
HAL Id: hal-03606185
https://hal.science/hal-03606185

Submitted on 22 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Profile-Based AI-Assisted Dynamic Scheduling
Approach for Heterogeneous Architectures

Tongsheng Geng, Marcos Amaris, Stéphane Zuckerman, Alfredo Goldman,
Guang Gao, Jean-Luc Gaudiot

To cite this version:
Tongsheng Geng, Marcos Amaris, Stéphane Zuckerman, Alfredo Goldman, Guang Gao, et al.. A
Profile-Based AI-Assisted Dynamic Scheduling Approach for Heterogeneous Architectures. Inter-
national Journal of Parallel Programming, 2022, 50 (1), pp.115-151. �10.1007/s10766-021-00721-2�.
�hal-03606185�

https://hal.science/hal-03606185
https://hal.archives-ouvertes.fr

Profile-based AI-assisted Dynamic Scheduling Approach for
Heterogeneous Architectures

Tongsheng Geng1, Marcos Amaris2, Stéphane Zuckerman3, Alfredo Goldman4, Guang R. Gao5 and
Jean-Luc Gaudiot1

1PArallel Systems & Computer Architecture Lab, Department of Electrical Engineering and
Computer Science, University of California, Irvine, CA 2697-2625, USA∗

2Universidade Federal do Pará, Campus Tucuruí. Rodovia BR 422, km 13 - Canteiro de Obras
UHE - Antigo galpão da Camargo Corrêa, Vila Permanente, 68464000 - Tucuruí, PA – Brasil†

3Laboratoire ETIS, Université CY Cergy-Paris, ENSEA, CNRS F-95000 Cergy, France.‡
4DCC - IME - USP, Rua do Matao, 1010, Cidade Universitaria CEP 05508-090 Sao Paulo, SP –

BRAZIL§

5Computer Architecture & Parallel Systems Laboratory, Department of Electrical and Computer
Engineering, 140 Evans Hall, University of Delaware, Newark, DE, 19716, USA¶

Abstract

While heterogeneous architectures are increasing popular with High Performance Computing systems,
their effectiveness depends on how efficient the scheduler is at allocating workloads onto appropriate
computing devices and how communication and computation can be overlapped. With different types of
resources integrated into one system, the complexity of the scheduler correspondingly increases. Moreover,
for applications with varying problem sizes on different heterogeneous resources, the optimal scheduling
approach may vary accordingly. Thus, we introduce a Profile-based AI-assisted Dynamic Scheduling
approach to dynamically and adaptively adjust workloads and efficiently utilize heterogeneous resources.
It combines online scheduling, application profile information, hardware mathematical modeling and offline
machine learning estimation modeling to implement automatic application-device-specific scheduling for
heterogeneous architectures. A hardware mathematical model provides coarse-grain computing resource
selection while the profile information and offline machine learning model estimates the performance of
a fine-grain workload, and an online scheduling approach dynamically and adaptively distributes the
workload. Our scheduling approach is tested on control-regular applications, 2D and 3D Stencil kernels
(based on a Jacobi Algorithm), and a data-irregular application, Sparse Matrix-Vector Multiplication
(SpMV), in an event-driven runtime system. Experimental results show that PDAWL is either on-par or
far outperforms whichever yields the best results (CPU or GPU).

keywords :Heterogeneous many-core computing, workload balance, Adaptive modeling ,
Machine learning assisted scheduling, parallel computing

∗{tgeng,gaudiot}@uci.edu
†amaris@ufpa.br
‡stephane.zuckerman@cyu.fr
§gold@ime.usp.br
¶ggao.capsl@gmail.com

1

1 Introduction and Motivation

Nowadays, most High-Performance Computing (HPC) platforms feature heterogeneous hardware resources
such as CPUs, GPUs, FPGAs, etc. [25]. In the future, the nodes of such platforms are expected to be even
more heterogeneous. They will feature side-by-side, fast and slow computing units mixed with accelerators,
I/O nodes, quantum technology [13], among others. Heterogeneous platforms must offer the promise of both
better energy efficiency and performance. However, this comes at a high cost in terms of code development
and resource management.

Parallel computing models and architectures have all increased in usage and importance since their
emergence. The heterogeneity of actual platforms complicates the task of optimizing parallel computing
programs if done by hand. This is a strong motivation for the development of automated tools and techniques
for program optimization.

Indeed, even with successive generations of large-scale scientific HPC systems, data generation has grown
faster than compute capabilities, which means that dealing with data-intensive applications has become a
crucial challenge in scientific domains [6]. The integration of data analytics, e.g., Machine Learning, and
exascale computing have been hailed as the fourth paradigm of science [33].

Meanwhile, whole sectors of scientific computing continue to rely on iterative algorithms. In particular,
Stencil-based computations are at the core of many essential scientific applications: Stencils are used in
image processing algorithms, e.g., convolutions; partial differential equation solvers, Laplacian transforms,
or computational fluid dynamics [21], digital signal processing [15], linear algebra [1], etc. More specifically,
the Jacobi iterative method has been proposed to solve sparse triangular systems arising from incomplete
Cholesky preconditioning [39]. A diverse set of realistic symmetric positive definite test problems have proved
that Jacobi iterations are useful for an extensive range of problems [9].

Other kernels are also used in iterative algorithms, such as sparse matrix-vector multiplications (SpMV).
Unlike Stencil (regular computing per row/column), the individual work-items of SpMV exhibits a different
computational load profile since the numbers of non-zero elements per row may vary significantly.

However, both Stencil and SpMV can be classified as co-running algorithms and can be executed on
heterogeneous systems. Co-running has been defined by Zhang et al. [46] as follows: applications can
be decomposed into multiple tasks and the system allows these tasks to run on CPUs or general-purpose
accelerators simultaneously, e.g. GPU, to process different parts of the same input data. The challenge
lies in how multiple Stencil or SpMV tasks can be assigned to CPUs and GPUs concurrently to increase
performance.

Our research is based on the following observations: most work dealing with accelerators —GPUs— has
followed one of two paths: (1) most of the compute-intensive parts of applications are fully offloaded to a
GPU, or (2) the workload is statically partitioned between CPUs and GPUs, with each partition running
independently. Some exceptions are listed in Section 5. This paper presents a novel approach to the dynamic
scheduling of tasks on heterogeneous systems. It is based on a profile-based Artificial Intelligence approach
and explores parallelism on GPU-based heterogeneous platforms.

The key contribution of our work is in providing a complete solution which combines profile information,
a hardware resource mathematical model, online scheduling and offline machine learning to dynamically and
adaptively distribute tasks onto CPUs and/or GPU, and ultimately, increase performance and lower energy
consumption. Furthermore, we demonstrate how this solution can be utilized for multiple applications
running on different hardware platforms. Our Profile-based Iterative Dynamic Adaptive WorkLoad Balance
(PDAWL) approach for heterogeneous architectures has the following characteristics:

1. By leveraging an online scheduler, it can dynamically and adaptively adjust the workload based on the
(dynamic) run-time situation, (static) information about the hardware platform, and a performance-
workload estimation model (communication vs. computation) provided by an offline machine learning
approach. Combining online and offline information improves flexibility and accuracy.

2. It follows an event-driven approach and employs multiple levels of granularity for the synchronization
to explore tasks parallelism and flexibility of scheduling.

2

3. It employs a pure CPU and pure GPU machine learning estimation model to predict the performance
of the heterogeneous model.

4. It trains small workload tasks to predict the performance of middle or large workload tasks.

5. It can be utilized to dynamically and adaptively schedule co-running applications, such as Stencil
(Jacobi algorithm) and SpMV discussed in this paper, on heterogeneous platforms. Stencil has been
selected for being a representative of regular data processing, while SpMV corresponds to irregular
data processing.

6. It, and more specifically the Profile-based Machine learning (ML) estimation model, provides optimiza-
tion suggestions for specific applications on heterogeneous systems.

The rest of the paper is organized as follows: Section 2 reviews the main concepts of this work; Section 3
describes our methodology; Section 4 focuses on our main experimental results; in Section 5, we review the
literature pertinent to our work and related papers. Finally, Section 6 concludes this work and presents the
planned future work.

2 Background

To implement our profile-based dynamic and adaptive workload scheduling system (PDAWL), we must
leverage an efficient runtime system, presented in Section 2.1, take advantage of the computing potential
offered by heterogeneous hardware, and in particular, GPUs, as described in Section 2.2, and explore the
parallelism of different types of applications based on hardware features, see Section 2.3.

2.1 Codelet Model and Runtime System

The Codelet Model [48] is an event-driven execution model where a codelet is a non-interruptible sequence
of instructions that runs until completion. It is enabled when all of its data dependencies are satisfied and
ready when its resource dependencies are also satisfied.

The Codelet Abstract Machine (CAM) describes the mechanism on which codelets are allocated, stored,
and scheduled. The CAM models an extensible, scalable and hierarchical parallel many-core architecture
with two types of units: synchronization units (SUs), which perform resource management and scheduling,
and computation units (CUs), which carry out the computation. CUs and SUs are grouped into several
clusters where they can benefit from data locality. DARTS [37, 3] is a runtime system implementing the
CAM. It maps “abstract cores,” CUs and SUs, to physical processing elements (PEs).1

We extended DARTS from the basic homogeneous system to a more general heterogeneous many-core
system. Heterogeneous DARTS specifies two types of codelets: CPU_Codelets, and GPU_Codelets, which
can run simultaneously. CPU_Codelets are “regular” user-level data-driven tasks, destined to run on general-
purpose CPUs. GPU_Codelets, however, are meant to run on a GPU, and as a result, must explicitly deal
with not only computation but also data movement.

2.2 Heterogeneous Computing

In this work, we are considering CPU-GPU heterogeneous systems where GPU devices are connected to a
host machine via a PCI Express (PCIe) bus. Host and devices have different memory address spaces. Data
must be explicitly transferred between the memory pools. The execution flow of a heterogeneous application
can be divided into three key stages. First, the host transfers data to the memory of the GPU; second, the
main program executed on the CPU (the host) is responsible for starting threads in the GPU (the device) and
launching a function (the kernel). Finally, the device sends results back to the host. Since communication is

1PEs can be either physical or logical cores, e.g., hardware threads in an SMT architecture.

3

typically expensive in such systems, the main goal is to minimize the effect of the CPU-GPU communication
overhead by fostering an overlap between communications and computations.

2.2.1 Heterogeneous Hardware Communication

Lee et al. [23] analyze a set of important high throughput computing kernels on both CPUs and GPUs. They
show the differences of optimization features contributing to performance improvement on these architectures.
The paper concluded that CPUs can have comparable performance to GPUs if the application’s code is
properly optimized (e.g., loops are tiled, skewed, etc.). Further, GPUs and CPUs are bridged by a PCIe
bus, allowing high-throughput communications between the host’s global memory and the accelerator’s local
memory. Hence the PCIe bandwidth is always a crucial performance bottleneck ripe for improvement. Nvidia
provides ways to use page-locked host memory to lower data transfer latency [31]. However, performance
may be degraded if the allocated pinned memory is too large. Moreover, PCIe congestion behavior varies
significantly depending on the conflicts created by communication. Martinasso et al. have explored the
impact of the PCIe topology, a significant parameter affecting the available bandwidth [29].

