Me3 ∗ Σ3 ∗ HMe3(OH)3

− iH(OH)3Me3 ∗ Σ3 ∗ HMe3Me2 ∗ Σ2 ∗ HMe2(OH)3

)∗−1
(τ, t)dτ,

where e.g. H(OH)3Me3 ∗Σ3∗HMe3Me2 ∗Σ2∗HMe2(OH)3
is the

weight of the triangle (OH)3 7→ Me2 7→ Me3 7→ (OH)3 on

G̃t (Fig. 10 b). In these expressions, Id∗ = 1∗Id3×3, the
Σj are given by

Σ2 =
1

Id∗ + iHMe2 + HMe2Me3 ∗ Σ3 ∗ HMe3Me2

,

Σ3 =
1

Id∗ + iHMe3 + HMe3Me4 ∗ Σ4 ∗ HMe4Me3

,

Σ4 =
1

Id∗ + iHMe4 + HMe4Me5 ∗ Σ5 ∗ HMe5Me4

,

Σ5 =
1

Id∗ + iHMe5 + HMe5Me6 ∗ Γ6 ∗ HMe6Me5

,

and Γj designates the isolated evolution of the jth methyl
group, i.e.

Γj =
1

Id∗ + iHMej

.

These results illustrate again the “descending ladder
principle” evoked in Fig. 2. Here, all inverses are ∗-
inverses and U(OH)3

is the 3× 3 block of the global evo-
lution operator giving the probability amplitudes over a
group of 3 hydroxyls. HMex and H(OH)3

are the Hamilto-
nians of isolated methyl and of a group of 3 hydroxyls, re-
spectively. Similarly, HMeiMej is the interaction between
neighbouring methyls and HMei(OH)3

the interaction be-
tween a methyl and a group of 3 hydroxyls.

The reader may notice that the shape taken by the
continued fraction for U(OH)3

is immediately related to

that of the graph G̃t (Fig. 10(b)), with each term of the
fraction being the weight of a fundamental cycle of the
graph. This close, transparent, association between the
mathematical form of the solution and the physical prob-
lem allows for physically motivated and better controlled
approximations. For example, setting Σ5 to zero so that
Σ4 ≡ Γ4 in the above solution is immediately understood
to mean that one removes the possibility for the spin to
diffuse to the remote methyl groups Me5 and Me6 be-
fore coming back to the initial group of 3 hydroxyls, an
excellent approximation (see Fig. 10(a), red points to be
compared to the red dashed line).

Finally, we remark that our choice of partition is not
mathematically necessary. For example, larger blocks
may be employed equally well or one may form blocks
with protons scattered throughout the molecule. In prin-
ciple, path-sum’s scale-invariance guarantees that any
choice, if properly implemented, leads to the same solu-
tion. In practice however there is a trade-off between the
size of the manipulated blocks and the complexity of the
path-sum continued fraction. We do not know in general
how to choose the best partition according to this trade-
off but it seems that physically motivated partitions are
a good starting point.

VI. CONCLUSION

In this contribution, we have demonstrated an entirely
novel approach to the problem of finding compact and
exact expressions for the evolution operators of quan-
tum dynamical systems driven by time-varying Hamil-
tonians. As illustrated in Figure 2, path-sum calcula-
tions always involve a “descending ladder” of progres-
sively simpler quantities yielding the exact solution af-
ter a finite number of steps. This is in strong contrast
with traditional perturbation techniques (Magnus expan-
sion, Floquet theory) which, when carying out analyti-
cally, invariably lead to infinite series and an “ascending
ladder” of increasingly intricate quantities, such as Mag-
nus series’ nested commutators. Most importantly, the
solutions provided by path-sums are always analytically
accessible, e.g. through Neumann expansions.

