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We prove that we can identify three types of pointwise behaviour in the regularity of the (generalized) Rosenblatt process. This extends to a non Gaussian setting previous results known for the (fractional) Brownian motion. On this purpose, ne bounds on the increments of the Rosenblatt process are needed. Our analysis is essentially based on various wavelet methods.

Introduction

Precise study of path behaviour, and in particular regularity, of stochastic processes is a classical research eld, initiated in the 1920s by the works of Wiener [START_REF] Wiener | Collected works[END_REF]. It lies in between probability and (harmonic) analysis and a common strategy is to mix probabilistic arguments with analytical tools. Pioneer works concerned Brownian motion. Among them, one can cite Paley and Wiener's expansion [START_REF] Wiener | Fourier transforms in the complex domain[END_REF] using Fourier series, Lévy's representation [START_REF] Lévy | Processus stochastiques et mouvement brownien[END_REF] obtained with some techniques of interpolation theory or, more recently, Kahane's expansion [START_REF] Kahane | of Cambridge Studies in Advanced Mathematics[END_REF] in the Schauder basis.

In the last decades, the emergence of wavelet analysis allowed to obtain series expansions for many stochastic processes. Let ψ : R Ñ R be a smooth function satisfying the admissibility condition [START_REF] Meyer | Wavelets and operators[END_REF] » R | p ψpξq| |ξ| dξ V, [START_REF] Albin | A note on Rosenblatt distributions[END_REF] where p ψ is the Fourier transform of ψ. As such it generates an orthonormal basis of L 2 pRq. More precisely, any function f L 2 pRq can be decomposed as f jZ ķZ

c j,k ψp2 j ¤ ¡kq, (2) 
is inspired by them. Let us justify it. In a measure-theoretical point of view, the modulus of continuity x Þ Ñ |x| H log log |x| ¡1 is the most frequent among the points of singles paths. Thus, it is natural to refer it as ordinary. Now, |x| H log log |x| ¡1 op|x| H log |x| ¡1 q if x Ñ 0 and thus points for which x Þ Ñ |x| H log |x| ¡1 is the pointwise modulus of continuity are refereed as rapid. On the other side, points for which x Þ Ñ |x| H is the pointwise modulus of continuity are referred as slow because |x| H op|x| H log log |x| ¡1 q if x Ñ 0 . Now, let us turn to the stochastic process we will deal with in this paper.

The Rosenblatt process appears naturally as a limit of normalized sums of longrange dependent random variables [START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of gaussian elds[END_REF]. Like the fractional Brownian motion, it belongs to the class of Hermite processes, fractional Brownian motion being of order 1 while Rosenblatt process is of order 2. Both are selfsimilar stochastic processes with stationary increments and are characterized by a parameter H, called the Hurst exponent. However, unlike the fractional Brownian motion, the Rosenblatt process is not Gaussian. Does it make a big dierence regarding ordinary, rapid and slow points? In other words, can Theorem 1.1 be extended to cover the non Gaussian Rosenblatt process?

For the last fteen years the Rosenblatt process has received a signicantly increasing interest in both theoretical and practical lines of research. Due to its self-similarity, its applications are numerous across a multitude of elds, including internet trac [START_REF] Chaurasia | Performance of synthetic Rosenblatt process under multicore architecture[END_REF] and turbulence [START_REF] Sakthivel | Retarded stochastic dierential equations with innite delay driven by rosenblatt process[END_REF][START_REF] Lakhel | Existence, uniqueness and stability of impulsive stochastic neutral functional dierential equations driven by rosenblatt process with varying-time delays[END_REF]. From a statistical point of view, estimating the value of the Hurst index H is important for practical applications and various estimators exist, see [START_REF] Bardet | A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter[END_REF][START_REF] Tudor | Variations and estimators for self-similarity parameters via Malliavin calculus[END_REF]. Also, from a mathematical point of view the Rosenblatt process has received a lot of interest since its inception in [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF]. Its distribution, still not known in explicit form, was studied rst in [START_REF] Albin | A note on Rosenblatt distributions[END_REF] and more recently in [START_REF] Maejima | On the distribution of the Rosenblatt process[END_REF] and [START_REF] Veillette | Properties and numerical evaluation of the Rosenblatt distribution[END_REF].

In this paper, we even consider a generalization of the Rosenblatt process, as dened and studied in [START_REF] Maejima | Selfsimilar processes with stationnary increments in the second Wiener chaos[END_REF]. It depends on two parameters H 1 , H 2 p 1 2 , 1q which are such that H 1 H 2 ¡ 3 2 . The generalized Rosenblatt process tR H1,H2 pt, ¤qu tR is dened as a double Wiener-Itô integral of a kernel function K H1,H2 with respect to a given Brownian motion. More precisely, consider a standard two-sided Brownian motion B, and set R H1,H2 pt, ¤q

» I R 2 K H1,H2 pt, x 1 , x 2 q dBpx 1 qdBpx 2 q, (4) 
where ³I R 2 denotes integration over R2 excluding the diagonal. The kernel function in (4) is expressed, for all pt, x 1 , x 2 q on R ¢ R 2 , by

K H1,H2 pt, x 1 , x 2 q 1 Γ H 1 ¡ 1 2 ¨Γ H 2 ¡ 1 2 ¨» t 0 ps ¡ x 1 q H1¡ 3 2 ps ¡ x 2 q H2¡ 3
θp|t ¡ s|q log log |t ¡ s| ¡1 while, for the generalized Rosenblatt process, θp|t ¡ s|q log log |t ¡ s| ¡1 . The same feature appears for the rapid points: in the case of the fractional Brownian motion we have θp|t ¡ s|q log |t ¡ s| ¡1 and for the generalized Rosenblatt process we have θp|t ¡ s|q log |t ¡ s| ¡1 . Therefore, the only dierence between the corresponding logarithmic corrections is the square root that is used for the fractional Brownian motion and not for the generalized Rosenblatt process. It comes from the estimates that can be done on the tails of the distribution of random variables in the rst order Wiener chaos, for the fractional Brownian motion, or the second order, for the generalized Rosenblatt process, see Theorems 3.14 and 3.15 below. Concerning the slow points, there is no logarithmic correction, θ 1 in both case. Unfortunately, contrary to the fractional Brownian motion, we did not manage to show the positiveness of the limit in [START_REF] Ayache | Dierent possible behaviors of wavelet leaders of the Brownian motion[END_REF]. In fact, for that, we would need to nd an almost-sure uniform lower modulus of continuity for the generalized Rosenblatt process and to be able to judge its optimality, which seems to be a dicult task. This is discussed in details in Remark 5.1 below, where we give an almost-sure uniform lower modulus of continuity using the techniques we use to prove the positiveness of the limits in [START_REF] Ayache | Lower bound for local oscillations of Hermite processes[END_REF] and [START_REF] Ayache | Wavelet-type expansion of the generalized Rosenblatt process and its rate of convergence[END_REF].

Our strategy to prove Theorem 1.2 is as follows. First, in Section 3 we derive upper-bounds for the oscillations |R H1,H2 pt, ωq ¡ R H1,H2 ps, ωq| that are sharp enough to imply the niteness of the limits ( 5), ( 6) and [START_REF] Ayache | Dierent possible behaviors of wavelet leaders of the Brownian motion[END_REF]. This is done by means of the wavelet-type expansion given in [START_REF] Ayache | Wavelet-type expansion of the generalized Rosenblatt process and its rate of convergence[END_REF], see Theorem 3.3 below. Then, in Section 4, we give lower bounds for the so-called wavelet-leaders, see Section 2, of the generalized Rosenblatt process on a given compactly supported wavelet basis. This will prove the positiveness of the limits [START_REF] Ayache | Lower bound for local oscillations of Hermite processes[END_REF], [START_REF] Ayache | Wavelet-type expansion of the generalized Rosenblatt process and its rate of convergence[END_REF]. In particular, we use dierent bases depending on whether we deal with the niteness of the limits in Theorem 1.2 or with their strict positiveness. This is very dierent from [START_REF] Esser | Slow, ordinary and rapid points for Gaussian Wavelets Series and application to Fractional Brownian Motions[END_REF] where the authors always work with the same wavelet. The reason is that the expression [START_REF] Flandrin | Time-frequency / Time-scale analysis[END_REF] in Theorem 3.3 below is not a wavelet series: it involves additional quantities. Therefore, standard arguments linking wavelet coecients and regularity of the associated functions can no longer be used.

There is a priori no obstacles to extend our results in Section 4 to any Hermite process. On the contrary, extending the results of Section 3 does not seem obvious at all. This is because a wavelet-type expansion of arbitrary Hermite process is still missing but also because our strategy relies on arguments which are specic to the two-dimensional feature of the Rosenblatt process, see Lemma 2 Some important facts involving wavelets In this section, we gather all the facts concerning wavelets that we will strongly use all along this article. First, an immediate but important consequence of the admissibility condition [START_REF] Albin | A note on Rosenblatt distributions[END_REF] is that, if the wavelet ψ L 1 pRq, its rst moment always vanishes, i.e. » R ψpxqdx 0.

This condition is met for all the wavelets we consider in this paper.

First, while dealing with the upper bounds for the limits in Theorem 1.2, we will use a wavelet-type expansion of the generalized Rosenblatt process. It is given in [START_REF] Ayache | Wavelet-type expansion of the generalized Rosenblatt process and its rate of convergence[END_REF] by the mean of the Meyer's wavelet: ψ belongs to the Schwartz class SpRq, and its Fourier transform is compactly supported, see [START_REF] Lemarié | Ondelettes et bases hilbertiennes[END_REF]. In particular, for all H p1{2, 1q, ψ H , the fractional antiderivative x ψ H of order H ¡ 1{2 of ψ is well-dened by means of its Fourier transform as

x

ψ H p0q 0 and x ψ H pξq piξq ¡pH¡ 1 2 q p ψpξq, d ξ $ 0. (8) 
It also belongs to the Schwartz class SpRq, see [START_REF] Ayache | Wavelet strategies in multifractional frameworks[END_REF][START_REF] Ayache | Wavelet-type expansion of the generalized Rosenblatt process and its rate of convergence[END_REF][START_REF] Schwartz | Théorie des distributions[END_REF] for instance. Moreover, some standard facts from distribution theory [START_REF] Schwartz | Théorie des distributions[END_REF][START_REF] Ayache | Wavelet strategies in multifractional frameworks[END_REF] give us the explicit formula

ψ H ptq 1 Γ H ¡ 1 2 ¨»R pt ¡ xq H¡ 3 2 ψpxq dx.
From ( 8), we see that suppp x ψ H q suppp p ψq which is the key fact to establish the following lemma, gathering facts already proved in [START_REF] Ayache | Wavelet-type expansion of the generalized Rosenblatt process and its rate of convergence[END_REF].

Lemma 2.1. Let H 1 , H 2 p 1 2 , 1q. If pj 1 , j 2 , k 1 , k 2 q Z 4 are such that |j 1 ¡j 2 | ¡ 1, then the integral I k1,k2 j1,j2 : » R ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q
vanishes. Moreover, for all pj, k 1 , k 2 q Z 3 , we have

I k1,k2 j 1,j 2 ¡j » R e ¡ipk1¡2k2qξ y ψ H1 pξq y ψ H2 p2ξq dξ, (9) 
I k1,k2 j,j

2 ¡j » R e ¡ipk1¡k2qξ y ψ H1 pξq y ψ H2 pξq dξ, (10) 
I k1,k2 j,j 1 2 ¡j » R e ¡ip2k1¡k2qξ y ψ H1 p2ξq y ψ H2 pξq dξ. (11) 
In addition, for all L ¡ 0, there exists a constant

C L ¡ 0 such that for all pj, k 1 , k 2 q Z 3 , |I k1,k2 j 1,j | ¤ C L 2 ¡j p3 |k 1 ¡ 2k 2 |q L , |I k1,k2 j,j | ¤ C L 2 ¡j p3 |k 1 ¡ k 2 |q L , |I k1,k2 j,j 1 | ¤ C L 2 ¡j p3 |2k 1 ¡ k 2 |q L .
When dealing with the the lower bounds for the limits in Theorem 1.2, we use Daubechies compactly supported wavelets [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF]. Note that, if supppΨq r¡N, N s, for a positive integer N , then, using the rst vanishing moment, for all pj, kq N ¢ Z and t R, one can write

c j,k » N ¡N ¢ f ¢ x k 2 j ¡ f ptq Ψpxq dx ( 12 
)
Since Ψ is compactly supported, Ψp2 j ¤ ¡kq is localized around the dyadic interval λ j,k :

k 2 j , k 1 2 j
and it is therefore common to index wavelets these intervals. For simplicity, we sometimes omit any references to the indices j and k for such intervals by writing λ λ j,k , and k spλq. Similarly, c λ refers to the quantity c j,k . The notation Λ j stands for the set of dyadic intervals λ of R with side length 2 ¡j .

The unique dyadic interval from Λ j containing the point t R is denoted λ j ptq.

The set of dyadic intervals is Λ : jN Λ j . Two dyadic intervals λ and λ I are adjacent if there exist j N such that λ, λ I Λ j and distpλ, λ I q 0. The set of dyadic intervals adjacent to λ is denoted by 3λ. In this setting, one denes the wavelet leader [START_REF] Jaard | Wavelet techniques in multifractal analysis, fractal geometry and applications: A jubilee of Benoit Mandelbrot[END_REF] of f at t and of scale j by

d j pt 0 q max λ3λj pt0q sup λ I λ |c I λ |. ( 13 
)
Then, if supppψq r¡N, N s, from [START_REF] Chaurasia | Performance of synthetic Rosenblatt process under multicore architecture[END_REF], one can write

d j ptq ¤ 2N sup spt0¡2 ¡j pN 2q,t0 2 ¡j pN 2qq |fpsq ¡ f ptq|}ψ} L V. ( 14 
)
When we study stochastic processes, the wavelet leaders are random variables d j pt, ωq. Inequality ( 14) with some easy computations implies that in order to obtain the positiveness of the limit [START_REF] Ayache | Lower bound for local oscillations of Hermite processes[END_REF], it suces to show that for all ω Ω H1,H2 and all open intervals I R , for almost every t I,

0 lim sup jÑ V d j pt, ωq 2 ¡jpH1 H2¡1q logpjq . ( 15 
)
Similarly, to prove the positiveness of the limit (6), we just have to show that for all ω Ω H1,H2 and all open intervals I R , there exists a dense set of points t I such that

0 lim sup jÑ V d j pt, ωq 2 ¡jpH1 H2¡1q j . ( 16 
)
Remark 2.2. Let us mention that wavelet leaders can not be used to prove the niteness of the limits in Theorem 1.2 because they do not precisely characterize the pointwise regularity, see for instance [START_REF] Kreit | Generalized pointwise Hölder spaces dened via admissible sequences[END_REF][START_REF] Loosveldt | Generalized spaces of pointwise regularity: Toward a general framework for the WLM[END_REF] for more details.

Upper bounds for oscillations

Starting from now and until the end of the paper, we x

H 1 , H 2 p 1 2 , 1q such that H 1 H 2 ¡ 3 2 .
In this section, we show the niteness of the limits (5), (6) and [START_REF] Ayache | Dierent possible behaviors of wavelet leaders of the Brownian motion[END_REF]. Concerning the rapid points, we will in fact show a stronger result, obtaining an almost sure uniform modulus of continuity for the generalized Rosenblatt process.

We use a wavelet-type expansion of the generalized Rosenblatt process. It relies on the following random variables.