This work focuses only on a single GPU per machine, leaving any PCIe topology aspects to future work.

2.2.2 Concurrent Streams on GPUs

CUDA provides stream-based constructs since version 7. This functionality allows the programmer to sched-
ule multiple computing kernels concurrently. It lets the accelerator efficiently overlap computation and
communication with the host.

Figure 1 illustrates the CUDA streaming model. We compare the sequential computation of two different
kernels with their respective data transfers: one single stream vs. three different kernels with their respective
data transfers using three streams.2

HtD1K1DtH1 HtD2K2DtH2

HtD1K1DtH1

HtD2K2DtH2

HtD3K3DtH3

Stream 0

Single stream

3 streams

Stream 0

Stream 1

Stream 2

Time

CPU Thread 0

CPU Thread N

...

CPU Thread 0

CPU Thread N

...

Synchroniza tion
Synchroniza tion

Time

Figure 1: Concurrent Streams overlap data transfer

2The second method is only possible in GPUs with at least two copy engines, one for host-to-device transfers and another
for device-to-host transfers. If four copy engines are involved, stream0 and stream1 can be run parallel.

4

2.3 Data-regular and Data-irregular computations in Heterogeneous Platforms

In co-running applications, the workloads can be decomposed into multiple tasks and run on different Pro-
cessing Elements (PEs for both CPUs and GPU). Typically, GPUs run regular computations very efficiently,
but perform poorly with irregular computations [10]. CPUs perform reasonably well for both, provided SIMD
instructions and thread parallelism are correctly exploited. For applications containing both data-regular
and data irregular computations, it will be preferable to split regular and irregular computing and run them
on suitable PEs: allocate the regular parts to the GPU and the irregular/regular part to the CPU. More
discussion related to regular/irregular computing can be found in the discussion of SpMV (section 4.1.2 and
4.3).

3 Methodology

In this section, we start by providing the context of the problem, then describe our scheduling approach for
heterogeneous architectures. The latter is described in two parts: DAWL, an adaptive workload scheduling
approach; and PDAWL, which builds on top of DAWL by combining a profile-based machine learning es-
timation model with DAWL. DAWL is based on an online scheduling approach using a hardware resource
model, and follows a rather coarse-grain approach; PDAWL builds on top of DAWL to allow for automatic
fine-grain resource scheduling with hardware-specific considerations to deliver higher performance.

3.1 Problem Analysis

In heterogeneous systems, accelerator devices3 (e.g., GPUs) and hosts (i.e., CPUs) play different roles: the
accelerator is often seen as the “main computational power” of a compute node; and the host as either the
“control unit” handling I/O communications and tasks scheduling, or as the “processing unit” responding
to parallel computing requests. Currently, most systems work either by fully offloading the workload to
accelerators or by statically partitioning the workload between host and accelerators, and running these
partitions independently (more details can be found in section 5). However, these two approaches used to
statically partition workloads may cause multiple issues, e.g., synchronization and waiting times, low resource
utilization etc., at run time, which will incur a dramatic drop in performance, and increase the total power
consumption [14].

Several strategies have been proposed to overcome these issues: the first is to build mathematical models
that can estimate the execution time of tasks on different computing resources and then statically allocate
the corresponding workload onto hosts and accelerators. However, multiple issues are in the way: 1. building
an accurate estimation model needs to consider both hardware devices and application features, while the
growing variety of hardware devices and their combinations tremendously increases the difficulty. 2. it will
be highly difficult to build such a model for current high-performance hardware components, such as memory
hierarchy, prefetch mechanisms, Direct Memory Access (DMA), PCIe [2, 43], etc.; 3. any change in the hard-
ware configuration may cause great performance variations, hence requiring the model to be rebuilt. 4. The
complexity and fallibility of building a mathematical data transfer model of CUDA concurrent streams [43]
widely increases with the introduction of emerging hardware, the synchronization method between host and
device, etc. 5. A static model cannot capture runtime situations, which is another important factor that
affects the accuracy of the performance estimation model. 6. Such a model may work well for coarse-grain
workload partitioning, but may not be useful for fine-grain workload partitioning, which plays a pivotal role
in attaining high performance on a heterogeneous system.

The second approach employs dynamic workload partitioning, which theoretically can dynamically al-
locate workloads onto both accelerators and host at runtime. However, synchronization and waiting time
issues still occur if: 1. the synchronization and partitioning mechanisms are not matched; 2. the partition-
ing is not suitable for available computing resources; 3. the communication costs between accelerator and

3In this paper, we use interchangeably the terms “device” or “accelerator.”

5

host or among accelerators are too high; 4. we must run different types of application (memory-intensive
vs. compute-intensive) onto the different hardware configuration, as described in the paragraph describing
hardware resource modeling, with unsuitable partitioning; 5. the granularity (coarse vs. fine grain) of the
workload partitioning may be unsuitable; etc..

To solve the issues we just listed when modeling resources and scheduling work dynamically, the applica-
tion behavior on both the host and accelerator must be carefully analyzed [31, 47, 17, 14]. We propose our
approach, DAWL, as well as an optimized version, PDAWL, which will accommodate the features of both
the application and the hardware resources to ensure that an application can run efficiently on heterogeneous
systems. A dynamic adaptive workload (DAWL) scheduler follows an adaptive and dynamic workload par-
titioning approach, based on a coarse-grain model (see section 3.2), while PDAWL follows a profile-based,
event-driven, dynamic workload partition approach to explore fine-grain task parallelism and to maximize
the throughput between resources. We evaluate our approach on different heterogeneous platforms using two
co-running applications, Stencil and SpMV. In general, Stencil represents data regular computations, while
SpMV stands as a good exemplar for data-irregular computations.

3.2 Hardware Resource Baseline, Limitations and Usage

As we discussed in section 3.1, mathematical models can yield useful information for coarse-grain task
scheduling. Our DAWL approach employs them to select suitable computing resources: pure CPU (i.e.,
where only the host (CPUs) is contributing to the computation), pure GPU (i.e., where only the acceler-
ator is contributing to the overall computation: the host only handles data movement and in general I/O
communications) or CPU-GPU co-running (i.e., both the host and the accelerator(s) are contributing to the
overall computation), to run different workload sizes. Coarse-grain workload partition means the workload
is split into big chunks, such as big rows/columns chunks. It is totally different with the fine-grain workload
partition (see sections 4.1.1 and 4.1.2).

3.2.1 Hardware Baseline Modeling

In this section, we present a baseline communication model, which is kept simple – no communication-
computation overlap – on purpose. Equation 1 models the GPU execution time consisting of two types of
costs: communication and computation.memcpyH→D (resp. memcpyDtoH) denotes communications from
the host (resp. the accelerator) to the accelerator (resp. the host), to load the initial data (resp. to store the
results back into the host), ComputeD is the time required to process a given workload on the accelerator,
and NumThreadsD is the number of available processing elements.

GPUmodel = memcpyH→D + ComputeD
NumThreadsD

+memcpyD→H (1)

Equation 2 models the CPUs execution time. ComputeH and NumThreadsH are the overall computation
time on a general-purpose processing element on the host and the number of available processing elements
on the host, respectively.

CPUmodel =
ComputeH

NumThreadsH
(2)

Equation 3 computes r, the ratio between GPUnaive and CPUnaive (these last two parameters are com-
puted in Equation 1 and 2 respectively). r is a “hardware resource fitness” indicator of which part of the
system should be favored. If r � 1, then the workload will execute much faster if it is on an accelerator.
Hence, most if not all of the computation will be carried on the GPU. On the contrary, if r � 1, then the
amount of data transfers is saturating the PCIe bus when running it on a GPU or the computing is not
suitable for GPU processing, and in general, the overall computation is much faster using general-purpose
processing elements. When r ≈ 1, task scheduling must enable co-running, so that both the host and the
accelerator are allocated their fair share of the work in order to complete the computation as fast as possible.

6

r =
CPUmodel

GPUmodel
(3)

3.2.2 Limitations and Usage

Section 2.2 shows that, due to the various DMA engines available on modern GPUs, as well as the Stream
technique in CUDA, it is possible to overlap communications and computations. Furthermore, it is quite hard
to accurately estimate GPU computation times since the GPU utilization rate depends on factors associated
with the GPU hardware and software architecture, such as the multi-level computing (thread) hierarchy,
the GPU inner scheduler for tasks allocation on Streaming Multiprocessors (SMs), etc. Considering all the
above factors, Equation 1 is a worst-case view of a single GPU’s performance. Conversely, it guarantees
performance will be maximal if GPUnaive is “small enough” (see below).

Equation 2 is also rather naïve: while data transfers with the DRAM are not negligible, they take orders
of magnitude less time than data transfers on a PCIe bus, which cannot be neglected. Moreover, HPC
processors embed very efficient and aggressive data prefetching mechanisms, which tend to fully hide DRAM
transfer latencies—especially in the case of consecutive reads or writes. However, the risk for cache conflicts
in multicore systems (e.g., false sharing) may cause significant drops in performance. Equation 2 is utilized
to estimate the average performance of multi-threaded computing.

In DAWL, Equation 3 is employed to estimate the initial workload on computing resources, CPUs and/or
GPUs. At runtime, to allocate suitable workloads on the (different) computing resources, all three equations
and real-time execution recording history, including the size of the workload and the corresponding execution
time, etc., should act in concert. The real-time recording history as an optimization factor can help increase
the accuracy of the naïve mathematical model to some extent (more details can be found in section 3.3.)

3.3 The Dynamic Adaptive WorkLoad (DAWL) Scheduler

The Dynamic Adaptive Work-Load (DAWL) Scheduler is an online scheduler where the workload distribution
is based on a computation-communication model (Equation 1, 2, and 3) and runtime situation (the real-
time execution recording history). It was created to decide what tasks should be scheduled and where to
schedule the workload (i.e., host or device) to minimize the load imbalance between heterogeneous processing
elements. It consists of seven main steps, illustrated in Figure 2. We detail each step below.

1. Set up the initial workload on the Processing Elements (PEs), namely CPUs and/or GPU. PEs can be
given different amounts of work based on their modeled “throughput” (see Equation 1, 2, and 3).

2. Configure PEs based on step ??. This configuration includes the number of CPUs which will be put
to work, whether the GPU will also be used, what portion of the available space in the shared memory
(for the host) and global memory (for the accelerator) must be allocated, the number of streams on
the GPU, among other things.

3. Simultaneously run tasks on both CPUs and GPUs, and time each run for their specific workloads.
The current execution information will be recorded as follows:

• for CPUs: the number of running threads, the workload and corresponding execution time on the
single thread, and total workloads and total execution time on all the threads.

• for GPUs: the amount of data transfer between host and device, the corresponding data transfer
time, number of concurrent streams (if applicable), the number of thread blocks used and the
corresponding computing time.4

4The information of concurrent stream and thread blocks are only for reference, as it cannot be efficiently utilized by the
coarse-grain baseline model.

