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The macroscopic Hausdorff dimension Dim H (E) of a set E ⊂ R d was introduced by Barlow and Taylor to quantify a "fractal at large scales" behavior of unbounded, possibly discrete, sets E. We develop a method based on potential theory in order to estimate this dimension in R d . Then, we apply this method to obtain Marstrand-like projection theorems: given a set E ⊂ R 2 , for almost every θ ∈ [0, 2π], the projection of E on the straight line passing through 0 with angle θ has dimension equal to min(Dim H (E) , 1).

Introduction

Fractal geometry provide a general framework for studying sets possessing either irregular or self-reproducing (deterministic or random, self-similar or self-affine) properties. Most definitions of fractal dimensions of sets included in R d are based on the local properties (also known as microscopic) of the set. Taking into consideration that many statistical physics models are built on discrete spaces, Barlow and Taylor [START_REF] Barlow | Fractional dimension of sets in discrete spaces[END_REF][START_REF] Barlow | Defining fractal subsets of Z d[END_REF] introduced a new notion of dimension to study unbounded "fractal-like" sets on discrete space. This so-called macroscopic Hausdorff dimension (see Definition 2.2 below) has proved to be useful in quantifying the behavior at infinity of several objects, beyond the transient range of random walks in Z d which was the original motivation of Barlow and Taylor in [START_REF] Barlow | Defining fractal subsets of Z d[END_REF].

Macroscopic Hausdorff dimension is actually defined for every set (not only discrete) in R d [START_REF] Barlow | Defining fractal subsets of Z d[END_REF]. It is a discrete analog of Hausdorff dimension, and the word macroscopic comes from the fact that this dimension ignores the local structure of the sets. At the same time, the macroscopic Hausdorff dimension assesses the asymptotic behavior at infinity of the sets, so it is very relevant when one is interested in the description of infinite objects, how they fill the space "at large scale". The macroscopic Hausdorff dimension was a key tool used by Xiao et Zheng [START_REF] Xiao | Discrete fractal dimensions of the ranges of random walks in Z d associate with random conductances[END_REF] in studying the range of a random walk in random environment. It is related to [START_REF] Khoshnevisan | On the macroscopic fractal geometry of some random sets[END_REF] where Khoshnevisan and Xiao are concerned with the macroscopic geometry of other random sets. In [START_REF] Khoshnevisan | Intermittency and multifractality: A case study via parabolic stochastic PDEs[END_REF], Khoshnevisan, Kim and Xiao found out a multifractal behavior for the macroscopic dimension of tall peaks of solutions to stochastic PDEs. Georgiou et el [START_REF] Georgiou | The dimension of the range of a transient random walk[END_REF] solved Barlow and Taylor question [START_REF] Barlow | Defining fractal subsets of Z d[END_REF]Problem,p. 145] by qualifying the range of an arbitrary transient random walk. The macroscopic Hausdorff dimension was also useful for studying the large scale structure of sojourn sets associated to the Brownian motion [START_REF] Seuret | On sojourn of Brownian motion inside moving boundaries[END_REF], the fractional Brownian motion [START_REF] Daw | A uniform result for the dimension of fractional Brownian motion level sets[END_REF][START_REF] Nourdin | Sojourn time dimensions of fractional Brownian motion[END_REF], and the Rosenblatt process [START_REF] Daw | Fractal dimensions of the Rosenblatt process[END_REF].

In this paper we are interested in building various methods for estimating the macroscopic Hausdorff dimension. Recalling the fact that macroscopic Hausdorff dimension is a discrete analog of the Hausdorff dimension, we start by stating the estimating methods used for the Hausdorff dimension. In most cases, when estimating the Hausdorff dimension of a set E, the difficult part consists in finding a suitable lower bound for dim H (E). Various methods exist to find lower bounds for the standard Hausdorff dimension, and it is a natural question to ask whether these methods have their counterparts for the macroscopic Hausdorff dimension. The two usual techniques are the mass distribution principle and the potential theoretic method.

The mass distribution principle, see for instance [7, page 67], states that if a set E ⊂ R d and a Borel finite measure µ are such that µ(E) = 1 and µ(B(x, r)) ≤ Cr s for every x ∈ R d and r > 0, then the s-dimensional Hausdorff measure H s (E) is larger than µ(E)/C, and so E has at least Hausdorff dimension s.

The potential theoretic method is based on an integral analysis: if for some probability measure µ, µ(E) = 1 and the integral

(R d ) 2
dµ(x)dµ(y) x -y s 2 is finite, then again E has at least Hausdorff dimension s. In addition to bounding the Hausdorff dimension from below, the potential theoretic method plays a key role in proving the projection theorem.

The first aim of this paper is to establish similar results for the macroscopic Hausdorff dimension. This happens to be very easy for the mass distribution principle, and follows essentially from previous works. It is much more challenging for the potential theoretic method, and a careful analysis is needed.

As an application of the new potential theoretic method, we obtain a Marstrandlike projection theorem, describing the dimension of almost all projections on lines of sets E ∈ R 2 . Dealing with the dimensions of projections of Borel sets is a line of research that has a long history. It started with the investigation by Marstrand [START_REF] Marstrand | Some fundamental geometrical properties of plane sets of fractional dimensions[END_REF] of the projection theorem associated to the Hausdorff dimension. He dealt with orthogonal projections on linear subspaces and proved that for every Borel set

E ⊂ R 2 , dim H (proj V E) = min{dim H E, 1}
for almost every 1-dimensional subspaces V , where proj V denotes the orthogonal projection onto V and dim H E denotes the Hausdorff dimension of E. Afterwards Marstrand's results was proved by Kaufman but using potential theoretic methods [START_REF] Kaufman | On Hausdorff dimension of projections[END_REF]. Subsequently in 1975 Mattila extended these results to Borel sets E ⊂ R n and almost all V in the Grassmannian G(n, m) [START_REF] Mattila | Hausdorff dimension, orthogonal projections and intersections with planes[END_REF]. We prove analog results for the macroscopic Hausdorff dimension, using the potential theory method we developed above.

Definitions and statements of the results

Here and in the reset of the paper, let (R d , . 2 ) be the d-dimensional Euclidean space equipped with the L 2 -norm.

2.1. The macroscopic Hausdorff dimension. For x ∈ R d and r > 0, B(x, r) denotes the Euclidean ball with center x and radius r.

For E ⊂ R d , the diameter of a set E is denoted by |E|.
Let us recall the definition of the Barlow-Taylor macroscopic Hausdorff dimension Dim H (E) of a set E ⊆ R d , developed in [START_REF] Barlow | Fractional dimension of sets in discrete spaces[END_REF][START_REF] Barlow | Defining fractal subsets of Z d[END_REF].

Define, for all integer n ∈ N, the n-th shell of R d by

S 0 = B(0, 1) and S n := B(0, 2 n ) \ B(0, 2 n-1 ) for all n ≥ 1. (2.1)
Like the standard Hausdorff dimension, the macroscopic Hausdorff dimension Dim H (E) aims at describing how a set E can be efficiently covered by balls. Since Dim H is concerned only with large scale behaviors, Barlow and Taylor proposed to study the covers of the intersections E ∩ S n by balls, for every n ∈ N, and the balls used to cover the sets E ∩ S n will all be of diameter at least 1. Again this is justified by the fact that this dimension is supposed to describe discrete sets (so small balls are not relevant).

To this end, let us introduce, for E ⊆ R d , the set of covers of E restricted to S n defined by

C n (E) = {B(x i , r i )} m i=1 : m ∈ N, x i ∈ S n , r i ≥ 1, E ∩ S n ⊂ m i=1 B(x i , r i ) . Finally, for s ≥ 0 and n ∈ N, set ν s n (E) = inf m i=1 r i 2 n s : {B i = B(x i , r i )} m i=1 ∈ C n (E) . (2.2) Observe that ν s n is sub-additive, i.e. ν s n (A ∪ B) ≤ ν s n (A) + ν s n (B)
for every sets A and B, but is not a measure (because of the constraints on r i ).