As a fundamental and illustrative example, we used
path-sum to solve the Bloch-Siegert problem—related
to the action of the counter-rotating component of the
radio-frequency field—at any order. We analytically
studied the spin diffusion effected by the homonuclear
dipolar coupling Hamiltonian of NMR acting on a large
molecule, starting from a pure state initial density ma-
trix. In general, on many-body systems, we are facing
two kinds of ”explosive” computational problems: (i)
one, quantum in nature, related to the exponential size
of the quantum state space; and (ii) one, graph theoret-
ical in nature, related to the time required to construct
the path-sum continued fraction, in particular if Gt is
large and not sparse. Issue (ii) can be managed with
partitions and path-sum’s scale invariance and is further
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Figure 10. Building the path-sum on the cationic tin oxo-cluster. (a) Probability of return of the spin excitation on a
hydroxyl proton H1 shown on Fig. 8 as a function of time for ωr = 2π×60 kHz over 3 rotor periods: (i) solution with no cut-off
(solid black line, identical with Λ > 100), (ii) analytical approximation with low interaction cut-off Λ = 40 (dashed red line)

and (iii) further approximation obtained upon setting Σ5 to zero (red points). (b) Discrete structure G̃t of the quantum state
space as seen by path-sum when Λ = 40 and corresponding to the equations given in the text for U(OH)3

. Edges and self-loops
correspond to inter-and intra-group interactions, respectively. The adjacency matrix of this graph is the 14× 14 Hamiltonian
with 3 × 3 matrix valued entries evoked in the text. Thus, the shape of the graph is essentially that of the molecule at the
methyl and group of 3 hydroxyls level. It comprises two disconnected pathways for spin diffusion corresponding to the opposite
sides of the cationic tin oxo-cluster which become connected for higher cut-off values Λ > 42.

tackled with the implementation of a Lanczos path-sum
algorithm [48]. This algorithm naturally exploits matrix
sparsity, benefits from path-sum’s “descending ladder”
principle and was designed with a numerical outlook. It
can, in principle, get excellent approximations after only
a few iterations, equivalent to truncating a path-sum con-
tinued fraction in sufficient depth to reach the desired
accuracy. This algorithm is best understood as an exten-
sion to time-ordered exponentials of modern numerical
procedures for the computation of ordinary matrix expo-
nentials. The first issue (i) is fundamental to quantum
mechanics and its management inherently depends on
the problem at hand. Here, path-sum has the advantage
that it works in conjunction with any state-space reduc-
tion technique. For the homonuclear dipolar coupling
Hamiltonian, we bypassed the problem upon choosing
certain initial pure states. The scale invariance of path-
sum offers further flexibility, as it allows to separately
evolve chosen subsystems only to then combine all such
evolutions in a globally exact way.

These results call for a discussion on the nature of the
solutions sought after by physicists and mathematicians
alike. A general assumption seems to be that an accept-
able/interesting analytical solution to a problem has been
found if and only if it can be presented with a finite num-
ber of symbols and pre-existing functions. We think this
is a restrictive if missleading expectation. For example,
a Bessel or a Heun function solution would be considered
‘satifactory’ when both are actually algebraically tran-
scendant, known and understood from the equations they
solve and from explicit series expansions involving sim-
pler objects. It seems that at least in some cases our per-

ception of mathematical objects may be biased by facts
as simple as their having a name, yet the sine integral
function Si(x) =

∫
sin(x)/xdx is no more undisputedly

analytical than
∫

exp(sin(x)/x))dx. We think that one
cannot and should not ask a general purpose analytical
method for solving systems of coupled linear differential
equations with variable coefficients any more than what
there is to be found: i) finding, in a finite number of
steps, an explicit differential or integral equation involv-
ing only one unknown function to be determined; and
ii) providing an unconditionally convergent mean of ex-
panding the solution as a series of some kind, be it Taylor,
Neumann, accelerated Neumann or other. We may add
the requirement that, iii) all calculations should be fea-
sible analytically, i.e. without giving numerical values to
all parameters involved. Should one of these criterion fail
to be met, a purely numerical strategy would surely be
more interesting. But if all of these demands are indeed
satisfied, we may analyse the situation in greater depth
and details than possible with numerical computations.
This is exemplified by the CDT analysis provided here,
the analytical formula for 〈σx〉 revealing slight deviations
from the expected zeroes of the Bessel J0 function.