7

 CPU n

Data

…

Data

Data

Initial workload Static
Partitioning

1

Processing Elements Setup

CPU 1 CPU n…

GPU

…

2

c

Processing Elements Setup:
First Run

CPU 1 CPU n…

GPU

3

cc ccc

cccccc

Measure time

c

Subsequent work allocation
(run time situation + MM)

CPU 1 CPU m…

GPU

4

cc ccc

ccccc

c c

Collect
Events

End of Time Step

CPU CPU…

GPU

6

c

c

c
sync

Compute

New Average

Adjust r

5

More Time Steps to Compute

End

of

Computation

7

CPUCPUCPUCPU

GPU Free
Resources

Allocate
Resources &
Work

X

MM MM

MM

Figure 2: The Dynamic Adaptive Work-Load scheduling algorithm (DAWL). Mathematical Model(MM)
occurs in DAWL’s steps 1, 3, and 4. The dashed frame MM in step 4 stands for the optimized MM.

4. Iteratively and adaptively adjust the workload based on the current run time situation and mathemat-
ical model; this entails several sub-steps:

• Update recording history: once the current allocated workload on the PE is finished, the current
execution information will be updated into the recording history. If there are duplicates, the
average execution time will be recorded.

• Check the status of other PEs (running or waiting) as well as the corresponding recording history
to estimate the completion time of other PE(s).

• Optimize model: The optimized mathematical model combines the original model (MM) with
the history timing measurements. The new estimated execution time formula will be Timenew =
α · TimeMM + β · Timehis, where α+ β = 1 and the value of α will decrease with the number of
iterations, while β is just the opposite as it will increase with the number of iterations. The other
PEs status is also considered to allocate suitable sizes of workload on current PEs.

• Allocate workload on currently available PEs based on collected information and our optimized
model: in addition to the size of the allocated workload, the number of threads (for CPU) and
the number of concurrent streams (for the GPU) may also be adjusted.

• Repeat the whole procedure until the remaining workload is within 10% of the total workload:
this 10% of the workload (remaining workload) is for the last step load balance optimization which
is a fine-grain task scheduling approach and to guarantee there is no busy waiting at least for the
last 10% of the total workload.

5. Schedule the last 10% of the total workload: Calculate the value of ratio, where ratio = CPUcur/(CPUcur+
GPUcur). CPUcur and GPUcur are the amount of all work finished on CPUs and GPU, respectively.

8

The corresponding GPU ratio is obtained using the same method. The CPUs or the GPU only take
bratio × remaining workloadc amount of work. The remaining workload is dynamically allocated to
whichever (set of) PE(s) is available after early completion. Note: this is an application-based opti-
mization.

6. Evaluate the load-balance metrics collected during the time step execution, in particular, the execution
time. Adjust (coarsen) the task granularity based on available PEs and the metrics.

7. Free all resources: PEs and memory.

3.4 Profile-based Machine Learning Estimation Model

We have developed an optimized version of DAWL (PDAWL). PDAWL is a Profile-based Dynamic Adaptive
Workload balance (PDAWL) which combines Machine Learning algorithms with runtime profiler information
to solve the issues raised by the coarse-grain baseline mathematical model. The PDAWL framework consists
of two components, illustrated in Figure 3. On the left side of this figure, we can see our DAWL approach
and the ML process on the right side.

Here, DAWL is responsible for online scheduling, while the ML model is in charge of providing perfor-
mance estimation information. DAWL compares the baseline model with the performance estimation of the
ML techniques. The ML component creates a performance prediction distribution for fine-grain workload us-
ing run time profiler information. Once the ML-based model is built, it is utilized in DAWL to replace and/or
cooperate with the baseline model and then follow the DAWL online scheduling strategies (see Section 3.3.)

 CPU n

Data

…

Data

Data

Initial workload Static
Partitioning

1

Processing Elements Setup

CPU 1 CPU n…

GPU

…

2

c

Processing Elements Setup:
First Run

CPU 1 CPU n…

GPU

3

cc ccc

cccccc

Measure time

c

Subsequent work allocation
(run time situation + ML)

CPU 1 CPU m…

GPU

4

cc ccc

ccccc

c c

Collect
Events

End of Time Step

CPU CPU…

GPU

6

c

c

c
sync

Compute

New Average

Adjust r

5

More Time Steps to Compute

End

of

Computation

7

CPUCPUCPUCPU

GPU Free
Resources

Allocate
Resources &
Work

Machine learning black box

CPU
Model

GPU
Model

HW info

1

RT info

2

Oprofile Nvprof

…

CPU GPU PCIe

…

HW
features

Run time
features

Run time
data

3

linear
Regress
ion

Random
forest

Best fit

4

Heterogeneous Model

X

ML ML

ML

ML

DAWL

Figure 3: PDAWL – The Profile-based Dynamic Adaptive Work-Load scheduling algorithm: DAWL (see
the bold hexagon DAWL, the left side) coupled with Machine Learning (see the bold Octagon ML, the right
side). Machine learning occurs in DAWL’s steps 1, 3, and 4. The dashed frame ML in step 4 stands for the
optimized ML.

A known weakness of offline ML models is that they cannot be adjusted once the training process has
completed [36]. With PDAWL, it is possible to compensate this weakness and provide guidance to an online
scheduler even with changes in software or hardware. A combination of offline ML-based models with online
schedulers is required when dealing with real-time constraints. If there are no real-time constraints, then
online ML methods, e.g., a stochastic gradient algorithm, may be used instead of offline methods.

9

As shown in Figure 3, the heterogeneous ML model is built in two steps: first, CPU and GPU ML models
are built separately; second, they are combined to predict how much workload to schedule in each type of
PE(CPUs and GPU), building a heterogeneous ML model. We used Oprofile [24] and Nvprof [31] to collect
runtine profile information from CPU and GPU executions. This data was used as input features for GPU
and GPU ML models. Below, we describe in detail the steps to create the heterogeneous ML model:

1. Collect information about the hardware of the host and devices. Table 1 and 2 list some of the
parameters involved. In addition to these, we also include cache hierarchy information, PCIe data
transfer rates, and the GPU parameters; including the maximum number of concurrent streams, the
GPU thread dimension information, the shared memory size, among others.

2. Collect runtime profile information from the application. The CPU and GPU ML models are used to
predict the heterogeneous performance in a co-running mode.

• CPU: Since collecting all the events provided by Oprofile [24] is extremely time consuming, all
the events are categorized into three groups: (1) cache related events including cache hierarchy
and cache misses events; (2) branch related events; (3) all the other events. Based on the different
applications, event groups 1 or 2 or all 3 can be activated. In this paper, we sample event groups
1 and 2.

• GPU: Nvprof [31] provides many options to collect CUDA run time information. For our experi-
ments we used two different categories. (1) gpu-trace and api-trace (faster, fewer events); (2)
nvprof-metrics API (time consuming, more events). Using category 1 or 2 depends on the time
constraints and accuracy requirements. To reduce the training time, we collect only category 1 of
events.

3. Normalize the collected data: since the collected data refers to many aspects such as cache miss rate,
execution time, number of threads, . . . , we need to change the numeric columns values to a standard
scale without distorting the differences in the ranges of values.

4. Clusters of features: since a high number of features are collected using Oprofile and Nvprof, a Hier-
archical Agglomerative Clustering algorithm (HAC) is utilized to group correlation similarity features
and finally obtain a reduced set of features. We tested sets of 4 to 12 features. First, a threshold
is established with the correlation coefficients between the target variable (execution times) and the
other features. Then, a dendrogram is built, using the correlation distance between the final features
to clustering them by similarity.

5. We use the gathered information to build a profiler-based ML estimation model for CPU and GPU
workloads. The CPU model focuses mainly on performance (execution time), resource utilization and
cache issues; the GPU model mainly focuses on data transfers, computations time and the overlapping
between them. Especially for GPU, unsuitable workload allocation and the number of concurrent
streams will affect the host-device (CPU-GPU) communication-computation ratio to drop down the
performance dramatically.

The ML models utilizes the collected runtime profiler information to help the scheduler distribute
fine-grain tasks and improve the total performance. More details can be found in Section 4, where we
show how the fine-grain tasks are allocated with the help of ML-based models using two applications
as examples. Below, we describe how to create profile-based ML estimation models for CPU and GPU
workloads:

• Run a set of ML methods such as linear regression, Support Vector Machine, and random forest
model with the grouped features. Specifically, the linear regression model can be shown in two
forms: y and log2(y). We use G to stand for the two forms: G = y and G = log2(y)). G =∑n

i=1wiφi(xi). Where φi(x) are functions from the set of x, x2, x3, x4, ex, log2 x, x · log2 x, ln x,

10

x · ln x; xi are features from last cluster step. Since y is our target variable, transformation is
necessary for the logarithm version using 2G. The reason why we include the Logarithm function
is to reduce the non-linearity factors [4] and provide reasonable approximation with the target
variable. For the SVM model, we use polynomial and Gaussian kernels.

• Overfitting: we use 10-fold cross validation and L2 regularity to reduce the overfitting problems.

• Models evaluation: to evaluate how well the model fits the data, a coefficient of determination,
R2, is used. It is defined as the percentage of the response variation that is explained by a linear
model: R2 = Explained variation

Total variation , with 0% ≤ R2 ≤ 100%. 0% indicates the model explains none
of the variability of the response data around its mean. In contrast, 100% says that the model
explains all the variability of the response data around its mean.

• ML estimation model building: an estimation formula of the best matched statistical model can be
built to predict an applications performance on this specific heterogeneous platform. The specific
parameters used to construct the formula are mentioned in Section 4.3.

6. Build a heterogeneous prediction model based on the pure CPU and GPU model. The communication
cost between CPUs and GPUs are included in the GPU model. To improve the GPU utilization
effectiveness, especially when the workload memory footprint is much larger than the GPUs available
global memory, CUDAs concurrent streams are used on GPU, based on Equation 1 and 3.

Table 1: CPU Hardware features of the experimental Platforms

Machines
Param. Hardware Environment

CPU Parameters
Cores Clock # Socket L3 Size CPU Mem

Machine1 (K20) 32 2.6 GHz 2 20 MB 64 GB
Machine2 (K20) 40 3 GHz 2 25 MB 256 GB
Machine3 (k40) 8 3.4 GHz 1 8 MB 16 GB
Machine4 (Titan) 12 3.4 GHz 1 12 MB 31 GB

Table 2: GPU Hardware features of the experimental Platforms with PCIe data transfer rate

Machines
Param. Hardware Environment

GPU Parameters PCIe# SM Clock L2 Size GPU Mem
Machine1 (K20) 13 0.71 GHz 1.25 MB 4.8 GB 6.1 GB/s
Machine2 (K20) 13 0.71 GHz 1.25 MB 4.8 GB 6.1 GB/s
Machine3 (k40) 15 0.75 GHz 1.5 MB 12 GB 10.3 GB/s
Machine4 (Titan) 14 0.88 GHz 1.5 MB 6 GB 11.5 GB/s

4 Algorithm Implementation and Experiment Results

This section starts by introducing our heterogeneous platform, then presents the two target applications,
Stencil and SpMV, as well as their optimized co-running workload partition approaches, finally concludes
with the performance analysis of these two applications employing different scheduling algorithms: CPU-Seq,
GPU-only, DARTS-CPU, DARTS-GPU, DARTS-DAWL, DARTS-Static and DARTS-PDAWL. Specifically, CPU-Seq dis-
tributes the whole workload onto one single thread (CPU). It is used as the baseline. GPU-only distributes all
the workload on GPU using static fine-grain scheduling approach. If the whole workload is less than the avail-
able GPU memory, the single-stream approach is employed. If the whole workload is march larger than the

11

available GPU memory, the concurrent stream approach is employed. DARTS-CPU,DARTS-GPU, DARTS-DAWL,
DARTS-static and DARTS-PDAWL are implemented on DARTS runtime system, see Section 2.1. Specifically,
DARTS-CPU distributes the whole workload onto CPUs (threads) using static coarse-grain scheduling approach
that the whole workload is evenly partitioned and allocated on each thread. DARTS-CPU stands for homo-
geneous multi-thread computing. DARTS-GPU distributes all the workload onto GPU using static fine-grain
scheduling approach. Different from GPU-only, DARTS-GPU employs concurrent stream approach all the time.
DARTS-DAWL distributes the workload onto CPUs and/or GPU based on DAWL, see section 3.3, which is a
coarse-grain dynamic task scheduling approach. DARTS-Static also distributes workload onto CPUs and/or
GPU, but it employs the coarse-grain static partition workloads approahch. DARTS-PDAWL distributes work-
load onto CPUs and/or GPU based on PDAWL, see section 3.4, which is a profile-based fine-grain dynamic
task scheduling approach. Aiming at different applications, the scheduling approaches mentioned above may
vary. More details will be discussed in the corresponding experiments.