Definition 2.1. When ν s n (E) = m i=1 r i 2 n s and E ∩ S n ⊂ m i=1 B(x i , r i ), the finite family of balls {B i = B(x i , r i )} m
i=1 is called an s-optimal cover of E ∩ S n . The existence of optimal covers is not guaranteed. We will deal with this issue in Section 3.

We are now ready to define the Barlow-Taylor macroscopic Hausdorff dimension.

Definition 2.2. For every s ≥ 0 and E ⊂ R d , define

ν s (E) = n≥1 ν s n (E).
The macroscopic Hausdorff dimension of E ⊂ R d is defined by

Dim H (E) = inf {s ≥ 0 : ν s (E) < +∞} . (2.3)
One easily checks that Dim H (E) ∈ [0, d] for all E ⊂ R d , that Dim H (E) = 0 when E is bounded, and that an alternative definition for Dim

H (E) is Dim H (E) = sup {s ≥ 0 : ν s (E) = +∞} , where sup ∅ = 0 by convention. It is also standard that Dim H (f (E)) ≤ Dim H (E) for every Lipschitz mapping f : R d → R d .
A key ingredient when working with the standard Hausdorff dimension is the existence of s-sets, i.e. sets E ⊂ R d with Hausdorff dimension dim H (E) = s and such that its s-Hausdorff measure H s (E) is finite. We introduce a similar notion for the macroscopic Hausdorff dimension.

Definition 2.3. Let s ≥ 0. A set E ⊂ R d is called a macroscopic s-set when Dim H (E) = s and ν s (E) < +∞.
We prove the existence of macroscopic s-sets.

Theorem 2.4. Let E ⊂ R d be such that ν s (E) = +∞. Then there exists a macro- scopic s-set E such that E ⊂ E.
This extraction theorem is a key ingredient at various places in our proofs.

2.2. Methods to find lower bounds for Dim H (E). For every set B and every measure µ, µ |B stands for the restriction of µ on B, i.e. µ |B (A) = µ(A ∩ B).

As recalled above, the mass distribution principle is a powerful, albeit simple, tool allowing to find a lower bound of the Hausdorff dimension by considering measures supported on the set, see [7, page 67]. We prove a similar result for the macroscopic Hausdorff dimension Dim H . Proposition 2.5 (Macroscopic mass distribution principle). Let E be a Borel subset of R d and s > 0. Suppose that there exists a Radon measure µ on R d such that µ(E) = +∞ and a constant c > 0 such that for all n ∈ N , x ∈ S n and

1 ≤ r ≤ 2 n , µ |Sn (B(x, r)) ≤ c r 2 n s .
Then, for all n ∈ N,

ν s n (E) ≥ µ |Sn (E) c and Dim H (E) ≥ s.
The proof of the macroscopic mass distribution principle is not complicated. Although it was not exactly stated before as we write it, it essentially follows directly from previous results, and so it is not so innovative. This is not the case for the potential method below. Let us first introduce the macroscopic s-energy of a measure. Definition 2.6. Let s ≥ 0, and let µ be a finite mass distribution on R d . The macroscopic (µ, s)-potential at a point x is defined as

φ s µ (x) := R d dµ(y) x -y s 2 ∨ 1 . (2.4)
The macroscopic s-energy of µ is

I s (µ) := R d φ s µ (x)dµ(x) = (R d ) 2 dµ(x)dµ(y) x -y s 2 ∨ 1 . (2.5)
In the case of standard Hausdorff dimension, in the integrals (2.4) and (2.5), the quantity x -y s 2 ∨ 1 is simply x -y s 2 . This modification is justified by the fact that Dim H is not concerned with local behavior, so we are not interested in small interactions x -y 2 < 1.

Theorem 2.7. Let E be a subset of R d .

(1) If there exists a Radon measure µ on R d such that µ(E) = +∞ and if n≥0 2 ns I s (µ |Sn ) < +∞, then ν s (E) = +∞ and Dim H (E) ≥ s.

(2) If ν s (E) = +∞, then for all 0 < ε < s there exists a Radon measure µ ε on

R d such that µ ε (E) = +∞ and n≥0 2 n(s-ε) I s-ε (µ ε |Sn ) < +∞.
The potential theoretic methods we demonstrated in Theorem 2.7 are very comparable to the ones established for the standard Hausdorff dimension [START_REF] Falconer | Fractal geometry[END_REF]Theorem 4.13]. Unlike the standard Hausdorff dimension case, for the macroscopic Hausdorff dimension, we consider the measure µ is define on R d , and we focus on the restriction of µ on every annulus S n . For this reason, we deal with sums over n.

Application to projections. Projection theorems for Hausdorff dimensions

have recently regained a lot of attention after some breakthroughs by M. Hochman and P. Shmerkin [START_REF] Hochman | Local entropy averages and projections of fractal measures[END_REF] and others, who used these theorems to tackle many longstanding questions in geometric measure theory and dynamical systems. It is quite satisfactory that they have natural counterparts in terms of macroscopic Hausdorff dimensions, as stated in the following theorem.

Theorem 2.8. Let E ⊂ R 2 be a Borel set. Define L θ as the straight line passing through 0 with angle θ, and proj θ E as the orthogonal projection of E onto L θ .

(a

) If Dim H (E) < 1, then Dim H (proj θ E) = Dim H (E) for Lebesgue almost every θ ∈ [0, π]. (b) If Dim H (E) ≥ 1, then Dim H (proj θ E) = 1 for Lebesgue almost every θ ∈ [0, π].
As in the standard Hausdorff dimension case, the proof is based on a subtle use of the potential method and Theorem 2.7.

It can be expected that Theorem 2.8 can be extended in higher dimensional spaces, and that both Theorem 2.7 and Theorem 2.8 are useful in other situations that the one we describe here.

The structure of the paper is as follows. The main three results, Theorems 2.4, 2.7 and 2.8 are established in Sections 4, 5, and 6 respectively. Some necessary technical properties of the macroscopic Hausdorff dimension are proved in Section 3.

First properties of Macroscopic Hausdorff Dimension

An alternative definition for the macroscopic Hausdorff dimension.

We will use an alternative, easier to handle with, definition for the macroscopic Hausdorff dimension, based on a simple modification of the ν s n quantities. We restrict ourselves to covers centered on integer points, with integer radii. We show that, up to a constants, this does not modify the values of the quantities involved in the computations, and the value of the macroscopic Hausdorff dimension is left unchanged.

