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DISCRETE HONEYCOMBS, RATIONAL EDGES AND EDGE STATES

C.L. FEFFERMAN, S. FLISS, AND M. I. WEINSTEIN

Abstract. Consider the tight binding model of graphene, sharply terminated along an
edge l parallel to a direction of translational symmetry of the underlying period lattice. We
classify such edges l into those of ”zigzag type” and those of ”armchair type”, generalizing
the classical zigzag and armchair edges. We prove that zero energy/flat band edge states
arise for edges of zigzag type, but never for those of armchair type. We exhibit explicit
formulas for flat band edge states when they exist. We produce strong evidence for the
existence of dispersive (non flat) edge state curves of nonzero energy for most l.

Contents

1. Introduction 2
1.1. Summary of results 3
1.2. Relation to previous work and some open questions 6
1.3. Structure of the paper 7
1.4. Notation 8
2. Mathematical framework 8
2.1. The honeycomb structure 8
2.2. The bulk Hamiltonian 9
2.3. The sharply terminated honeycomb, H], and the Hamiltonian H] 9
2.4. Rational edges 10
2.5. Bulk and edge Hamiltonians with respect to the basis {v1,v2} 14
3. Spectrum of H](k) 17
3.1. Essential spectrum of H](k) 17
3.2. Bands and gaps in the spectrum of H](k) as k varies 19
3.3. The wedge of the edge 22
4. Zero energy / flat band edge states 23
4.1. Solving for edge states that live on B− sites 24
4.2. Solving for edge states which live on A−sites 26
4.3. Conclusions on the zero energy edge state eigenvalue problem 27
5. Honeycomb edge polynomials 29
6. Explicit formulas for zero energy (flat band) edge states 36
7. Non-zero energy, dispersive edge states 39
7.1. Setup for the study of non-zero energy edge states 39
7.2. Numerical results on dispersive edge states 44
Appendix A. Changing basis 49
A.1. Points vA and vB that lie in the fundamental cell 50

Date: March 7, 2022.
Key words and phrases. tight binding model, edge states, honeycomb structure, discrete operator on a

graph.
1

ar
X

iv
:s

ub
m

it/
41

98
28

1 
 [

m
at

h-
ph

] 
 7

 M
ar

 2
02

2



2 Discrete honeycombs, rational edges and edge states

A.2. A−points and B− points in the cell Γ(m,n) 50
A.3. Except in the zigzag case, the integers ñ1, ñ2, ñ3 are distinct 51
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1. Introduction

Graphene is a two-dimensional material, consisting of a single atomic layer of carbon
atoms centered on a honeycomb lattice, H, and which extends to the macroscale. It exhibits
remarkable electronic properties, related to the energy spectrum around the Fermi (Dirac)
energy, which is well-described by the tight-binding Hamiltonian [14, 19, 23, 28], a discrete
Hamiltonian which acts on l2(H). This tight-binding model has a band structure consisting of
two dispersion surfaces which conically touch at Dirac points. These spectral characteristics
play an important role in the novel conductivity properties of bulk graphene, and its behavior
as a topological insulator in the presence of a magnetic field. The relationship between
the underlying continuum single electron Schroedinger equation for graphene and the tight-
binding limit is investigated in detail in [11]. For a general discussion of tight binding models
and their relationship to the underlying continuum PDEs see, for example, [10,17,26].

A phenomenon of great interest in Materials Science, and in particular for graphene, is the
propagation of energy along a line-defect or edge. Some references to the extensive literature
on edge states are provided in Section 1.2. In this article, an edge is taken to be a sharp
termination of the honeycomb lattice along a straight line, l. We let H] denote the set of
nodes of H that lie in a closed half space on one side of l; a graphene half-space interfaced
with a vacuum. We introduce the (nearest neighbor) edge Hamiltonian H], which acts on
vectors in l2(H]); the set of square summable vectors, (ψω)ω∈H with the property that ψω = 0
for ω ∈ H \H]; see (2.6) for a precise definition.

Consider the case where the line l is in a direction of translation invariance of H], i.e. in
the direction of a triangular lattice vector. We call such an interface a rational edge. In this
case, H] is translation invariant parallel to l and we let k ∈ R/2πZ denote the associated
parallel quasimomentum. H] can be decomposed into the independent action of Hamiltonians
H],k in l2k (0 ≤ k < 2π), the space of vectors ψ = (ψω)ω∈H] , which (i) under translation by

a minimal period vector along l give eikψ, and (ii) decay to zero as the distance of ω to
l tends (within the bulk) to infinity. See equation (2.32) for the definition of an operator
H](k) which is trivially equivalent to H],k. For k ∈ [0, 2π],

we say that (ψ,E) is a k− pseudo-periodic edge state if H],kψ = Eψ with ψ ∈ l2k.

Thus, E is a k− pseudo-periodic edge state eigenvalue if E is in the l2k point spectrum of
H],k. This paper studies the dependence of the spectrum H],k on the edge and on k.
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If there are k− pseudo-periodic states with energy E(k) for all k in some subinterval of
[0, 2π], then a continuous superposition of these edge states is an edge wave-packet, which
is localized along and transverse to the edge, and whose large time evolution is determined
by the properties of the edge state energy curve k 7→ E(k). It is therefore of interest
to determine the subsets of [0, 2π] for which edge states exist, and the properties of the
corresponding edge state curves. This question has been previously investigated for the best
known edge-orientations: the classical zigzag edge (ordinary and bearded) and the armchair
edge; see Figure 6 and references cited in Section 1.2.

In particular, for the classical zigzag edge H],k is known to have E = 0 energy edge states:
(a) for all k ∈ (2π/3, 4π/3) in the case of ordinary zigzag edges, and
(b) for all k ∈ [0, 2π] \ [2π/3, 4π/3] in the case of bearded zigzag edges.
In the zigzag-edge case, the Hamiltonian H] is said to have a flat band of edge states. In
contrast, in the classical armchair case, H],k does not support zero energy edge states for
any k ∈ [0, 2π]. Furthermore, neither the classical zigzag edge nor the classical armchair
edge supports non-zero energy edge states; see [12,16,22]; see Figure 1. The classical zigzag
edge state flat band spectra are given by well-known calculations presented, for example, in
[12,16,22]; see also Remark 4.9.
In this paper we present results on the spectrum of H] acting in l2(H]) for arbitrary rational
edges. In particular, we give a complete analysis of the existence and non-existence of zero
energy / flat band edge states for arbitrary rational edges. We also present strong evidence
that for general zigzag-type and armchair-type edges, there are non-zero energy (dispersive)
edge states curves; see also [18].