With these understandings in place, we think that
path-sum opens an entire new field of research is now
open for the NMR and wider physics communities.
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Appendix A: Remarks on the state-of-the-art

While reviewing the state-of-the-art in the course of
the present work, it appeared to us that a very vast cor-
pus of research had accumulated on quantum dynamics
driven by time-varying Hamiltonians. A host of special
solutions have been found and numerous betterments of
existing techniques have been developed. Some of these
are recent enough that we could not cover them in our
introduction, such as the flow equation approach to pe-
riodic Hamiltonians [49]. It seems that a proper review
article on the subject is urgently needed to gather all re-
sults and remedy the pitfalls of our modest introduction.

Following publication of the preprint of the present
article, it was suggested to us that path-sum may be re-
lated to Haydock’s recursion method for calculating elec-
tronic states [50]. While both approaches share the same

outlook of recursively resumming Feynman diagrams via
path-resummations, Haydock’s method relies on funda-
mentally commutative mathematics, in particular deter-
minants, which do not extend to the general setting re-
quired by ordered exponentials and scale invariance. In-
stead, it is possible that lifting Haydock’s approach to
non-commutativity using Gelfand’s quasi-determinants
[51] would lead to path-sum.

Appendix B: Bloch Siegert dynamics

In this appendix, we detail the calculation process for
the transition probability P↑→↓ at order 3 of the Neu-
mann expansion of the exact path-sum solution. We
work on resonance ω0 = ω as this yields more com-
pact expressions and also because this situation is the
most challenging mathematically. Indeed, precisely when
ω = ω0 the kernel K↑ has terms that are linear in time

and which slow down convergence of P
(n)
↑→↓(t) to P↑→↓(t)

(see §III B 2).
As explained in the main text, at order 3 we have

P
(3)
↑→↓(t) = |U (3)(t)↓↑|2 with

U (3)(t)↓↑ = −2iβ

∫ t

0

∫ τ1

0

cos(ωτ1)eiω0τ1G
(3)
↑ (τ0, 0)dτ0dτ1,

see Eq. (9) of the main text. Here G
(3)
↑ is the third order

Neumann expansion of the path-sum solution, i.e.

G
(3)
↑ (t, 0) =δ(t) +K↑(t, 0) +

∫ t

0

K↑(t, τ1)K↑(τ1, 0)dτ1 +

∫ t

0

∫ t

τ1

K↑(t, τ2)K↑(τ2, τ1)K↑(τ2, 0)dτ2dτ1,

=δ(t)− β2

ω
e−iωt cos(ωt)

(
−ie2iωt + 2ωt+ i

)
+

β4

24ω3
e−3iωt cos(ωt)

(
3ie6iωt + 6e4iωt(−2iω2t2 + 2ωt+ i) + e2iωt(8ω3t3 + 12iω2t2 + 12ωt− 15i)− 12ωt+ 6i

)
+

β6

960ω5
e−5iωt cos(ωt)

(
e10iωt5i+ e8iωt(−60iω2t2 + 150ωt+ 150i) + e6iωt(40iω4t4 − 80ω3t3 + 420ωt+ 150i)

+ e4iωt(−16ω5t5 − 40iω4t4 − 160ω3t3 + 180iω2t2 + 360ωt− 380i)

+ e2iωt(80ω3t3 − 120iω2t2 − 180ωt+ 45i)− 30ωt+ 30i
)
.