Denition 3.1. For all pj 1 , j 2 , k 1 , k 2 q Z 4 , let ε k1,k2 j1,j2 be the second order Wiener chaos random variable dened by

2 j 1 j 2 2 » I R 2 ψp2 j1 x 1 ¡ k 1 qψp2 j2 x 2 ¡ k 2 q dBpx 1 qdBpx 2 q. Remark 3.2. For all pj 1 , j 2 , k 1 , k 2 q Z 4 , we have ([6, Proposition 2.3]) ε k1,k2 j1,j2 ¢ 2 j 1 2 » R ψp2 j1 x ¡ k 1 qdBpxq ¢ 2 j 2 2 » R ψp2 j2 x ¡ k 2 qdBpxq ( 17 
)
for j 1 $ j 2 or k 1 $ k 2 , and

ε k1,k1 j1,j1 ¢ 2 j 1 2 » R ψp2 j1 x ¡ k 1 qdBpxq 2 ¡ 1 (18) 
for j 1 j 2 and k 1 k 2 . Using the fact that p2 j{2 ψp2 j ¤ ¡kqq pj,kqZ 2 forms an orthonormal basis of L 2 pRq, and elementary properties of Wiener integral, we know that p2 j{2 ³ R ψp2 j x ¡ kq dBpxqq pj,kqZ 2 is a family of iid N p0, 1q random variables. So the random variables ε k1,k2 j1,j2 and ε

k I 1 ,k I 2 j I 1 ,j I 2 are independent as soon as tpj 1 , k 1 q, pj 2 , k 2 qu tpj I 1 , k I 1 q, pj I 2 , k I 2 qu ∅.
The following theorem, proved in [START_REF] Ayache | Wavelet-type expansion of the generalized Rosenblatt process and its rate of convergence[END_REF], gives the wavelet-type expansion we use in this section.

Theorem 3.3. Let ψ be the Meyer wavelet and I be any compact interval of R . Almost surely, the random series pj1,j2,k1,k2qZ 

» t 0 ψ H1 p2 j1 x ¡k 1 qψ H2 p2 j2 x ¡k 2 q dx (19)
converges uniformly to R H1,H2 on the interval I.

Remark 3.4. Any open interval in R can be written as a countable union of dyadic intervals pλ j,k q jN,kZ . Then, to prove Theorem 1.2, it is sucient to show that, for all j N, k Z, there exist an event Ω j,k of probability 1 such that, for all ω Ω j,k , almost every t λ j,k is ordinary and there exist t r λ j,k which is rapid and t s λ j,k which is slow. For the sake of simpleness in notation, we will only do the proofs in full details for λ 0,0 r0, 1q. In fact, after dilatation and translation, our proofs hold true for any arbitrary dyadic interval.

Rapid points

Let us rst focus on rapid points. we prove that x Þ Ñ |x| H1 H2¡1 log |x| ¡1 is almost surely a uniform modulus of continuity for R H1,H2 .

Proposition 3.5. There exists an event Ω rap of probability 1 such that for all ω Ω rap there exists C R pωq ¡ 0 such that, for all t, s p0, 1q, we have |R H1,H2 pt, ωq ¡ R H1,H2 ps,

ωq| ¤ C R pωq|t ¡ s| H1 H2¡1 log |t ¡ s| ¡1 . ( 20 
)
Let us set, for all s, t p0, 1q and pj 1 , j 2 , k 1 , k 2 q Z 4 , I k1,k2 j1,j2 rt, ss » rt,ss

ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx.
All along this section, if s, t p0, 1q are given, n always refers to the unique positive integer such that

2 ¡n¡1 |t ¡ s| ¤ 2 ¡n . ( 21 
)
Our proof consists in writing

|R H1,H2 pt, ¤qq¡R H1,H2 ps, ¤q| § § § § § § pj1,j2,k1,k2qZ 4 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 I k1,k2 j1,j2 rt, ss § § § § § § ( 22 
)
and to split the sum in the right-hand side in subsums determined according to the position of j 1 and j 2 with respect to n. To bound from above some of these subsums the following lemma is key.

Lemma 3.6. [6, Lemma 2.4.] There exist an event Ω ¦ of probability 1 and a positive random variable C 1 with nite moment of any order, such that, for all ω Ω ¦ and for each pj

1 , j 2 , k 1 , k 2 q Z 4 , |ε k1,k2 j1,j2 pωq| ¤ C 1 pωq logp3 |j 1 | |k 1 |q logp3 |j 2 | |k 2 |q. ( 23 
)
In view of Lemma 3.6, we set

L k1,k2 j1,j2 logp3 |j 1 | |k 1 |q logp3 |j 2 | |k 2 |q.
As a rst step, Lemmata 3.7 to 3.12 are devoted to bound some deterministic series whose general term is

2 j1p1¡H1q 2 j2p1¡H2q L k1,k2
j1,j2 |I k1,k2 j1,j2 rt, ss|.

This rst lemma will be useful to bound the subsums in the right-hand side of ( 22) for j 1 n and j 2 n.

Lemma 3.7. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q, we have

j 1 n j 2 n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q L k1,k2 j1,j2 § § §I k1,k2 j1,j2 rt, ss § § § ¤ C|t¡s| H1 H2¡1 log |t¡s| ¡1 .
Proof. Let us start by considering, for all pj 1 , j 2 q Z 2 , the series

R j1,j2 : t Þ Ñ pk1,k2qZ 2 L k1,k2 j1,j2 » t 0 |ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q| dx and R I j1,j2 : t Þ Ñ pk1,k2qZ 2 L k1,k2 j1,j2 |ψ H1 p2 j1 t ¡ k 1 qψ H2 p2 j2 t ¡ k 2 q|.
The fast decay of the fractional antiderivatives of ψ allows us to write, for all H tH 1 , H 2 u and for all x R |ψ H pxq| ¤ Cp1 |x|q ¡4 .

Moreover, according to [6, Lemma 4.2] for all L ¡ 1 there exists C ¡ 0 such that, for all j Z and x R ķZ

logp3 |j| kq p3 |2 j x ¡ k|q L ¤ C logp3 |j| 2 j |x|q. (25) Therefore, if K is any compact set of R , if s sup K , for all t K, we have |R j1,j2 ptq| ¤ C » t 0 logp3 |j 1 | 2 j1 |x|q logp3 |j 2 | 2 j2 |x|q dx ¤ Cs logp3 |j 1 | 2 j1 sq logp3 |j 2 | 2 j2 sq.
The same arguments can be applied to R I j1,j2 , which means that both series converge uniformly on any compact set of R . From this, we can use mean value theorem: for all pj 1 , j 2 q Z 2 there is ξpj 1 , j 2 q rs, ts such that pk1,k2qZ 2

2 j1p1¡H1q 2 j2p1¡H2q L k1,k2 j1,j2 § § §I k1,k2 j1,j2 rt, ss § § § ¤ |t ¡ s| pk1,k2qZ 2 L k1,k2 j1,j2 |ψ H1 p2 j1 ξ ¡ k 1 qψ H2 p2 j2 ξ ¡ k 2 q|. ( 26 
)
Now, we use the fast decay of the fractional antiderivatives of ψ [START_REF] Janson | Gaussian Hilbert Spaces[END_REF] and inequality [START_REF] Kahane | of Cambridge Studies in Advanced Mathematics[END_REF] to bound [START_REF] Kerchev | Local times and sample path properties of the Rosenblatt process[END_REF] from above: for all j 1 , j 2 n,

pk1,k2qZ 2 L k1,k2 j1,j2 |ψ H1 p2 j1 ξ ¡ k 1 qψ H2 p2 j2 ξ ¡ k 2 q| ¤ C £ ķ1Z logp3 |j 1 | |k 1 |q p3 |2 j1 ξ ¡ k 1 |q 4 £ ķ2Z logp3 |j 2 | |k 2 |q p3 |2 j2 ξ ¡ k 2 |q 4 ¤ C logp3 |j 1 | 2 j1 |ξ|q logp3 |j 2 | 2 j2 |ξ|q ¤ C logp3 |j 1 | 2 j1 q logp3 |j 2 | 2 j2 q, as ξ p0, 1q. Let us then remark that j 1 n 2 j1p1¡H1q logp3 |j 1 | 2 j1 q j 1¤0 2 j1p1¡H1q logp3 |j 1 | 2 j1 q n¡1 j 1 0 2 j1p1¡H1q logp3 |j 1 | 2 j1 q ¤ C n¡1 j 10 2 j1p1¡H1q logp3 |j 1 | 2 j1 q ¤ C2 np1¡H1q c n, (27) 
as 1 ¡ H 1 ¡ 0. The same can be applied to the sum over j 2 and we nally get j

1 n j 2 n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q L k1,k2 j1,j2 § § §I k1,k2 j1,j2 rt, ss § § § ¤ C|t ¡ s| j 1 n j 2 n 2 j1p1¡H1q 2 j2p1¡H2q logp3 |j 1 | 2 j1 q logp3 |j 2 | 2 j2 q ¤ C|t ¡ s|2 np2¡H1¡H2q n ¤ C|t ¡ s| H1 H2¡1 log |t ¡ s| ¡1 .
Lemmata 3.10 and 3.11 will help nding an upper bound for the subsums in the right-hand side of [START_REF] Jaard | Function spaces vs. Scaling functions: Some issues inimage classication[END_REF] with j 1 n ¤ j 2 or j 2 n ¤ j 1 as well as the ones where n ¤ j 1 ¤ j 2 and n ¤ j 2 ¤ j 1 . Let us dene the following partition of Z, which determines the relative positions of rk 2 2 ¡j2 , pk 2 1q2 ¡j2 q and rs, ts. Denition 3.8. For all j 2 N, we set Z j2 pt, sq tk 2 Z : k 2 2 ¡j2 mintt, suu, Z ¡ j2 pt, sq tk 2 Z : k 2 2 ¡j2 ¡ maxtt, suu, and Z j2 rt, ss ZzpZ j2 pt, sq Z ¡ j2 pt, sqq. Remark 3.9. Note that we have #Z j2 rt, ss ¤ 2 j2¡n 1.

Let us also observe that for all a, b ¡ 0, logp3 a bq ¤ logp3 aq logp3 bq.

(

) 28 
Lemma 3.10. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q and j 1 ¤ j 2 , the quantities ķ1Z ķ2Z j 2 pt,sq

L k1,k2 j1,j2 § § §I k1,k2 j1,j2 rt, ss § § § (29) ķ1Z ķ2Z ¡ j 2 pt,sq L k1,k2 j1,j2 § § §I k1,k2
j1,j2 rt, ss § § § [START_REF] Lévy | Processus stochastiques et mouvement brownien[END_REF] are bounded from above by

C logp3 |j 1 | 2 j1 q logp3 |j 2 | 2 j2 q2 ¡j2 .
Proof. Let us bound [START_REF] Lemarié | Ondelettes et bases hilbertiennes[END_REF], the proof for (30) being similar. From the fast decay of the fractional antiderivatives of ψ [START_REF] Janson | Gaussian Hilbert Spaces[END_REF], inequalities ( 25) and (28) for j 1 ¤ j 2 , we have

(29) ¤ C » rs,ts £ ķ1Z logp3 |j 1 | |k 1 |q p3 |2 j1 x ¡ k 1 |q 4 ¤ ¥ ķ2Z j 2 pt,sq logp3 |j 2 | |k 2 |q p3 |2 j2 x ¡ k 2 |q 4 dx ¤ C logp3 |j 1 | 2 j1 q logp3 |j 2 | 2 j2 q » rs,ts ķ2Z j 2 pt,sq logp3 |2 j2 x ¡ k 2 |q p3 |2 j2 x ¡ k 2 |q 4 dx.
For all x rs, ts the mapping y Þ Ñ 2 2 j2 x ¡ 2 j2 mints, tu yq ¡3 is decreasing and thus » rs,ts ķ2Z j 2 pt,sq

logp3 |2 j2 x ¡ k 2 |q p3 |2 j2 x ¡ k 2 |q 4 dx ¤ » rs,ts ķ2Z j 2 pt,sq dx p3 2 j2 x ¡ k 2 q 3 ¤ » rs,ts V m0 dx p3 2 j2 x ¡ 2 j2 mints, tu mq 3 ¤ » rs,ts » V 0 dxdy p2 2 j2 x ¡ 2 j2 mints, tu yq 3 ¤ C2 ¡j2 . ( 31 
)
This bound leads to

(29) ¤ C logp3 |j 1 | 2 j1 q logp3 |j 2 | 2 j2 q2 ¡j2 . ( 32 
)
Lemma 3.11. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q and j 1 ¤ j 2 , the quantities ķ1Z ķ2Zj 2 rt,ss

L k1,k2 j1,j2 § § § § § » mints,tu ¡V ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § § ķ1Z ķ2Zj 2 rt,ss L k1,k2 j1,j2 § § § § § » V maxts,tu ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § §
are bounded from above by

C logp3 |j 1 | 2 j2 q logp3 |j 2 | 2 j2 q2 ¡j2 . Proof.
Let us assume that s ¤ t, the argument for t s being similar. As j 2 ¥ j 1 , we have, by inequality [START_REF] Kahane | of Cambridge Studies in Advanced Mathematics[END_REF],

» s ¡V £ ķ1Z logp3 |j 1 | |k 1 |q p3 |2 j1 x ¡ k 1 |q 4 ¤ ¥ ķ2Zj 2 rt,ss logp3 |j 2 | |k 2 |q p3 |2 j2 x ¡ k 2 |q 4 dx ¤ C L » s ¡V logp3 |j 1 | 2 j1 |x|q ¤ ¥ ķ2Zj 2 rt,ss logp3 |j 2 | |k 2 |q p3 |2 j2 x ¡ k 2 |q 4 dx ¤ C L » s ¡V logp3 |j 1 | 2 j2 |x|q ¤ ¥ ķ2Zj 2 rt,ss logp3 |j 2 | |k 2 |q p3 |2 j2 x ¡ k 2 |q 4 dx.
For all k 2 Z j2 rt, ss, |k 2 | ¤ 2 j2 , we have, using [START_REF] Lakhel | Existence, uniqueness and stability of impulsive stochastic neutral functional dierential equations driven by rosenblatt process with varying-time delays[END_REF], 

logp3 |j 1 | 2 j2 |x|q ¤ logp3 |j 1 | 2 j2 q logp3 |2 j2 x ¡ k 2 |q and logp3 |j 2 | |k 2 |q ¤ logp3 j 2 2 j2 q logp3 |2 j2 x ¡ k 2 |q.
p3 k 2 ¡ 2 j2 xq 3 ¤ C2 ¡j2 (33) 
which nally leads to ķ1Z ķ2Zj 2 rt,ss

L k1,k2 j1,j2 § § § § » s ¡V ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § ¤ C logp3 |j 1 | 2 j2 q logp3 j 2 2 j2 q2 ¡j2 . ( 34 
)
We get in the same way, ķ1Z ķ2Zj 2 rt,ss

L k1,k2 j1,j2 § § § § » V t ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § ¤ C logp3 |j 1 | 2 j2 q logp3 j 2 2 j2 q2 ¡j2 .
Next Lemma will be used to bound the subsums of ( 22) with j 1 n ¤ j 2 or j 2 n ¤ j 1 . Lemma 3.12. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q, the quantities R ¥n rt, ss : 

j 1 n j 2¥n pk1,k2qZ
2 j1p1¡H1q logp3 |j 1 | 2 j1 q j 2¥n 2 ¡j2H2 logp3 |j 2 | 2 j2 q.
The sum over over j 1 is bounded just as in [START_REF] Kreit | Generalized pointwise Hölder spaces dened via admissible sequences[END_REF] while, for the sum over j 2 , we have

j 2¥n 2 ¡j2H2 logp3 |j 2 | 2 j2 q ¤ j 2¥n 2 ¡j2H2 logp3 2 j2 1 q ¤ C2 ¡nH2 c n. ( 38 
)
We bound [START_REF] Meyer | Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion[END_REF] in exactly the same way.