We introduce for E ⊆ R d and n ≥ 0, the set of proper covers of E restricted to S n by

C n (E) = {B(x i , r i )} m i=1 : m ∈ N, x i ∈ Z d ∩ S n , r i ∈ N * , E ∩ S n ⊂ m i=1 B(x i , r i ) .
Definition 3.1. For every s ≥ 0, n ≥ 0 and E ⊂ R d , define

ν s n (E) = inf m i=1 r i 2 n s : {B i = B(x i , r i )} m i=1 ∈ C n (E) (3.1) 
and

ν s (E) = n≥1 ν s n (E). (3.2)
Due to the fact that the x i are (multi)-integers, as well as the r i , the above infimum

(3.1) in ν s n (E) is reached for some cover {B i = B(x i , r i )} m i=1 ∈ C n (E). Observe that ν s n is still sub-additive, i.e. ν s n (A ∪ B) ≤ ν s n (A) + ν s n (B) for every sets A and B. Lemma 3.2. For every n ≥ 0, every set E ⊂ R d , one has ν s n (E) ≤ ν s n (E) ≤ (2 + √ d) s ν s n (E). (3.3)
In particular, one still has

Dim H (E) = inf {s ≥ 0 : ν s (E) < +∞} = sup {s ≥ 0 : ν s (E) = +∞} . (3.4) Proof. The fact that C n (E) ⊂ C n (E) implies directly that ν s n (E) ≤ ν s n (E). Now, let {B(x i , ri )} m i=1 ∈ C n (E). Each ball B(x i , ri ) is included in a ball B(x i , ri + √ d), where x i ∈ Z d ∩ E n . So B x i , ri + √ d m i=1
∈ C n (E), and using that

ri + √ d ≤ ri + √ d + 1 ≤ (2 + √ d)r i (since ri ≥ 1), one has m i=1 ri + √ d 2 n s ≤ (2 + √ d) s m i=1 ri 2 n s .
This holds for any cover

{B(x i , ri )} m i=1 ∈ C n (E), so ν s n (E) ≤ (2 + √ d) s ν s n (E). Lemma 3.
2 shows in particular that the convergence/divergence properties of ν s (E) and ν s (E) are identical.

The main advantage of dealing with ν s (E) is the existence of optimal proper s-covers, i.e. covers

{B i = B(x i , r i )} m i=1 ∈ C n (E) such that ν s n (E) = m i=1 r i 2 n
s . These optimal covers exists because x i and r i are positive integers.

In our further analysis, the size of the balls of optimal covers will matter, justifying the following definition.

Definition 3.3. For E ⊂ Z d , n ∈ N and 0 < s < d, define β s n (E) := max max 1≤i≤p r i 2 n : (B(x i , r i )) p i=1 is an s-optimal proper cover of E ∩ S n .
The quantity β s n (E) will be important, in particular for Theorem 2.7 about potential methods and for the projection Theorem 2.8.

Some preliminary results.

We first prove two propositions that will be needed later. Proposition 3.4. Let µ n be a Borel measure on S n , E ⊂ R d be a Borel set and 0 < c < +∞ be a constant.

a) If max r∈N * µ n (B(x, r)) (r/2 n ) s ≤ c for all x ∈ E ∩ S n , then ν s n (E) ≥ µ n (E) c2 s . b) If max r∈N * µ n (B(x, r)) (r/2 n ) s > c for all x ∈ E∩S n , then ν s n (E) ≤ (5(1 + √ d/2)) s c µ n (S n ). Proof. a) Let {B(x i , r i )} m i=1 ∈ C n (E). For each 1 ≤ i ≤ m, there exists y i ∈ B(x i , r i ) ∩ E ∩ S n such that B(x i , r i ) ⊂ B(y i , 2r i ), so µ n (B(x i , r i )) ≤ µ n (B(y i , 2r i )) ≤ c 2r i 2 n s = c2 s r i 2 n s .
Then,

µ n (E ∩ S n ) ≤ m i=1 µ n (B(x i , r i )) ≤ c2 s m i=1 r i 2 n s ,
which is true for all covers {B(x i , r i )} m i=1 ∈ C n (E). Finally, taking the infimum over all elements of C n (E), one gets Then there exists a countable sub-family of disjoint balls B 0 of B such that

µ n (E) = µ n (E ∩ S n ) ≤ c2 s ν s n (E). b) Consider the family of balls B n = B(x, r) : x ∈ E ∩ S n , r ∈ {1, 2, ..., 2 n } and µ n (B(x, r)) > c r 2 n s . Then E ∩ S n ⊂ B(x,
B∈B B ⊂ i∈B 0 5B i .
Using the previous lemma, there exists a finite family

(B i = B(x i , r i )) i=1,...,m of disjoint balls, all elements of B n , such that B∈Bn B ⊂ m i=1 5B i .
The finiteness of the family comes from the boundedness of S n and the fact that the balls all have a diameter greater than 1. Up to a small translation of each x i by a vector of length at most √ d/2, one can assume that x i ∈ Z d and that

B∈Bn B ⊂ m i=1 5B x i , r i + √ d/2 .
With the translations that we added, some balls B ∈ B n may intersect, but this does not affect our argument.

Using the definition of ν s n (E), one finally gets

ν s n (E) ≤ m i=1   5 r i + √ d/2 2 n   s ≤ (5(2 + √ d/2)) s m i=1 r i 2 n s ≤ (5(2 + √ d/2)) s c m i=1 µ n (B i ) ≤ (5(2 + √ d/2)) s c µ n (S n ),
where the last equality comes from the disjointness of the B i s.

The following proposition guarantees that given a measure µ on a set E, there exists a smaller set F ⊂ E such that the measure µ has a controlled local scaling behavior on F . Proposition 3.6. Let E ⊂ R d be a Borel set. Then, for every 0 < s ≤ d there exists a constant c s > 0 (depending only on s) and a set ∅ = F ⊂ E such that for every n ≥ 1,

(a) 4 5 ν s n (E) ≤ ν s n (F ) ≤ ν s n (E) (b) ν s n (F ∩ B (x, r)) ≤ c s r 2 n s for all x ∈ Z d ∩ E n and r ≥ 1.
Proof. Let E ⊂ R d and set for every n ≥ 1

F n := x ∈ E ∩ S n : max r≥1 ν s n (E ∩ B(x, r)) (r/2 n ) s > 5(5(2 + √ d/2)) s .
Using Proposition 3.4 (b) applied to the set F n and the measure µ n (A) = ν s n (E ∩ A), one gets

µ n (F n ) ≤ (5(2 + √ d/2)) s 5 -1 (2 + √ d/2)) -s µ n (S n ) = 1 5 µ n (E).
Then µ n (E\F n ) ≥ 4 5 µ n (E), i.e. as soon as E ∩ S n is not empty, (E\F n ) ∩ S n = ∅. Finally, the set F = n≥0 E\F n satisfies the two conditions mentioned above, with

the constant c s = 5(5(2 + √ d/2)) s .
3.3. Proof of the mass distribution principle : Proposition 2.5.

For n ∈ N, let {B(x i , r i )} m i=1 ∈ C n (E), then µ |Sn (E ∩ S n ) ≤ µ |Sn m i=1 B(x i , r i ) ≤ m i=1 µ |Sn (B(x i , r i )) ≤ c m i=1 r i 2 n s .
Taking infimum over all proper covers {B(

x i , r i )} m i=1 ∈ C n (E), one gets µ |Sn (E ∩ S n ) c ≤ ν s n (E). Then ν s (E) ≥ n≥0 µ |Sn (E) c = µ(E) c = +∞ and so Dim H (E) ≥ s.
Observe that the same proof works if C n (E) and ν s n (E) are replaced respectively by C n (E) and ν s n (E).

Subsets of finite macroscopic measure

In this section, we prove a stronger version than Theorem 2.4, more precisely:

Theorem 4.1. Let E ⊂ R d such that ν s (E) = +∞.
Then there exists a macroscopic s-set E such that E ⊂ E and lim n→+∞ sup t∈[0,d] β t n ( E) = 0. Observe that we can either work with ν s or ν s , since ( ν s (E) < +∞) ⇔ (ν s (E) < +∞). We choose to work with ν s , and in this case β s n ( E) is defined without ambiguity.

We start with three technical lemmas, that will later help us extract a macroscopic s-set and prove the projection theorem. This is a standard exercise, we prove it for completness.