Remark 1.1 (Flat bands). Consider a wave-packet constructed via continuous superposition
of edge states within a zero energy flat band. This wave-packet will not transport because
the group velocity, E ′(k), vanishes and it will neither spread nor decay to zero because the
curvature of the dispersion relation, E ′′(k), vanishes. The spatial concentration of energy
without dispersion or transport leads, in the condensed matter physics setting, to enhance-
ment of electron-electron interactions. Additionally, a flat or nearly flat band implies a very
high density of states, which has implications for light-matter interactions [8].

1.1. Summary of results. Let the equilateral triangular lattice be given by Λ = Zv
◦

1⊕Zv
◦

2

with v
◦

1 =
(√

3
2

1
2

)>
and v

◦
2 =

(√
3

2
−1

2

)>
. The honeycomb lattice, H, is the union of two

interpenetrating translates of Λ. In Figure 3 the two triangular sublattices are represented
as A− sites (blue) and B− sites (red). A rational edge is specified by a line, l, in R2 in the
direction

v1 = a11v
◦

1 + a12v
◦

2,

where a11 and a12 are relatively prime integers. We consider the terminated structure H]

consisting of all vertices in H which are in a closed half-plane on one side of l; see Figure 5.
The row of A− sites in H] which is closest to l is the set of frontier A− sites and the row of
B− sites in H] which is closest to l is the set of frontier B− sites. We denote by DA and
DB the distance from any frontier A− site, respectively B− site, to the line l.

(1) Zigzag-type and Armchair-type edges, Section 2.4: There are two general classes of
edges: zigzag-type (ZZ) and armchair-type (AC). Armchair-type edges are those
for which DA = DB. Zigzag-type edges are those for which DA 6= DB . These
geometric conditions correspond to the following arithmetic conditions: an edge is of
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AC-type if and only if a11 − a12 ≡ 0 mod 3 and an edge is of ZZ-type if and only if
a11 − a12 ≡ ±1 mod 3; see Definition 2.1 in Section 2.4 and Proposition 2.5 for the
proof of this correspondence.

Further, for any zigzag edge we have one of the following two cases:

Balanced zigzag edge: |DA −DB| =
1

3

√
3

2
|v1|−1,

Unbalanced zigzag edge: |DA −DB| =
2

3

√
3

2
|v1|−1;

see Definition 2.3 and Proposition 2.5. The classical armchair, and classical zigzag
edges balanced (aka ordinary) and unbalanced (aka bearded) are displayed in Figure
6.

(2) Existence and non-existence of zero energy / flat band edge states, Section 4: Our
main result is:

Theorem 1.2. Assume k ∈ [0, 2π].
(a) For any armchair edge (DA = DB), there are no zero-energy edge states.
(b) All zigzag edges (DA 6= DB) support a “flat band” of zero-energy edge states

for k varying in a proper quasi-momentum subset of (0, 2π). These states are
supported exclusively on the A− sites of H] (A−site ES) or on B − sites of H]

(B−site ES). A complete classification is given in the following table:

DA < DB DB < DA

Balanced A-site ES for k ∈ ( 2π
3 ,

4π
3 ) B-site ES for k ∈ ( 2π

3 ,
4π
3 )

Unbalanced A-site ES for k ∈ [0, 2π] \ [ 2π3 ,
4π
3 ] B-site ES for k ∈ [0, 2π] \ [ 2π3 ,

4π
3 ]

Table 1. 0−energy / flat band edge states for all rational zigzag edge geometries

Figures 1 and 2 display l2k spectra of H],k vs. k for several choices of rational edges.
In each panel, the intersection of the vertical slice, corresponding to a fixed k, with
the blue regions is the l2k spectrum of H],k. The center and right panels of Figures
1 and 2 display edge spectra for different choices of zigzag-type edge. Each of these
panels shows a zero energy flat band over a proper subset of [0, 2π]. Part (a) of
Theorem 1.2 states that for the AC-type edges, there are no zero energy edge states.
The left panels of Figures 1 and 2 show the edge spectra of armchair edges.

(3) Representation formulae for zero energy / flat band edge states (Section 6): For
zigzag type edges, and for k varying in the relevant subintervals of [0, 2π], we present
Fourier and rational function representation formulae for the zero energy / flat band
edge states.

(4) Dispersive edge states (Section 7): Through careful numerical computations of eigen-
value problems for H],k, we present strong evidence for the existence of non-zero
energy dispersive edge state curves.

In particular, our numerical investigations strongly suggest:
(i) Except for the classical zigzag and armchair edges, there exist dispersive (non-
flat) edge state curves, which bifurcate from zero energy at k = 2π/3 or 4π/3 for
zigzag-type edges and from zero energy at k = 0 or 2π for the armchair-type case.
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This phenomenon is displayed in Figure 2.
(ii) For a sequence of edges defined by v1 = a11v

◦
1 + v

◦
2 (a21 = 1), we find that as a11

increases, the number of curves bifurcating from these points increases; see Figures
15 and 16. However for the sequence of edges defined by v1 = a11v

◦
1 + a12v

◦
2 where

(a11, a12) are consecutive Fibonacci numbers, we find no evidence for an increasing
number of such curves; see Figure 17.
(iii) Among the edges investigated, the classical armchair edge and its rotations
appear to be the only edges for which there are no edge states at all. All others
investigated appear to have some edge states: either zero-energy flat bands or dis-
persive non-zero energy curves; see Figure 1.

a11 = 1, a12 = 1

E

k

a11 = 1, a12 = −1 (balanced)

k

a11 = 1, a12 = −1 (unbalanced)

k

Figure 1. l2k spectrum of H],k versus k for several choices of edges: (i)
(a11, a12) = (1, 1), the classical armchair edge, (ii) (a11, a12) = (1,−1), the
classical zigzag balanced (aka ordinary) edge, (iii) (a11, a12) = (1,−1), the
classical zigzag unbalanced (aka bearded) edge.

a11 = 4, a12 = 1

E

k

a11 = 6, a12 = 1 (balanced)

k

a11 = 8, a12 = 1 (unbalanced)

k

Figure 2. l2k spectrum of H],k versus k for several choices of edges: (i)
(a11, a12) = (4, 1), an AC-type edge, (ii) (a11, a12) = (6, 1), a ZZ-type bal-
anced edge and (iii) (a11, a12) = (8, 1), a ZZ-type unbalanced edge.
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1.2. Relation to previous work and some open questions. The tight binding model on
a honeycomb lattice plays a central role in the modeling of graphene and related materials;
see, for example, [19, 23]. It was first recognized in [13, 22] that the existence of edge states
depends on the shape of the edge. The tight binding edge Hamiltonian has most commonly
been studied for the classical zigzag and armchair edges; see Figure 1. In [16] it is proved
that the classical armchair edge supports no edge modes (zero or nonzero energy). Our
rigorous analytical results on edge states for general rational edges, outlined in Section 1.1,
appear to be new.