Taken together, these calculations give the transition probability at the third Neumann order as

P
(3)
↑→↓(t) =

7∑
k=0

sin(2kωt)S
(3)
2k (β, t) + cos(2kωt)C

(3)
2k (β, t),

in accordance with Eq. (10) of the main text. Here we
have
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S
(3)
0 (β, t) =0,

S
(3)
2 (β, t) =

β14t13

3628800ω
+

β14t11

53760ω3
−

β12t11

50400ω
−

β14t9

129024ω5
−

209β12t9

241920ω3
+

41β10t9

60480ω
−

229β14t7

645120ω7
+

11β12t7

3840ω5
+

17β10t7

960ω3
−

4β8t7

315ω

−
4219β14t5

6635520ω9
−

125β12t5

9216ω7
−

13β10t5

192ω5
−
β8t5

6ω3
+

2β6t5

15ω
+

1615β14t3

73728ω11
+

22873β12t3

331776ω9
+

265β10t3

1152ω7
+

7β8t3

16ω5
+

2β6t3

3ω3
−

2β4t3

3ω

−
1249411β14t

21233664ω13
−

17357β12t

110592ω11
−

9419β10t

27648ω9
−

211β8t

384ω7
−

21β6t

32ω5
−

3β4t

4ω3
+
β2t

ω
,

S
(3)
4 (β, t) =−

19β14t11

4838400ω3
−

73β14t9

1935360ω5
+

97β12t9

483840ω3
+

799β14t7

1161216ω7
+

47β12t7

80640ω5
−

61β10t7

13440ω3
−

27401β14t5

6635520ω9
−

629β12t5

46080ω7
+
β10t5

384ω5
+
β8t5

20ω3

+
82439β14t3

3538944ω11
+

18683β12t3

331776ω9
+

1061β10t3

13824ω7
−
β8t3

12ω5
−
β6t3

4ω3
−

1125889β14t

21233664ω13
−

213157β12t

1769472ω11
−

8675β10t

55296ω9
+

7β8t

288ω7
+

7β6t

32ω5
+

3β4t

8ω3
,

S
(3)
6 (β, t) =

29β14t9

1935360ω5
−

493β14t7

1658880ω7
−

121β12t7

241920ω5
+

5039β14t5

4423680ω9
+

385β12t5

55296ω7
+

19β10t5

2880ω5
+

4643β14t3

1769472ω11
−

5065β12t3

221184ω9
−

27β10t3

512ω7
−

5β8t3

144ω5

−
480511β14t

31850496ω13
+

6845β12t

884736ω11
+

1513β10t

18432ω9
+

229β8t

2304ω7
+

5β6t

96ω5
,

S
(3)
8 (β, t) =−

911β14t7

46448640ω7
+

6877β14t5

13271040ω9
+

47β12t5

122880ω7
−

1187β14t3

442368ω11
−

1721β12t3

331776ω9
−

133β10t3

55296ω7
+

14657β14t

5308416ω13
+

2153β12t

221184ω11
+

1237β10t

110592ω9
+

35β8t

9216ω7
,

S
(3)
10 (β, t) =

41β14t5

4423680ω9
−

103β14t3

589824ω11
−

19β12t3

221184ω9
+

1339β14t

3538944ω13
+

53β12t

98304ω11
+

β10t

6144ω9
,

S
(3)
12 (β, t) =−

5β14t3

3538944ω11
+

703β14t

63700992ω13
+

7β12t

1769472ω11
,

S
(3)
14 (β, t) =

β14t

21233664ω13
.