Proof. Let ε > 0. For n ≥ 2 and ε > 0, one has ]

An A n-1 dx x 1+ε ≥ An A n-1 dx A 1+ε n = u n A 1+ε n .
Then,

1 ε 1 A ε 1 ≥ 1 ε 1 A ε 1 - 1 A ε n = An A 1 dx x 1+ε ≥ n k=2 a k A 1+ε k . So the sums n k=1 a n A 1+ε
n are uniformly bounded and the series converges. Similarly, ln(A n )-ln(A 1 ) =

A 1 An dx x ≤ n k=2 a k A k-1 . Since A n → +∞ as n → +∞, the series n k=2 a k A k-1 diverges. Also, since (a n ) is bounded, A n ∼ A n-1 and the series n k=2 a k A k diverges.
Lemma 4.3. Let (a n ) n≥1 be a positive sequence converging to zero, (b n ) n≥1 be a bounded sequence of positive real numbers, such that n≥1 a n b n = +∞. Then, there exists a sequence (c n ) n≥1 such that:

(1) either

c n = b n , or c n = 0, ( 2 
) n≥1 a n c n = +∞, ( 3 
) n≥1 a 2 n c n < +∞.
Proof. We assume without loss of generality that 0 ≤ a n , b n < 1 for every n, and that (a n ) n∈N is a non-increasing sequence. For j ≥ 0, let us call D j = {n ≥ 0 : 2 -j-1 ≤ a n < 2 -j }, and B j = n∈D j b n . We call d j = max(D j ), which is finite since a n → 0. Observe that the integer sets D j are arranged in increasing order: d j + 1 = min(D j+1 ). Also, one has

1 2 +∞ j=0 2 -j B j ≤ n≥0 a n b n = +∞ j=0 n∈D j a n b n ≤ +∞ j=0 2 -j B j , so that +∞ j=0 2 -j B j = +∞. We put n 1 = 0, j 1 = 1, and c n = 0 for every n ∈ D 0 ∪ D 1 . Remark that n≥d 1 +1 a n b n ≥ 1/2 j≥2 2 -j B j = +∞. Let us call n 2 the first integer n such that n 2 n=d 1 +1 a n b n > 1/2. Observing that for n ≥ d 1 + 1, a n b n ≤ 2 -1 , one necessarily has 1/2 < n 2 n=d 1 +1 a n b n < 1.
We call j 2 the unique integer such that n 2 ∈ D j 2 , and we put c n = b n for every n ∈ {d 1 + 1, ..., n 2 }, and c n = 0 for every n ∈ {n 2 + 1, ..., d j 2 }. By construction,

1/2 < j 2 j=j 1 +1 n∈D j a n c n < 1.
We iterate the construction. Assume that we have built two finite sequences of integers (n k ) k=1,...,p and (j k ) k=1,...,p such that:

(1) for k = 1, ..., p -1, j k+1 > j k , and

for k = 1, ..., p, n k ∈ D j k (2) for k = 1, ..., p, c n = b n if n ∈ {d j k-1 + 1, ..., n k }, and c n = 0 if n ∈ {n k + 1, ..., d j k }, (3) 
for k = 1, ..., p, one has

1/(k + 1) < j k j=j k-1 +1 n∈D j a n c n < 2/k. (4.1)
Let us call n p+1 the first integer such that

n p+1 n=dp+1 a n b n > 1/(p + 2). Observing that for n ≥ d p + 1, a n b n ≤ 2 -jp ≤ 1/(p + 1) (since j p ≥ p), one necessarily has 1/(p + 2) < n p+1 n=dp+1 a n b n < 1/(p + 2) + 1/(p + 1) ≤ 2/(p + 1).
We call j p+1 the unique integer such that n p+1 ∈ D j p+1 , and we put c n = b n for every n ∈ {d p + 1, ..., n p+1 }, and c n = 0 for every n ∈ {n p+1 + 1, ..., d j p+1 }. Clearly, these n p+1 and j p+1 satisfy the recurrence properties. Now, gathering the information, we deduce by (4.1) that n≥0

a n c n = +∞ k=1 j k j=j k-1 +1 n∈D j a n c n ≥ +∞ k=1 1/(k + 1) = +∞
and, using that a n ≤ 2 -j when n ≥ D j , and that

j k-1 ≥ k -1, n≥0 a 2 n c n = +∞ k=1 j k j=j k-1 +1 n∈D j a 2 n c n ≤ +∞ k=1 j k j=j k-1 +1 2 -j n∈D j a n c n ≤ +∞ k=1 2 -k+1 /(k + 1) < +∞.
This concludes the proof.

The same lines of computations can certainly be adapted to impose n≥0 a n c n = +∞ and n≥0 h(a n )c n < +∞ for any map h : R + → R + such that h(x) = o(x) when x → 0 + . As a first step toward Theorem 4.1, we reduce the problem to sets that can be covered by small sets only. Call A n = n k=1 ν s k (E) and α n = A -1 n . By assumption, α n → 0 when n → +∞. For every n ≥ 1, S n can be covered by at most 2α -1 n balls of diameter 2 n α 1/d n . Call A n such a family of sets. One obviously has

ν s n (E) ≤ A∈An ν s n (E ∩ A)
Thus there must exist

A n ∈ A n such that ν s n (E ∩ A n ) ≥ α n ν s n (E). Then one defines the set E as E = n≥1 E ∩ A n . By Lemma 4.2, n≥0 ν s n ( E) ≥ n≥0 ν s n (E ∩ A n ) ≥ n≥0 α n ν s n (E) = +∞. Now, it is clear that for every n, | E ∩ S n | ≤ 2 n α 1/d
n , so by Definition 3.3, for every t > 0

β t n ( E) ≤ α 1/d n .
Actually, this implies more: necessarily ν s n ( E) ≤ α s/d n . In particular, β t n ( E) → 0 as n → +∞ uniformly in t.

Finally, we prove Theorem 4.1.

Proof. Let E be such that ν s (E) = +∞. By Proposition 4.4, one also assumes that lim n→+∞ sup s∈[0,d] β s n ( E) = 0, and that item (3) holds for some α > 0. This two facts will not be used in this proof, but will be key in the next section.

Observe that since for every n ν s n (E) ≤ 1, then

A n := n k=0 ν s k (E) ≤ n.
The idea consists in replacing E by a set E such that ν s n ( E) ∼ b n ν s n (E), such that n≥1 ν s n ( E) < +∞ but b n is "as large as possible". Lemma 4.2 helps to build such a sequence.

First, for every ε > 0, denote by

B ε n = k≥n ν s k (E) A 1+ε
k By Lemma 4.2, one knows that B ε n → 0 as n → ∞, for every ε > 0. We build iteratively a non-increasing sequence (ε n ) n≥0 ⊂ R + , and a sequence of integers (n k ) k≥1 .

Consider n 1 as the smallest positive integer such that B 1 4

n 1 ≤ 1 and set ε n = 1 2 for all 0 ≤ n ≤ n 1 .
Next we proceed by induction to build (ε n ) n≥0 and (n k ) k≥1 . Assume that n 1 < n 2 < ... < n p are defined.

Define n p+1 as the smallest integer such that

n p < n p+1 and B 1 2 p n p+1 ≤ 1 2 p . (4.2) Put ε n = 1 2 p+1 for all n p < n ≤ n p+1 . Finally, let b n = min 1/2, (A n ) -(1+εn) . (4.3)
Then by construction of ε n , one has:

(i) ε n → 0 as n → +∞, (ii) By (4. 
2), and the fact that B

1 2 k+1 n k ≤ B 1 2 k n k ≤ 2 -k-1 , n≥0 b n ν s n (E) ≤ n≥0 ν s n (E) A 1+εn n ≤ n 1 n=0 ν s n (E) A 1+ 1 2 n + k≥1 n k+1 n=n k +1 ν s n (E) A 1+ 1 2 k+1 n (4.4) ≤ n 1 n=0 ν s n (E) A 3 2 n + k≥1 B 1 2 k+1 n k ≤ n 1 n=0 ν s n (E) (A n ) 3 2 + k≥1 1 2 k-1 < +∞. (4.5)
Next, we construct a set E ⊂ E such that for all n ∈ N, one has

|ν s n ( E) -b n ν s n (E)| ≤ 2 -ns .
To achieve this, observe that by Definition 2.1, S n contains a finite number of lattice points, and denote by M n,d their cardinality. These points are denote by x i for i ∈ {1, . . . , M n,d }.