There are studies in the physics literature of rational edges [1, 9, 18]. The definitions of
edges used in these works differ. Let us now describe these classes of edges, and contrast
them with the class of edges studied in this article. Recall that our edges are boundaries of
structures H] ⊂ H, comprised of all honeycomb vertices in a closed half-space determined
by a line parallel to v1, where v1 is any vector in the triangular lattice Λ. Here, we shall
refer to such edges as half-space termination edges.

The notion of minimal edge was introduced in [1]. Minimal edges have the following
properties:

• the structure is periodic with period vector v1 = a11v
◦

1 + a12v
◦

2, where a11, a12 > 0,
• no site of H] has two nearest neighbors in H \H],
• no site of H \H] has two nearest neighbors in H],
• within a period, there are precisely a11 + a12 frontier sites, i.e. sites of H] with

neighbors in H \H].

It is suggested in [1] that such minimal edge structures are energetically preferred. In general,
a minimal edge need not be of the half-space termination type studied here.

The class of modified edges, arising from the periodic attachment of atoms and bonds to
minimal edge atoms at frontier sites of H], is studied in [18]. The edges studied here may
be either minimal or modified.

In [9], edges which arise from a periodic pattern of displacements of a selected dimer (pair
of nearest neighbor sites) are studied, with period vector v1 = a11v

◦
1 + a12v

◦
2. In the case

where a11, a12 > 0, this class of edges is asserted to be precisely the class of minimal edges,
as defined in [1]. There is overlap between our class of half-space termination edges and
those discussed in [9], but neither class includes the other.

We now compare our results with those of [1,9,18]. The main goal of [1] is to derive contin-
uum boundary conditions for an effective Dirac operator, associated with a minimal rational
edge. Toward this goal, they consider the tight binding model for parallel quasimomentum
k ≈ 0. The article [9] postulates a bulk-edge correspondence: for a fixed edge, the dimension
of the subspace of zero energy edge states is equal to the winding number of the Zak phase
along a one-dimensional Brillouin zone determined by the edge orientation. The authors of
[9] apply this approach to obtain an expression, derived previously in [1], for the density of
edge states. The reader should note that the results of [9] are displayed in terms of a scaled
(edge-dependent) parallel quasi-momentum range, while the range of parallel quasimomenta
in the present article is fixed to be [0, 2π]. There appears to be agreement between our
rigorous results and the results in [9] for those edges in the overlap of our studies. To our
knowledge, no previous articles rigorously address, for a general class of rational edges, the
questions of: which parallel quasimomentum ranges support zero energy edge states; when
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they exist, whether they are supported on A− or B− sublattice sites; or explicit formulas
for zero energy edge states when they exist.

Numerical studies in [18] indicate that a flat band, for a minimal structure, can give rise
to non-zero energy edge state curves when additional sites and bonds are attached to form a
modified structure. Our numerical investigations give strong evidence that non-zero energy
edge state curves arise in minimal structures themselves.

Many natural open problems arise. (a) Are there states which are bounded and oscillatory
parallel to an irrational edge and which decay into the bulk? Related to this question is
the article [15], which demonstrates that the edge spectrum for a rationally terminated
continuum periodic Schroedinger operator (with Dirichlet boundary conditions) has a band-
gap spectrum, while for an irrational termination the gaps are filled with “edge spectrum”.
(b) Can one realize an edge state for irrational termination as the limit of a sequence of
edge state wave-packets (superpositions of edge states) of rationally terminated structures?
(c) Do all edge state curves emerge from and terminate in a band crossing? (d) Explain
the following numerical observations: Along certain sequences of rational edges, for which
|a11| + |a12| increases, there is an increasing number of dispersive edge state curves which
bifurcate from the band crossings. However along other sequences we do not see evidence
of this effect. (e) For an irrational edge, understand the long term dynamics of a state
initially concentrated near the edge. (f) Investigate analogous questions in other tight-
binding models, such as the Harper model for an electron on a two-dimensional lattice in the
presence of a constant perpendicular magnetic field, e.g. [2–4, 24] or models of multilayer
structures, such as twisted bilayer graphene, e.g. [5,7,27,29]. Parallel questions for quantum
graph models [6, 20] would also be of interest.

1.3. Structure of the paper. In Section 2 we present a mathematical framework for study-
ing the edge state eigenvalue problem for an arbitrary rational edge.
In Section 3 we discuss general properties of the spectrum of the edge Hamiltonian, H],k,
e.g. essential spectrum and symmetry properties.
In Section 4 we prove (modulo technical results established later) our main results on the
existence of zero-energy / flat band edge states: Theorems 4.5, 4.6 and Theorem 1.2 as
their consequence. The zero energy edge state eigenvalue problem in the bulk is a system
of decoupled A− site and B− site difference equations with complex k− dependent coeffi-
cients. The construction of zero energy edge states requires us to understand the complex
roots of two honeycomb edge polynomials (associated with A− site edge states and B− site
edge states), which are related by a symmetry. We prove that, depending on the parallel
quasi-momentum k, the number of roots in the open unit disc is either (a) less or equal to
or (b) one more than the number of linear homogeneous algebraic boundary conditions re-
quired for a general linear combination of decaying solutions of the difference equation to be
an edge state. In case (b), the algebraic system has one free parameter, which generates a
one-dimensional edge state eigenspace for the relevant value of k. This computation is made
in Section 5.
In Section 6 we obtain both Fourier and rational function representations of the zero energy
flat band edge states, in all cases where they exist.
Section 7 provides an analytical framework for studying the edge state eigenvalue problem
for arbitrary rational edges and general energies, E. In contrast to the case of zero energy
edge states, the edge state eigenvalue problem for general energies does not decouple into
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separate difference equations on A− and B− sites. Hence, the relevant polynomial associ-
ated with the coupled system of A− and B− site difference equations is twice the degree of
the polynomials arising for the uncoupled problem, and is less accessible to direct analysis.
We present the results of numerical investigations showing non-zero energy dispersive edge
states and zero energy / flat bands for representative non-classical zigzag-type edges and
non-zero energy dispersive edge states for representative non-classical armchair-type edges.
Finally, the appendices contain detailed computations used in the body of the paper.

1.4. Notation.

(1) Λ equilateral triangular lattice;
(2) H honeycomb lattice; H] terminated honeycomb lattice;
(3) Hbulk and H] bulk and edge nearest neighbor tight-binding operators;
(4) B(X), the space of bounded linear operators on a Banach space X;
(5) Pauli matrices:

(1.1) σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(6) 1S denotes the characteristic function of the condition S .