4.1 Experimental Testbed

DARTS already yields high performance on single-node homogeneous many-core systems [37, 3, 18]. As
explained in Section 2.1, we modified DARTS to be heterogeneous and make it GPU-aware,. It is capable of
scheduling CPU_codelets and GPU_codelets simultaneously. We ran the experiments on four heterogeneous
systems, as shown in Table 1 and 2. The software environment of these machine is shown in Table 3.
Stencil-based computations and Sparse Matrix-Vector multiplication using the Compressed Row Format
(SpMV-CSR) were selected to evaluate our DAWL and PDAWL.

Table 3: Software Environment

Machines
Param. Software Environment

GCC CUDA

Machine1 (K20) v6.2 / v8.1 v8.0
Machine2 (K20) v4.8.5/v6.2 v8.0
Machine3 (k40) v5.4 v9.0
Machine4 (Titan) v4.9.2 v9.1

4.1.1 Target Application: Stencil computation

To emphasize a worst-case scenario, we used the Stencil kernels described in [18], without ghost cells, which
enhances the need for synchronization. Specifically, we focused on two kernels: a 5-point 2D and a 7-point
3D Stencil, using double precision values. We fixed the number of time steps to 30, removing the convergence
test at the end of each time step for simplification and making it more deterministic. Note that the CPU
tasks and GPU tasks within one timestep were independent and that a global barrier was inserted at the end
of each iteration. We repeated each experiment 20 times. There are no confidence intervals as the standard
deviations were small, the larger one being 5% and the average smaller than 1%.

We follow two partitioning approaches: coarse-grain (DAWL) and fine-grain (PDAWL) are implemented
for Stencil computation. As mentioned in Section 3.2, the naïve mathematical model is utilized to provide
coarse-grain workload partitioning so the whole workload is split into large chunks of rows and/or columns,
and then distributed to processing elements. The fine-grain partitioning approach refers to more parameters
detailed below.

To implement the fine-grain task distribution between CPUs and GPUs, our approach consists of two
steps: “Slicing” and “Tiling,” respectively. “Slicing,” including 2D and 3D-Slicing, means that the workload
is partitioned along one dimension, as shown in Figure 4. Within a slice, “Tiling” (i.e., L1-Tile (L1 cache)
for CPU tasks and Block-Tile for GPU tasks) can then be utilized. Figure 4 shows the 2D and 3D Stencil
workload partitioning paradigm in the GPU/CPU co-running situation. This paradigm also works for the

12

pure CPU/GPU cases by removing the GPU/CPU from the paradigm. In co-running situations, CPU and
GPU “Slicing” may meet at some point.

Correctness and performance are the two main targets for our fine-grain task scheduling and distribution
system. The workload allocation parameters should be carefully chosen to avoid computing errors and to
avoid dramatically performance fluctuation/declining. In particular, the communication-computation ratio
plays a pivotal role for GPU tasks. The parameters affect the ratio, including the number of concurrent
streams, the workload (including transformation and computation) for single stream, the size of a block tile,
the number of thread block within one block, the total number of thread block, the synchronization between
streams, etc. The model utilized in DAWL is a coarse-grain model which is incapable to provide these
fine-grain parameters. We instead employ an ML model in PDAWL to automatically obtain the correctly
matched parameters which can result in a near-optimal compute-communication overlap and maximum both
CPUs and GPU utilization. As mentioned in Section 3, different systems architectures can yield different
parameters for our ML model.

Furthermore, the fine-grain task distribution helps us reduce the ML training time. Combining “Slicing,”
“Tiling,” and the concurrent streams approach can help split the huge workload task into a set of small
workload tasks. A small task, owning the feature of fewer data transformation, which is one of the most time
consuming tasks, can converge to a near-optimal solution much faster. Since a very large workload can be
seen as the combination of small workloads, the ML model trained by small tasks can be utilized to predict
the performance of much larger ones on GPUs.

Figure 4: GPU/CPU hybrid: Stencil 2D/3D slicing and tiling

Algorithm 1 shows the Stencil pseudo-code co-running approach using DAWL or PDAWL. It consists
of two functions: Stencil_Main and Stencil_CPE. CPE stands for the Current Processing Elements. OPE
stands for the other Processing Elements. If the code is currently run on CPUs, then the CPE stands
for CPUs and OPE stands for GPU, and vice-versa. We use one Stencil_CPE function to stand for two
Stencil computations, respectively running on CPUs (Stencil_CPU, homogeneous multi-threads computing)
and GPU (Stencil_GPU). DAWL and PDAWL share the same framework 5, see Section 3.3, but employs a
different performance estimation model corresponding to pseudo-code labels S1 (original model) and S24 (op-
timization model). The performance estimation model provides the necessary parameters to the Stencil_CPE
function. For DAWL, the parameter set is simple which includes the number of CPU threads, the workload

5The pseudo-code mainly shows the DAWL components from item ?? to item 6

13

Algorithm 1: Pseudo-code: Stencil (2D/3D) co-running approach
1 Function Stencil_Main():
2 S0: init_system();
3 S1: parameters = Estimation_Func(); // MM/ML
4 for it = 0; it < total_Iteration; it++ do
5 S2: Stencil_CPU(parameters);
6 S2’: Stencil_GPU(parameters);
7 S3: Sync_All_Resources();
8 S4: parameters = Obtain_best_parameters(history);
9 end

10 Function Stencil_CPE(*parameters):
11 S20: Sync_Remaining_WL();
12 do
13 S21: Run_CPE(parameters) ; //computing
14 S22: Update_Recording_History(parameters);
15 S23: ostatus = Check_OPE_Status(); //OPE
16 S24: Opt_Estimation_Func(history, ostatus, parameters); //MM/ML
17 S25: Sync_Remaining_WL();
18 while Remaining_WL > Total_WL ∗ 10%
19 S26: Run_Remaining();

(the Rows/Columns number) for each CPU threads, the number of GPU concurrent streams and the GPU
workload in one round. For PDAWL, the parameter set is complicated which at least includes the number of
CPU threads, the number of GPU concurrent streams, the “Slicing” and “ Tiling” size for CPU thread (the
number and size of slice/L1-Tiles) and GPU (the number and size of slice/block tiles, the number of thread
block within one tile, the total number of thread block). Label S2 (Stencil_CPU) and S2’(Stencil_GPU) are
run in parallel with (explicit and hidden) synchronization operations. Label S21 (Run_CPE) is the Stencil
computation following the partitioning rules described in Figure 4. The specific CPU multi-threads code
can be found in paper [18]. The GPU code is the concurrent stream version of the Stencil-kernel code with
the pipeline technique optimization. Label S22 (Update_Recording_History) records and updates the CPE
(history) information (see DAWL item ??). Before starting the next computing task, it is necessary to check
the OPE status (Label S23, Check_OPE_Status), to estimate when the OPE computing will be finished if
the current status of OPE is running. With the history and the current OPE status information, we can
leverage the optimized estimation model (Label S24,Opt_Estimation_func, DAWL item ??) to provide a
new parameter set for the next computing task. Label S26 (Run_Remaining) corresponds to the DAWL
item 5 and the parallel computation is also involved in this step. When all the computations within one
iteration are finished, there is a an explicit synchronization operation (label S3, Sync_All_Resources). It is
prepared for the evaluation operation, Label S4. Label S4 (Obtain_best_parameters) evaluates all the tasks
running on different PEs during this iteration, and then figure the best matched parameters set for PES
which can be utilized in the next iteration (corresponding to DAWL item 6).

4.1.2 Target Application: SpMV computation

We used the SHOC benchmark suite’s implementation of SpMV-CSR (Scalar version) [11] bluekernel func-
tions, for both the CUDA and C++ sequential versions. We converted the sequential code to parallel code
where every CPU’s processing element (PE) can calculate one or multiple rows. One PE is in charge of
communication and synchronization between the host (CPU) and the accelerator/device (GPU). For the
CUDA code, we utilize the concurrent stream technique as an optimization. Just as with Stencil, SpMV
has also been implemented in two versions: coarse-grain and fine-grain. The coarse-grain version is the

14

parallel version of SHOC SpMV-CSR mentioned above. The fine-grain version is similar to Stencil, in that
it involves fine-grain partitioning of the current/selected workload, the number of GPU concurrent streams,
GPU Block-Tile size, etc. Furthermore, considering the features of the SpMV algorithm, the SpMV fine-grain
approach entails one more step called pre-processing; more detail can be found below.

The performance profile of sparse matrix-based computations vary widely depending on the sparsity of
its matrices’ rows. A row is either “sparser” (i.e., it contains more zeros than non-zero values) or “denser” (if
it conversely contains more non-zero elements). The execution time of tasks on “sparser” and “denser” rows
may vary enormously. If all the rows are evenly allocated on computing resources (PEs), the execution time
will depend on the heaviest task which is allocated with the “densest” rows. Since the target application is
a sparse matrix, the majority of tasks are just waiting for the completion of the heaviest task. It reduces
the computation resource utilization and results in lower performance. We propose to pre-process data at
first: extract the “denser” rows as irregular computation tasks. At this point, the majority of sparser rows
that are left over can be considered regular computing. Considering the features of CPUs and GPU, GPU
will be preferred to run regular computing tasks, while CPUs can run both regular and irregular computing
tasks. To split denser and sparser rows, we built up a SpMV Co-running Model on SHOC SpMV-CSR. More
specific steps are shown below:

1. Analyze and evaluate statistical information, as shown in Table 4, to estimate the sparsity degree of the
matrix. NNZ is the total number of non-zero elements. µ is the average number of non-zero elements
per row. σ is the variance of the number of non-zero elements per row. CV stands for coefficient of
variation per row. MAX: the maximum number of non-zero elements per row.

2. Build priority groups based on collected information (see Figure 5). The highest priority level contains
the maximum non-zero number per row(s); the lowest priority level contains the minimal non-zero
number per row(s). On the same level, group members have similar non-zero numbers so they can run
in parallel. To simplify the model, we statically set the ratio (30%) [19] as the threshold. The top 30%
maximum non-zero number per row(s) will be extracted from the matrix and added to CPUs priority
groups.