Consider the following function:

g n : {0, 1, . . . , M n,d } -→ R + m -→ ν s n m i=1 E ∩ B(x i , 1) .
where g n (0) = 0 by convention. It is clear that g n is non-decreasing, and ranges from 0 to ν s n (E). Moreover, for all m ∈ {1, . . . , M n,d -1}, if {B(y j , r j )} p j=1 is an s-optimal cover of m i=1 E ∩ B(x i , 1), then (B(y j , r j )) p j=1 , B(x m+1 , 1) is a proper cover of m+1 i=1 E ∩ B(x i , 1) (not necessarily optimal). Using these two covers, one gets

g n (m + 1) -g n (m) ≤ p j=1 r j 2 n s + 1 2 ns - p j=1 r j 2 n s ≤ 2 -ns .
Hence, g n has only small increments.

Recalling (4.3), 0 = g n (0) ≤ b n ν s n (E) ≤ ν s n (E) = g n (M n,d ), so there must exist an integer m n ∈ {1, . . . , M n,d } such that b n ν s n (E) ≤ g n (m n ) ≤ b n ν s n (E) + 2 -ns . Put E n = mn i=1 E ∩ B(x i , 1) and E = n≥0 E n . (4.6)
Then by construction, E ⊂ E, and for all n ∈ None has

b n ν s n (E) ≤ ν s n ( E) ≤ b n ν s n (E) + 2 -ns .
And so, by (4.5),

ν s ( E) = n≥0 ν s n ( E) ≤ n≥0 b n ν s n (E) + 2 -ns < +∞.
To complete the proof, it is enough to show that for all ε > 0, ν s-ε ( E) = +∞. To this end, fix ε > 0, and let (B(x i , r i )) m i=1 be an optimal (s -ε)-cover of E ∩ S n , and assume that for this specific cover, β s-ε n ( E) is reached, i.e. there exists i ∈ {1, ..., m} such that

r i = 2 n β s-ε n ( E). In particular, ν s-ε n ( E) ≥ (β s-ε n ( E)) s-ε . One sees that ν s-ε n ( E) = m i=1 r i 2 n s-ε ≥ m i=1 r i 2 n s • (β s-ε n ( E)) -ε ≥ (β s-ε n ( E)) -ε • ν s n ( E). (4.7)
Two cases are separated.

On the one hand, If

β s-ε n ( E) ≤ s ν s n (E) A n , then (4.7) yields ν s-ε n ( E) ≥ A n ν s n (E) ε/s • ν s n ( E) ≥ A n ν s n (E) ε/s • b n • ν s n (E) (4.8) ≥ (ν s n (E)) 1-ε/s A 1+εn-ε/s n ≥ ν s n (E) A 1+εn-ε/s n .
where the fact that ν s n (E) ≤ 1 has been used in the last step.

On the other hand, if

β s-ε n ( E) ≥ s ν s n (E) A n , one has ν s-ε n ( E) ≥ (β s-ε n ( E)) s-ε ≥ (ν s n (E)) 1-ε/s A 1-ε/s n ≥ ν s n (E) A 1-ε/s n (4.9)
Finally, using the fact that ε n → 0 together with the lower bounds (4.8) and (4.9), one gets that for every large n, ν s-ε n ( E) ≥

ν s n (E) A n . By Lemma 4.2, n≥0 ν s n (E) A n = +∞, hence ν s-ε ( E) = n≥0 ν s-ε n ( E) = +∞.
This holds for every ε > 0, so Dim H E = s.

Potential Methods

5.1. First part of Theorem 2.7. Consider E ⊂ R d , and assume that there exists a Radon measure µ on R d such that µ(E) = +∞ and n≥0 2 ns I s (µ |Sn ) < +∞. We prove that ν s (E) = +∞, which implies that ν s (E) = +∞ and Dim H (E) ≥ s.

For n ∈ N, we write µ n = µ |Sn , and define

φ s µn := R d dµ n (y) x -y s 2 ∨ 1 and E n = x ∈ E ∩ S n : max r≥1 µ n (B(x, r)) r 2 n s ≤ 1 
For every x ∈ E c n , there exists an integer r x such that

µ n (B(x, r x )) rx 2 n s ≥ 1. One has φ s µn (x) = R d dµ n (y) x -y s 2 ∨ 1 ≥ B(x,rx) dµ n (y) x -y s 2 ∨ 1 ≥ µ n (B(x, r x )) r s x ≥ 1 2 ns . Then I s (µ n ) ≥ E c n φ s µn (x)dµ n (x) ≥ 1 2 ns µ n (E c n ), which implies that n≥0 µ n (E c n ) ≤ n≥0 2 ns I s (µ n ) < +∞.
But as

E ∩ S n = E n ∪ E c n and n≥0 µ n (E ∩ S n ) = +∞, then n≥0 µ n (E n ) = +∞.
Moreover, by Proposition 3.4 a), one has ν s n (E n ) ≥ µn(En) 2 s . Finally, ν s (E) = n≥0 ν s n (E n ) = +∞ which gives that Dim H (E) ≥ s. 5.2. Second part of Theorem 2.7. This is the most delicate part. Assume now that ν s (E) = +∞, and fix 0 < ε < s.

Our goal is to build a Radon measure µ ε on R d such that µ ε (E) = +∞ and n≥0 2 n(s-ε) I s-ε (µ ε |Sn ) < +∞. We are going to build each measure µ ε n = µ ε |Sn .

For this, we use the results we previously proved. By Theorem 4.1 there exists a set E 1 ⊂ E such that lim n→+∞ sup t∈[0,d] β t n (E 1 ) = 0 and ν s (E 1 ) = +∞.

Then by Theorem 2.4, there exists a macroscopic s-set E 2 ⊂ E 1 such that Dim H (E 2 ) = s and ν s (E 2 ) < +∞.

Consider an optimal (s -ε 2 )-cover {B(x i , r i )} m i=1 of E 2 ∩ S n . One sees that

β s-ε/2 n (E 2 ) ε 4 ν s-ε 2 n (E 2 ) = β s-ε/2 n (E 2 ) ε 4 m i=1 r i 2 n s-ε 2 = β s-ε/2 n (E 2 ) ε 4 m i=1 r i 2 n s-ε 4 r i 2 n -ε 4 ≥ m i=1 r i 2 n s-ε 4 ≥ ν s-ε 4 n (E 2 ),
where we used that β

s-ε/2 n (E 2 ) ≥ r i 2 n . Recalling that Dim H (E 2 ) = s, it follows that n≥ β s-ε/2 n (E 2 ) ε 4 ν s-ε 2 n (E 2 ) = +∞. Moreover as E 2 ⊂ E 1 , then β s-ε/2 n (E 2 ) → 0 as n → +∞. Setting a n = β s-ε/2 n (E 2 ) ε 4 and b n = ν n s-ε 2 (E 2 )
, one then sees that the sequences (a n ) n≥1 and (b n ) n≥1 satisfies the assumptions of Lemma 4.3. Consider the sequence (c n ) n≥1 given by this Lemma, and define the set E 3 ⊂ E 2 as follows: for every n ≥ 1,

• if c n = 0, then E 3 ∩ S n = ∅, • if c n = b n , then E 3 ∩ S n = E 2 ∩ S n .
It is immediate from the construction and Lemma 4.