Acknowledgements: This research was initiated at a working group on ”Irrational edges”
at the American Institute of Mathematics (AIM) Workshop on the Mathematics of Topologi-
cal Insulators, December 7-11, 2020, which was supported by the American Institute of Math-
ematics, the US National Science Foundation, the Simons Foundation and Columbia Uni-
versity. C.L.F. was supported in part by National Science Foundation grant DMS-1700180.
M.I.W. was supported in part by National Science Foundation grants DMS-1620418 and
DMS-1908657 as well as Simons Foundation Math + X Investigator Award #376319. We
warmly thank the participants of the AIM working group, as well as Pierre Delplace, David
Gontier and Mikael Rechtsman for very stimulating discussions.

2. Mathematical framework

2.1. The honeycomb structure. We introduce the equilateral triangular lattice

Λ = Zv
◦

1 ⊕ Zv
◦

2,

with

(2.1) v
◦

1 =

√3
2

1
2

 and v
◦

2 =

 √3
2

−1
2

 ;

see Figure 3. The honeycomb structure is the set H = HA ∪HB ⊂ R2, where

HA = v
◦
A + Λ and HB = v

◦
B + Λ,

with

v
◦
A = 0 and v

◦
B =

1

3

(
v
◦

1 + v
◦

2

)
The points of HA and HB are called A-points and B-points, respectively. We write ω, ω̃, ω′

etc. to denote points of the honeycomb structure.
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v
◦

1

v
◦

2

v
◦
A v

◦
B

e1

e2

e3

Figure 3. Bulk honeycomb structure, H, comprised of A− site (blue) and
B− site (red) triangular sublattices.

A given A−point ω has as its three nearest neighbors in H the three B−points

(2.2) ω + eν , ν = 1, 2, 3 [nearest neighbor B-points to ω ∈ HA],

where

(2.3) e1 =
1

3

(
v
◦

1 + v
◦

2

)
, e2 =

1

3

(
v
◦

1 − 2v
◦

2

)
, e3 =

1

3

(
−2v

◦
1 + v

◦
2

)
.

Similarly, a given B−point ω has as its three nearest neighbors in H the three A−points

(2.4) ω − eν , ν = 1, 2, 3 [nearest neighbor A-points to ω ∈ HB];

see Figure 3.

2.2. The bulk Hamiltonian. We introduce the bulk Hamiltonian, Hbulk, acting on “ wave
functions ”

ψ = (ψω)ω∈H ∈ l
2(H).

It is defined by the formulas

(Hbulkψ)ω =
3∑

ν=1

ψω+eν if ω ∈ HA(2.5a)

(Hbulkψ)ω =
3∑

ν=1

ψω−eν if ω ∈ HB(2.5b)

Thus, (Hbulkψ)ω is equal to the sum of ψ(ω′) over the three nearest neighbors ω′ of ω in the
honeycomb H.

2.3. The sharply terminated honeycomb, H], and the Hamiltonian H]. Let l denote
a line in R2, and H] ⊂ H be the subset of points of H that lie in the closed half-space of R2

lying on one side of l. We refer to the line l as the edge. The Hamiltonian for the sharply
terminated honeycomb will act on wave functions (ψω)ω∈H, such that ψω = 0 for all ω /∈ H].
We shall abuse notation and denote the space of all such vectors l2(H]).
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The Hamiltonian, H], acting on vectors (ψω)ω∈H ∈ l2(H]) is defined by the formulas

(H]ψ)ω =
3∑

ν=1

ψω+eν if ω ∈ H] ∩HA(2.6a)

(H]ψ)ω = 0 if ω ∈ HA \H](2.6b)

(H]ψ)ω =
3∑

ν=1

ψω−eν if ω ∈ H] ∩HB(2.6c)

(H]ψ)ω = 0 if ω ∈ HB \H](2.6d)

The Hamiltonian H] in (2.6) arises as the limit of the 1− electron model in the strong
binding regime; see, for example, [10, 17, 26]. The operator H] is bounded and self-adjoint
on l2(H]); see Section 2.5.3 and relation (3.7).

2.4. Rational edges. We call the edge l a rational edge if it is parallel to a non-zero vector
a11v

◦
1 +a12v

◦
2 in the triangular lattice where a11 and a12 are two integers. This paper confines

itself to the case of rational edges.
The above integers a11 and a12 may be taken to be relatively prime, in which case there

exist integers a21, a22 (not unique) such that

det

(
a11 a12

a21 a22

)
= ±1.

We next introduce

v1 = a11v
◦

1 + a12v
◦

2,(2.7a)

v2 = a21v
◦

1 + a22v
◦

2.(2.7b)

The vector v1 is parallel to the edge l, and the vector v2 is transverse to l. After possibly
changing (a21, a22) to (−a21,−a22) we can always take v2 to point into the terminated bulk,
H]. Then, after possibly changing (a11, a12) to (−a11,−a12) we can achieve the conditions

det

(
a11 a12

a21 a22

)
= +1,(2.8a)

v1 is parallel to the edge, l,(2.8b)

v2 points into H].(2.8c)

The integer vector (a11, a12) is uniquely specified by conditions (2.7), (2.8) for a fixed H],
while the vector (a21, a22) is uniquely specified modulo translates by integer multiples of
(a11, a12). Our results will be independent of the ambiguity in the choice of (a21, a22).
Convention: From now on we fix (aij) as in (2.7), (2.8). By (2.8a), we have

(2.9)
v
◦

1 = a22v1 − a12v2,
v
◦

2 = −a21v1 + a11v2.

Hence,

(2.10) the set {v1,v2} is a basis for the triangular lattice; Λ = Zv1 + Zv2 = Zv
◦

1 + Zv
◦

2.
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Because H] consists of all points of H that lie on one side of the line l, we know from (2.7),
(2.8) that

(2.11) H] = H ∩
{
x1v1 + x2v2; x1, x2 ∈ R; x2 ≥ β

}
,

for some real number β, with the line l (the edge) given by:

(2.12) {x1v1 + x2v2 : x2 = β, x1 ∈ R}.

In view of (2.10) we prepare to re-express the honeycomb structure, H, the terminated
honeycomb structure, H], and the Hamiltonians Hbulk and H] in terms of the lattice basis
{v1,v2}. The detailed calculations are presented in Appendix A.

Let us partition the plane R2 into the parallelograms
(2.13)

Γ(m,n) =
{

v = x1v1+x2v2 : x1 ∈
(
m− 1

2
,m+

1

2

]
, x2 ∈

(
n− 1

2
, n+

1

2

]}
(m,n ∈ Z) .