3. Run irregular and regular computations on CPUs and GPU, in parallel. CPUs will proceed from the
highest to the lowest priority level, and GPU will proceed from the lowest priority level. Here, a
concurrent stream approach is also utilized in the GPU.

4. Synchronize when all the CPUs and GPU computations are finished.

Table 4: Matrices for SpMV. NNZ: total of non-zero elements.
Name Dimension NNZ µ σ cv MAX

circuit5M 5.56 M 59.52 M 10.71 1356.62 126.68 1290501
eu-2005 0.86 M 19.24 M 22.30 29.33 1.32 6985
in-2004 1.38 M 16.92 M 12.23 37.23 3.04 7753
FullChip 2.99 M 26.62 M 8.91 1806.80 202.73 2312481
kmer_U1a 67.7 M 138.8 M 2.05 0.37 0.18 35

Matrices Used for our Experiments. We used 50 sparse matrices from the University of Florida Sparse
Matrix Collection (UFSMC) [12] to train and 5 matrices (see Table 4) to evaluate our DAWL/PDAWL.

Algorithm 2 shows the SpMV pseudo-code co-running approach using DAWL or PDAWL. Just as with
Stencil computing, it consists of two functions: SpMV_Main and SpMV_CPE. SpMV_CPE stands for two
parallel running functions, SpMV_CPU and SpMV_GPU. Based on the features of SpMV, no iteration
operation is involved and no last step fine grain optimization (see DAWL item 5) is utilized. Label S0
(Obtain_SpMV_Info) is to obtain the configuration information of the current sparse matrix and vector

15

Figure 5: SpMV: GPU/CPU priority groups

Algorithm 2: Pseudo-code: SpMV co-running approach
1 Function SpMV_Main():
2 S0: Spmv_Config_Info = Obtain_SpMV_Info();
3 S1: Priority_Group = Build_Priority_Group(Spmv_Config_Info); // pre-process
4 s2: parameters = Estimation_Func(Priority_Group); // MM/ML
5 S3: SpMV_CPU(parameters);
6 S3’: SpMV_GPU(parameters);
7 S4: Sync_All_Resources();
8 Function SpMV_CPE(*parameters):
9 do

10 S31: Run_CPE(parameters) ;
11 S32: Update_Recording_History(parameters);
12 S33: ostatus = Check_OPE_Status(); //OPE
13 S34: Opt_Estimation_Func(history, ostatus, parameters); // MM/ML
14 while Remaining_Rows > 0

16

including the total number of rows and columns, the pointers to the CSR format SpMV matrices and vector,
NNZ, MAX, etc. listed in table 4. Label S1(Build_Priority_Group) is meant to build a priority group
described in SpMV Co-Running Model item 2 and Figure 5. This is the pre-processing step whose purpose
is to build two new matrices representing regular and irregular groups. The performance estimation model
is based on these new matrices. Label S3 (SpMV_CPU) and S3’(SpMV_GPU) are run in parallel on CPUs
and GPU with (explicit and hidden) synchronization operations. To avoid repetitions, we will not describe
the detail of the other functions since they are similar to those in the Stencil pseudo-code.

4.1.3 Experiments Hardware Parameter Space Configuration

We used numactl to allocate memory in a round-robin fashion and avoid NUMA-related issues.6 All systems
were configured so that only 2 GB were seen as available by the runtime system, which has the effect of
reducing the parameters space to explore. Figure 6 shows the same “drop-off” trend when using a 4GB
memory threshold which indicated that the artificial constraint we put on the GPU DRAM capacity does
not impact the overall methodology nor its results. The initial workload is important for our workload
distributed algorithm (DAWL) running in the co-running mode, as shown Figure 6. The suffixes, “−1” and
“−2,” stand for different initial workloads. Even though the final speedup will converge when the total
workload is large enough, during the whole process, especially in the first stage of co-running, an unsuitable
initial workload will cause performance fluctuations.

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

● ●
● ●

●

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
2

3

4

5

6

7

Size of the Problem

Sp
ee

du
p(

ba
se

lin
e =

 C
PU

−S
eq

ue
nc

e)

● −DAWL−2GB−1

−DAWL−2GB−2

−DAWL−4GB−1

−DAWL−4GB−2

DARTS

DARTS

DARTS

DARTS

Machine 1

Figure 6: Stencil 2D: speed up when GPU memory is 2 and 4GB with different initial workload (GPU=CPU):
the performance vary with initial workload.

6This ensures a stable DRAM access latency, and thus allows us to remove one parameter from the search space.

17

We used two different mapping policies to pin DARTS threads to physical processing elements: spread
and compact which roughly behave as OpenMP 4.5’s spread and close thread configuration on the target
device. The spread policy attempts to map DARTS threads to processing elements as far apart as possible
physically on the underlying hardware. On the contrary, compact attempts to map DARTS threads as closely
as possible on the available processing elements.

4.2 DAWL: Performance Analysis

To comprehensively characterize DAWL, we performed a series of workload performance analysis. We com-
pared the DARTS-DAWL performance with GPU-Only, CPU-Seq, DARTS-CPU, and DARTS-GPU (see Table 5 for
details).

Table 5: Stencil kernel implementation
Implementation Illustration

CPU-Seq Sequential c++ code
GPU-Only CUDA code
DARTS-CPU Multi-threads c++ code
DARTS-GPU CUDA code on DARTS (concurrent streams)
DARTS-DAWL DAWL hybrid code on DARTS
DARTS-Static DAWL hybrid static partition code on DARTS

Figure 7 shows the experimental results7 that the Stencil kernels do not always scale well over multi-
ple cores and nodes. Considering the Stencil features, such as data dependence , and the communication
cost between CPUs/sockets, using more computing resources will not guarantee higher performance. The
memory/cache conflicts and synchronization [18] issues incur quite a large overhead. Matched workload and
computing resources is what is essential to obtain high performance.

● ●

● ●

● ●

● ●

DARTS−CPU DARTS−DAWL

c
o

m
p

a
ct

sca
tte

r

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32

0e+00

5e+10

1e+11

0.0e+00

2.5e+10

5.0e+10

7.5e+10

Number of Threads

(b
a
se

li
n

e:
 C

P
U

−
S

eq
u

en
ti

al
)

● 11000 17000 25000 31000 35000

Machine 1. GPU Tesla K20

E
xe

cu
ti

on
 t

im
e

Figure 7: Stencil 2D: Performance with a varying number of HW threads. Time in nanoseconds.
7The four machines onto which we experimented behave similarly in that respect. Hence we only show the machine 1 case.

18

Figure 8 shows the speedup of different variants for the 2D Stencil.8. Here, DARTS-GPU uses concurrent
streams at all times. Whereas, GPU-Only is slightly optimized comparing to the traditional way. When the
problem size is smaller than the GPU memory capacity, we use the single-stream method to avoid superfluous
synchronizations between the host and device. We use concurrent streams when the problem size is larger
than the GPU’s memory capacity to overlap communication and computation. For DARTS-DAWL, we tried
different initial workloads and chose the best set for CPUs and GPU.

Figure 8 verifies our baseline mathematical model. With 30 iterations constraints on Stencil kernels,
and when the workload’s memory footprint is smaller than the available device memory, r � 1 as described
in Equation 3, and the application allocates the full workload to the device to get maximum performance.
When the memory footprint is bigger than the available device memory, it is allocated to both the host and
the device. Considering the cost of communication and synchronization between these two resource types,
the total performance ultimately drops. The speedup ratios are quite different on different systems, which
is due to the differences in hardware. e.g., the GPU of machine 3 is a Tesla-K40, which has a higher clock
and memory frequency than Tesla-K20.

DARTS-DAWL on machine 3 should run in pure GPU mode based on Equations 1-3. Here, DARTS-DAWL is
hard coded to use the co-running mode to prove that our ML approach can still improve performance even
in the worst case.

4.3 Profile-based Estimation Model, Analysis and Results

In this section, we first discuss why we employ the profile-based dynamic fine-grain workload partition
approach instead of the simple static fine-grain workload partition approach for our experiments. Then, we
analyze in detail the results of the experiments related to the Profile-based Estimation Model.

4.3.1 Dynamic vs Static workload partition

As we discussed in section 4.2, the coarse-grain tasks scheduling approach used in DAWL presents essential
weaknesses. In section 4.1.1 and 4.1.2, we list the benefits of fine-grain task scheduling for the Stencil and
SpMV applications. The next question will be why we train the profile-based ML model to estimate the
fine-grain task performance and then dynamically and adaptively approach these tasks based on the runtime
situation? Why not just utilize a simple static fine-grain tasks scheduling approach? Figure 9 provides the
answers. It shows the dynamic and static workload partitions onto the CPUs and GPU. The static fine-grain
approach can finally converge to an optimal state if the workload is large enough which means it takes a
long time to converge. Furthermore, the performance fluctuates much during the whole process and it varies
with different partitions size. On the contrary, PDAWL , which employs a profile-based ML model and can
dynamically adjust the workload based on the runtime situation, always reaches the optimal performance.

4.3.2 Profile-based Estimation Model

Section 3.4 shows how we used the performance of pure CPU/GPU versions to predict co-running executions.
Our training/validation/test sets are split between CPU and GPU.

The “CPU set” is to build a CPU performance-resource estimation model which can provide the “best”
scheduler using minimum computing resources to obtain the maximum performance (shortest execution time)
for a specific workload. As described in Section 4.1.3, combining spread and compact mapping policies, we
run experiments with different active CPU threads number (e.g. 2, 4, 8, 16. . .) to obtain the necessary
run time information by using Oprofile [24]. Our experiments (Figure 7) show that when the CPU threads
number reaches a given threshold, increasing the number of threads does not improve performance—which
is to be expected because of memory conflicts. Furthermore, PDAWL utilizes this information to provide an
accurate prediction model even when e.g., some PEs are suddenly turned off because of power issues.

8The 2D and 3D cases behave similarly in that respect. Hence we only show the 2D case

19

●

● ● ●

●
●

●

●

● ● ● ● ●

●

●
● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

●
●

●
●

● ● ●

●
●

●
● ●

● ●

●
● ● ● ● ●

● ● ● ●

●

● ●
●

●
● ● ●

●
●

●
●

●
● ● ●

● ● ●

●
●

● ● ●

●

supermicro

Fatnode

debian

ccsl

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000

0 5000 10000 15000 20000 25000
0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

Size of the Problem

S
pe

ed
up

(b
as

el
in

e
=

 C
P

U
−

S
eq

ue
nt

ia
l)

● DARTS−DAWL DARTS−CPU DARTS−GPU GPU−only

Figure 8: Stencil 2D: Speedup of the different versions

20

●

●

●

●

●

● ●
●

●
●

●
● ●

●
● ●

● ● ● ● ● ●
●

●

●

0

2

4

6

0 10000 20000 30000 40000 50000

Size of the Problem

S
pe

ed
up

 (
ba

se
lin

e
=

 C
P

U
−

S
eq

ue
nt

ia
l)

● DARTS_PDAWL

DARTS_Static_22

DARTS_Static_24

DARTS_Static_42

DARTS_Static_44

Figure 9: Stencil 2D: Dynamic and static workload partitions onto CPUs and GPU. 24 means CPU workload
is 2000× 2000, GPU workload is 4000× 4000.