3 that c n = ν s-ε/2 n (E 3 ) and n≥ β s-ε 2 n (E 2 ) ε 4 ν s-ε 2 n (E 3 ) = +∞ and n≥ β s-ε 2 n (E 2 ) ε 2 ν s-ε 2 n (E 3 ) < +∞ (5.1)
Finally, by Proposition 3.6, there exists

∅ = E 4 ⊂ E 3 ⊂ E such that for all n ∈ N, 4 5 ν s-ε 2 n (E 3 ) ≤ ν s-ε 2 n (E 4 ) ≤ ν s-ε 2 n (E 3 ) (5.2) 
and ν

s-ε 2 n (E 4 ∩ B(x, r)) ≤ c s r 2 n s-ε 2 (5.3)
for all x ∈ Z d and r ≥ 1.

Define the measures µ

ε n (A) := β s-ε 2 n (E 2 ) ε 4 ν s-ε 2 n (E 4 ∩ A).
Then by our construction and (5.2), one has

n≥0 µ ε n (E ∩ S n ) = n≥0 β s-ε 2 n (E 2 ) ε 4 ν s-ε 2 n (E 4 ) ≥ 4 5 n≥0 β s-ε 2 n (E 2 ) ε 4 ν s-ε 2 n (E 3 ) = +∞.
We are left to prove that

n≥0 2 n(s-ε) I s-ε (µ ε n ) = n≥0 2 n(s-ε) R d φ s-ε µ ε n (x)dµ ε n (x) < +∞ For x ∈ S n , one can write φ µ ε n s-ε (x) = Sn dµ ε n (y) x -y s-ε 2 ∨ 1 Every y ∈ S n belongs to the ball B(x, 2 n+1 ). For 1 ≤ r ≤ 2 n+1 , denote by m ε n (r) = µ ε n (B(x, r)). By (5.3), one has m ε n (r) = β s-ε 2 n (E 2 ) ε 4 ν s-ε 2 n (E 4 ∩ B(x, r)) ≤ c s β s-ε 2 n (E 2 ) ε 4 r 2 n s-ε 2 . (5.4) 
Using the fact that B(x, 2 n+1 ) =

2 n+1 r=1 B(x, r) \ B(x, r -1), one has φ µ ε n s-ε (x) ≤ 2 n+1
r=1 B(x,r)\B(x,r-1)

dµ ε n (y) x -y s-ε 2 ∨ 1 = µ ε n (B(x, 1)) + 2 n+1 r=2 B(x,r)\B(x,r-1) dµ ε n (y) x -y s-ε 2 .
One the one hand, by (5.2),

µ ε n (B(x, 1)) ≤ c s β s-ε 2 n (E 2 ) ε 4 2 -n(s-ε 2 )
. On the other hand,

2 n+1 r=2 B(x,r)\B(x,r-1) dµ ε n (y) x -y s-ε 2 = 2 n+1 r=2 r r-1 t ε-s dm ε n (t) = 2 n+1 r=2 t ε-s m ε n (t) r r-1 + (s -ε) r r-1 t ε-s-1 m ε n (t)dt ≤ c s β s-ε 2 n (E 2 ) ε 4 2 -n(s-ε 2 ) 2 n r=1 t ε 2 r r-1 + (s -ε) r r-1 t ε 2 -1 dt ≤ c s 1 + 2 s -ε ε β s-ε 2 n (E 2 ) ε 4 2 -n(s-ε 2 ) 2 n+1 r=1 r ε 2 -(r -1) ε 2 ≤ C β s-ε 2 n (E 2 ) ε 4 2 -n(s-ε) .
for some constant C. So

φ µ ε n s-ε (x) ≤ c s , β s-ε 2 n (E 2 ) ε 4 2 -n(s-ε 2 ) +C β s-ε 2 n (E 2 ) ε 4 2 -n(s-ε) ≤ C β s-ε 2 n (E 2 ) ε 4 2 -n(s-ε) .
Moving to the integral, one gets

I s-ε (µ ε n ) = R d φ µ ε n s-ε (x)dµ ε n (x) ≤ C β s-ε 2 n (E 2 ) ε 4 2 -n(s-ε) µ ε n (E 4 ).
Finally, recalling (5.1), (5.2), (5.3) and the definition of µ ε n , one has

n≥0 2 n(s-ε) I s-ε (µ ε n ) ≤ C n≥0 β s-ε 2 n (E 2 ) ε 4 µ ε n (E 4 ) ≤ C n≥0 β s-ε 2 n (E 2 ) ε 2 ν n s-ε 2 (E 4 ) < +∞
as desired.

Projection of a Set

In this section we are considering the orthogonal projection of sets in R 2 and we aim at proving the projection Theorem 2.8 for the macroscopic Hausdorff dimension.

Let us introduce some notations. For every θ ∈ [0, 2π], call e θ = (cos θ, sin θ) the vector with angle θ, and L θ the straight line in R 2 with angle θ passing through the origin.

Then, recall that proj θ : R 2 → L θ is the orthogonal projection onto L θ . 

(proj θ (E)) ≥ 1 -1/p.
Consider now the set Θ = p≥2 Θ p . The above arguments show that Θ is still of full Lebesgue measure in [0, π], and that for every θ ∈ Θ, Dim H (proj θ (E)) ≥ 1. Since obviously Dim H (proj θ (E)) is always less than 1 (since it is included in L θ ), the result follows.

First extractions when Dim

H (E) < 1. Fix a set E ⊂ R 2 with 0 < Dim H (E) = s < 1.
The rest of the section is devoted to prove that Dim H (proj θ E) = Dim H (E) for almost every θ ∈ [0, π].

Writing L θ = {λe θ : λ ∈ R}, we can define the n-th shells inside L θ as S θ n = {v = (x, y) ∈ L θ : v 2 ∈ [2 n-1 , 2 n ]}. Identifying L θ with R, the results we obtained before in dimension 1 apply to L θ and S θ n . We are going to project 2-dimensional measures onto the lines L θ . For this, let us define for every n ≥ 0 the cylinders

C θ n := proj -1 θ S θ n . (6.1) 
We are going to prove that for every 0 < ε < s, the set

Θ s-ε = {θ ∈ [0, π] : Dim H (proj θ (E)) ≥ s -ε} (6.2)
has full Lebesgue measure. The conclusion then follows using the same argument as the one used to prove item b). More precisely, from the properties above, Θ := p≥1 Θ s-1/p has full Lebesgue measure, and for every θ ∈ Θ,

Dim H (proj θ (E)) ≥ s. But since proj θ is a Lipschitz mapping, Dim H (proj θ (E)) ≤ s = Dim H (E). Finally one gets Dim H (proj θ E) = Dim H (E) for almost all θ ∈ [0, π].
Fix 0 < ε < s. Applying Theorem 2.7(2), there exists a Borel measure µ ε supported by E such that

n≥0 µ ε n (E ∩ S n ) = +∞, (6.3) 
and

n≥0 2 n(s-ε) I s-ε (µ ε n ) < +∞, (6.4) 
where µ ε n is a simplified notation for µ ε |Sn . Observe that in fact, via the finer Theorem 4.1 and Proposition 4.4, we can impose that lim n→+∞ µ ε n (E ∩ S n ) = 0. We need to impose an additional condition on µ ε , namely that

n≥0 2 -n µ ε n (E ∩ S n ) n k=0 2 k µ ε k (E ∩ S k ) < +∞. (6.5)
This is achieved thanks to the following lemma. Proof. Again, without loss of generality, we assume that 0 < a n , b n < 1. Let us call D j = {n ≥ 0 : 2 -j-1 ≤ b n < 2 -j }, for j ≥ 0. Put c n = 0 for every n ∈ D 0 ∪ D 1 , and n 0 = 0, j 0 = 1.