We show in Appendix A.1 that each parallelogram Γ(m,n) contains the single A−point
vA + mv1 + nv2 and the single B−point vB + mv1 + nv2, where vA,vB ∈ H lie in the
parallelogram Γ(0, 0). Introduce k1, s1, k2, s2 such that

a22 − a21 = 3k1 + s1 with k1 ∈ Z, s1 ∈ {−1, 0, 1},(2.14a)

a11 − a12 = 3k2 + s2 with k2 ∈ Z, s2 ∈ {−1, 0, 1}.(2.14b)

The points vA and vB are given by

vA = 0 ∈ Γ(0, 0),(2.15a)

vB =
1

3
(s1v1 + s2v2) ∈ Γ(0, 0).(2.15b)

See Figures 4 and 5 for an example (a11 = 3, a12 = 1).
Given an A−point in Γ(m,n): vA +mv1 + nv2 = vB +mv1 + nv2 + (vA − vB), by (2.2),

its 3 nearest neighbor B−points are vB + mv1 + nv2 + (vA − vB) + eν , ν = 1, 2, 3. And,
given any B−point in Γ(m,n): vB +mv1 +nv2 = vA +mv1 +nv2− (vA−vB), by (2.4), its
3 nearest neighbor A−points are vA +mv1 +nv2− (vA−vB)− eν , ν = 1, 2, 3. To represent
these nearest neighbor points with respect to the basis {v1,v2}, we introduce the integers
m̃ν and ñν such that

(2.16) eν + (vA − vB) = m̃νv1 + ñνv2 for ν = 1, 2, 3.

In Appendix A.2 we show that

m̃1 = k1, ñ1 = k2(2.17a)

m̃2 = k1 + a21, ñ2 = k2 − a11(2.17b)

m̃3 = k1 − a22, ñ3 = k2 + a12,(2.17c)

with (aij) as in (2.7), (2.8), and k1, k2 as in (2.14).
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Figure 4. The edge defined by (a11, a12) = (3, 1). A− and B− sublattice
vertices of H] are indicated by colored circles and colored squares. Colored
squares indicate the frontier sites, as defined in the introduction. Empty circles
indicate vertices outside H], which are nearest neighbors to vertices in H].

l
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Figure 5. Notation for the edge defined by (a11, a12) = (3, 1): the vectors v1

and v2, the points vA and vB, and the parallelogram Γ(1, 3).

We conclude that

the three nearest neighbors to the A−point in Γ(m,n): vA +mv1 + nv2

are the three B− points (vB +mv1 + nv2) + m̃νv1 + ñνv2 (ν = 1, 2, 3) ,(2.18)

while

the three nearest neighbors to the B−point in Γ(m,n): vB +mv1 + nv2

are the three A− points (vA +mv1 + nv2)− (m̃νv1 + ñνv2) (ν = 1, 2, 3) .(2.19)
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Definition 2.1 (Zigzag-type and armchair-type edges). Let s2 ∈ {−1, 0, 1} be defined as
s2 := a11 − a12 mod 3; see (2.14). An edge is of zigzag-type if s2 = ±1, and of armchair-type
if s2 = 0 .

This definition agrees with the geometrical definition of zigzag and armchair edges given
in the introduction; see Proposition 2.5 below.

Example 2.2 (Classical Zigzag and Armchair Edges). The classical zigzag edges, displayed
in panels (a) and (b) of Figure 6, are in the direction v1 = v

◦
1−v

◦
2. Thus, (a11, a12) = (1,−1)

and therefore s2 = −1. We take v2 = v
◦

1. Equivalent edges are obtained by (counterclockwise)
rotation by 2π/3, giving (a11, a12) = (−1, 0) ( s2 = 1), and by 4π/3 giving (a11, a12) = (0, 1)
( s2 = 1). The classical armchair edge displayed in panel (c) is in the direction v1 = v

◦
1 +v

◦
2,

for which (a11, a12) = (1, 1), and hence s2 = 0. We take v2 = v
◦

2. Equivalent edges,
obtained via counterclockwise rotations by 2π/3 and 4π/3, give configuration parameters
(a11, a12) = (2,−1) and (a11, a12) = (−1, 2), respectively. See, for example, [9, 16, 21, 22] for
previous studies of classical zigzag edges.
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(a) Balanced ZZ-edge / DA > DB:
(a11, a12) = (1,−1), (a21, a22) = (1, 0)

Γ(0, 0)
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(b) Unbalanced ZZ-edge / DA < DB:
(a11, a12) = (1,−1), (a21, a22) = (1, 0)

Γ(0, 0) l
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(c) AC-edge / DA = DB: (a11, a12) = (1, 1), (a21, a22) = (0, 1)

Figure 6. H] for the classical ZZ and AC edges, balanced and unbalanced;
see Definition 2.3. A− sites are in blue and B− sites are in red. The edge, l,
is indicated with a dashed line. The parallelogram Γ(0, 0) is shaded gray; see
Remark 2.4.
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Convention: We find it very convenient to order the pairs (m̃ν , ñν), ν = 1, 2, 3 according to
increasing ñν. Of course this makes sense only if ñ1, ñ2 and ñ3 are all distinct. In Appendix
A.3 we verify that ñν are indeed all distinct except for the case of the classical zigzag edges
discussed in Example 2.2. We exclude the classical zigzag case in the coming general analysis
of rational edges and will analyze the classical zigzag edge case separately.

(2.20)
We denote by (n1, n2, n3) the permutation of (ñ1, ñ2, ñ3) for which: n1 < n2 < n3;

we denote by (m1,m2,m3) the same permutation applied to (m̃1, m̃2, m̃3).

In Appendix A.4 it is proved that

(2.21) n1 < 0 < n3.

2.5. Bulk and edge Hamiltonians with respect to the basis {v1,v2}. The above
observations and calculations allow us to rewrite the bulk Hamiltonian Hbulk and the edge
Hamiltonian, H], in terms of the lattice basis {v1,v2}.

2.5.1. Hbulk in the basis {v1,v2}. We write the wave functions (ψω)ω∈H, with respect to the
basis {v1,v2} in the form

(2.22) ψ =
(
ψA(m,n), ψB(m,n)

)
m,n∈Z ∈ l2(Z× Z;C2),

where

ψA(m,n) = ψω for ω = vA +mv1 + nv2 ∈ HA, and

ψB(m,n) = ψω for ω = vB +mv1 + nv2 ∈ HB.