For [START_REF] Nicolay | Bifractality of human DNA strand-asymmetry proles results from transcription[END_REF], let us again assume s ¤ t, then we write

I k1,k2 j1,j2 rt, ss » R ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx ¡ » s ¡V ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx ¡ » V t ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx. ( 39 
)
Since j 1 n and j 2 ¥ n, recalling Lemma 2.1, the sum ķ1Z ķ2Zj 2 rt,ss

L k1,k2 j1,j2 » R ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx,
vanishes except maybe when pj 1 , j 2 q pn ¡ 1, nq. In this case, note that #Z n rt, ss ¤ 2 and, for all k 2 Z n rt, ss, |k 2 | ¤ 2 n .Then, by Lemma 2.1 and inequality [START_REF] Kahane | of Cambridge Studies in Advanced Mathematics[END_REF], we get ķ1Z ķ2Znrt,ss

L k1,k2 n¡1,n § § §I k1,k2 n¡1,n § § § ¤ C2 ¡n ķ1Z ķ2Znrt,ss logp3 n ¡ 1 |k 1 |q logp3 n |k 2 | p3 |2k 1 ¡ k 2 |q 4 ¤ C2 ¡n ķ2Znrt,ss logp3 n ¡ 1 | k 2 2 |q logp3 n |k 2 |q ¤ C2 ¡n n Now, using Lemma 3.11, we also get § § § § § § j 1 n j 2¥n ķ1Z ķ2Zj 2 rt,ss 2 j1p1¡H1q 2 j2p1¡H2q L k1,k2 j1,j2 » s ¡V ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § § § ¤ j 1 n j 2¥n 2 j1p1¡H1q 2 ¡j2H2 logp3 |j 1 | 2 j2 q logp3 |j 2 | 2 j2 q ¤ j 1 0 j 2 ¥n 2 j1p1¡H1q 2 ¡j2H2 logp3 |j 1 |q logp3 2 j2 1 q n¡1 j 10 j 2¥n 2 j1p1¡H1q 2 ¡j2H2 logp3 2 j2 1 q logp3 2 j2 1 q ¤ C2 np1¡H1¡H2q n (40) The series § § § § § § j 1 n j 2¥n ķ1Z ķ2Zj 2 rt,ss 2 j1p1¡H1q 2 j2p1¡H2q L k1,k2 j1,j2 » s ¡V ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § § §
is bounded in exactly the same way and the conclusion follows.

It remains us to bound the subsums of ( 22) with j 1 ¥ n and j 2 ¥ n. For this, let us dene some random variables associated with dyadic intervals.

Denition 3.13. If λ is a dyadic interval of scale n, we dene, for all j ¥ n, the indexation sets

S 0 j pλq : tpk p1q , K p1q , k p2q , K p2q q Z 4 : k p1q 2 j , K p1q 2 j , k p2q 2 j , K p2q 
2 j λu, S 1 
j pλq : tpk p1q , K p1q , k p2q , K p2q q Z 4 : k p1q 2 j 1 , K p1q 
2 j 1 , k p2q 2 j , K p2q 
2 j λu, S 2 
j pλq : tpk p1q , K p1q , k p2q , K p2q q Z 4 : k p1q 2 j , K p1q 2 j , k p2q 
2 j 1 , K p2q 
2 j 1 λu and consider the random variables, for pk p1q , K p1q , k p2q , K p2q q S 0 j pλq,

0 j ¸kp2q ,K p2q k p1q ,K p1q : ķp1q ¤k1¤K p1q ķp2q ¤k2¤K p2q ε k1,k2 j,j I k1,k2 j,j (41) 
, for pk p1q , K p1q , k p2q , K p2q q S 1 j pλq,

1 j ¸kp2q ,K p2q k p1q ,K p1q : ķp1q ¤k1¤K p1q ķp2q ¤k2¤K p2q ε k1,k2 j 1,j I k1,k2 j 1,j (42) 
and, for pk p1q , K p1q , k p2q , K p2q q S 2 j pλq,

2 j ¸kp2q ,K p2q k p1q ,K p1q : ķp1q ¤k1¤K p1q ķp2q ¤k2¤K p2q ε k1,k2 j,j 1 I k1,k2 j,j 1 . (43) 
The idea behind the denition of these random variables is, as |t¡s| ¤ 2 ¡n , s 3λ n ptq and thus any sum of the form ķ1Zjrt,ss ķ2Zℓrt,ss

ε k1,k2 j,ℓ I k1,k2 j,ℓ (44) 
for ℓ tj, j 1u can be written as the sum of random variables ( 41), ( 42) or [START_REF] Tudor | Variations and estimators for self-similarity parameters via Malliavin calculus[END_REF] for some pk p1q , K p1q , k p2q , K p2q q belonging to at most two S ℓ j pλq pℓ t0, 1, 2u) with λ λ n ptq. Indeed, if t and s both belong to λ n ptq then we only need to rewrite [START_REF] Veillette | Properties and numerical evaluation of the Rosenblatt distribution[END_REF] in the form ( 41), [START_REF] Taqqu | The rosenblatt process[END_REF] or [START_REF] Tudor | Variations and estimators for self-similarity parameters via Malliavin calculus[END_REF] for pk p1q , K p1q , k p2q , K p2q q S ℓ j pλ n ptqq; if s λ with λ 3λ n ptqzλ n ptq then we need to consider a rst sum indexed by a quadruple of S ℓ j pλ n ptqq and a second indexed by a quadruple of S ℓ j pλq.

The reason why we decide to put λ instead of 3λ in the denition of the sets S ℓ j pλq is that if, for all n N and for all λ Λ n and j ¥ n, we dene the random variable

Ξ j pλq max ℓt0,1,2u sup pk p1q ,K p1q ,k p2q ,K p2q qS ℓ j pλqq § § § § ℓ j ¸kp2q ,K p2q k p1q ,K p1q § § § § ℓ j ¸kp2q ,K p2q k p1q ,K p1q L 2 pΩq , (45) 
we want Ξ j pλq to be independent of Ξ j pλ I q as soon as λ λ I ∅. Moreover, from the denitions of the random variables ( 42), ( 41) and ( 43), the remarks below Theorem 3.3 and the explicit expressions ( 9), ( 10) and ( 11), the law of Ξ j pλq does not depend on λ Λ n but only on j ¡ n.

The key results to estimate the random variables Ξ j are [24, Theorem 6.7

and Theorem 6.12] that we recall here.

Theorem 3.14. There exists a strictly positive universal deterministic constant C such that, for every random variable X belonging to the second order Wiener chaos and for each real number y ¥ 2, one has

Pp|X| ¥ y}X} L 2 pΩq q ¤ expp¡ Cyq.
Theorem 3.15. If X is a random variable belonging to the second order Wiener chaos, there exist a, b, y 0 ¡ 0 such that, for all y ¥ y 0 , expp¡ayq ¤ Pp|X| ¥ yq ¤ expp¡byq.

Remark 3.16. As stated in [START_REF] Janson | Gaussian Hilbert Spaces[END_REF], the constants a, b in Theorem 3.15 are not universal and depend on the law of X. Note that b can be recovered from Theorem 3.14 and thus is universal on the unit sphere in L 2 pΩq. Lemma 3.17. There exists a deterministic constant C ¡ 0 such that, for all n N, λ Λ n , j ¥ n, ℓ t0, 1, 2u and pk p1q , K p1q , k p2q , K p2q q S ℓ j pλq, we have

ℓ j ¸kp2q ,K p2q k p1q ,K p1q L 2 pΩq ¤ C2 ¡j¡n 2 .
Proof. Following an idea from [6, Lemma 2.21], we write

ℓ j ¸kp2q ,K p2q k p1q ,K p1q L 2 pΩq ¤ Ŗt ,¡,u ℓ j ¸kp2q ,K p2q k p1q ,K p1q R L 2 pΩq where ℓ j ¸kp2q ,K p2q k p1q ,K p1q
R is the subsum of ( 42), ( 41) or [START_REF] Tudor | Variations and estimators for self-similarity parameters via Malliavin calculus[END_REF] in which k 1 Rk 2 . By doing so, we make sure that two random variables ε k1,k2 j1,j2 and ε

k I 1 ,k I 2 j I 1 ,j I 2
appearing in this subsum are uncorrelated except when pk 1 , k 2 q pk I 1 , k I 2 q. Then from Lemma 2.1, we have for ℓ 0 (the argument being the same for ℓ 1 or ℓ 2), for all R t , ¡, u,

ℓ j ¸kp2q ,K p2q k p1q ,K p1q R 2 L 2 pΩq ķp1q ¤k1¤K p1q ķp2q ¤k2¤K p2q ,k1Rk2
Erpε k1,k2 j,j q 2 spI k1,k2 j,j

q 2 ¤ ķp1q ¤k1¤K p1q ķ2Z 2 ¡2j p3 |k 1 ¡ k 2 |q 8 . Since #tk 1 Z : k p1q ¤ k 1 ¤ K p1q u ¤ 2 j¡n , we conclude that ℓ j ¸kp2q ,K p2q k p1q ,K p1q L 2 pΩq ¤ C2 ¡j¡n 2 . ( 46 
)
Lemma 3.18. There exist an event r Ω of probability 1 and a positive random variable C 2 with nite moment of any order such that, on r

Ω dn N, d λ r0, 1s, λ Λ n , dj ¥ n, Ξ j pλq ¤ C 2 pj ¡ n 1qn. (47) 
Proof. Let us take θ ¡ 0 and consider, for all n N the event

A n : td λ r0, 1s, λ Λ n , dj ¥ n, Ξ j pλq ¤ θpj ¡ n 1qnu . If A c
n stands for the complementary set of A n in Ω, we have, of course, PpA c n q Pphλ r0, 1s, λ Λ n : hj ¥ n s. t. Ξ j pλq ¥ θpj ¡ n 1qnq. But, for all λ r0, 1s, λ Λ n , j ¥ n, ℓ t0, 1, 2u and pk p1q , K p1q , k p2q , K p2q q S ℓ j pλq we have, by Theorem 3.14, if θ ¥ 2,

P ¤ ¦ ¦ ¦ ¥ § § § § ℓ j ¸kp2q ,K p2q k p1q ,K p1q § § § § ℓ j ¸kp2q ,K p2q k p1q ,K p1q L 2 pΩq ¥ θpj ¡ n 1qn ¤ expp¡ Cθpj ¡ n 1qnq.
As, for all j ¥ n, #S ℓ j pλq ¤ 2 4pj¡nq and #tλ r0, 1s :

λ Λ n u 2 n , we get PpA c n q ¤ C2 n j¥n 2 4pj¡nq expp¡ Cθpj ¡ n 1qnq ¤ C2 n expp¡ Cθnq j¥n 2 4pj¡nq expp¡ Cθpj ¡ nqq for a deterministic constant C ¡ 0. Therefore, if we take θ ¡ 4 logp2q{
C, the conclusion follows from Borel-Cantelli Lemma.

Lemma 3.19. Let Ω ¦ and r Ω be the events of probability 1 given by Lemmata 3.6 and 3.18 respectively. There exists a positive random variable C 3 with nite moment of any order such that, on Ω ¦ r Ω, for all t, s p0, 1q the random

variable § § § § § § j 1 ¥n j 2¡n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 I k1,k2 j1,j2 rt, ss § § § § § § ( 48 
)
is bounded from above by

C 3 |t ¡ s| H1 H2¡1 log |t ¡ s| ¡1 .
Proof. We start by splitting the sums in [START_REF] Wiener | Fourier transforms in the complex domain[END_REF] in two parts:

j 1¥n j2¥j1 pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 I k1,k2
j1,j2 rt, ss and j 2¥n j1¡j2 pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 I k1,k2 j1,j2 rt, ss.

(49)

We only focus on the rst sums, as the argument is symmetric in j 1 and j 2 . As in Lemma 3.12 we write j 1¥n j2¥j1 pk1,k2qZ 

2 j1p1¡H1q 2 ¡j2H2 logp3 |j 1 | 2 j1 q logp3 |j 2 | 2 j2 q ¤ CC 1 j 1¥n 2 j1p1¡H1¡H2q j 1 ¤ CC 1 2 np1¡H1¡H2q n, j2¥j1 
by applying twice inequality [START_REF] Oksendal | Stochastic dierential equations: an introduction with applications[END_REF]. The sum (51) is bounded in exactly the same way.

To bound (52), we use once again the equality [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF]. First we have, by inequality [START_REF] Jaard | Wavelet methods for pointwise regularity and local oscillations of functions[END_REF] and Lemma 3.11, § § § § § § j 1¥n j2¥j1 ķ1Z ķ2Zj 2 rt,ss

2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 » s ¡V ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § § § ¤ CC 1 j 1¥n j2¥j1 2 j1p1¡H1q 2 ¡j2H2 logp3 |j 1 | 2 j2 q logp3 |j 2 | 2 j2 q ¤ CC 1 2 np1¡H1¡H2q n. (53) We bound § § § § § § j
1 ¥n j2¥j1 ķ1Z ķ2Zj 2 rt,ss

2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 » V t ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § § §
in the same way.

It only remains us to nd an estimate for j 1¥n j2¥j1 ķ1Z ķ2Zj 2 rt,ss

2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 I k1,k2 j1,j2
and thus, recalling Lemma 2.1, we reduce the problem to rst bound, for j ¥ n and ℓ tj, j 1u, the sums ķ1Z j pt,sq ķ2Zℓrt,ss

ε k1,k2 j,ℓ I k1,k2 j,ℓ , (54) ķ1Z ¡ 
j pt,sq ķ2Zℓrt,ss

ε k1,k2 j,ℓ I k1,k2 j,ℓ , (55) 
ķ1Zjrt,ss ķ2Zℓrt,ss

ε k1,k2 j,ℓ I k1,k2 j,ℓ (56) 
on Ω ¦ r Ω. Let us consider (54) with ℓ j, the argument for ℓ j 1 and (55) being similar. Using again Lemmata 2.1 and 3.6, we have on Ω ¦ r

Ω, since for all k 2 Z j rt, ss, |k 2 | ¤ 2 j , for j ¥ n, |(54)| ¤ CC 1 ķ1Z j pt,sq ķ2Zjrt,ss 2 ¡j p3 |k 1 ¡ k 2 |q 4 logp3 j |k 1 |q logp3 j |k 2 |q ¤ CC 1 ķ1Z j pt,sq ķ2Zjrt,ss 2 ¡j c j p3 k 2 ¡ k 1 q 4 logp3 j |k 1 |q ¤ CC 1 ķ1Z j pt,sq V m0 2 ¡j c j p3 2 j mints, tu m ¡ k 1 q 4 logp3 j |k 1 |q ¤ CC 1 ķ1Z j pt,sq 2 ¡j j » V 0 dy p2 2 j mints, tu y ¡ k 1 q 4 logp3 j |k 1 |q ¤ CC 1 2 ¡j j ķ1Z j pt,sq logp3 j |k 1 |q p2 2 j mints, tu ¡ k 1 q 3 ¤ CC 1 2 ¡j j logp3 j 2 j mints, tuq ¤ CC 1 2 ¡j j. (57) It follows that § § § § § § j¥n 2 jp2¡H1¡H2q j 1 ļj ķ1Z j pt,sq ķ2Zℓrt,ss ε k1,k2 j,ℓ I k1,k2 j,ℓ § § § § § § ¤ CC 1 2 np1¡H1¡H2q n and, similarly, § § § § § § j¥n 2 jp2¡H1¡H2q j 1 ļj ķ1Z ¡ j pt,sq ķ2Zℓrt,ss ε k1,k2 j,ℓ I k1,k2 j,ℓ § § § § § § ¤ CC 1 2 np1¡H1¡H2q n.
The bound for (56) is obtained using ( 47) and ( 46) which lead to § § § § § § j¥n

2 jp2¡H1¡H2q j 1 ļj ķ1Zjrt,ss ķ2Zℓrt,ss ε k1,k2 j,ℓ I k1,k2 j,ℓ § § § § § § ¤ CC 2 j¥n 2 jp 3 2 ¡H1¡H2q 2 ¡ n 2 pj ¡ n 1qn ¤ CC 2 2 np 3 2 ¡H1¡H2q 2 ¡ n 2 n CC 2 2 np1¡H1¡H2q n, as 3 2 H 1 H 2 .
Putting all of these together we get that ( 48) is bounded from above by

C maxtC 1 , C 2 u|t ¡ s| H1 H2¡1 log |t ¡ s| ¡1
on Ω ¦ r Ω.

We now prove the main result of this subsection.

Proof of Proposition 3.5. Let us consider ω in the event Ω ¦ r Ω of probability 

¤ § § § § § § j 1 n j 2 n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 pωqI k1,k2 j1,j2 rt, ss § § § § § § § § § § § § j 1 n j 2¥n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 pωqI k1,k2 j1,j2 rt, ss § § § § § § § § § § § § j 1¥n j 2 n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 pωqI k1,k2 j1,j2 rt, ss § § § § § § § § § § § § j 1¥n j 2¥n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 pωqI k1,k2 j1,j2 rt, ss § § § § § §
.