The “GPU set” is used to build a GPU communication-computation overlap model, to estimate data
transfer and execution time. In particular, the right Block-Tile size, the number of thread block, and the
number of concurrent streams can perfectly overlap communication and computation on a system; and yet,
the overlap ratio may be very low on other systems since the available SM, PCIe throughput, etc., are totally
different. This is particularly true if the Block-Tile size is too small to cover the CUDA runtime API launching
time: there will be no overlap between computation and communication. Too many concurrent streams will
increase the pressure on the scheduler, the pre/post-processing time and even increase the amount of data
transfers. nvprof [31] can be employed to obtain related information. Specifically, the estimation model
consists of: API launching, events, metrics, data transfer between host and device and device computation
parts. We run the two versions of the GPU code, with/without a different number of concurrent streams,
combining with different Block-Tile size.

The information collected by the runtime system helps gather more than two hundreds features for each
type of device. Features are computation and communication metrics and events. To obtain a reasonable
group of features, a correlation analysis and cluster algorithm, Hierarchical Agglomerative Clustering algo-
rithm (HAC), was employed. For instance, Figure 10 shows one dendrogram describing a matrix correlation
of different GPU parameters and a grouping of the set of features. rows and columns share the same vari-
ables. Each cell in the table shows the correlation between two variables. In this figure, blue and red are
minimum and maximum correlations, respectively. First, features with a high correlation with the execution
time are selected. Second, selected features are analyzed with a hierarchical clustering and different sets of
features are created.

Figure 11 shows 5 clusters. If the height of the threshold is increased (see red dash line), then fewer
clusters are created. This means that the threshold (the red dashed line) in the dendrogram determines the
number of clusters.

From the other side, these grouped features obtained from the Hierarchical Agglomerative Cluster-
ing algorithm (HAC) point to the most important aspects which affect the performance of applications
on the heterogeneous system. For example, if the feature is related to the threads number (CPU) or

21

executed_load.store_instructions

load.store_instructions

global_store_transactions

active_cycles

issued_control.flow_instructions

control.flow_instructions

misc_instructions

device_memory_read_transactions

elapsed_cycles_sm

multiprocessor_activity

Figure 10: Built Dendrogram from a matrix correlation of the set of GPU features coming from nvprof.

Figure 11: Dendrogram generated from a set of CPU features coming from OProfile. The numbers on the
x axis represent the features assigned by OProfile. The numbers on the y axis represent thresholds.

22

global_store_transactions (GPU), then the application will be more sensitive to computation (CPU) or
the communication between host and GPU (GPU). Based on this information, the grouped features can
provide optimization suggestions for current application optimization.

After the data is collected, various ML algorithms see Section 3.4, PDAWL item 5 are run and the one
that fits the model best is selected.

Here, we use two simple linear regression functions as an example 9 to explain how ML algorithms were
chosen (PDAWL item 5). If five features (x1 to x5) are selected by the HAC clustering algorithm (PDAWL
item 4), the two possible linear regression functions (which are randomly picked from our linear regression
model set) can be: 1. G = w1 ∗ (x1) + w2 ∗ (x1)2 + w3 ∗ (x2) + w4 ∗ (x2)2 + w5 ∗ (x3) + w6 ∗ (x3)2 + w7 ∗
(x4) +w8 ∗ (x4)2 +w9 ∗ log2 x5 +w10 ∗ (x5) ∗ log2 x5; 2. G = w1 ∗ (x1) +w2 ∗ (x1)2 +w3 ∗ (x2) +w4 ∗ (x2)2 +
w5 ∗ (x3) + w6 ∗ (x3)2 + w7 ∗ (x4) + w8 ∗ (x4)2 + w9 ∗ x5 + w10 ∗ log2 x5; Then, traditional ML training and
validation methods, such as the use of 10-fold cross validation and L2 regulation to avoid overfitting, can
be utilized on these two linear regression models to obtain the optimum weights (wi). When the weights for
each function are obtained, we transfer G to y, since y is our target function, as we described in PDAWL
item 5. The two forms are G = y and G = log2(y). Then the transformation will be y = G and y = 2G.
The reason why we include the logarithm function in our model is that logarithmic scale function can reduce
the non-linearity factors and provide reasonable approximations [4]. R2 is utilized to evaluate which is the
best fit function and will be selected as our finally performance estimation model. Beside the accuracy, the
computation complexity of the model is considered when chosen as the best fit function. For example, if one
of the linear model and SVM model have similar R2, such that the difference is less than 0.01%, then the
linear model will be chosen at the end since the computation complexity of SVM is much higher than that
of the linear model.

In our experiments, when training/validation all of our linear models, Random Forest and Support Vector
Machine (SVM) models on four machines, we find that the majority of the best matches both for Stencil and
SpMV computation is given by linear regression , and that its R2 is 0.93 ≤ R2 ≤ 0.94. Linear regression is
also highly efficient for training and testing evaluations. In the future, more ML models and approaches will
be added to our experiments.

The Mean Absolute Percentage Error (MAPE) is utilized to measure the accuracy of our prediction
model. Table 6 shows the MAPE of the linear model for each machine in the Stencil 3D experiments.

Table 6: Stencil 3D: Mean Absolute Percentage Error of the performance prediction with linear regression
models for each machine

Machines #1 #2 #3 #4
MAPE 6.43% 7.41% 3.45% 1.68%

Figures 12 and 13 show the results for PDAWL. Compared to DARTS-CPU, the number of PEs changes with
runtime. Our scheduler can reach up to 6× speedups compared to sequential runs, 1.6× speedup compared
to the multiple core version, and 4.8× speedup compared to the pure GPU version in the 2D Stencil. In the
3D Stencil, DARTS-PDAWL reaches speedups up to 9× compared to the sequential version, 1.8× against multi-
cores, and 3.6× against a pure GPU version. Figures 12 and Figure 13 that profiling does not always yield
significant speedups. This is especially true around drop points, i.e., unstable points which are affected by
multiple co-running hardware/software conflicts parameters, which our machine learning estimation model
did not take into consideration.

Figure 14 compares the SpMV of the five Matrices listed in table 4 on Machine 1. DARTS-CPU (pure
CPU) employs the coarse-grain task scheduling approach which evenly distributes all rows onto multheeads
(CPUs). DARTS-GPU (pure GPU) employs the fine-grain task scheduling approach which evenly distributes
all rows onto thread blocks (GPUs). Considering the features of sparse matrices, the non-zeros number per
rows varies enormously. If the workload is split in rows, then the execution time of each partition will varies

9Here we randomly pick two from the whole linear regression model set as an example. May neither one be the best fit
function in the experiment.

23

●
●

●

●
●

● ● ●

●

●
●

● ● ●
●

●
●

●
● ●

●
● ●

●
● ● ● ● ●

●
●

●

●
●

●

● ●

●
●

●
●

●

● ●

●

● ● ●

●

supermicro

Fatnode

debian

ccsl

20000 25000 30000 35000 40000 45000 50000

20000 25000 30000 35000 40000 45000 50000

20000 25000 30000 35000

20000 25000

1.1

1.3

1.5

1.0

1.5

2.0

2.5

1

2

3

4

2

3

4

5

6

Size of the Problem

S
pe

ed
up

(b
as

el
in

e
=

 C
P

U
−

S
eq

ue
nc

e)

● DARTS−DAWL DARTS−CPU DARTS−GPU GPU−only

Figure 12: Stencil 2D: Speedup when matrices are larger than 17K×17K (PDAWL)

24

●

●
● ●●

●

● ● ●

●

●
● ●●

●

● ●
●

●

●
●

●●

● ● ● ●

50*200*200
100*200*200

200*200*200
200*800*800

800*400*400
400*800*800

800*800*800
800*1000*1000

1000*1000*1000

50*200*200
100*200*200

200*200*200
200*800*800

800*400*400
400*800*800

800*800*800
800*1000*1000

1000*1000*1000

50*200*200
100*200*200

200*200*200
200*800*800

800*400*400
400*800*800

800*800*800
800*1000*1000

1000*1000*10000

5

10

0

5

10

0

5

10

Size of the Problem

Sp
eed

up
(ba

sel
ine

 =
CP

U−
Se

qu
en

tia
l)

● −PDAWL −CPU −GPU GPU−only

Machine 1. GPU Tesla K20

Machine 2. GPU Tesla K20

Machine 4. GPU Titan

●
● ●

●●

● ●

50*200*200
100*200*200

200*200*200
200*800*800

800*400*400
400*800*800

800*800*8000

5

10

Machine 3. GPU Tesla K40

DARTS DARTS DARTS

Figure 13: Stencil 3D: speedup (PDAWL)

25

4.8

4.2

0.2

6.3

5.9

1.2

5.2

4.2

1.1

5.1

3.7

0.4

7

5.9

3.9

0.2

0.4

1.1

1.2

3.7

3.9

4.2

4.8

5.1

5.2

5.9

6.3

7

Fullchip eu−2005 in−2004 circcuit5M kmer_U1a
Performance results of different matrices

S
pe

ed
up

 −
 (

ba
se

lin
e

is
 s

in
gl

e
C

P
U

)

Version

DARTS−CPU

DARTS-GPU

DARTS−PDAWL

Figure 14: SpMV Performance(SpeedUP)

greatly. The totally execution time depends on the partition with the maximum total of non-zeros elements.
Resource under utilization issues exist in both DARTS-CPU and DARTS-GPU. Compared to DARTS-GPU,
the performance of DARTS-CPU is much higher than that for the DARTS-GPU. This is because CPUs
are better at processing complex data structure which is the feature SpMV-CSR format. DARTS-DAWL is
not shown in the figure since it overlaps with DARTS-CPU with very tiny differences which are not large
enough to be visible. So, DARTS-CPU also stands for DARTS-DAWL in this figure. DARTS-PDAWL
first transforms sparse matrices into dense matrices using the approach described in Figure 5, and then
utilize the ML model to find the best matched parameter set for both CPU and GPU to improve computing
resource utilization. DARTS-PDAWL executes up to 30.5× faster than the GPU version and 1.37× faster
than the multi CPU version. The speedup depends on the degree of sparsity in the tested matrices. As
shown in Figure 14, the speedup of DARTS-PDAWL/DARTS-GPU of Fullchip and circuit5M are far larger than
the others. Furthermore, our optimized SpMV approach, mentioned in section 4.1.2, can run in parallel
a regular computation group on GPU and an irregular one, and perhaps also include part of a regular,
computation group on the CPU. 30% of threshold is a reasonable value [19] for an SpMV computation.
Choosing a more suitable threshold, using ML algorithms, in order to further to improve the performance of
DARTS-PDAWL for sparse matrices computing will be one of our future tasks.