Thanks to the formulas (2.18) and (2.19) for nearest neighbor points, the action of our
bulk Hamiltonian (2.5a), (2.5b) on the vector (2.22) is given, for m,n ∈ Z, by

(Hbulkψ)A (m,n) =
3∑

ν=1

ψB(m+mν , n+ nν),(2.23a)

(Hbulkψ)B (m,n) =
3∑

ν=1

ψA(m−mν , n− nν).(2.23b)

2.5.2. H] in the basis {v1,v2}. We want to carry out an analogous reformulation for the
Hamiltonian H], (2.6), associated with the sharply terminated honeycomb structure, H]. To
do so, we recall (2.11), (2.15) and we deduce, using (2.11), that

the A−point vA +mv1 + nv2 ∈ H] if and only if n ≥ nAmin, and

the B−point vB +mv1 + nv2 ∈ H] if and only if n ≥ nBmin ,

where

nAmin = the least integer ≥ β(2.24a)

nBmin = the least integer ≥ β − 1

3
s2.(2.24b)
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Note from (2.24a), (2.24b) that

nAmin = nBmin if s2 = 0(2.25a)

nAmin = nBmin or nAmin = nBmin + 1 if s2 = 1(2.25b)

nAmin = nBmin or nAmin = nBmin − 1 if s2 = −1.(2.25c)

Definition 2.3. We will say that our terminated structure is balanced if nAmin = nBmin. Oth-
erwise, we say that the terminated structure is unbalanced; see Figure 6 for some examples.

Remark 2.4. Recall that each parallelogram Γ(m,n) contains one A−point and one B−point.
If H] is balanced then in each Γ(m,n), either both of those points or neither will lie in H]. An
unbalanced H] gives rise to Γ(m,n) containing an A−point and not a B− point (nAmin < nBmin)
or a B−point and not an A− point (nAmin > nBmin); see Figure 6.

Note, by Definition 2.3 and (2.25) that zigzag-type edges can be either balanced or unbal-
anced but that armchair edges are all of balanced type.

Recall that DA (resp. DB) denotes the distance from the edge l to the closest A− points
(resp. B− points) of the terminated structure H] (also called frontier points in the introduc-
tion and in Figure 4). Thanks to (2.25), the following proposition shows that the notions
of armchair edge, balanced zigzag edge and unbalanced zigzag edge given in Definitions 2.1
and 2.3 agree with the corresponding definitions of those concepts in the introduction.

Proposition 2.5. With DA and DB as defined in the introduction, we have

(2.26) DB −DA =

√
3

2
|v1|−1

(
1

3
s2 + nBmin − nAmin

)
.

Proof. Recall that the line l is given by

{x1v1 + x2v2 : x2 = β, x1 ∈ R} for some β ∈ R.
We introduce the unit vector e⊥ which is perpendicular to v1 and pointing into the bulk H].
Let

µ = e⊥ · v2.

Note that µ > 0 since both v2 and e⊥ both point into the bulk. The (signed) distance
from a point ω = x1v1 + x2v2 to the edge l is equal to (x2 − β)µ. Recall that the
A− points (respectively, B− points) of H] are the points vA + mv1 + nv2 (respectively,
vB + mv1 + nv2) with m,n ∈ Z and n ≥ nAmin (respectively, n ≥ nBmin). Here, vA = (0, 0)
and vB = 1

3
(s1v1 + s2v2); see Section 2.5 and (2.15). It follows that DA = (nAmin−β)µ, while

DB = (1
3
s2 + nBmin − β)µ. Hence,

(2.27) DB −DA =

(
1

3
s2 + nBmin − nAmin

)
µ.

We next compute µ using (2.1), (2.7) and (2.8a). Writing ∧ for the wedge product of two

vectors, we have |v1 ∧ v2| = |v◦1 ∧ v
◦

2| =
√

3
2

. Note now that v2 = zv1 + µe⊥ for some z ∈ R.
Therefore, since µ > 0 √

3

2
= |v1 ∧ v2| = |v1 ∧ µe⊥| = µ|v1|.

Substituting into (2.27) yields (2.26). This completes the proof of Proposition 2.5. �
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Now we know the nearest neighbors to any given point in H, and we know exactly which
points vA +mv1 + nv2 and vB +mv1 + nv2 lie in the terminated structure H]. Therefore,
we can rewrite the Hamiltonian, H], given by (2.6) in terms of the {v1,v2} basis.

Proposition 2.6. The Hamiltonian H] acts on vectors:

(2.28) ψ(m,n) =
(
ψA(m,n), ψB(m,n)

)
m,n∈Z ∈ l2(Z× Z;C2),

subject to the restrictions

(2.29)
ψA(m,n) = 0 for n < nAmin,

ψB(m,n) = 0 for n < nBmin.

The action of H] on such vectors ψ is given by

(H]ψ)A (m,n) =
3∑

ν=1

ψB(m+mν , n+ nν) if n ≥ nAmin,

(H]ψ)A (m,n) = 0 if n < nAmin,

(H]ψ)B (m,n) =
3∑

ν=1

ψA(m−mν , n− nν) if n ≥ nBmin,

(H]ψ)B (m,n) = 0 if n < nBmin.

H] is a bounded self-adjoint operator acting on ψ of the form (2.28), (2.29).

2.5.3. Decomposition of H] into fiber Hamiltonians, H](k). The Hamiltonian H] is invariant
under translations by the edge direction vector v1. Consequently our Hilbert space of wave
functions (2.28), (2.29) decomposes into a direct integral over parallel quasi-momenta of
spaces l2k, with k ∈ R/2πZ. Here, l2k denotes the space of k pseudoperiodic wave functions of
the form

ψA(m,n) = eikmψA(n),

ψB(m,n) = eikmψB(n),

where

(2.30) ψ = (ψ(n))n∈Z =
(
ψA(n), ψB(n)

)
n∈Z ∈ l

2(Z;C2)

satisfies

(2.31) ψA(n) = 0 for n < nAmin and ψB(n) = 0 for n < nBmin.
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The Hamiltonian H], accordingly decomposes as a direct integral [25] over k ∈ R/2πZ of the
Hamiltonian H](k) acting on wave functions (2.30), (2.31), given by the formulas

(2.32)

(H](k)ψ)A (n) =
3∑

ν=1

eikmνψB(n+ nν) if n ≥ nAmin

(H](k)ψ)A (n) = 0 if n < nAmin

(H](k)ψ)B (n) =
3∑

ν=1

e−ikmνψA(n− nν) if n ≥ nBmin

(H](k)ψ)B (n) = 0 if n < nBmin.

Each H](k) is a self-adjoint operator acting on the Hilbert space given by (2.30), (2.31).
The operator H](k) is equivalent to the operator H],k mentioned in the introduction, by an
obvious identification of the Hilbert spaces on which those operators act.