The rst sum is bounded from above by Lemmata 3.6 and 3.7, the second and the third one are bounded from above by Lemmata 3.6 and 3.12 and the last one is bounded from above by Lemma 3.19.

Remark 3.20. Starting from now and until the end of this section, one can reduce our attention to the process 6 8

7 

R I H1,H2 ptq V j 1 0 V j 2 0 pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 I k1,k2
§ § § § § j 1 0 j 2 0 pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 I k1,k2 j1,j2 rt, ss § § § § § § ¤ C|t ¡ s|, § § § § § § j 1 0 j 2¡0 pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 I k1,k2 j1,j2 rt, ss § § § § § § ¤ C|t ¡ s| ¡H2 log |t ¡ s| ¡1 § § § § § § j 1¡0 j 2 0 pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 I k1,k2 j1,j2 rt, ss § § § § § § ¤ C|t ¡ s| ¡H1 log |t ¡ s| ¡1
and we conclude because

H 1 H 2 ¡ 1 mintH 1 , H 2 u 1.

Ordinary points

Let us now go to the almost sure niteness of the limit [START_REF] Ayache | Wavelet-type expansion of the generalized Rosenblatt process and its rate of convergence[END_REF] for almost every point. The main idea behind our method is that wavelets which contribute the most in |R H1,H2 pt, ¤q¡R H1,H2 ps, ¤q| are the ones with associated dyadic intervals close to the interval rt, ss. Thus, we aim at proving the following Proposition. As in [START_REF] Esser | Slow, ordinary and rapid points for Gaussian Wavelets Series and application to Fractional Brownian Motions[END_REF], for all j N, we denote by k j ptq the unique integer such that t rk j ptq2 ¡j , pk j ptq 1q2 ¡j q. In other words, k j ptq spλ j ptqq. If t p0, 1q is xed, applying Lemma 3.6 to the sequence of random variables pξ k I

1 ,k I 2 j1,j2 q pj1,j2,k I 1 ,k I 2 qZ 4 dened by ξ k I 1 ,k I 2 j1,j2 ε k I 1 k j 1 ptq ,k I 2 k j 2 ptq j1,j2
we deduce the existence of Ω ¦ t , an event of probability 1, and C t,1 , a positive random variable with nite moment of any order, such that, for all ω Ω ¦ t and

for each pj 1 , j 2 , k 1 , k 2 q Z 4 , one has |ε k1,k2 j1,j2 pωq| ¤ C t,1 pωq logp3 |j 1 | |k 1 ¡ k j1 ptq|q logp3 |j 2 | |k 2 ¡ k j2 ptq|q. ( 58 
)
In view of this fact, let us set, for t p0, 1q and pj

1 , j 2 , k 1 , k 2 q N 2 ¢ Z 2 L k1,k2
j1,j2 ptq

logp3 j 1 |k 1 ¡ k j1 ptq|q logp3 j 2 |k 2 ¡ k j2 ptq|q.
In what follows, we show how to modify Lemmata 3.7 to 3.19 from the previous subsection, using L k1,k2 j1,j2 ptq instead of L k1,k2 j1,j2 . Before all, we need the following Lemma which is inspired by results from [START_REF] Esser | Slow, ordinary and rapid points for Gaussian Wavelets Series and application to Fractional Brownian Motions[END_REF] that can be extended in our case. Lemma 3.22. For all L ¡ 2 there exists a constant C L ¡ 0 such that, for all n N and t, s p0, 1q such that 2 ¡n¡1 |t ¡ s| ¤ 2 ¡n , for all x rs, ts 1. For all 0 ¤ j n ķZ

logp3 j |k ¡ k j ptq| p3 |2 j x ¡ k|q L ¤ C L logp3 jq.
2. For all j ¥ n ķZ

logp3 j |k ¡ k j ptq| p3 |2 j x ¡ k|q L ¤ C L j ¡ n 1 logp3 jq.
Proof. For all j N, k Z and x rs, ts, observe that |k ¡

k j ptq| ¤ |k ¡ 2 j x| |2 j x ¡ 2 j t| |2 j t ¡ k j ptq| ¤ |k ¡ 2 j x| 2 j¡n 1. ( 59 
)
If 0 ¤ j n, then it follows from (59) that |k ¡ k j ptq| ¤ |2 j x ¡ k| 2 which allow us to write, thanks to inequality (28), Now, if j ¥ n, from (59) we get |k ¡ k j ptq| ¤ |2 j x ¡ k| 2 j¡n 1 and thus, again by inequality (28),

logp3 j |k ¡ k j ptq| p3 |2 j x ¡ k|q ¤ logp3 jq logp5 |2 j x ¡ k|q |2 j x ¡ k| 3 ¤ C logp3 jq.
logp3 j |k ¡ k j ptq| p3 |2 j x ¡ k|q ¤ logp3 2 j¡n 1 q logp3 jq logp3 |2 j x ¡ k|q |2 j x ¡ k| 3 ¤ C I j ¡ n 1 logp3 jq.
where C I :

c 3 sup x¥0 ¢ c logp3 xq x 3 
and the conclusion comes again from the boundedness of the function in (60) for all M ¡ 1 Lemma 3.23. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q we have

0¤j1 n 0¤j2 n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q L k1,k2 j1,j2 ptq § § §I k1,k2 j1,j2 rt, ss § § § ¤ C|t ¡ s| H1 H2¡1 log log |t ¡ s| ¡1 .
Proof. If ξ rs, ts, we get from the fast decay of the fractional antiderivatives of ψ [START_REF] Janson | Gaussian Hilbert Spaces[END_REF] and inequality (58), for 0 ¤ j 1 , j 2 n,

pk1,k2qZ 2 L k1,k2 j1,j2 ptq|ψ H1 p2 j1 ξ ¡ k 1 qψ H2 p2 j2 ξ ¡ k 2 q| ¤ CC 1 £ ķ1Z logp3 j 1 |k 1 ¡ k j1 ptq|q p3 |2 j1 ξ ¡ k 1 |q 4 £ ķ2Z logp3 j 2 |k 2 ¡ k j2 ptq|q p3 |2 j2 ξ ¡ k 2 |q 4
.

These last two sums are bounded by the rst point of Lemma 3.22. Using n¡1 j 10

2 j1p1¡H1q logp3 j 1 q ¤ C2 np1¡H1q logpnq ( 61 
)
instead of ( 27), we conclude, just as in Lemma 3.7, that the desired inequality holds.

Lemma 3.24. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q and 0 ¤ j 1 n ¤ j 2 , the quantities ķ1Z ķ2Z j 2 pt,sq

L k1,k2 j1,j2 ptq § § §I k1,k2 j1,j2 rt, ss § § § (62) ķ1Z ķ2Z ¡ j 2 pt,sq L k1,k2 j1,j2 ptq § § §I k1,k2 j1,j2 rt, ss § § § (63)
are bounded from above by

C j 2 ¡ n 1 logp3 j 1 q logp3 j 2 q2 ¡j2 .
Proof. Let us prove the bound for (62), the argument for (63) being similar. We have, by the rst part of Lemma 3.22, for 0 ¤ j 1 n ¤ j 2 , (62) ¤ C logp3 j 1 q » rs,ts ķ2Z j 2 pt,sq

logp3 j 2 |k 2 ¡ k j2 ptq|q p3 |2 j2 x ¡ k 2 |q 4
dx and, as for all k 2 Z j2 pt, sq and x rs,

ts we have |k 2 ¡ k j2 ptq| ¤ |2 j2 x ¡ k 2 | |k j2 ptq ¡ 2 j2 x| ¤ |2 j2 x ¡ k 2 | 2 j2¡n 1
and, by inequality (28),

logp3 j 2 |k 2 ¡ k j2 ptq|q ¤ C j 2 ¡ n 1 logp3 j 2 q logp3 |2 j2 x ¡ k 2 |q
it just remains us to use the bound [START_REF] Loosveldt | Generalized spaces of pointwise regularity: Toward a general framework for the WLM[END_REF] to write

(62) ¤ C j 2 ¡ n 1 logp3 j 1 q logp3 j 2 q2 ¡j2 . ( 64 
)
Lemma 3.25. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q and 0 ¤ j 1 n ¤ j 2 , the quantities ķ1Z ķ2Zj 2 rt,ss

L k1,k2 j1,j2 ptq § § § § § » mints,tu ¡V ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § § (65) ķ1Z ķ2Zj 2 rt,ss L k1,k2 j1,j2 ptq § § § § § » V maxts,tu ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § § (66)
are bounded from above by

C logp3 j 1 q logp3 j 2 q j 2 ¡ n 12 ¡j2
. Proof. Again we assume s ¤ t. First, using the fast decay of the fractional antiderivatives of ψ (24), ( 65) is bounded from above by » s ¡V ķ1Z ķ2Zj 2 rt,ss

logp3 j 1 |k 1 ¡ k j1 ptq|q p3 |2 j1 x ¡ k 1 |q 4 logp3 j 2 |k 2 ¡ k j2 ptq|q p3 |2 j2 x ¡ k 2 |q 4
dx.

(

) 67 
Observe that, for all k 1 Z, k 2 Z j2 rt, ss and x p¡V, ss, we have, as

j 1 n ¤ j 2 , |2 j1 x ¡ k j1 ptq| ¤ |2 j1 x ¡ 2 j1¡j2 k 2 | |2 j1¡j2 k 2 ¡ 2 j1 t| |2 j1 t ¡ k j1 ptq| ¤ |2 j2 x ¡ k 2 | 2 and therefore |k 1 ¡ k j1 ptq| ¤ |2 j1 x ¡ k 1 | |2 j2 x ¡ k 2 | 2 while |k 2 ¡ k j2 ptq| ¤ |k 2 ¡ 2 j2 t| |2 j2 t ¡ k j2 ptq| ¤ 2 j2¡n 1.
it allows to write, thanks to inequality [START_REF] Lakhel | Existence, uniqueness and stability of impulsive stochastic neutral functional dierential equations driven by rosenblatt process with varying-time delays[END_REF], the boundedness of the function (60) and inequality [START_REF] Maejima | On the distribution of the Rosenblatt process[END_REF] |(67

)| ¤ C logp3 j 1 q logp3 j 2 q j 2 ¡ n 1 » s ¡V ķ2Zj 2 rt,ss dx p3 |2 j2 x ¡ k 2 |q 3 ¤ C logp3 j 1 q logp3 j 2 q j 2 ¡ n 12 ¡j2 .
We bound the second sums in the same way. Lemma 3.26. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q, the quantities

0¤j1 n j 2¥n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q L k1,k2 j1,j2 ptq|I k1,k2 j1,j2 rt, ss| j 1 ¥n 0¤j2 n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q L k1,k2
j1,j2 ptq|I k1,k2 j1,j2 rt, ss| are bounded from above by

C|t ¡ s| H1 H2¡1 log log |t ¡ s| ¡1 .

Proof. The proof is exactly the same as the one of Lemma 3.12 excepted that we use Lemmata 3.24 and 3.25 instead of Lemmata 3.10 and 3.11 respectively and that we conclude using again (61) instead of ( 27) and

V j 2 n 2 ¡j2H2 j 2 ¡ n 1 logp3 j 2 q ¤ C I 2 ¡nH2
logpnq.

(

) 68 
instead of [START_REF] Oksendal | Stochastic dierential equations: an introduction with applications[END_REF].

Lemma 3.27. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q and n ¤ j 1 ¤ j 2 , the quantities (62) and ( 63) are bounded from above by

C j 2 ¡ n 1 j 1 ¡ n 1 logp3 j 1 q logp3 j 2 q2 ¡j2 .
Proof. The proof is exactly the same as for Lemma 3.24 except that, here, we use the second part of Lemma 3.22 instead of the rst one.

Lemma 3.28. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q and n ¤ j 1 ¤ j 2 the quantities (65) and (66) are bounded from above by

C j 1 ¡ n 1 j 2 ¡ n 1 logp3 j 1 q logp3 j 2 q2 ¡j2 .
Proof. The proof is exactly the same as for Lemma 3.25 except that, here, we use the second part of Lemma 3.22 instead of the rst one.

Just as we did for the rapid points, it remains us to bound the random variables Ξ j pλq. Here, we don't want anymore to show the existence of an uniform modulus but only a pointwise modulus of continuity at a xed point of interest t. Therefore, we just have to bound, for all n N the random variables Ξ j pλq for j ¥ n and λ 3λ n ptq. We thus have the following result. Lemma 3.29. For all t p0, 1q, there exist an event Proof. Again, we use the split (49) and we only do the details for the rst sum.

Ω t of
We deal with the series (50) and (51) in the same way that in Lemma 3.19 but using inequality (58) and Lemmata 3.27 and 3.28 and nally inequality (68).

For (52), rst, by Lemma 3.28 and inequality (58), we have, on Ω ¦

t Ω t § § § § § § j 1¥n j2¥j1 ķ1Z ķ2Zj 2 rt,ss 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 » s ¡V ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § § § ¤ CC t,1 j 1 ¥n j2¥j1 2 j1p1¡H1q 2 ¡j2H2 j 1 ¡ n 1 j 2 ¡ n 1 logp3 j 1 q logp3 j 2 q ¤ CC 1 2 np1¡H1¡H2q logpnq. (71) We bound § § § § § § j
1 ¥n j2¥j1 ķ1Z ķ2Zj 2 rt,ss

2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 » s ¡V ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § § §
on Ω ¦ t Ω t exactly in the same way.

To nish the proof, again, we have to bound (54), ( 55) and (56) for ℓ tj, j 1u (with j ¥ n) on Ω ¦ t Ω t . For (54), in the case ℓ j, one can note that, for all k 2 Z j rt, ss, |k 2 ¡ k j ptq| ¤ 2 j¡n 1 and, for all k 1 Z j pt, sq, |k 1 ¡ k j ptq| ¤ |2 j mintt, su ¡ k 1 | 2 j¡n 1. Using the same tricks as in (57), we get, on Ω ¦

t Ω t |(54)| ¤ CC t,1 pj ¡ n 1q logp3 jq2 ¡j ķ1Z j pt,sq 1 p2 |2 j mints, tu ¡ k 1 |q 3 ¤ Cpj ¡ n 1q logp3 jq2 ¡j .
The bounds for (55) and in the case ℓ j 1 are obtained in the same way.

Finally to bound (56), we use (69) and [START_REF] Wendt | Wavelet leaders and bootstrap for multifractal analysis of images[END_REF] 

§ § § § § § 0¤j1 n 0¤j2 n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 pωqI k1,k2 j1,j2 rt, ss § § § § § § § § § § § § 0¤j1 n j 2¥n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 pωqI k1,k2 j1,j2 rt, ss § § § § § § § § § § § § j 1¥n 0¤j2 n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 pωqI k1,k2 j1,j2 rt, ss § § § § § § § § § § § § j 1¥n j 2 ¥n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 pωqI k1,

Slow points

In this section, we aim at showing that the generalized Rosenblatt process admits slow points: we prove the following Proposition.

Proposition 3.31. There exists an event Ω slo of probability 1 such that for all ω Ω slo there exist t p0, 1q such that lim sup sÑt |R H1,H2 pt, ωq ¡ R H1,H2 ps, ωq| |t ¡ s| H1 H2¡1 V.

(72)

In [START_REF] Kahane | of Cambridge Studies in Advanced Mathematics[END_REF], Kahane described a procedure to insure the existence of slow points for the Brownian motion. This procedure was then generalized in [START_REF] Esser | Slow, ordinary and rapid points for Gaussian Wavelets Series and application to Fractional Brownian Motions[END_REF] to t for 1 We recall that R I 

and, for all 1 ¤ l Λ l j ptq tλ Λ j , : 2 mpl¡1q |spλptqq ¡ spλq| ¤ 2 ml u,

then, for all λ Λ l j ptq we have

|ε λ | ¤ 2 l µ, (75) 
where ε λ is the random variable

2 j 2 » R ψ λ pxq dBpxq.
In this procedure, if µ N,for all j, l N 0 and λ Λ j , λ r0, 1s, we dene Λ j,l pλq tλ I Λ j , : |spλq ¡ spλ I q| ¤ 2 ml u and the random set S µ j,l tλ I Λ j , : 2 l µ |ε λ I| ¤ 2 l 1 µu.