Now on to the C
(3)
2k functions:

C
(3)
0 (β, t) =

5809339β14

509607936ω14
+

1327β12

73728ω12
+

25787β10

442368ω10
+

10315β8

55296ω8
+

157β6

384ω6
+

7β4

16ω4
+

β2

2ω2
+

β14t14

25401600
+

β14t12

290304ω2
−
β12t12

302400
+

11β14t10

358400ω4

−
59β12t10

302400ω2
+

41β10t10

302400
−

1007β14t8

1548288ω6
−

137β12t8

322560ω4
+

23β10t8

4480ω2
−
β8t8

315
+

48229β14t6

7962624ω8
+

1441β12t6

138240ω6
−

31β10t6

3840ω4
−
β8t6

15ω2
+

2β6t6

45

−
302327β14t4

10616832ω10
−

93581β12t4

1327104ω8
−

55β10t4

4608ω6
+

7β8t4

48ω4
+

5β6t4

12ω2
−
β4t4

3
+

660727β14t2

10616832ω12
+

41143β12t2

294912ω10
+

21131β10t2

110592ω8
−

133β8t2

384ω6

−
β6t2

2ω4
−
β4t2

ω2
+ β

2
t
2
,

C
(3)
2 (β, t) =

22781β14

7077888ω14
+

6671β12

196608ω12
+

727β10

27648ω10
−

541β8

55296ω8
−

139β6

384ω6
−

β4

2ω4
−

β2

2ω2
−

β14t12

1036800ω2
−

β14t10

120960ω4
+

β12t10

17280ω2
−

421β14t8

1935360ω6

+
β12t8

4480ω4
−
β10t8

640ω2
+

221941β14t6

39813120ω8
+

383β12t6

138240ω6
−
β10t6

320ω4
+
β8t6

45ω2
−

95713β14t4

2654208ω10
−

82045β12t4

1327104ω8
+

43β10t4

3072ω6
−
β6t4

6ω2
+

111757β14t2

1179648ω12

+
22853β12t2

147456ω10
+

19945β10t2

110592ω8
−

7β8t2

64ω6
+
β6t2

8ω4
+
β4t2

2ω2
,

C
(3)
4 (β, t) =−

1146415β14

254803968ω14
−

27865β12

589824ω12
−

2849β10

27648ω10
−

1439β8

6912ω8
−

29β6

384ω6
+

β4

16ω4
−

53β14t10

3225600ω4
−

37β14t8

368640ω6
+

5β12t8

7168ω4
+

4567β14t6

2488320ω8
+

47β12t6

69120ω6

−
49β10t6

3840ω4
−

15503β14t4

1327104ω10
−

3773β12t4

165888ω8
+

73β10t4

4608ω6
+

5β8t4

48ω4
+

128387β14t2

3538944ω12
+

2639β12t2

36864ω10
+

37β10t2

432ω8
−

31β8t2

192ω6
−

5β6t2

16ω4
,

C
(3)
6 (β, t) =−

521561β14

47775744ω14
−

92075β12

10616832ω12
+

2915β10

221184ω10
+

1565β8

55296ω8
+

11β6

384ω6
+

199β14t8

1935360ω6
−

33029β14t6

39813120ω8
−

373β12t6

138240ω6
+

3919β14t4

5308416ω10
+

22013β12t4

1327104ω8

+
239β10t4

9216ω6
+

165683β14t2

21233664ω12
−

1741β12t2

73728ω10
−

9593β10t2

110592ω8
−
β8t2

12ω6
,

C
(3)
8 (β, t) =

315173β14

509607936ω14
+

407β12

110592ω12
+

2261β10

442368ω10
+

173β8

55296ω8
−

5681β14t6

39813120ω8
+

5029β14t4

3538944ω10
+

2645β12t4

1327104ω8
−

12631β14t2

3538944ω12
−

8077β12t2

884736ω10
−

851β10t2

110592ω8
,

C
(3)
10 (β, t) =

10979β14

63700992ω14
+

1067β12

3538944ω12
+

37β10

221184ω10
+

307β14t4

5308416ω10
−

2351β14t2

7077888ω12
−

145β12t2

442368ω10
,

C
(3)
12 (β, t) =

5309β14

764411904ω14
+

25β12

5308416ω12
−

65β14t2

10616832ω12
,

C
(3)
14 (β, t) =

β14

15925248ω14
.