3. Spectrum of H](k)

We want to understand, for each k ∈ [0, 2π], the spectrum of H](k) acting in l2(Z;C2) . We
shall, in particular, investigate the existence of edge states which correspond to eigenvalues
of the following spectral problem for the operator H](k):
E is an eigenvalue of H](k) if there exists a non-trivial solution in l2(Z;C2) of the equations

EψA(n) =
3∑

ν=1

eimνkψB(n+ nν) for n ≥ nAmin(3.1a)

EψB(n) =
3∑

ν=1

e−imνkψA(n− nν) for n ≥ nBmin(3.1b)

ψA(n) = 0 for n < nAmin(3.1c)

ψB(n) = 0 for n < nBmin.(3.1d)

Definition 3.1. A nonzero l2(Z;C2) solution of the eigenvalue problem (3.1) is called an
edge state for the quasimomentum k ∈ [0, 2π].

In the remainder of this section we study general properties of the spectrum of H](k) for
k ∈ [0, 2π], in particular its essential spectrum. In Section 4 we carry out a comprehensive
study of zero energy (E = 0) edge states. In Section 7 we present a numerical study of the
edge state eigenvalue problem for general energies, E.

3.1. Essential spectrum of H](k). For a fixed k ∈ [0, 2π], the essential spectrum of H](k)
can be computed from the spectrum of Hbulk defined in (2.23). Since the bulk Hamiltonian,
Hbulk is invariant under translations by the vector v1 it decomposes as a direct integral over
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k ∈ R/2πZ of the Hamiltonian Hbulk(k), defined by

(Hbulk(k)ψ)A (n) =
3∑

ν=1

eikmνψB(n+ nν) n ∈ Z

(Hbulk(k)ψ)B (n) =
3∑

ν=1

e−ikmνψA(n− nν) n ∈ Z.

One can show, by a Weyl sequence argument, that the essential spectrum of H](k) is equal
to that of Hbulk(k), and consists of those values of E for which there exists a non-trivial
solution ψ, of sub-exponential growth, of the following system of equations:

3∑
ν=1

eimνkψB(n+ nν) = EψA(n), n ∈ Z,(3.2)

3∑
ν=1

e−imνkψA(n− nν) = EψB(n), n ∈ Z.(3.3)

This coincides with (3.1a)-(3.1b) for n� max{nAmin, n
B
min}.

Fix E ∈ R and k ∈ [0, 2π]. It is natural to consider particular solutions of (3.2), (3.3) of
the form: ψ(n) = ζnξ , where (ζ, ξ) ∈ C× C2 satisfies the linear system

(3.4) ( Pk(ζ)− EI )

(
ξA

ξB

)
=

(
0
0

)
, ξ =

(
ξA

ξB

)
.

Here,

Pk(ζ) :=

(
0 P+(ζ, k)

P−(ζ, k) 0

)
and P±(ζ, k) :=

3∑
j=1

e±ikmjζ±nj .(3.5)

When there is no ambiguity, we shall frequently suppress the dependence of P± on k. Note
that

P−(ζ) = P+(1/ζ), and |ζ| = 1 implies P−(ζ) = P+(ζ).

Proposition 3.2. For k ∈ [0, 2π], we have

E ∈ specess(H](k)) ⇐⇒ ∃k⊥ ∈ [0, 2π], E2 = |h(k⊥, k)|2

where h(k⊥, k) :=
∑3

ν=1 e
ikmν eik⊥nν . Furthermore, if E ∈ specess(H](k)), then a non-trivial

solution ψ of (3.2-3.3) is given by ψ(n) = eink⊥ξ where ξ ∈ C2 − {0} solves

Hbulk(k⊥, k)ξ = Eξ,

where

(3.6) Hbulk(k⊥, k)ξ :=

(
0 h(k⊥, k)

h∗(k⊥, k) 0

)
ξ.

Here, z∗ denotes the complex conjugate of z.

Proof of Proposition 3.2. Since Hbulk(k) is invariant under translations by the vector v2, it
decomposes as a direct integral over k⊥ ∈ R/2πZ of the matrix Hbulk(k⊥, k). If ψ ∈ l2(Z),

[Hbulk(k)ψ](n) =
1

2π

∫ 2π

0

eik⊥nHbulk(k⊥, k)ψ̂(k⊥)dk⊥,
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where ψ̂(k⊥) ∈ C2 is the discrete Fourier transform of ψ. The essential spectrum of Hbulk(k)
is nothing but the union of the spectra of Hbulk(k⊥, k) for k⊥ ∈ [0, 2π].

It is easy to see that for each k ∈ [0, 2π], k⊥ 7→ h(k⊥, k) is a 2π− periodic continuous
function. From Proposition 3.2, we deduce that for a fixed k ∈ [0, 2π], the range of the maps

k⊥ 7→ ±|h(k⊥, k)|
sweeps out the essential spectrum of Hbulk(k) and therefore that of H](k). �

Let us define Xbulk := l2(Z,C2) and X] to be the subspace of elements of Xbulk whose
components ψA(n) and ψB(n) vanish, respectively, for n < nAmin and n < nBmin. Let i denote
the inclusion map from X] to Xbulk. Then, H](k) and Hbulk(k) are related by

(3.7) H](k) = i∗Hbulk(k)i,

thus making explicit the self-adjointness of H](k) and showing that

(3.8) ‖H](k)‖B(X]) = ‖Hbulk(k)‖B(Xbulk).

Note that we can write Hbulk(k⊥, k), defined in (3.6), as

Hbulk(k⊥, k) = σ1 <(h(k⊥, k))− σ2 =(h(k⊥, k)),

where σj, j = 1, 2, 3, denote the Pauli matrices; see (1.1). Since σ3 anti-commutes with
σ1 and σ2, we deduce that σ3Hbulk(k⊥, k) = −Hbulk(k⊥, k)σ3. Defining Σ3 as acting on a
set of A− and B− amplitudes by transforming ψA(n) to ψA(n) and ψB(n) to −ψB(n), we
have that Σ3 commutes with i∗ and i. Hence, Σ3Hbulk(k) = −Hbulk(k)Σ3 and via (3.7)
Σ3H](k) = −H](k)Σ3. This implies the symmetry about 0-energy of the full spectrum of
Hbulk(k) and relates the modes associated with any ±E in the spectrum of Hbulk(k).

The previous discussion together with the observation h(k⊥, k) = h∗(2π− k⊥, 2π− k), for
all k⊥, k ∈ [0, 2π], implies the following:

Proposition 3.3 (Symmetry of the spectrum of H](k)). For k ∈ [0, 2π], we have

E ∈ spec(H](k)) ⇐⇒ −E ∈ spec(H](k))

and
E ∈ spec(H](k)) ⇐⇒ E ∈ spec(H](2π − k)).