Finally we consider the random set I µ j tλ Λ j , λ r0, 1s : dl N 0 , Λ j,l pλq S µ j,l ∅u, and show that almost surely, there exists µ N such that low,J q J is a decreasing sequence of compact sets. To do so, let us denote by 2S µ low,J the sets of dyadic intervals of scale J 1 obtained by cutting in two the remaining intervals2 in S µ low,J and remark that S µ low,J 1 is obtained from 2S µ low,J by removing the dyadic intervals λ such that Λ J 1,l pλq S µ J 1,l $ ∅ for a l N 0 . But now, if ξ N p0, 1q, we set, for all such a l p l pµq Pp2 l µ |ξ| ¤ 2 l 1 µq.

and note that, if N is the number of intervals of S µ low,J , counting the number of intervals in 2S µ low,J S µ J 1,l is a binomial random variable of parameter 2N and p l pµq and this number is thus bounded by 2N pp l pµq pl 1q p l pµqp1 ¡ p l pµqqq on an event of probability 1 ¡ pl 1q ¡2 N ¡1 . Therefore, to pass from S µ low,J to S µ low,J 1 we remove at most 2N V ļ0 p2 ml 1 1qpp l pµq pl 1q p l pµqp1 ¡ p l pµqqq intervals with probability greater than 1 ¡ N ¡1 . But if µ is large enough, as p l pµq is of order e ¡p2 l µq 2

2 l µ , one can make sure that this last term is bounded by

N 2 . So, if N µ
J is the random variable counting the number of subintervals of S µ low,J , we have

PpN µ J 1 ¥ 3 2 N µ J |N µ J N q ¥ 1 ¡ N ¡1
which leads to the recursive formula PpN µ J 1 ¥ p 3 2 q J 1 q ¥ p1 ¡ p 2 3 q J qPpN µ J ¥ p 3 2 q J q, dJ N 0 , see [18, Lemma 3.6 and Theorem 3.7.]. Finally, we deduce

P ¤ µ £ JN0 pN µ J ¥ 1q ¨ 1. (76) 
Moreover, we can show that, in this case, S µ low p0, 1q $ ∅. If α ¡ 0, applying this procedure with 1 m α gives us that any point t S µ low p0, 1q is a slow point of the fractional Brownian motion of exponent α.

From formulas ( 17) and ( 18), we see that this procedure is also useful to bound the random variables appearing in the expansion [START_REF] Flandrin | Time-frequency / Time-scale analysis[END_REF] of the generalized Rosenblatt process. But, from the proofs of Propositions 3.5 and 3.21 we know that this is not sucient and we also need to give a bound for the random variables Ξ j pλq, for λ 3λ n ptq, n N and j ¥ n. Such dyadic intervals are precisely the ones in the set Λ n,0 pλ n ptqq and this fact forces us to consider the following modication of the procedure. For all j N, if l $ 0, the sets S µ j,l remain untouched as well as its associated probability p l pµq while for l 0 we set S µ j,0 tλ I Λ j , λ I r0, 1s : hj I ¥ j Ξ j Ipλ I q ¡ pj I ¡ j 1qµu, with associated probability (which only depends on µ) p 0 pµq Pphj I ¥ j Ξ j Ipλq ¡ pj I ¡ j 1qµq. As Ξ j Ipλ 1 q is independent of Ξ j Ipλ 2 q as soon as λ 1 λ 2 ∅, for all J N, if N is again the number of dyadic intervals of S µ low,J , the number of such intervals in 2S µ low,J S µ J 1,0 is still a binomial random variable of parameter 2N and p 0 pµq. Therefore If µ is large enough, using Theorems 3. [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF] 74), here after λ 1 (resp. λ 2 ) will always stand for the dyadic interval rk 1 2 ¡j1 , pk 1 1q2 ¡j1 q (resp. rk 2 2 ¡j2 , pk 2 1q2 ¡j2 q) and ψ λ1 (resp. ψ λ2 ) will be the associated antiderivative of wavelet ψ H1 p2 j1 ¤¡k 1 q (resp. ψ H2 p2 j2 ¤ ¡k 2 q) and I λ1,λ2 rt, ss will stand for I k1,k2 j1,j2 rt, ss. Finally, ε λ1,λ2

will stand for ε k1,k2 j1,j2 . If t p0, 1q, let py λ ptqq λΛ be the sequence dened by y λ ptq 2 l if λ Λ l j ptq.

Note that, if we apply the preceding procedure, we nd Ω slo an event of probability 1 such that, for all ω Ω slo , there exists µ for which S µ low p0, 1q $ ∅. Proof. If ξ rs, ts and λ λ l j ptq, for 0 ¤ j n and l ¥ 1, |2 j ξ ¡ spλq| ¥ |spλptqq ¡ spλq| ¡ 2 ¡ 2 mpl¡1q ¡ 2 and so, using the fast decay of the fractional antiderivatives of ψ [START_REF] Janson | Gaussian Hilbert Spaces[END_REF] and the denition of py λ q λΛ , we get for 0 ¤ j 1 , j 2 n λ1Λj 1 ,λ2Λj 2 y λ1 ptqy λ2 ptq|ψ λ1 pξqψ λ2 pξq| pl1,l2qN 2 0 λ1Λ l 1 j 1 ptq λ2Λ l 2 j 2 ptq In what follows, we use these notations instead of the one given in Denition 3.8:

y λ1 ptqy λ2 ptq|ψ λ1 pξqψ λ2 pξq| ¤ C pl1,l2qN0 λ1Λ l 1 j 1 ptq λ2Λ l 2 j 2 ptq 2 l1 l2 p3 |2 j1 ξ ¡ k 1 |q 4 p3 |2 j2 ξ ¡ k 2 |q 4 ¤ C pl1,l2qN0 λ1Λ l 1 j 1 ptq λ2Λ l 2 j 2 ptq 2 l1 l2 2 ¡mpl1 l2q p3 |2 j1 ξ ¡ k 1 |q 3 p3 |2 j2 ξ ¡ k 2 |q 3 ¤ C ķ1Z 1 p3 |2 j1 ξ ¡ k 1 |q 3 ķ2Z 1 p3 |2 j2 ξ ¡ k 2 |q 3 ¤ C.
Λ j2 pt, sq tλ 2 Λ j2 : spλ 2 q Z j2 pt, squ, Λ ¡ j2 pt, sq tλ 2 Λ j2 : spλ 2 q Z ¡
j2 pt, squ, Λ j2 rt, ss tλ 2 Λ j2 : spλ 2 q Z j2 rt, ssu. Lemma 3.33. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q and 0 ¤ j 1 n ¤ j 2 , the quantities λ1Λj 1 λ2Λ j 2 pt,sq 

But, for all x D l j2 , using the same method as in (79), but splitting the sums according to the set Λ l1 j1 pxq and Λ l2 j2 pxq on which y λ1 ptqy λ2 ptq ¤ 2 l l1 l2 1 we get λ1Λj 1

λ2Λ j 2 pt,sq |ε λ1,λ2 ||ψ λ1 pxqψ λ2 pxq| ¤ C2 l 1 λ1Λj 1 1 p3 |2 j1 x ¡ k 1 |q 3 λ2Λ j 2 pt,sq 1 p3 |2 j2 x ¡ k 2 |q 3 ¤ C2 l 1 λ2Λ j 2 pt,sq 1 p3 |2 j2 x ¡ k 2 |q 3 .
(83)

Finally, using the techniques in [START_REF] Loosveldt | Generalized spaces of pointwise regularity: Toward a general framework for the WLM[END_REF], we get

(80) ¤ C2 1 m pj2¡nq 2 ¡j2 .
Lemma 3.34. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q and 0 ¤ j 1 n ¤ j 2 , the quantities λ1Λj 1 λ2Λj 2 rt,ss

y λ1 ptqy λ2 ptq § § § § § » mints,tu ¡V ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § § (84) λ1Λj 1 λ2Λj 2 rt,ss y λ1 ptqy λ2 ptq § § § § § » V maxts,tu ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § § (85)
are bounded by

C2 1 m pj2¡nq 2 ¡j2 .
Proof. Again, we assume s ¤ t. If x p¡V, ss is such that λ j1 pxq Λ l j1 psq, we have, for all λ 1 Λ l1 j1 pxq and λ 2 Λ j2 rt, ss Λ l2 j2 psq (with j 1 n ¤ j 2 q,

y λ1 ptqy λ2 ptq p3 |2 j1 x ¡ k 1 |q 4 p3 |2 j2 x ¡ k 2 |q 4 ¤ C 2 1 m pj2¡nq l l1 l2 1 µ 2 p3 |2 j1 x ¡ k 1 |q 4 p3 |2 j2 x ¡ k 2 |q 5 ¤ C 2 1 m pj2¡nq l 1 p3 |2 j1 x ¡ k 1 |q 3 p3 |2 j2 x ¡ k 2 |q 4 ¤ C 2 1 m pj2¡nq p3 |2 j1 x ¡ k 1 |q 3 p3 |2 j2 x ¡ k 2 |q 3 (86) because 3 |2 j2 x ¡ k 2 | 3 k 2 ¡ 2 j2 x ¥ 2 2 j1 ps ¡ xq ¥ 2 mpl¡1q .
Thus we get, using the fast decay of the fractional antiderivatives of the wavelet before splitting the integral over p¡V, ss into the integral over the sets p¡V, ss D l j1 psq, in the same way as in (82), using (86) and nally the boundedness of the function (60) for M 3 and inequality [START_REF] Maejima | On the distribution of the Rosenblatt process[END_REF] 

λ1Λj 1 λ2Λj 2 rt,ss » s ¡V |ψ λ1 pxqψ λ2 pxq| dx ¤ C2 1 m pj2¡nq » s ¡V λ1Λj 1 λ2Λj 2 rt,ss dx p3 |2 j1 x ¡ k 1 |q 3 p3 |2 j2 x ¡ k 2 |q 3 ¤ C2 1 m pj2¡nq » s ¡V λ2Λj 2 rt,ss dx p3 |2 j2 x ¡ k 2 |q 3 ¤ C2 1 m pj2¡nq 2 ¡j2 .
In the same way we get λ1Λj 1 λ2Λj 2 rt,ss 

y λ1 ptqy λ2 ptq § § § § § » V maxtt,su ψ H1 p2 j1 x ¡ k 1 qψ H2 p2 j2 x ¡ k 2 q dx § § § § § ¤ C2 ¡j2 . ( 87 
y λ1 ptqy λ2 ptqI λ1,λ2 § § § § § § ¤ C2 ¡n § § § § § § § V ļ 10 λ1Λ l 1 
n¡1 ptq λ2Λnrt,ss

2 l1 p3 |2k 1 ¡ k 2 |q 4 § § § § § § § ¤ C2 ¡n § § § § § § λ1Λn¡1 λ2Λnrt,ss 1 p3 |2k 1 ¡ k 2 |q 3 § § § § § § ¤ C2 ¡n . ( 88 
)
Lemma 3.36. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q and n ¤ j 1 ¤ j 2 the quantities (80) and (81) are bounded by

C2 1 m pj1¡nq 2 1 m pj2¡nq 2 ¡j2 .
Proof. The proof is essentially the same as for Lemma 3.33 excepted that, now, as n ¤ j 1 ¤ j 2 , we remark that if x D l j2 ptq for a 0 ¤ l ¤ 1 m pj 2 ¡ nq then x D l I j1 ptq for a 0 ¤ l I ¤ 1 m pj 1 ¡ nq. Lemma 3.37. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q and n ¤ j 1 ¤ j 2 the quantities (84) and ( 85) are bounded by

C2 1 m pj1¡nq 2 1 m pj2¡nq 2 ¡j2 .
Proof. The proof is essentially the same as for Lemma 3.34 and the only modication is the same as in the proof of Lemma 3.36. This time, the bound for the random variables Ξ j pλq are already considered in the construction and we can directly go to the proof of the main Proposition of this subsection. 

¤ § § § § § § 0¤j1 n 0¤j2 n λ1Λj 1 ,λ2Λj 2 2 j1p1¡H1q 2 j2p1¡H2q ε λ1,λ2 pωqI λ1,λ2 rt, ss § § § § § § § § § § § § 0¤j1 n j 2 ¥n λ1Λj 1 ,λ2Λj 2 2 j1p1¡H1q 2 j2p1¡H2q ε λ1,λ2 pωqI λ1,λ2 rt, ss § § § § § § § § § § § § j 1¥n 0¤j2 n λ1Λj 1 ,λ2Λj 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 pωqI λ1,λ2 rt, ss § § § § § § § § § § § § j 1¥n j 2¥n λ1Λj 1 ,λ2Λj 2 2 j1p1¡H1q 2 j2p1¡H2q ε λ1,λ2 pωqI λ1,λ2 rt, ss § § § § § § . (89) 
As inequality (78) holds, we use Lemma 3.32 to bound the rst sum, and Lemma 3.35 to bound the second and the third one. For the last sum, from inequality (78) and Lemmata 3.36 and 3.37, it just remains us to nd bound for the random variables (54), ( 55) and (56)with ℓ tj, j 1u on Ω slo . For (54) with ℓ j , we have, as in (88) and then (57

) § § § § § § λ1Λ j pt,sq λ2Λjrt,ss ε λ1,λ2 pωqI λ1,λ2 § § § § § § ¤ C2 ¡j 2 2 m pj¡nq µ 2 § § § § § § λ1Λ j pt,sq λ2Λjrt,ss 1 p3 |2k 1 ¡ k 2 |q 3 § § § § § § ¤ C2 ¡j 2 2 m pj¡nq µ 2 .
The same bound holds when we consider the sums over λ 1 Λ ¡ j pt, sq or λ 2 Λ j 1 rt, ss, i.e. for(54) and (55). Finally the construction and especially (77)

insures us that § § § § § § λ1Λjrt,ss λ2Λjrt,ss ε λ1,λ2 pωqI λ1,λ2 § § § § § § ¤ Cpj ¡ n 1q2 ¡j¡n 2 µ.
Therefore, the last term in (89) is bounded from above by

Cµ 2 £ j 1¥n 2 j1p1¡H1q 2 1 m pj1¡nq j2¥j1 2 ¡j2H2 2 1 m pj2¡nq j¥n 2 jp 3 2 ¡H1¡H2q pj ¡ n 1q2 ¡ n 2 ¤ Cµ 2 £ j 1¥n 2 j1p1¡H1¡H2q 2 2 m pj1¡nq 2 np 3 2 ¡H1¡H2q 2 ¡ n 2 ¤ Cµ 2 2 np1¡H1¡H2q ¤ Cµ 2 |t ¡ s| H1 H2¡1
and thus inequality (72) holds.