To summarize, based on the experiment results analysis (both Stencil and SpMV), PDAWL can adaptively
schedule regular and irregular workloads based on the system hardware architecture. The reasons why
PDAWL outperforms pure GPU, pure CPU and DAWL are that it can fully utilize the available computing
resources, can find the suitable synchronization way to guarantee that all the resources are co-running all
the time, and can run on different architectures without considering the differences of hardware architecture,
initial workload allocation and workload update ratio. Furthermore, PDAWL can also obtain relatively
high performance when tasks are forced to a (not best matched) computing resources (see machine 3 in
Figure 8 and 12). Even though, when facing the totally new applications and hardware environments, it
may take times to re-training profile-based ML estimation model, where the re-training time depends on
the complexity of system architectures and applications, PDAWL can still be used as a general approach for
co-running applications, such as linear algebra applications, to obtain a relatively better performance during

26

the test for different systems. Furthermore, since we have collected the important features based on the HAC
algorithm, if the changes of hardware do not effect the important features, there is no need to re-training for
the same/similar applications.

5 Related Works

The main challenge of the load-balancing mechanism is to divide the workload into processing units precisely.
A simple heuristics division approach may result in worse performance than a simple uniform division.
Machine-learning-based prediction mechanism or/and online profiling-based scheduling algorithms have been
deployed to determine the workload partitioning decision on many-core homogeneous/heterogeneous systems.

Luk et al. [26] proposes an empirical adaptive mapping, a fully automatic technique to map computa-
tions to processing elements on heterogeneous multiprocessors. Wang et al [41] utilizes an ML approach to
decide whether to parallelize a loop and how to schedule candidates on multi-core platforms. Memeti and
Pllana [30] combined optimization and machine learning to statically distribute work between the host and
device of heterogeneous computing systems to minimize the overall application execution time. Belviranli [5]
performs a dynamic load-balancing algorithm (Heterogeneous Dynamic Self-Scheduler-HDSS) for heteroge-
neous GPU clusters. Teodoro [38] performs a performance variation-aware scheduling technique along with
an estimation optimization model to collaboratively use CPUs and GPUs on parallel systems. Sant’Ana
et al. [34, 35] implement two profile-based load-balancing algorithms named PLB-Hec and PLB-HAC for
data-parallel applications in heterogeneous CPU-GPU clusters. The ML approach is utilized to predict the
best distribution of data block size among different processing units. Zhang et al. [46] performs a series of
workload characterization analysis to understand the co-running behaviors on integrated CPU/GPU archi-
tecture. The main factors affecting the co-running performance: the architectural differences between CPUs
and GPUs and the limited shared memory bandwidth. Based on this information, an ML model can be built
to predict coarse-grain workload partitioning on a co-running device before porting the program. Zhang et al.
[45] proposes a fine-grain workload reshaping approach which combines performance prediction, from an ML
model, and partitioning threshold, from an online-turning model, to partition the workload between CPU
and GPU on integrated architectures. When the workload is lower than the threshold, it will be executed
on GPUs; otherwise, CPUs will be employed. Margiolas et al. [28] and Boyle et al. [32] focus on the
accelerator sharing control for multiple kernels and propose to use ML to determine whether to run OpenCL
code on GPU or OpenMP code on multi-core CPUs. Wen et al. [42] use ML to decide whether to merge or
to separate multi-user OpenCL tasks running the most suitable devices in CPU-GPU systems.

To avoid extensive offline ML training, Laleem et al. [20] presents an adaptive online profiling based
scheduling technique. Cho et al. [8] reshapes the workload on CPU/GPU based on online profile information
generated at runtime. Zhang et al. As with [45], a threshold is employed by Cho et al. [8].

Except for architectural differences, communication between CPUs, GPUs, and the memory has a pivotal
role. Chen et al. [7], Zhang et al. [46], Yang et al [44]. Van Craeynest et al. [40] and Garcia et al. [16] propose
an analytical performance model that includes PCIe transfers and overlapping computation and communi-
cation. Lutz et al. [27] proposes PARTANS, an autotuning framework for CPUs and GPUs to execute
Stencil computations over two nodes with multiple GPUs. Data transfer on the PCIe bus plays a crucial role
in determining the number of GPUs to be utilized. To handle the communication-synchronization problem
between CPUs and GPUs, Lee et al. [22] proposes SKMD (Single Kernel Multiple devices) to transparently
orchestrate single kernel execution across asymmetric heterogeneous devices regardless of memory access
patterns.

Most of these are aimed at static, coarse-grain workload distribution, and loosely synchronized parallel
workloads where specific tasks are often run only a specific type of processing element (e.g., CPU or GPU).
Zhang et al. [45] works for fine-grain partitioning, but employs an inherently rigid static workload partition.
Furthermore, the precision of the ML model determines the efficiency of the workload partitioning approach.
The hardware change during runtime may have a catastrophic effect on the performance. At the same time,
hardware changes during runtime may happen frequently, and as much as half of the CPU cores may be

27

turned off because of power issues.
Our work focuses on dynamic, fine-grain workload distribution and tight synchronization between CPUs

and GPUs. To adapt to the real time hardware situation, fully utilize the available computing resources and
reduce the communication cost between CPUs and GPUs, we combine online scheduling and offline machine
learning.

6 Conclusions and Future work

We have presented a profile-based AI-assisted dynamic scheduling approach for heterogeneous architectures.
To fully utilize the computing resources and improve performance in the processing of scientific applications,
we have focused on the workload balance aspect. PDAWL, an iterative event-driven scheduling algorithm
has been designed to load balance better tasks in a heterogeneous system. It leverages a naïve hardware
resources mathematical model, combining offline profile-based machine learning and an online scheduling
approach. Our model determines how the workload should be allocated to the heterogeneous computing
resources. The profile-based Machine-Learning estimation model can help build an estimation model in
a heterogeneous resource context. It consists of a CPU model and a GPU model. We used ML to find
the best workload-resource match to improve the CPUs utilization rate, and the optimal estimation model
to improve GPU performance since building an accurate mathematical general-purpose GPU performance
model is nigh-impossible, as the search space is too large. Furthermore, the cluster algorithm (HAC) within
the ML model can provide optimization suggestions of the current application to improve the application
performance on heterogeneous systems. An online event-driven scheduling can make up for the inflexibility
of offline machine learning and increase accuracy of scheduling. Our approach is suitable for a very dynamic
hardware environments where the computing resources can be turned off/on during run-time. Furthermore,
our approach can be used in the presence of huge workloads that exceed that capacity of available device
memory. The advantage of our approach is that the total machine learning training time will not increase
much since we train with small workloads to predict the performance with very large workloads.

Two applications, Stencil and SpMV, have been chosen to evaluate our approach. Experiments with
Stencil 2D, Stencil 3D, and SpMV show that PDAWL yields speedups up to 1.6×, 1.8×, and 1.37× for a
multi-core baseline, 4.8×, 3.6×, and 30.5× for pure GPU execution.

Future work includes augmenting our model with power consumption parameters to enrich PDAWL and
determining the right trade-offs between performance and power on heterogeneous architectures. Online
learning algorithms, deep neural networks and other Machine Learning algorithms will be integrated into
PDAWL. We will also employ meta-learning to reduce the training time when running our PDAWL on other
hardware environment configurations.

Acknowledgements

This work was partially supported by the National Science Foundation, under award CCF-1763793 and by
FAPESP (São Paulo Research Foundation, grant #2012/23300-7).

References

[1] Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek, P., Tomov,
S.: Numerical linear algebra on emerging architectures: The plasma and magma projects. In: Journal
of Physics: Conference Series, vol. 180, p. 012037. IOP Publishing (2009)

[2] Amaris, M., Cordeiro, D., Goldman, A., Camargo, R.Y.: A simple bsp-based model to predict execution
time in gpu applications. In: High Performance Computing (HiPC), 2015 IEEE 22nd International
Conference on, pp. 285–294 (2015)

28

[3] Arteaga, J., Zuckerman, S., Gao, G.R.: Generating fine-grain multithreaded applications using a multi-
grain approach. ACM Trans. Archit. Code Optim. 14(4), 47:1–47:26 (2017). DOI 10.1145/3155288

[4] Barnes, B.J., Rountree, B., Lowenthal, D.K., Reeves, J., de Supinski, B., Schulz, M.: A regression-
based approach to scalability prediction. In: Proceedings of the 22Nd Annual International Conference
on Supercomputing, ICS ’08, pp. 368–377. ACM, New York, NY, USA (2008). DOI 10.1145/1375527.
1375580

[5] Belviranli, M.E., Bhuyan, L.N., Gupta, R.: A dynamic self-scheduling scheme for heterogeneous
multiprocessor architectures. ACM Trans. Archit. Code Optim. 9(4), 57:1–57:20 (2013). DOI
10.1145/2400682.2400716. URL http://doi.acm.org/10.1145/2400682.2400716

[6] Chen, J., Choudhary, A., Feldman, S., Hendrickson, B., Johnson, C., Mount, R., Sarkar, V., White, V.,
Williams, D.: Synergistic Challenges in Data-Intensive Science and Exascale Computing: DOE ASCAC
Data Subcommittee Report. Department of Energy Office of Science (2013). Type: Report

[7] Chen, Q., Guo, M.: Contention and locality-aware work-stealing for iterative applications in multi-socket
computers. IEEE Transactions on Computers 67(6), 784–798 (2018). DOI 10.1109/TC.2017.2783932

[8] Cho, Y., Negele, F., Park, S., Egger, B., Gross, T.R.: On-the-fly workload partitioning for integrated
cpu/gpu architectures. In: Proceedings of the 27th International Conference on Parallel Architectures
and Compilation Techniques, PACT ’18, pp. 21:1–21:13. ACM, New York, NY, USA (2018). DOI
10.1145/3243176.3243210. URL http://doi.acm.org/10.1145/3243176.3243210

[9] Chow, E., Anzt, H., Scott, J., Dongarra, J.: Using jacobi iterations and blocking for solving sparse
triangular systems in incomplete factorization preconditioning. Journal of Parallel and Distributed
Computing 119, 219–230 (2018)

[10] Cole, S.V., Buhler, J.: Mercator: A gpgpu framework for irregular streaming applications. In: 2017
International Conference on High Performance Computing Simulation (HPCS), pp. 727–736 (2017)

[11] Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K., Tipparaju, V., Vetter,
J.S.: The scalable heterogeneous computing (shoc) benchmark suite. In: Proceedings of the 3rd Work-
shop on General-Purpose Computation on Graphics Processing Units, GPGPU-3, pp. 63–74. ACM, New
York, NY, USA (2010). DOI 10.1145/1735688.1735702. URL http://doi.acm.org/10.1145/1735688.
1735702

[12] Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans. Math. Softw. 38(1),
1:1–1:25 (2011). DOI 10.1145/2049662.2049663. URL http://doi.acm.org/10.1145/2049662.2049663

[13] De Raedt, H., Jin, F., Willsch, D., Willsch, M., Yoshioka, N., Ito, N., Yuan, S., Michielsen, K.: Massively
parallel quantum computer simulator, eleven years later. Computer Physics Communications 237, 47–61
(2019)

[14] Dehne, F., Hutchinson, D., Maheshwari, A., Dittrich, W.: Reducing I/O complexity by simulating coarse
grained parallel algorithms. In: Parallel Processing, 1999. 13th International and 10th Symposium on
Parallel and Distributed Processing, 1999. 1999 IPPS/SPDP. Proceedings, pp. 14–20 (1999). DOI
10.1109/IPPS.1999.760428

[15] Franchetti, F., Low, T.M., Popovici, D.T., Veras, R.M., Spampinato, D.G., Johnson, J.R., Püschel, M.,
Hoe, J.C., Moura, J.M.F.: Spiral: Extreme performance portability. Proceedings of the IEEE 106(11),
1935–1968 (2018)