We know that j≥2 n∈D j a n b n = +∞. We go through each D j in increasing order. Consider the first couple (n 1 , j 1 ) such that n 1 ∈ D j 1 and j 1 -1

j=2 n∈D j a n b n + n∈D j 1 ,n≤n 1 a n b n ≥ 1/2. Put c n = a n for all n ∈ j 1 -1 j=2 D j ∪ {n ∈ D j 1 : n ≤ n 1 }
, and c n = 0 for all n ∈ {n ∈ D j 1 : n > n 1 }. By our choice,

1/2 ≤ j 1 j=0 n∈D j c n b n = j 1 -1 j=2 n∈D j a n b n + n∈D j 1 ,n≤n 1 a n b n < 1.
We then iterate the process: assume that we have built two finite sequences of integers (n k ) k=1,...,p and (j k ) k=1,...,p such that (1) for k = 1, ..., p -1, j k+1 > j k , and for k = 1, ..., p,

n k ∈ D j k (2) for k = 1, ..., p, c n = a n if n ∈ j k -1 j=j k-1 D j ∪ {n ∈ D j k : n ≤ n k }, and c n = 0 for all n ∈ {n ∈ D j k : n > n k }.
(3) for k = 1, ..., p, one has

2 -k ≤ j k j=j k-1 n∈D j c n b n < 2 -k+1 . ( 6.6) 
We know that j≥jp+1 n∈D j a n b n = +∞. Consider the first couple (n p+1 , j p+1 ) such that n p+1 ∈ D j p+1 and j p+1 -1 j=jp n∈D j a n b n + n∈D j p+1 ,n≤n p+1 a n b n ≥ 2 -(p+1) . Put c n = a n for all n ∈ j p+1 -1 j=jp D j ∪ {n ∈ D j p+1 : n ≤ n p+1 }, and c n = 0 for all n ∈ {n ∈ D j p+1 : n > n p+1 }. Then, since for all the selected integers n, a n b n ≤ 2 -j p+1 ≤ 2 -(p+1) , (6.6) holds true.

Collecting the information, on one hand one has by (6.6)

n≥0 c n b n = k≥1 j k j=j k-1 n∈D j c n b n ≤ k≥1 2 -k+1 < +∞.
On the other hand, since j k ≥ k+1, one sees that for each n ∈ D j for j ∈ {j k-1 , ...j k }, b n ≤ 2 -k , so again by (6.6),

n≥0 c n = k≥1 j k j=j k-1 n∈D j c n ≥ k≥1 2 k j k j=j k-1 n∈D j c n b n ≥ k≥1 1 = +∞, hence the result.
Setting a n = µ ε n (E), then (a n ) n≥0 tends to zero when n tends to infinity. Define then

b n = 2 -n n k=0 2 k a k . Since n k=0 2 k ∼ 2 n , (b n ) n≥0
is a generalized Caesaro mean associated with the sequence (a n ) n≥0 , and converges to zero when n tends to infinity.

So either n≥1 a n b n < +∞, and (6.5) is true, or n≥1 a n b n = +∞ and we are exactly in the situation of Lemma 6.1: there exists a sequence (c n ) n≥1 such that:

(1) either c n = a n , or c n = 0, (2) n≥1 c n = +∞, (3) n≥1 c n b n < +∞. Setting E = n≥0:an=cn E ∩ S n , by construction one has µ ε ( E) = n≥1 c n = +∞, and since µ ε k ( E ∩ S k ) = c k ≤ a k = µ ε k (E ∩ S k ), one has n≥0 2 -n µ ε n ( E ∩ S n ) n k=0 2 k µ ε k ( E ∩ S k ) ≤ n≥1 c n b n < +∞, hence (6.5 
) is obtained for E. This property will be used at the very end of the proof of Proposition 6.4 only. It is obvious that if Theorem 2.8 is proved for this smaller set E, it is also true for the original set.

Finally, observe that, replacing E by n≥0 E ∩ S 2n or n≥0 E ∩ S 2n+1 , one can assume in addition to (6.3), (6.4) and (6.5) that if S n = ∅, then S n-1 = S n+1 = ∅.

(6.7)

To resume this section, we have proved that the original set E contains a subset, still denoted by E for simplification, and a measure µ ε supported by E such that (6.3), (6.4), (6.5) and (6.7) simultaneously hold. 

ε k on C n (θ) (µ ε k ) |C θ n (A) := µ ε k ( x ∈ E ∩ S k : proj θ x ∈ A ∩ S θ n ), Equivalently for each non-negative function f , one has +∞ -∞ f (t)d(µ ε k ) |C θ n (t) = C θ n ∩S k f (x.e θ )dµ ε k (x).
where x.e θ denotes the scalar product. Since e θ is unitary, we identify x.e θ with proj θ x, the orthogonal projection of x onto L θ .

Let x = (u, v) ∈ S k . We study the case where x 1 ≥ 0, the case x 1 < 0 being symmetric. Using polar coordinates, one has x = (r cos θ 0 , r sin θ 0 ) for some 2

k-1 ≤ r ≤ 2 k and θ 0 ∈ [-π 2 , π 2 ].
Then the projection of x on L θ is given by: proj θ x = (r cos(θ -θ 0 ) cos θ, r cos(θ -θ 0 ) sin θ).

Recall (6.1), one sees that for 0

≤ n ≤ k, x ∈ C θ n ⇐⇒ 2 n-1 ≤ r cos(θ -θ 0 ) ≤ 2 n ⇐⇒ 2 n-1 r ≤ cos(θ -θ 0 ) ≤ 2 n r ⇐⇒ 2 n-k ≤ cos(θ -θ 0 ) ≤ min{1, 2 n-k+1 } ⇐⇒ θ ∈ θ 0 + arccos 2 n-k , θ 0 + arccos min{1, 2 n-k+1 } mod π.
Denote by J n,x := θ 0 + arccos 1 2 2 n-k , θ 0 + arccos min{1, 2 n-k+1 } . The Tay-

lor development arccos(y) = π 2 -y + o(y) yields that |J n,x | = 2 n-k (1 + o(1)).
From the proof, it also follows that |J x,n | ∼ C2 n-k when n/k is quite small.

Let us study (6.11). One has By Lemma 6.5, the interval J n,x ∩ J n,y has length smaller than C 0 2 n-k . So the integral above is taken over an interval of length at most C 0 2 n-k . Moreover, as s < 1, the integral reaches its largest value when θ close to (6.12)

E θ n≥0 2 n(s-ε) I s-ε (µ ε,θ n ) = π 0 n≥0 2 n(s-ε) I s-ε (µ ε,θ n ) dθ = π 0 n≥0 2 n(s-ε) S θ n S θ n dµ ε,θ n (u) dµ ε,θ n (v) |u -v| s-ε ∨ 1 dθ = π 0 n≥0 2 
where C > 0 is some positive constant. Then going back to I 1 and using 6.12, one gets

I 1 ≤ C n≥0 2 n(s-ε) k≥n 2 (n-k)(1-s+ε) (E∩S k ) 2 dµ ε k (x) dµ ε k (y) x -y ε 2 ∨ 1 = C n≥0 k≥n
2 n+k(s+ε-1)

(E∩S k ) 2 dµ ε k (x) dµ ε k (y) x -y s-ε 2 ∨ 1 = C n≥0 2 n(s+ε-1) n k=0 2 k (E∩Sn) 2 dµ ε n (x) dµ ε n (y) x -y s-ε 2 ∨ 1 ≤ 2C n≥0 2 n(s-ε) I s-ε (µ ε n ) < +∞,
which is finite by (6.4).