Lower bounds for wavelet leaders

In this section, we show that the limits ( 5) and ( 6) are strictly positive. In [START_REF] Ayache | Dierent possible behaviors of wavelet leaders of the Brownian motion[END_REF],

the authors used the independence of the increments of the Brownian motion to bound from below its wavelet leaders. But, for the (generalized) Rosenblatt process this nice feature is not met anymore. Nevertheless, following an idea by Ayache in a close but dierent context 3 [START_REF] Ayache | Lower bound for local oscillations of Hermite processes[END_REF], we decompose the wavelet coecients of the generalized Rosenblatt process in two parts. We gain some independence properties in the rst part while the second is, in some sense, negligible compared to the rst, see Proposition 4.7 below. All along this section,

C stands for a deterministic constant whose value may change from a line to another but does not depend on any relevant quantities, and in order to ease notations we set C H1,H2 : 1

Γ H 1 ¡ 1 2 ¨Γ H 2 ¡ 1 2 änd for s, x 1 , x 2 R f H1,H2 ps, x 1 , x 2 q ps ¡ x 1 q H1¡3{2 ps ¡ x 2 q H2¡3{2
Let Ψ be a wavelet with compact support included in r¡N, N s. Using formula (12) at t k{2 j , the wavelet coecient c j,k of the generalized Rosenblatt 3 In [START_REF] Ayache | Lower bound for local oscillations of Hermite processes[END_REF], Ayache does not consider wavelets at all but directly work on Wiener-Itô integrals 35 process is given by

c j,k » N ¡N R H1,H2 ¢ x k 2 j ¡ R H1,H2 ¢ k 2 j & Ψpxqdx c H1,H2 » N ¡N Ψpxq » I R 2 » x k 2 j k 2 j
f H1,H2 ps, x 1 , x 2 q ds dBpx 1 q dBpx 2 q dx c H1,H2

» I R 2 » N ¡N Ψpxq » x k 2 j k 2 j f H1,H2 ps, x 1 , x 2 q ds dx dBpx 1 q dBpx 2 q c H1,H2 » I A » N ¡N Ψpxq » x k 2 j k 2 j
f H1,H2 ps, x 1 , x 2 q ds dx dBpx 1 q dBpx 2 q

where A :

$ ¡V, k N 2 j $ 2
, because, as soon as x r¡N, N s and s rk2 ¡J , pk N q2 ¡j s, f ps, x 1 , x 2 q vanishes for all x 1 , x 2 outside of A. Denition 4.1. Given an integer M ¥ 0, c j,k can be written as following

c j,k c j,k M } c j,k M where c j,k M c H1,H2 » I λ M j,k » N ¡N Ψpxq » x k 2 j k 2 j f H1,H2 ps, x 1 , x 2 q ds dx dBpx 1 q dBpx 2 q (90) with λ M j,k : & k ¡ N M 2 j , k N 2 j & 2 and } c j,k M c H1,H2 » I Azλ M j,k » N ¡N Ψpxq » x k 2 j k 2 j
f H1,H2 ps, x 1 , x 2 q ds dx dBpx 1 q dBpx 2 q. » I 

I M » N ¡N ψpxq » x 0 f H1,H2 ps, x 1 , x 2 q dsdx dBpx 1 qdBpx 2 q with I M p¡MN, N s 2 , while } c j,k M is equal in law to the random variable c H1,H2 2 ¡jpH1 H2¡1q » I I I M » N ¡N ψpxq » x 0 f H1,H2 ps, x 1 , x 2 q dsdx dBpx 1 qdBpx 2 q with I I M p¡V, N s 2 zp¡MN, N s 2 .
Indeed, if pf j q j is a sequence of real-valued step functions on R 2 ztpx, xq : x Ru which converge to the integrand with respect to dBpx 1 qdBpx 2 q in (90) then ³ I R 2 f j px 1 , x 2 q dBpx 1 qdBpx 2 q is a polynomial function of a nite number of increments Bpt 2 q¡Bpt 1 q of the Brownian motion for some t 1 , t 2 λ M j,k . Thus ε j,k M is measurable with respect to the σ-algebra generated by these increments

σ M j,k : σ tBpt 2 q ¡ Bpt 1 q : t 1 , t 2 λ M j,k u ¨.
Using the independence of the increments of the Brownian motion, one concludes that σ M j,k and σ M j I ,k I are independent as soon as condition ( 91) is met and so the same holds for 

λ M ji,ki λ M j l ,k l ∅ for all 1 ¤ i l ¤ n. (92) 
This leads to dening the following condition.

Denition 4.5. Let n ¥ 2. We say λ j1,k1 , . . . , λ jn,kn satisfy condition pC M q if (92) is satised.

From Remark 4.2, we know that p ε j,k M q λΛ is a family of identically distributed second order Wiener chaos random variables. Moreover, ε j1,k1 M , . . . , ε jn,kn M are independent as soon as λ j1,k1 , . . . , λ jn,kn satises pC M q. The following proposition provides a lower bound (independent of M ) for the tail behavior of the random variable

ε j,k M .
Proposition 4.6. Let M N and y R . If M and y are large enough, then the exists a deterministic constant c 2 ¡ 0 (independent of M ) such that

P ¡ | ε j,k M | ¡ y © ¥ exp p¡c 2 yq (93) 
for all pj, kq N ¢ Z Proof. Fix y R (large enough). Our aim is to prove the existence of lower bound for P

¡ | r ε λ M | ¡ y © which is independent of M .
To this end, we start by proving the following lemma Lemma 4.7. There exist three strictly positive deterministic constants C Ψ,H1,H2 , C I Ψ,H1,H2 and C ¦ Ψ,H1,H2 such that for all pj, kq N ¢ Z and M ¥ 2 one has

C Ψ,H1,H2 2 ¡jpH1 H2¡1q ¤ c j,k M L 2 pΩq ¤ C I Ψ,H1,H2 2 ¡jpH1 H2¡1q } c j,k M L 2 pΩq ¤ C ¦ Ψ,H1,H2 2 ¡jpH1 H2¡1q M maxtH1,H2u¡1
Proof. Let us assume, w.l.o.g. that H 1 ¥ H 2 . We dene the functions

Φ 1 : px 1 , x 2 q Þ Ñ » N ¡N Ψpxq » x 0 f H1,H2 ps, x 1 , x 2 qds dx, Φ 2 : px 1 , x 2 q Þ Ñ » N ¡N Ψpxq » x 0 f H1,H2 ps, x 2 , x 1 qds dx,
and the symmetric function 4

Φ 1 2 pΦ 1 Φ 2 q .
By Remark 4.2 we have, using the Wiener isometry 5 [42, Section 5],

c j,k M L 2 pΩq c 2c H1,H2 2 ¡jpH1 H2¡1q }Φ} L 2 pI M q
and thus it suces to take C Ψ,H1,H2 :

c 2c H1,H2 }Φ} L 2 pr¡N,Ns 2 q C I Ψ,H1,H2 : c 2c H1,H2 }Φ} L 2 pp¡V,Ns 2 q
Now, still using Remark 4.2 and Wiener isometry we have }

c j,k M L 2 pΩq c 2c H1,H2 2 ¡jpH1 H2¡1q }Φ} L 2 pI I M q ¤ c 2c H1,H2 2 ¡jpH1 H2¡1q }Φ 1 } L 2 pI I M q .
Also as

I I M p¡V, N s 2 zp¡MN, N s 2 R ¢ p¡V, ¡MNs ¤ p¡V, ¡MNs ¢ R, we write }Φ 1 } 2 L 2 pI I M q » I I M § § § § § » N ¡N Ψpxq » x 0 ps ¡ x 1 q H1¡ 3 2 ps ¡ x 2 q H2¡ 3 2 ds dx § § § § § 2 dx 1 dx 2 ¤ » I I M £ » N ¡N |Ψpxq| » r0,xs ps ¡ x 1 q H1¡ 3 2 ps ¡ x 2 q H2¡ 3 2 ds dx 2 dx 1 dx 2 ¤ » R » ¡MN ¡V £ » N ¡N |Ψpxq| » r0,xs ps ¡ x 1 q H1¡ 3 2 ps ¡ x 2 q H2¡ 3 2 ds dx 2 dx 1 dx 2 » R » ¡MN ¡V £ » N ¡N |Ψpxq| » r0,xs ps ¡ x 1 q H1¡ 3 2 ps ¡ x 2 q H2¡ 3 2 ds dx 2 dx 2 dx 1 .
Let us deal with the rst term in the last sum, the second one can be treated similarly by permuting the roles of H 1 and H 2 as well as x 1 and x 2 . As the

function y Þ Ñ y H1¡3{2 is decreasing, one gets » R » ¡MN ¡V £ » N ¡N |Ψpxq| » r0,xs ps ¡ x 1 q H1¡ 3 2 ps ¡ x 2 q H2¡ 3 2 ds dx 2 dx 1 dx 2 ¤ £ » ¡MN ¡V p¡N ¡ x 1 q 2H1¡3 dx 1 ¢ » R £ » N ¡N |Ψpxq| § § § § § » r0,xs ps ¡ x 2 q H2¡3{2 ds § § § § § dx 2 dx 2 .
4 The function Φ is in the fact the symmetrization of Φ 1 .

5 For f a symmetric function in L 2 pR 2 q , and I 2 pfq the second order Wiener-Itô integral of f . One has EpImpf qq 2 2!||f || L 2 pR 2 q .

Concerning the rst integral, we have, as M ¥ 2

» ¡NM ¡V p¡N ¡ x 1 q 2H1¡3 dx 1 1 2 ¡ 2H 1 pNM ¡ N q 2H1¡2 1 2 ¡ 2H 1 N 2H1¡2 pM ¡ 1q 2H1¡2 ¤ c ¤ M 2H1¡2 while, using again the Wiener isometry, » R £ » N ¡N |Ψpxq| § § § § § » r0,xs ps ¡ x 2 q H2¡3{2 § § § § § dx 2 dx 2 ¤ 2N ∥Ψ∥ V sup xr¡N,N s » R § § § § § » r0,xs ps ¡ x 2 q H2¡3{2 ds § § § § § 2 dx 2 2N ∥Ψ∥ V sup xr¡N,N s E |B H2 pxq ¡ B H2 p0q| 2 % ¤ 2N ∥Ψ∥ V sup xr¡N,N s C H2 p|x|q 2H2 ¤ c,
where B H2 denotes the fractional Brownian motion with parameter H 2 . As a result, there exists a positive constant C ¦ Ψ,H1,H2 such that, as we suppose

H 1 ¥ H 2 , one has } c j,k M L 2 pΩq ¤ C ¦
Ψ,H1,H2 2 ¡jpH1 H2¡1q M H1¡1 .

By Lemma 4.7, one can remark that as M Ñ V, p ε j,k M q M converges in L 2 pΩq to the random variable

ε j,k : c j,k 2 ¡jpH1 H2¡1q with, for all M N, ε j,k ¡ ε j,k M } ε j,k M .
By Theorem 3.15, there exists a constant c 1 ¡ 0 such that, for all λ Λ and y suciently large P p|ε j,k | ¥ yq ¥ exp p¡c 1 yq. Then, for all M N, we have, for all such λ and y

P ¡ | ε j,k
Using Lemma 4.7 and Theorem 3.14 one has

P ¡ |} ε j,k M | ¡ y © ¤ P ¢ p|} c j,k M | ¡ y } c j,k M L 2 pΩq pC ¦ Ψ,H1,H2 q ¡1 M 1¡maxtH1,H2u
¤ expp¡ CpC ¦ Ψ,H1,H2 q ¡1 M 1¡maxtH1,H2u yq. Thus, if M is large enough, one has, as 1 ¡ maxtH 1 , H 2 u ¡ 0, expp¡ CpC ¦ Ψ,H1,H2 q ¡1 M 1¡maxtH1,H2u yq ¤ 1 2 exp p¡2c 1 yq which gives that, for all large enough y, one gets

P ¡ | ε j,k M | ¡ y © ¥ exp p¡c 2 yq (94)
with c 2 : 2c 1 . In the sequel, we will implicitly always consider such large enough M .

In the following two subsections, Lemmata 4.9 and 4.12 follow the lines of Lemmata 3.6 and 3.8 in [START_REF] Ayache | Dierent possible behaviors of wavelet leaders of the Brownian motion[END_REF] respectively, with some subtle modications as the authors in [START_REF] Ayache | Dierent possible behaviors of wavelet leaders of the Brownian motion[END_REF] deal with N p0, 1q random variables while, here, we focus on random variables in the second order Wiener chaos that depend on the parameter M . For the sake of completeness and clarity, we write the proofs in full details.

Ordinary Points

In this section our aim is to prove the following proposition.

Proposition 4.8. There exists Ω ¦

1 Ω with probability 1 such that for all ω Ω ¦ 1 and Lebesgue almost every t p0, 1q one has

lim sup jÑ V d j pt, ωq 2 ¡jpH1 H2¡1q log j ¡ 0. (95)
To this end, as a rst step, let us state the following lemma concerning the random variable r ε λ M . If λ λ j,k is a dyadic interval and m N, S λ,m S j,k,m stands for the nite set of cardinality 2 m whose elements are the dyadic intervals of scale j m included in λ j,k , formally speaking S j,k,m : tλ Λ j m : λ λ j,k u Lemma 4.9. There is a deterministic constant C ¡ 0 such that the following holds: for all M N and for all t p0, 1q, there exists Ω t,1 Ω with probability 1 such that for all ω Ω t,1 there are innitely many j N such that

max λ I S λ,tlog 2 pNMqu 2 λ 3λ j ptq § § § ε λ I M pωq § § § ¥ C log j.
Proof. Let us x t p0, 1q and j N. For any λ S j,kj ptq,m , there exists a unique decreasing nite sequence pI n q 0¤n¤m of decreasing dyadic intervals in the sense of inclusion such that I 0 λ j,kj ptq , I m λ and I n S j,kj ptq,n . Then, dene the sequence pT n q 1¤n¤m of unique dyadic intervals such that I n¡1 I n T n .

Note that for all 1 ¤ n ¤ m, T n 3I n . Moreover, as pI n q 0¤n¤m is decreasing, pT n q 1¤n¤m are pairwisely disjoint. Furthermore, for every n t1, ..., mu, there exist T I n λ jn,kn S Tn,tlog 2 N M u 2 such that ¢

k n ¡ N M 2 jn , k n N 2 jn
T n .

As a consequence, the associated random variables ¡

ε T I n M © 1¤n¤m
are independent as the dyadic intervals pT I n q 1¤n¤m satises condition pC M q in Denition 4.5. Next, for a constant C ¡ 0 to be chosen later, we set

E j,m ptq 4 ω Ω : max 1¤n¤m § § § ε T I n M § § § ¥ C logp2mq B .
Note that, as the random variables ¡ 

ε T I n M © 1¤n¤m are independent, P pE j,m ptqq 1 ¡ m ¹ n1 P ¡ § § § ε T I n M § § § C logp2mq © Recalling (
P pE j,m ptqq ¥ 1 ¡ p1 ¡ expp¡Cc 2 logp2mqq m 1 ¡ £ 1 ¡ ¢ 1 2m Cc2 m ¥ 1 ¡ exp ¢ m p2mq Cc2 1 ¡ exp ¢ m 1¡Cc2 2 Cc2
.

Finally, choosing C such that 0 Cc 2 1, one obtain that pN P pE 2 p ,2 p ptqq V.

Knowing that the events E 2 p ,2 p ptq are independent for all p N, one concludes using Borel-Cantelli Lemma that 

P ¢ lim sup mÑ V E 2 m ,
max λ I S λ,tlog 2 N M u 2 λ 3λ j ptq § § § ε λ I M pωq § § § ¥ C log j.
Concerning the non-independent part of the wavelet coecients, one can state the following Lemma.

Lemma 4.10. There is a deterministic constant C I ¡ 0 such that, for all M N and for all t p0, 1q, there exists Ω t,2 Ω with probability 1 such that for all ω Ω t,2 there exists J N such that, for all j ¥ J,

max λ I S λ,tlog 2 pNMqu 2 λ 3λ j ptq § § § | ε λ I M pωq § § § ¤ C I M maxtH1,H2u¡1 log j.
Proof. Let us x t p0, 1q. For any C I ¡ 0, for all j suciently large and λ 3λ j ptq, we have, by Theorem 3.14, C ¡ C I M maxtH1,H2u¡1 ¡ 0. Let us x t p0, 1q and consider ω Ω t,1 Ω t,2 , where the events, of probability 1, Ω t,1 and Ω t,2 are given by the same Lemmata. For all J N, by Lemma 4.9, there exist j ¥ J and λ I pjq 3λ j ptq of scale j I j tlog N M u 2 such that § § § c λ I pjq M pωq § § § ¥ C2 ¡j I pH1 H2¡1q log j.