[16] García, V., Gomez-Luna, J., Grass, T., Rico, A., Ayguade, E., Pena, A.J.: Evaluating the ef-
fect of last-level cache sharing on integrated gpu-cpu systems with heterogeneous applications. In:

29

http://doi.acm.org/10.1145/2400682.2400716
http://doi.acm.org/10.1145/3243176.3243210
http://doi.acm.org/10.1145/1735688.1735702
http://doi.acm.org/10.1145/1735688.1735702
http://doi.acm.org/10.1145/2049662.2049663

2016 IEEE International Symposium on Workload Characterization (IISWC), pp. 1–10 (2016). DOI
10.1109/IISWC.2016.7581277

[17] Gaster, B.R., Howes, L.: Can GPGPU Programming Be Liberated from the Data-Parallel Bottleneck?
Computer 45, 42–52 (2012). DOI 10.1109/MC.2012.257

[18] Geng, T., Zuckerman, S., Monsalve, J., Goldman, A., Habib, S., Gaudiot, J.L., Gao, G.R.: The im-
portance of efficient fine-grain synchronization for many-core systems. In: International Workshop on
Languages and Compilers for Parallel Computing, pp. 203–217. Springer (2016)

[19] Guo, P., Wang, L., Chen, P.: A performance modeling and optimization analysis tool for sparse matrix-
vector multiplication on gpus. IEEE Transactions on Parallel and Distributed Systems 25(5), 1112–1123
(2014). DOI 10.1109/TPDS.2013.123

[20] Kaleem, R., Barik, R., Shpeisman, T., Hu, C., Lewis, B.T., Pingali, K.: Adaptive heterogeneous schedul-
ing for integrated gpus. In: 2014 23rd International Conference on Parallel Architecture and Compilation
Techniques (PACT), pp. 151–162 (2014). DOI 10.1145/2628071.2628088

[21] Leandro Nesi, L., da Silva Serpa, M., Mello Schnorr, L., Navaux, P.O.A.: Task-based parallel strategies
for computational fluid dynamic application in heterogeneous cpu/gpu resources. Concurrency and
Computation: Practice and Experience 32(20), e5772 (2020). DOI 10.1002/cpe.5772. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5772

[22] Lee, J., Samadi, M., Park, Y., Mahlke, S.: Transparent cpu-gpu collaboration for data-parallel kernels on
heterogeneous systems. In: Proceedings of the 22Nd International Conference on Parallel Architectures
and Compilation Techniques, PACT ’13, pp. 245–256. IEEE Press, Piscataway, NJ, USA (2013)

[23] Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish, N., Smelyanskiy, M.,
Chennupaty, S., Hammarlund, P., Singhal, R., Dubey, P.: Debunking the 100x gpu vs. cpu myth: An
evaluation of throughput computing on cpu and gpu. In: Proceedings of the 37th Annual International
Symposium on Computer Architecture, ISCA ’10, pp. 451–460. ACM, New York, NY, USA (2010).
DOI 10.1145/1815961.1816021

[24] Levon, J., Elie, P.: Oprofile: A system profiler for linux (2004)

[25] List, T.S.: http://www.top500.org (visited on Nov. 2017)

[26] Luk, C.K., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous multiprocessors with
adaptive mapping. In: Proceedings of the 42Nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 42, pp. 45–55. ACM, New York, NY, USA (2009). DOI 10.1145/1669112.
1669121

[27] Lutz, T., Fensch, C., Cole, M.: Partans: An autotuning framework for stencil computation on multi-gpu
systems. ACM Transactions on Architecture and Code Optimization (TACO) 9(4), 59 (2013)

[28] Margiolas, C., O’Boyle, M.F.P.: Portable and transparent software managed scheduling on accelerators
for fair resource sharing. In: 2016 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pp. 82–93 (2016)

[29] Martinasso, M., Kwasniewski, G., Alam, S.R., Schulthess, T.C., Hoefler, T.: A pcie congestion-aware
performance model for densely populated accelerator servers. In: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC ’16, pp. 63:1–63:11.
IEEE Press, Piscataway, NJ, USA (2016). URL http://dl.acm.org/citation.cfm?id=3014904.
3014989

30

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5772
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5772
http://www.top500.org
http://dl.acm.org/citation.cfm?id=3014904.3014989
http://dl.acm.org/citation.cfm?id=3014904.3014989

[30] Memeti, S., Pllana, S.: Combinatorial optimization of work distribution on heterogeneous systems. In:
2016 45th International Conference on Parallel Processing Workshops (ICPPW), pp. 151–160 (2016)

[31] NVIDIA: CUDA C: Programming Guide, Version 10.0. (2019)

[32] O’Boyle, M.F.P., Wang, Z., Grewe, D.: Portable mapping of data parallel programs to opencl for
heterogeneous systems. In: Proceedings of the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), CGO ’13, pp. 1–10. IEEE Computer Society, Washington, DC,
USA (2013). DOI 10.1109/CGO.2013.6494993

[33] Reed, D.A., Dongarra, J.: Exascale computing and big data. Commun. ACM 58(7), 56–68 (2015).
DOI 10.1145/2699414. URL http://doi.acm.org/10.1145/2699414

[34] Sant’Ana, L., Cordeiro, D., Camargo, R.: PLB-HeC: A profile-based load-balancing algorithm for het-
erogeneous CPU-GPU clusters. In: 2015 IEEE International Conference on Cluster Computing, pp.
96–105 (2015). DOI 10.1109/CLUSTER.2015.24

[35] Sant’Ana, L., Cordeiro, D., de Camargo, R.Y.: Plb-hac: Dynamic load-balancing for heterogeneous
accelerator clusters. In: European Conference on Parallel Processing, pp. 197–209. Springer (2019)

[36] Souravlas, S., Anastasiadou, S.: Pipelined dynamic scheduling of big data streams. Applied Sciences
10(14) (2020). DOI 10.3390/app10144796. URL https://www.mdpi.com/2076-3417/10/14/4796

[37] Suettlerlein, J., Zuckerman, S., Gao, G.R.: An implementation of the codelet model. In: Proceedings
of the 19th International Conference on Parallel Processing, Euro-Par’13, pp. 633–644. Springer-Verlag,
Berlin, Heidelberg (2013). DOI 10.1007/978-3-642-40047-6_63. URL http://dx.doi.org/10.1007/
978-3-642-40047-6_63

[38] Teodoro, G., Kurc, T.M., Pan, T., Cooper, L.A.D., Kong, J., Widener, P., Saltz, J.H.: Accelerating
large scale image analyses on parallel, cpu-gpu equipped systems. In: 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, pp. 1093–1104 (2012). DOI 10.1109/IPDPS.2012.101

[39] Tribbey, W.: Modern database systems. In: W. Kim (ed.) Modern Database Systems, chap. Numer-
ical Recipes: The Art of Scientific Computing (3rd Edition) is Written by William H. Press, Saul
A. Teukolsky, William T. Vetterling, and Brian P. Flannery, and Published by Cambridge Univer-
sity Press, ©2007, Hardback, ISBN 978-0-521-88068-8, 1235 Pp., pp. 30–31. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA (1995). DOI 10.1145/1874391.187410. URL http:
//dx.doi.org/10.1145/1874391.187410

[40] Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P., Emer, J.: Scheduling heterogeneous multi-
cores through performance impact estimation (pie). SIGARCH Comput. Archit. News 40(3), 213–224
(2012). DOI 10.1145/2366231.2337184. URL http://doi.acm.org/10.1145/2366231.2337184

[41] Wang, Z., Tournavitis, G., Franke, B., O’boyle, M.F.P.: Integrating profile-driven parallelism detection
and machine-learning-based mapping. ACM Trans. Archit. Code Optim. 11(1), 1–26 (2014). DOI
10.1145/2579561. URL http://doi.acm.org/10.1145/2579561

[42] Wen, Y., O’Boyle, M.F.: Merge or separate?: Multi-job scheduling for opencl kernels on cpu/gpu
platforms. In: Proceedings of the General Purpose GPUs, GPGPU-10, pp. 22–31. ACM, New York,
NY, USA (2017). DOI 10.1145/3038228.3038235

[43] v. Werkhoven, B., Maassen, J., Seinstra, F.J., Bal, H.E.: Performance models for cpu-gpu data transfers.
In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 11–20
(2014). DOI 10.1109/CCGrid.2014.16

31

http://doi.acm.org/10.1145/2699414
https://www.mdpi.com/2076-3417/10/14/4796
http://dx.doi.org/10.1007/978-3-642-40047-6_63
http://dx.doi.org/10.1007/978-3-642-40047-6_63
http://dx.doi.org/10.1145/1874391.187410
http://dx.doi.org/10.1145/1874391.187410
http://doi.acm.org/10.1145/2366231.2337184
http://doi.acm.org/10.1145/2579561

[44] Yang, C., Wang, F., Du, Y., Chen, J., Liu, J., Yi, H., Lu, K.: Adaptive optimization for petascale
heterogeneous cpu/gpu computing. In: IEEE International Conference on Cluster Computing, pp.
19–28 (2010). DOI 10.1109/CLUSTER.2010.12

[45] Zhang, F., Wu, B., Zhai, J., He, B., Chen, W.: Finepar: Irregularity-aware fine-grained workload parti-
tioning on integrated architectures. In: 2017 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pp. 27–38 (2017). DOI 10.1109/CGO.2017.7863726

[46] Zhang, F., Zhai, J., He, B., Zhang, S., Chen, W.: Understanding co-running behaviors on integrated
cpu/gpu architectures. IEEE TPDS 28(3), 905–918 (2017). DOI 10.1109/TPDS.2016.2586074

[47] Zhong, Z., Rychkov, V., Lastovetsky, A.: Data Partitioning on Heterogeneous Multicore and Multi-
GPU Systems Using Functional Performance Models of Data-Parallel Applications. In: 2012 IEEE
International Conference on Cluster Computing (Cluster 2012) (2012)

[48] Zuckerman, S., Suetterlein, J., Knauerhase, R., Gao, G.R.: Using a "codelet" program execution model
for exascale machines: Position paper. In: Proceedings of the 1st International Workshop on Adaptive
Self-Tuning Computing Systems for the Exaflop Era, EXADAPT ’11. ACM, New York, NY, USA (2011)

32

	Introduction and Motivation
	Background
	Codelet Model and Runtime System
	Heterogeneous Computing
	Heterogeneous Hardware Communication
	Concurrent Streams on GPUs

	Data-regular and Data-irregular computations in Heterogeneous Platforms

	Methodology
	Problem Analysis
	Hardware Resource Baseline, Limitations and Usage
	Hardware Baseline Modeling
	Limitations and Usage

	The Dynamic Adaptive WorkLoad (DAWL) Scheduler
	Profile-based Machine Learning Estimation Model

	Algorithm Implementation and Experiment Results
	Experimental Testbed
	Target Application: Stencil computation
	Target Application: SpMV computation
	Experiments Hardware Parameter Space Configuration

	DAWL: Performance Analysis
	Profile-based Estimation Model, Analysis and Results
	Dynamic vs Static workload partition
	Profile-based Estimation Model

	Related Works
	Conclusions and Future work