All calculations were performed analytically on Math- ematica. The notebook generating these results, as well
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as any desired higher order of the Neumann expansion
of the exact path-sum solution is available for download
at http://www-lmpa.univ-littoral.fr/~plgiscard/.
Everytime the order is increased by one, e.g. from

P
(3)
↑→↓(t) to P

(4)
↑→↓(t), each expression above gains new

high order terms while four new functions also appear,

e.g. S
(4)
16 (β, t), S

(4)
18 (β, t), C

(4)
16 (β, t) and C

(4)
18 (β, t) all en-

ter P
(4)
↑→↓(t)).

Appendix C: Accelerated Neumann series

Suppose that we are given a function or matrix of two
times K(t′, t) = K1(t′, t) + K2(t′, t) such that in some
sense K1 is much larger than K2. Suppose further that
we are interested in the solution of the linear Volterra
integral equation of the second kind G(t′, t) = δ+K∗G =

δ(t′− t)+
∫ t′
t
K(t′, τ)G(τ, t)dτ , as will always be the case

when expanding the exact path-sum solution to quantum
dynamical problems at any scale.

Instead of expandingG as usual, G(t′, t) = δ+
∑
nK

∗n,
one can exploit the fact that K1 is dominant over K2 to
accelerate convergence of the Neumann expansion by ex-
pressingG in terms of the solutionsGi of the “individual”
Volterra equations Gi = δ + Ki ∗ Gi. More specifically
one gets

G =

(∑
n

T ∗n

)
∗G1 ∗G2 = G1 ∗G2 +T ∗G1 ∗G2 + · · · ,

where T = δ(t′ − t)−G1 ∗G2 +G1 ∗G2 ∗ (K1 +K2), see
[42] for details. Since T ∗0 = δ(t′ − t), the 0th order term
of the accelerated expansion is then simply the ∗-product

of the solutions of the individual Volterra equations:

G(acc,0)(t′, t) = T ∗0 ∗G1 ∗G2 =

∫ t′

t

G1(t′, τ)G2(τ, t)dτ.

This is particularly well suited to physical situations
where a certain parameter dominates over the others: not
only because the so-obtained expression for G is greatly
improved, but also because in general the individual Gi
are known exactly. Furthermore, this acceleration pro-
cedure continues to hold for any number of kernels Ki

[42].
Taking the Bloch-Siegert Hamiltonian of Eq. (7) as an

example, let us use path-sum’s scale invariance to work
in the trivial situation where we have single subsystem,
namely the entire system itself. Then, we get that

U(t) =

∫ t

0

G(τ, 0)dτ,

with G the solution of the matrix-valued linear integral
Volterra equation of the second kind with matrix kernel
K = K1 + K2, where

K1(t) = −2iβ

(
0 cos(ωt)

cos(ωt) 0

)
,

K2(t) = −iω0

(
1/2 0
0 −1/2

)
.

The ultra-strong coupling regime β/ω0 � 1 thus corre-
sponds to the situation described above as K1 dominates
K2. Since furthermore both Gi are immediately accessi-
ble as

Gi(t
′, t) = δ(t′ − t)Id + Ki(t

′) exp

(∫ t′

t

Ki(τ)dτ

)
,

we get G(acc,0) easily and integrating it with respect to t
yields

U(acc,0)(t) =

cos
(

2β
ω sin(ωt)

)
+ e−

1
2 iω0t − 1 −i sin

(
2β
ω sin(ωt)

)
−i sin

(
2β
ω sin(ωt)

)
cos
(

2β
ω sin(ωt)

)
+ e

1
2 iω0t − 1


+

∫ t

0

iω0e
− 1

2 iω0τ sin2
(

2β
ω

(
sin(ωτ)− sin(ωt)

))
− 1

2ω0e
1
2 iω0τ sin

(
4β
ω

(
sin(ωτ)− sin(ωt)

))
1
2ω0e

− 1
2 iω0τ sin

(
4β
ω

(
sin(ωτ)− sin(ωt)

))
−iω0e

1
2 iω0τ sin2

(
2β
ω

(
sin(ωτ)− sin(ωt)

))
 dτ.