P ¡ hλ I S λ,tlog 2 N M u 2 : § § § | ε λ I M § § § ¥ C I M maxtH1,H2u¡1 log j © ¤ λI S λ,tlog 2 N M u 2 P ¡ § § § | ε λ I M q § § § ¥ C I M maxtH1,H2u¡1 log j © ¤ λI S λ,tlog 2 N M u 2 P ¡ § § § | ε λ I M § § § ¥ C I pC ¦ Ψ,H1,H2 q ¡1 }| ε λ I M } L 2 pΩq log j © ¤ 4N M expp¡ CC I pC ¦ Ψ,H1,H2 q ¡1 log jq
If J is large enough, we also have, for all such j ¥ J, by Lemma 4.10, § § § cλ I pjq M pωq § § § ¤ C I M maxtH1,H2u¡1 2 ¡j I pH1 H2¡1q log j.

From this we deduce that

d j pt, ωq ¥ § § c λ I pjq pωq § § ¥ § § § c λ I pjq M pωq § § § ¡ § § § cλ I pjq M pωq § § § ¥2 ¡j I pH1 H2¡1q log j ¡ C ¡ C I M maxtH1,H2u¡1 © ¥2 ¡jpH1 H2¡1q p4NMq 1¡H1¡H2 log j ¡ C ¡ C I M maxtH1,H2u¡1 ©
Therefore, (95) holds true for all t p0, 1q and ω Ω t,1 Ω t,2 . The conclusion follows then from Fubini Theorem.

Rapid Points

In this section our aim is to prove the following proposition. Proposition 4.11. There exists Ω ¦

2 Ω with probability 1 such that, for all ω Ω ¦ 2 , there exist t p0, 1q such that lim sup jÑ V d j pt, ωq 2 ¡jpH1 H2¡1q j ¡ 0. Lemma 4.12. There exists a deterministic constant C ¡ 0 such that for all M there is Ω 2 Ω with probability 1 such that for all ω Ω 2 there exist t p0, 1q such that

lim sup jÑ V § § § ε λj ptq M pωq § § § j ¥ C. (97) 
Proof. Let us x a p0, 1q and C ¡ 0 to be chosen later on. For every pj, lq

N ¢ 2 0, . . . , t2 jp1¡aq u ¡ 1 @ , we set S M j,l 2 
lt2 aj {p2NMqu, . . . , pl 1qt2 aj {p2NMqu ¡ 1 @ and consider the event

E M j,l 5 
ω Ω : max

kS M j,l § § § ε j,2kN M M pωq § § § ¥ Cj C Let j 0 be the smallest integer such that t2 aj {p2NMqu ¥ 1. If we assume that Ω ¦ 2 ¤ J¥j0 £ j¥J £ lt0,...,t2 jp1¡aq u¡1u E M j,l (98) 
is an event of probability 1 and we consider ω Ω ¦ 2 . For every j ¥ j 0 , denote by

G M j pωq : ¡ k t0, . . . , 2 j ¡ 1u : § § § ε j,k M pωq § § § ¥ Cj © . (99) 
Moreover, for every n ¥ j 0 , one considers

O M n pωq : ¤ j¥n U M j pωq, where U M j pωq : ¤ kG M j pωq ¢ k 2 j , k 1 2 j . ( 100 
)
If one proves that O M n pωq is dense in p0, 1q, then by Baire's theorem the set n¥j0 O M n pωq is non-empty and let t be an element of this set. Then for every n ¥ j 0 , there is j ¥ n such that § § § ε λj ptq M pωq § § § ¥ Cj, and so desired statement (97) is true.

We still have to prove two points:

1. O M n pωq is dense in p0, 1q.

Ω ¦

2 is an event of probability 1.

Indeed, starting with statement 1, consider t p0, 1q, j ¥ j 0 and k such that λ j ptq λ j,k . Then, we have two cases: Case 1 : There is l t0, . . . , t2 jp1¡aq u ¡ 1u such that k 2 lt2 aj u, . . . , pl 1qt2 aj u ¡ 1 @ Using (98) and (99), there is k I tlt2 aj {p2NMqu, . . . , pl 1qt2 aj {p2NMqu¡ 1u such that 2k I N M G j pωq. Then, by (100

), ¢ 2N M k I 2 j , 2N M k I 1 2 j O M n pωq.
which is at is at most 2 ¡j t2 aj u 2N M t2 aj {p2NMqu ¨from t. Finally, we get that t is at a distance at most 22 jpa¡1q of U M j pωq. Case 2 : k tt2 jp1¡aq ut2 ja u, . . . , 2 j ¡ 1u. Again by ( 98) and (99), there is k I S M j,l such that 2k I N M G M j pωq, and similarly, we get that t is at a distance at most c2 jpa¡1q of U M j pωq, for some constant c ¡ 0 depending only on N , M and a.

Finally, in both cases t is at a distance at most c2 jpa¡1q , and so the density follows.

Now for statement 2, in order to prove that Ω ¦ 2 has a probability 1, it is enough to prove that

P ¤ ¦ ¥C ¤ ¦ ¥ £ lt0,...,t2 jp1¡aq u¡1u E M j,l (101) 
is the general term of a convergent series, then the result follows by Borel-Cantelli Lemma. Note that the variables ε j,2N M k M pωq, k S M j,l and l t0, . . . , t2 jp1¡aq u ¡ 1u, are independent because for every k $

k I , |2NMk ¡ 2N M k I | ¥ 2N M and so λ M j,2M N k λ M j,2M N k I ∅. Consequently, one has P ¤ ¦ ¥C ¤ ¦ ¥ £ lt0,...,t2 jp1¡aq u¡1u E M j,l 1 ¡ P ¤ ¦ ¥ £ lt0,...,t2 jp1¡aq u¡1u C E M j,l ¨ 1 ¡ ¹ lt0,...,t2 jp1¡aq u¡1u ¤ ¥ 1 ¡ ¹ kS M j,l P ¡ § § § ε j,2N M k M pωq § § § Cj © 1 ¡ ¡ 1 ¡ p1 ¡ P p|ε| ¥ Cjqq t2 aj {p2NMqu © t2 jp1¡aq u ¤1 ¡ exp ¡ 2 jp1¡aq logp1 ¡ p j q © (102)
where ε is a random variable belonging to the Wiener chaos of order 2 distributed according to the p r ε λ q λΛ and p j p1 ¡ P p|ε| ¥ Cjqq t2 aj {p2NMqu

. Remark that p j is a positive term that tends to 0 as j Ñ V. Indeed, using the fact that logp1 ¡ xq ¤ ¡x if x p0, 1q together with (94), there exist J N such that for all j ¥ J,

0 ¤ p j ¤ p1 ¡ exp p¡C c 2 jqq t2 aj {p2NMqu ¤ exp ¢ ¡ 2 aj 2N M exp p¡C c 2 jq ¤ exp ¡C I exp plog 2 aj q exp p¡C c 2 jq ¤ exp ¡C I exp jpa log 2 ¡ C c 2 q ¨(103)
where C I depends only on N , M and a and c 2 is the constant given in (94). It is enough to choose C such that a log 2 ¡C c 2 ¡ 0 to deduce that and so p j Ñ 0 as j Ñ V. Similarly, one can get for all j ¥ J 0 ¤ 2 jp1¡aq p j ¤ exp ¡C I exp jplog 2 ¡ C c 2 q ẅhich indeed shows that 2 jp1¡aq p j tends to 0 as j Ñ V. Now, using the fact that logp1 ¡ xq ¡x opxq and exp pxq 1 x opxq as x Ñ 0, together with (102) we obtain that for all δ ¡ 0

P ¤ ¦ ¥C ¤ ¦ ¥ £ lt0,...,t2 jp1¡aq u¡1u E M j,l
¤ 2 jp1¡aq pδpp j δp j q p j δp j q for j large enough. Using the upper bound in (103), one can nally conclude that (101) is indeed the general term of a convergent series.

Concerning the random variable q ε λ M , one can give an almost sure upper bound. Lemma 4.13. There exists a deterministic constant C I ¡ 0 such that for all M there is Ω I 2 Ω with probability 1 such that for all ω Ω I 2 there exist J N such that, for all j ¥ J, for all λ Λ j , λ r0, 1s, § § § q ε λ M pωq § § § ¤ C I M maxtH1,H2u¡1 j Proof. If C I ¡ 0, for all j suciently large, we have, by Theorem 3.14 

P ¡ hλ Λ j , λ r0, 1s : § § § q ε λ M pωq § § § ¥ C I M maxtH1,H2u¡1 j © ¤ λΛj λr0,1s P ¡ § § § q ε λ M pωq § § § ¥ C I M maxtH1,H2u¡1 j © ¤ 2 j expp¡ CC I pC ¦ Ψ,
C ¡ C I M maxtH1,H2u¡1 ¡ 0,
where C and C I are the constant given by Lemmata 4.12 and 4.13 respectively.

Let us consider ω Ω ¦ 2 : Ω 2 Ω I 2 where the evnets, of probability 1, Ω 2 and Ω I

2 are giving by the same Lemmata. We use the same notations as in them.

First there exist t p0, 1q such that for all J N there exist j ¥ n such that § § §

c λj ptq M pωq § § § ¥ C j2 ¡jpH1 H2¡1q . (104) 
Moreover, if J is large enough, for all such j we also have § § § cλjptq

M pωq § § § ¤ C I M maxtH1,H2u¡1 2 ¡jpH1 H2¡1q j. (105) 
In this case, as in 4.8 we have that for all J great enough, there is j ¥ J such that

d j pt, ωq ¥ 2 ¡jpH1 H2¡1q j ¡ C ¡ C I M maxtH1,H2u¡1 ©
and so one can conclude that (96) holds true for all ω Ω ¦ 2 .

5 Proof of the main Theorem V.

The conclusion follows by Remark 3.4.

Remark 5.1. Unfortunately, our method does not allow us to arm the positiveness of the limit [START_REF] Ayache | Dierent possible behaviors of wavelet leaders of the Brownian motion[END_REF], at the opposite of limits ( 5) and [START_REF] Ayache | Wavelet-type expansion of the generalized Rosenblatt process and its rate of convergence[END_REF] Concerning the random variables p r ε λ M q λ , one can obtain a positive result. 6Indeed, from [24, Theorem 6.9 and Remark 6.10] we know that there exists an universal deterministic constant γ r0, 1q such that, for each random variable and, if ℓ $ ℓ I , T ℓ n T ℓ I n ∅. Therefore, the dyadic intervals pT ℓ n q 1¤n¤m,1¤ℓ¤ℓ0 satisfy condition pC M q in Denition 4.5. From this, for all S S j,k,m we dene the Bernouilli random variable As a consequence, Ω 1 £ jN,0¤k 2 j tω : lim inf mÑ V G j,k,m pωq 0u is an event of probability 1.

Now if ω Ω 1 and t p0, 1q, we take j N and k k j ptq and since, for all m, G j,kj ptq,m has values in t0, . . . , 2 m u we conclude that there are innitely many m for which, for every S S j,kj ptq,m , B j,k,m pSq 0. Considering such a m and S λ j m ptq then we rst remark that, for all 1 ¤ n ¤ m, I n λ j n ptq and thus T n 3λ j n ptq. Now, as B j,k,m pλ j m ptqq 0, one can nd 1 ¤ n ¤ m and 1 ¤ ℓ ¤ ℓ 0 such that | ε T ℓ n M pωq| ¥ 2 ¡1 C Ψ,H1,H2 .

Thus we have showed that, for all ω Ω 1 and t p0, 1q there exist innitely many j I N such that max λ I S λ,tlog 2 pℓ0NMqu 2 λ 3λ j Iptq § § § ε λ I M pωq § § § ¥ 2 ¡1 C Ψ,H1,H2 .

To pass to the wavelet leaders, in the spirit of Propositions 4. 1 such that, for all ω Ω I 1 there exist J N such that, for all j ¥ J, for all λ Λ j , λ r0, 1s, max λ P S λ I ,tlog 2 pℓ0NMqu 2 λ I 3λ § § § | ε λ I M pωq § § § ¤ C I M maxtH1,H2u¡1 j.

It seems to be the sharper upper bound that we can hope to nd with our constraints and the fact that we don't have any independence property to take advantage of when dealing with the random variables q ε λ M . This is insu- cient to consider properly limit (107). Nevertheless, if, instead of working with an uniform constant M we make it depends on the scale j by setting while there exist J N such that, for all j ¥ J, for all λ Λ j , λ r0, 1s, max λ P S λ I ,tlog 2 pℓ0NMjqu 2 λ I 3λ § § § | ε λ I Mj pωq § § § ¤ C I pM j q maxtH1,H2u¡1 j ¤ 4 ¡1 C Ψ,H1,H2 .

As a consequence, as in Proposition 4.8, for all J N there exist j ¥ J with d j pt, ωq ¥ 2 ¡jpH1 H2¡1q p4C I C ¡1 Ψ,H1,H2 jq 1¡H 1 ¡H 2 1¡maxtH 1 ,H 2 u p4ℓ 0 N q 1¡H1¡H2 4 ¡1 C Ψ,H1,H2 which allows to state that, for all t p0, 1q and ω Ω 1 , lim sup jÑ V d j pt, ωq 2 ¡jpH1 H2¡1q j 1¡H 1 ¡H 2 1¡maxtH 1 ,H 2 u ¡ 0 and thus, for all ω Ω 1 and for all t p0, 1q, lim sup sÑt |R H1,H2 pt, ωq ¡ R H1,H2 ps, ωq| |t ¡ s| H1 H2¡1 plog |t ¡ s| ¡1 q 1¡H 1 ¡H 2 1¡maxtH 1 ,H 2 u ¡ 0.

In particular, we nd an almost sure uniform lower modulus of continuity for the generalized Rosenblatt process, similar to the one established in [START_REF] Kerchev | Local times and sample path properties of the Rosenblatt process[END_REF] for the Rosenblatt process. However, we are not able to judge the optimality of this modulus, which seems to be a dicult problem, as already stated in [5, Remark 1.2]. 7 The random variables ε λ I M j and | ε λ I M j are dened in an obvious way.

An interesting corollary of Remark 5.1 and Proposition 3.5 is the fact that, almost surely, the pointwise Hölder exponent of the generalized Rosenblatt process is everywhere H 1 H 2 ¡ 1 and, in particular, it is nowhere dierentiable. Similarly, one can also take pM j p4C I C ¡1

Ψ,H1,H2 logpjq 1 1¡maxtH 1 ,H 2 u q j , where C I is this time the same constant that in Lemma 4.10 and show, precisely like in this Lemma, that there exists a deterministic constant C I ¡ 0 such that, for all t p0, 1q there exists Ω t,2 Ω with probability 1 such that for all ω Ω t,2 there exist J N such that, for all j ¥ J, 

max λ I S λ

  all M ¡ 1.

  leads, just as in Lemmata 3.7 and 3.23, to the desired estimate.

Remark 4 . 2 .

 42 Let us highlight the fact that using time change of variable for Wiener-Itô integrals [38, Theorem 8.5.7], for all j, k, we have c j,k M is equal in law to the random variable c H1,H2 2 ¡jpH1 H2¡1q

Denition 4 . 3 .M 2 ¡jpH1

 432 For all pj, kq N¢Z and M N we dene the random variables ε j,k M : c j,k H2¡1q and } ε j,k M : } c j,k M 2 ¡jpH1 H2¡1q .

  λ M j I ,k I ∅.

  following condition is satised

  Thus, for C I ¡ C ¦ Ψ,H1,H2 { C, the conclusion follows by Borel-Cantelli Lemma. Proof of Proposition 4.8. The constant C and C I of Lemmata 4.9 and 4.10 being deterministic and independent of M , on can choose M large enough such that

  previous subsection, we start by working with the random variables r ε λ M .