Moving to I 2 , the same manipulations as above for I 1 yield As before, by Lemma 6.5, |J k,x | ≤ 2 n-k and |J j,y | ≤ 2 n-j for all x ∈ S k ∩ C θ n and y ∈ S j ∩ C θ n ). Then, as k ≥ j + 1, the same argument as in (6.12) yields π 0 1 x∈C θ n (θ)1 y∈C θ n (θ) |τ x-y • e θ | s-ε dθ ≤ C2 (n-k) (1-s+ε) . (6.13) for some C > 0.

I 2 =
Next, we make use of equation (6.7) : indeed, it is not possible that µ ε j and µ ε j+1 are simultaneously non-zero. Hence, for x ∈ S k and y ∈ S j such that j < k and µ ε j and µ ε k not both equal to zero, then necessarly |k -j| ≥ 2 and 2 k-2 ≤ x -y 2 ≤ 2 k+1 . This implies in particular that E∩S j E∩S k dµ ε k (x) dµ ε j (y) x -y s-ε 2 ≤ C2 -k(s-ε) µ ε k (E ∩ S k ) µ ε j (E ∩ S j ), (6.14) the inequality being in fact close to be sharp. Finally, combining (6.14) and (6.13)), one gets that for some C > 0,

I 2 ≤ C n≥0 2 n(s-ε) k>j≥n 2 (n-k)(1-s+ε) 2 -k(s-ε) µ ε k (E ∩ S k ) µ ε j (E ∩ S j ) = C n≥0 2 n k>j≥n 2 -k µ ε j (E ∩ S j )µ ε k (E ∩ S k ) = C j≥0 j n=0 2 n µ ε n (E ∩ S n ) k≥n+1 2 -k µ ε k (E ∩ S k ) ≤ C n≥0 2 n µ ε n (E ∩ S n ) k≥n+1 2 -k µ ε k (E ∩ S k ) ≤ C n≥0 2 -n µ ε n (E ∩ S n ) n k=0 2 k µ ε k (E ∩ S k ) .
This last double sum is finite, because the set E was chosen so that (6.5) holds true. This concludes the proof.

  r)∈Bn B(x, r). Now, we invoke the following 5r-covering Lemma [5, Lemma 4.8]. Lemma 3.5. Let B be a family of balls in R N and suppose that sup B∈B d(B) < ∞.

Lemma 4 . 2 .

 42 Let (a n ) n≥1 be a bounded sequence of positive real numbers, such that lim n→+∞ A n := +∞ k=1 a k = +∞. For every ε > 0,

Proposition 4 . 4 .

 44 Let E ⊂ R d such that ν s (E) = +∞. Then, given α > 0, there exists a set Ē such that ν s ( Ē) = +∞ and lim n→+∞ sup t∈[0,d] β t n ( E) = 0. Proof. It is an application of Lemma 4.2.

Lemma 6 . 1 .

 61 Let (a n ) n≥1 and (b n ) n≥1 be two positive sequences converging to zero, such that n≥1 a n = +∞ and n≥1 a n b n = +∞. There exists a sequence (c n ) n≥1 such that:(1) either c n = a n , or c n = 0, (2) n≥1 c n = +∞, (3) n≥1 c n b n < +∞.

6. 3 .

 3 Final proof of item a) of Theorem 2.8. Consider the set E obtained after extraction above. For all θ ∈ [0, π], k ≥ n and A ⊂ L θ , we focus on the restriction of µ

2 where 2 ∨ 1 , 1

 2211 n(s-ε) j,k≥n E∩S j ∩C θ n E∩S k ∩C θ n dµ ε k (x) dµ ε j (y) |x • e θ -y • e θ | s-ε ∨ 1 dθ := I 1 + 2I dµ ε k (y) |(x -y) • e θ | s-ε ∨ 1 dθ I 2 = π 0 n≥0 2 n(s-ε) k>j≥n E∩S j ∩C θ n E∩S k ∩C θ n dµ ε k (x) dµ ε j (y) |(x -y) • e θ | s-ε ∨ 1 dθ. Starting with I 1 , one has dµ ε k (y) |(x -y) • e θ | s-ε ∨ 1 dθ -y) • e θ | s-ε ∨ 1 dµ ε k (x) dµ ε k (y) dθ -y) • e θ | s-ε ∨ 1 dθdµ ε k (x) dµ k (y) n (θ)1 y∈C θ n (θ) |τ x-y • e θ | s-ε dθ dµ ε k (x) dµ ε k (y) x -y s-εwhere τ x-y is the unit vector in the direction of x -y. By Lemma 6.5, when x ∈ S k one has1 x∈C θ n (θ) = 1 Jn,x (θ). Then π 0 x∈C θ n (θ)1 y∈C θ n(θ) |τ x-y • e θ | s-ε dθ = Jn,x∩Jn,y dθ |cos( τ x-y , e θ )| s-ε .

  n (θ)1 y∈C θ n (θ) |τ x-y • e θ | s-ε dθ ≤ π 2 +C 0 2 n-k π 2 -C 0 2 n-k dθ |cos(θ)| s-ε ≤ C 0 2 n-k -C 0 2 n-k dθ |θ| s-ε = C2 (n-k)(1-s+ε) .

0 1

 0 dµ ε j (y) |(x -y) • e θ | s-ε ∨ 1 dθ. j E∩S k 1 C θ n (x)1 C θ n (y) |(x -y) • e θ | s-ε dµ ε k (x) dµ ε j (y) dθ = n≥0 2 n(s-ε) k>j≥n E∩S j E∩S k π Jn,x (θ)1 Jn,y (θ) |τ x-y • e θ | s-ε dθ dµ ε k (x) dµ ε j (y) x -y s-ε 2 .

  6.1. Case where Dim H (E) ≥ 1. Let us start by proving item b) of Theorem 2.8, assuming that item a) is proved. Consider E ⊂ R 2 with Dim H (E) ≥ 1. By Theorem 4.1, for every p ≥ 2, there exists E p ⊂ E such that Dim H (E p ) = 1 -1/p. For each set E p , by item a), there exists a set Θ p ⊂ [0, π] of full Lebesgue measure such that for every θ ∈ Θ p , Dim H (proj θ (E p )) = 1 -1/p. In particular, this implies that Dim H

Definition 6.2. The projected measure µ ε,θ is defined as µ ε,θ = n≥1 µ ε,θ n , where

Note that each µ ε,θ n is a measure supported on proj θ E ∩ S θ n . We are going to prove that for almost all θ ∈ [0, π],

for almost all θ ∈ [0, π]. Then item a) of Theorem 2.7 will allow us to conclude that the set Θ s-ε defined by (6.2) has full Lebesgue measure, as announced. This is the purpose of the next two propositions.

Proof. This simply follows from the observation that

since the union of the (C θ n ) n≥1 cover R 2 (there are small overlaps (their borders) between the C θ n ). Hence the result.

So the first part of (6.9) is proved.

Let us move to the second part. Observe that even if µ ε,θ (proj θ E) = +∞, it is likely that proj θ E has dimension less than Dim H (E). A trivial example is when the s-dimensional set E is included in a straight line of angle φ passing through 0, and θ = φ + π/2. Proposition 6.4. One has

Proof. Remark that if (6.11) is proved, then n≥0 2 n(s-ε) I s-ε (µ ε,θ n ) < +∞ for Lebesgue almost every θ ∈ [0, π], so (6.9) and item a) of Theorem 2.8 are proved.

We start with the following lemma. Lemma 6.5. There exists a constant C 0 > 0 such that the following holds. Let x ∈ S k for some k ≥ 0. For all 0 ≤ n ≤ k, the set J x,n = {θ ∈ [0, π] : x ∈ C θ k } is an interval modulo π, and |J x,n | ≤ C 0 2 n-k .

Proof. The fact that J x,k is an interval is obvious.