Higher orders of the accelerated expansion of the path-
sum solution are also available although they are not nec-
essary given the machine-precision accuracy with respect
to numerical solutions already reached by order 0. The
integrals in U(acc,0)(t) have no closed form but can be
determined exactly via standard expansions over Bessel

functions since e.g.

sin(α+ z sin(φ)) =

sin(α)

(
J0(z) + 2

∞∑
n=1

J2n(z) cos(2nφ)

)

+ 2 cos(α)

∞∑
n=0

J2m+1(z) sin((2n+ 1)φ).

http://www-lmpa.univ-littoral.fr/~plgiscard/
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The modulus squared of U(acc,0)(t)11 gives Eq. (13) of
the main text, while calculating other quantities such as
Pψ−→ψ+

(t) and 〈σx〉 from U(acc,0)(t) is now a simple task,
giving e.g.

〈σx〉(acc,0) = ω0

∫ t

0

cos

(
1

2
ω0τ

)
sin

(
2β

ω
sin(ωτ)

)
dτ

+ 2ω0 sin

(
1

4
ω0t

)
×∫ t

0

sin

(
1

4
ω0(t− 2τ)

)
sin

(
2β

ω
(sin(ωt)− sin(ωτ))

)
dτ.

In the regime ω0 � ω, both cos(ω0t/2) and sin(ω0t/4)
are essentially equal to their initial t = 0 values, leading
to Eq. (16).

Appendix D: Interaction terms in the high-field
dipolar Hamiltonian

We consider the time-dependent high-field dipolar
Hamiltonian of Eq. (18) presented in the main text, with

interaction terms under MAS

ωij(t) :=
µ0γ

2~
4πr3ij

× 1

2
ξij(t),

where rij is the distance between protons i and j and [1]

ξij(t) := 2
√

2 sin(ψij) cos(ψij) sin(φij + ωrt)

+ sin(ψij)
2 cos(2φij + 2ωrt).

In this expression, ψij is the angle between ~ij and

the z-axis and φij is the angle between ~ij and the
x-axis for a coordinate system fixed to the sam-
ple. Finally, ωr is the angular velocity of the rotor.
The raw molecular data pertaining to the cationic
tin oxo-cluster is available online on the webpage
http://www-lmpa.univ-littoral.fr/~plgiscard/
and included here as a dataset.
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Chemistry Chemical Physics 19, 3506 (2017).

[18] P.-L. Giscard, K. Lui, S. J. Thwaite, and D. Jaksch,
Journal of Mathematical Physics 56, 053503 (2015),
https://doi.org/10.1063/1.4920925.

[19] P.-L. Giscard, S. J. Thwaite, and D. Jaksch,
arXiv:1202.5523 (2012).

[20] Y. Kayanuma, Phys. Rev. A 50, 843 (1994).
[21] Q. Xie and W. Hai, Phys. Rev. A 82, 032117 (2010).
[22] E. K. Irish, J. Gea-Banacloche, I. Martin, and K. C.

Schwab, Phys. Rev. B 72, 195410 (2005).
[23] S. Ashhab, J. R. Johansson, A. M. Zagoskin, and F. Nori,

Phys. Rev. A 75, 063414 (2007).
[24] A. P. Saiko and G. G. Fedoruk, JETP Letters 87, 128

(2008).
[25] A. Gangopadhyay, M. Dzero, and V. Galitski, Phys. Rev.

B 82, 024303 (2010).
[26] K. Rapedius, ArXiv e-prints , arXiv:1512.00387 (2015),

arXiv:1512.00387 [quant-ph].
[27] E. Barnes and S. Das Sarma, Phys. Rev. Lett. 109,

060401 (2012).
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