X in the Wiener chaos of order 2 P¢ |X| ¤ 1 2 ∥X∥ L 2

 222 pΩq ¤ γ. As 0 ¤ γ 1, of course, one can nd ℓ 0 N such that γ ℓ0 2 ¡1 .

  back to the construction starting the proof of Lemma 4.9. If the dyadic interval λ j,k and m N are xed and S S j,k,m we dene the sequences of dyadic intervals pI n q 0¤n¤m and pT n q 1¤n¤m in the same way: I 0 λ j,k , I m S and, for all 1 ¤ n ¤ m, I n¡1 I n T n . Now, for any 1 ¤ n ¤ m, there are ℓ 0 dyadic intervals pT ℓ n λ j pℓq n ,k pℓq n q 1¤ℓ¤ℓ0 in S Tn,tlog 2 pℓ0NMqu 2 such that, for all 1 ¤ ℓ ¤ ℓ 0

2

 2 ¡1 C Ψ,H 1 ,H 2 u for which, by Proposition 4.7, we have, using the independence of the random variables p ε T ℓ n M q 1¤n¤m,1¤ℓ¤ℓ0 , ErB j,k,m pSqs ¤ γ mℓ0 . Therefore, if we dene the random variable G j,k,m ŞS j,k,m B j,k,m pSq then ErG j,k,m s ¤ p2γ ℓ0 q m and it follows from inequality (108) and Fatou Lemma that E lim inf mÑ V G j,k,m & 0.

  8 and 4.11, we would need to get from Borel-Cantelli Lemma an upper bound of max λI S λ,tlog 2 pℓ0NMqu 2 λ 3λ j Iptq § § § | ε λ I M pωq § § §for all j suciently large on an event of probability 1 which does not depend on t. Then, as Λ j , λ r0, 1s :max λ P S λ I ,tlog 2 pℓ0NMqu 2 λ I 3λ § § § | ε λ I M pωq § § § ¥ C I M maxtH1,H2u¡1 j ¤ 2 j 4ℓ 0 N M expp¡ CC I pC ¦ Ψ,H1,H2 q ¡1 jq, if C I ¡ logp2qC ¦ Ψ,H1,H2 {C this probability is the general term of some convergent series and in this case one can arm the existence of an event Ω I 1 of probability

M j p4C I C ¡1 Ψ,H1,H2 jq 1 1¡maxtH 1 ,f

 ¡111 H 2 u , where C I ¡ logp2qC ¦ Ψ,H1,H2 { C is the same constant as in Lemma 4.13, H1,H2 ps, x 1 , x 2 q ds dx dBpx 1 q dBpx 2 q and } c j,k Mj c j,k ¡ c j,k Mj then Proposition 4.7 stills holds if we replace M by M j with j suciently large and, by directly adapting what precedes one can nd on event Ω ¦ 1 of probability

  But, for all x ¤ s and k 2 Z j2 rt, ss, |2 j2 x ¡ k 2 | k 2 ¡ 2 j2 x and then, using the

	Thus, it only remains us to deal with	
	» s ¡V ķ2Zj 2 rt,ss	dx p3 |2 j2 x ¡ k 2 |q 3 .
	same method as in (31), we get	
	» s ¡V ķ2Zj 2 rt,ss	dx

  C|t ¡ s| H1 H2¡1 log |t ¡ s| ¡1 . Proof. As R ¥n rt, ss and R ¥ n rt, ss can clearly be treated symmetrically, we restrict our attention to R ¥n rt, ss.

	For (35), we use Lemma 3.10 to get
	|(35)| ¤ C	j		
		1 n		
					2 j1p1¡H1q 2 j2p1¡H2q L k1,k2 j1,j2 |I k1,k2 j1,j2 rt, ss|
				2
	R ¥ n rt, ss :	j 1¥n j 2 n	pk1,k2qZ 2	2 j1p1¡H1q 2 j2p1¡H2q L k1,k2 j1,j2 |I k1,k2 j1,j2 rt, ss|
	are bounded from above by	
				One sees that
		j 1 n j 2 ¥n pk1,k2qZ 2 j 1 n j 2¥n ķ1Z j 1 n j 2¥n ķ1Z j 1 n j 2¥n ķ1Z	2 j1p1¡H1q 2 j2p1¡H2q L k1,k2 j1,j2 I k1,k2 j1,j2 rt, ss 2 j1p1¡H1q 2 j2p1¡H2q L k1,k2 j1,j2 I k1,k2 j1,j2 rt, ss (35) ķ2Z j 2 pt,sq ķ2Z ¡ 2 j1p1¡H1q 2 j2p1¡H2q L k1,k2 j1,j2 I k1,k2 j1,j2 rt, ss (36) j 2 pt,sq ķ2Zj 2 rt,ss 2 j1p1¡H1q 2 j2p1¡H2q L k1,k2 j1,j2 I k1,k2 j1,j2 rt, ss. (37)

  ¡ 0 such that, for all s, t p0, 1q, §

	j1,j2 r0, ¤s	D F E
	because almost surely, it is the most irregular part of R H1,H2 . Indeed, using
	dierent estimates obtained in this subsection, one can see that, almost surely,
	there exists a constant C	

  probability 1 and a positive random variable C t,2 with nite moment of any order such that, on Ω t , dn N, dλ 3λ n ptq, dj ¥ n, Ξ j pλq ¤ C t,2 pj ¡ n 1q logpnq. (69) Proof. If t p0, 1q is xed and θ ¡ 0, let us dene the event A n ptq tdλ 3λ n ptq dj ¥ n, Ξ j pλq ¤ θpj ¡ n 1q logpnqu. a determistic constant C ¡ 0. Therefore, if we take again θ ¡ 4 logp2q{ C then Borel-Cantelli Lemma implies the existence of an event Ω t of probability 1 and C t,2 a positive random variable of nite moment of any order such that, on Ω t , assertion (69) holds. Lemma 3.30. If t p0, 1q, let Ω ¦ t be the event of probability 1 where inequality (58) holds and Ω t be the event of probability 1 given by Lemma 3.29. There exists a positive random variable C t,3 with nite moment of any order such that, on Ω ¦ t,3 |t ¡ s| H1 H2¡1 log |t ¡ s| ¡1 .

	t	Ω t , for all s p0, 1q the random variable § § § § § § j 1 ¥n j 2¡n pk1,k2qZ 2 2 j1p1¡H1q 2 j2p1¡H2q ε k1,k2 j1,j2 I k1,k2 j1,j2 rt, ss	§ § § § § §	(70)
	is bounded from above by		
	Similarly to Lemma 3.18, we get
		PpA n ptq c q ¤ C	j¥n	2 4pj¡nq expp¡	Cθpj ¡ n 1q logpnqq
		¤ C expp¡	Cθ logpnqq	j¥n	2 4pj¡nq expp¡	Cθpj ¡ nqq,

for C

  and get on Ω ¦ We conclude that (70) is bounded from above by C maxtC t,1 , C t,2 u|t ¡ s| H1 H2¡1 log |t ¡ s| ¡1

	We can now prove Proposition 3.21.
	Proof of Proposition 3.21. Let us x t p0, 1q and consider ω Ω ¦ t all s p0, 1q, we write 1	Ω t . For
	|R I H1,H2 pt, ωq ¡ R I H1,H2 ps, ωq|		
	¤					
	§ § § § § § j¥n	2 jp2¡H1¡H2q	j 1 ļj	ķ1Zjrt,ss ķ2Zℓrt,ss	Ω t j,ℓ I k1,k2 t ε k1,k2 j,ℓ	§ § § § § §
	¤ CC t,2	j¥n	2 jp 3 2 ¡H1¡H2q 2 ¡ n 2 pj ¡ n 1q logpnq
	¤ CC t,2 2 np1¡H1¡H2q logpnq.

on Ω ¦ t Ω t .

  arbitrary fractional Brownian motion. It consists in showing that for any m ¡ 0, almost surely, there exist µ ¡ 0 and t p0, 1q such that, if one sets

	Λ 0 j ptq tλ Λ

H 1 ,H 2 is dened in Remark 3.20. any j : |spλptqq ¡ spλq| ¤ 1u

  Let us remark that, as for all λ Λ n , |ε 2 λ | ¤ 2Ξ n pλq 1, we still have, in this case, for all λ 3λ n ptq, |ε λ | ¤ Cµ, for a deterministic constant C ¡ 0. .

	Starting from now we take m such that 1{m 2{m 1 ¡ H 1 ¡ H 2	mintH 1 , H 2 u and
	In order to use notations (73) and (	
				and 3.15, one can
	still arm		
	2N	V ļ0 p2 ml 1 1qpp l pµq pl 1q	p l pµqp1 ¡ p l pµqqq ¤ N 2
	and the end of the procedure is saved: equality (76) still holds. t S µ low p0, 1q we know that	Now, if

d n N, d λ 3λ n ptq , dj ¥ n , Ξ j pλq ¤ pj ¡ n 1qµ. (77)

  Cµ 2 y λ1 ptqy λ2 ptq, j1p1¡H1q 2 j2p1¡H2q y λ1 ptqy λ2 ptq |I λ1,λ2 rt, ss| ¤ C|t ¡ s| H1 H2¡1 .

	Then, if t belong to this set, we have, thanks to inequality (75) and equalities
	(17) and (18)	|ε λ1,λ2 pωq| ¤

(78) for a deterministic constant C ¡ 0. Again, we need to adapt the Lemmata from previous sections with this alternative upper bound. Lemma 3.32. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q we have

0¤j1 n 0¤j2 n λ1Λj 1 ,λ2Λj 2 2

  y λ1 ptqy λ2 ptq |I λ1,λ2 rt, ss| λ1 ptqy λ2 ptq |I λ1,λ2 rt, ss| Proof. Again, we prove the bound for (80), the reasoning for (81) being similar.Let us remark that, if j 2 ¥ n x rs, ts and λ j2 pxq Λ l j2 ptq then, the construction and the denition of py λ ptqq λΛ gives that l ¤ 1 m pj 2 ¡ nq, as |s ¡ t| ¤ 2 ¡n , if λ Λ l2 j2 pxq then |y λ | ¤ 2 l2 2 l 1 µ while, by denition, if l 2 ¥ 1 3 |2 j2 x ¡ spλq| ¥ 2 2 mpl2¡1q .

					(80)
		λ1Λj 1	j 2 pt,sq λ2Λ ¡	(81)
	are bounded by	C2	1 m pj2¡nq 2 ¡j2 .
	Therefore, if we set	D l j2 ptq	¤ λΛ l j 2 ptq	λ,
	we have			
	(80) ¤ ¤	λ1Λj 1 0¤l¤ 1 m pj2¡nq λ1Λj 1 λ2Λ j 2 pt,sq y λ1 ptqy λ2 ptq λ2Λ j 2 pt,sq	» rs,ts y λ1 ptqy λ2 ptq |ψ λ1 pxqψ λ2 pxq| dx » D l j 2 ptq

y |ψ λ1 pxqψ λ2 pxq| dx.

)

  Lemma 3.35. There exists a deterministic constant C ¡ 0 such that, for all t, s p0, 1q, the quantities 2 j1p1¡H1q 2 j2p1¡H2q y λ1 ptqy λ2 ptq|I λ1,λ2 rt, ss| are bounded by C|t ¡ s| H1 H2¡1 .Proof. The proof is exactly the same as the one of Lemma 3.12 excepted that we use Lemmata 3.33 and 3.34 instead of Lemmata 3.10 and 3.11 respectively.

		2¥n 0¤j1 n j		1 ,λ2Λj 2 λ1Λj	2 j1p1¡H1q 2 j2p1¡H2q y λ1 ptqy λ2 ptq|I λ1,λ2 rt, ss|
	j 1 ¥n 0¤j2 n		λ1Λj 1 ,λ2Λj 2
	It leads on one side us to consider the sums
			££	n¡1 j 1 0	2 j1p1¡H1q	2n V j	2	1 m pj2¡nq 2 ¡j2H2	2 np1¡H1¡H2q
	which are bounded by		
						C2 np1¡H1¡H2q ¤ C|t ¡ s| H1 H2¡1
	because	1 m	H 2 . On the other side, if we write I λ1,λ2 for I k1,k2 j1,j2 in Lemma 2.1,
	we have, from it,			
			§ § § § § § λ1Λn¡1	λ2Λnrt,ss

  Proof of Proposition 3.31. If we apply the procedure with m such that 1{m mintH 1 , H 2 u and 2{m 1 ¡ H 1 ¡ H 2 , we nd an event Ω slo of probability 1 such that, for all ω Ω slo , there is µ N for which S µ low p0, 1q $ ∅. Then, if ω Ω slo and t S µ low pωq p0, 1q and s p0, 1q, we write |R I H1,H2 pt, ωq ¡ R I H1,H2 ps, ωq|

  94), and the fact that logp1 ¡ xq ¤ ¡x if x p0, 1q, one gets, for m

	is large enough,

  2 m ptq It follows that for a xed t R, almost surely, there are innitely many j N

	1
	such that

  Proof of Proposition 4.11. Again, one can choose M large enough such that

	H1,H2 q ¡1 jq
	and thus, if C I ¡ logp2qC ¦ Ψ,H1,H2 {	C, the conclusion follows by Borel-Cantelli
	Lemma.	

  If we consider ω belonging to this event of probability 1, rst, from Proposition 3.5 there exists C R ¡ 0 such that, for all t, s p0, 1q |R H1,H2 pt, ωq ¡ R H1,H2 ps, ωq| ¤ C R |t ¡ s| H1 H2¡1 log |t ¡ s| ¡1 R H1,H2 ps, ωq| |t o ¡ s| H1 H2¡1 log log |t o ¡ s| ¡1 V. Nevertheless, from Proposition 4.11 we also know that there exists t r p0, 1q H1,H2 pt r , ωq ¡ R H1,H2 ps, ωq| |t r ¡ s| H1 H2¡1 log |t r ¡ s| ¡1 which, combined with (106), gives that, for all such a t r , H1,H2 pt r , ωq ¡ R H1,H2 ps, ωq| |t r ¡ s| H1 H2¡1 log |t r ¡ s| ¡1 V. Moreover, from Proposition 3.31, we also know that one can nd t σ p0, 1q such that lim sup sÑtσ |R H1,H2 pt σ , ωq ¡ R H1,H2 ps, ωq| |t σ ¡ s| H1 H2¡1

	Theorem 1.2 is then a straightforward consequence of Propositions 3.5, 3.21,
	3.31, 4.8 and 4.11.
	Proof of Theorem 1.2. Let us denote by Ω R the event obtained by taking the
	intersection of all the events of probability 1 induced by Propositions 3.5, 3.21,
	3.31, 4.8 and 4.11.
	(106)
	while, for almost every t o p0, 1q, from Propositions 3.21 and 4.8
	0 lim sup
	such that
	0 lim sup
	0 lim sup

sÑto |R H1,H2 pt o , ωq ¡ sÑtr |R sÑtr |R

  H1,H2 pt, ωq ¡ R H1,H2 ps, ωq| |t ¡ s| H1 H2¡1 is nite for some t, we would need to show its positiveness for all t and thus the positiveness of the limit

			. Indeed, as for
	almost every ω Ω		
	lim sup		
	lim sup jÑ V	d j pt, ωq 2 ¡jpH1 H2¡1q	(107)
	for all t.		

sÑt

|R

  1 such that, for all ω Ω ¦ 1 and t p0, 1q there exist innitely many j N such that 7maxλ I S λ,tlog 2 pℓ0NMjqu 2 λ 3λ j ptq § § § ε λ I Mj pωq § § § ¥ 2 ¡1 C Ψ,H1,H2 .

  ,tlog 2 pℓ0NMjqu 2 λ 3λ j ptq § § § | ε λ I Mj pωq § § § ¤ 4 ¡1 C Ψ,H1,H2 .and conclude in the same way that there exists an event of probability 1 such that, for all ω in this event and for almost every t p0, 1q lim sup sÑt |R H1,H2 pt, ωq ¡ R H1,H2 ps, ωq| |t ¡ s| H1 H2¡1 plog log |t ¡ s| ¡1 q

	1¡H 1 ¡H 2 1¡maxtH 1 ,H 2 u	¡ 0

ds,where Γ stands for the usual Gamma Euler function, and where for px, αq R 2x α

The interval rk2 ¡j , pk 1q2 ¡j s is cut into rp2kq2 ¡pj 1q , p2k 1q2 ¡pj 1q s and rp2k 1q2 ¡pj 1q , p2k 2q2 ¡pj 1q s.

This result is again a generalization of[START_REF] Ayache | Dierent possible behaviors of wavelet leaders of the Brownian motion[END_REF] Lemma 3.3.] where most of the modications comes from the fact that we are working in the Wiener chaos of order 2
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