3.2. Bands and gaps in the spectrum of H](k) as k varies. Since for any k ∈ [0, 2π],
k⊥ 7→ ±|h(k⊥, k)| sweeps out symmetric intervals of the essential spectrum of H](k), we have

specess(H](k)) =
[
−max

k⊥
|h(k⊥, k)|,−min

k⊥
|h(k⊥, k)|

] ⋃ [
min
k⊥
|h(k⊥, k)|,max

k⊥
|h(k⊥, k)|

]
.

It is easy to see that |h(k⊥, k)| ≤ 3 for all (k⊥, k) and |h(k⊥, k)| = 3 if and only if
(k⊥, k) = (0 mod 2π, 0 mod 2π). This implies that specess(H](k)) ⊂ [−3, 3].1 It is of interest
to determine for which values of k ∈ [0, 2π] is the spectrum of the Hamiltonian Hbulk(k) not
gapped near 0. By continuity this is equivalent to determining the values of k for which zero
is in the essential spectrum of H](k).

1It appears that the boundary curves of the essential spectrum are monotone away from high symmetry
points but we have not proven this.



20 Discrete honeycombs, rational edges and edge states

Proposition 3.4. E = 0 is in the spectrum of Hbulk(k) (that is, Hbulk(k) is not gapped) if
and only if k is given by

(i) k̂ = 0 or 2π, if a11 − a12 = 0 mod 3 (AC case)

(ii) k̂ =
2π

3
or

4π

3
, if a11 − a12 = ±1 mod 3 (ZZ case).

Figure 7. Shaded regions indicate essential spectrum of Hbulk(k) and H](k)
for different types of rational edges; armchair type edge (left) and zigzag type
edge (right).

a11 = 4, a12 = 1

E

k

a11 = 5, a12 = 1

k

a11 = 6, a12 = 1

k

Figure 8. For each k ∈ [0, 2π], we indicate in blue (resp. in yellow) the
essential spectrum (resp. the resolvent set or the gaps) of Hbulk(k) in the
interval E ∈ (−3.5, 3.5).

Remark 3.5. By (3.8), any discrete spectrum of H](k) must lie: either in the bounded
component of the complement (with respect to R) of the essential spectrum (bounded light
regions) or be embedded in the essential spectrum. We have not investigated the existence
or non-existence of embedded eigenvalues for general rational edges. Note however that for
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a11 = 4, a12 = 1

E

k

a11 = 5, a12 = 1

k

a11 = 6, a12 = 1

k

Figure 9. For each k ∈ [0, 2π], we indicate in blue (resp. in yellow) the
essential spectrum (resp. the resolvent set or the gaps) of Hbulk(k) in the
interval E ∈ (−1, 1).

the case of the classical (ordinary) zigzag edge, E = +1 and E = −1 are eigenvalues of
H](π) of infinite multiplicity that are embedded in the essential spectrum; see [12, Theorem
2.2].

Proof of Proposition 3.4. By Proposition 3.2, we must determine those values of k ∈ [0, 2π]
for which there exists k⊥ with h(k, k⊥) = 0. We have

h(k, k⊥) = 0 ⇐⇒ 1 + ei(β1k+γ1k⊥) + ei(β2k+γ2k⊥) = 0,

where

β1 = m2 −m1, β2 = m3 −m1

γ1 = n2 − n1, γ2 = n3 − n1.(3.9)

We shall later make use of the additional notations:

β =

(
β1

β2

)
, and γ =

(
γ1

γ2

)
.

The centroid of the three points 1, ei(β1k+γ1k⊥), ei(β2k+γ2k⊥) on the unit circle is at the origin
if and only if the three points are located at vertices of an equilateral triangle. Since one of
the three points is fixed at 1, there are two cases: σ̂ = 1 or σ̂ = −1, with

β1k + γ1k⊥ = σ̂
2π

3
mod 2π

β2k + γ2k⊥ = −σ̂2π

3
mod 2π .

Solving for k and k⊥, we obtain the two cases:

k =
2π

3
σ̂ (γ1 + γ2) det[β γ] mod 2π(3.10)

k⊥ = −2π

3
σ̂ (β1 + β2) det[β γ] mod 2π,(3.11)

where det[β γ] = ±1; see (C.1). Finally, from (3.9) we have

(3.12) γ1 + γ2 = (n1 + n2 + n3)− 3n1 =
(2.20)

(ñ1 + ñ2 + ñ3)− 3n1 =
(2.14)

−s2 − 3n1.
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and similarly

(3.13) β1 + β2 = −s1 − 3m1

Equations (2.8a) and (2.14) imply that s1 and s2 cannot be both zero. Hence, (3.12) and
(3.13) yield
(3.14)

For a11 − a12 = 0 mod 3 (s2 = 0)
E = 0 is in the essential spectrum of H](k) if and only if k = 0 mod 2π.

In this case, there are two distinct k⊥ arising from (3.11), namely k⊥ =
2π

3
or

4π

3
.

(3.15)
For a11 − a12 = ±1 mod 3 (s2 = ±1)

E = 0 is in the essential spectrum of H](k) if and only if k =
2π

3
or k =

4π

3
mod 2π.

Each of those k’s gives rise to a single k⊥ via (3.11).

�

3.3. The wedge of the edge. An analytical theory of the dispersive edge states docu-
mented numerically in Section 7.2 is work in progress. The numerical simulations of Section
7.2 show that in a neighborhood of a bifurcation point, (k,E) = (k̂, 0), a dispersive edge
state curve emanates into a locally wedge shaped region. It is of interest to understand the
dependence of the wedge-opening on the edge-direction v1 = a11v

◦
1 + a12v

◦
2.

Proposition 3.6 (Wedge of the Edge). Assume that (k,E) = (k̂, 0) is a crossing of bands in

the essential spectrum of H](k) . Hence, for the zigzag type edges (s2 = ±1) k̂ ∈ {2π/3, 4π/3}
and for armchair type edges k̂ ∈ {0, 2π}. For κ small, let κ 7→ η±(k̂ + κ) locally define the

upper and lower bounding curves of the essential spectrum of H] near (k,E) = (k̂, 0). Then,

(3.16) η±(k̂ + κ) =

(
±
√

3

2
· 1

|v1|
+ o(1)

)
|κ|, as κ→ 0,

where |v1| = (a2
11 + a11a12 + a2

12)
1
2 , see Figure 10.

We prove Proposition 3.6 in Appendix B.



C.L. Fefferman, S. Fliss and M.I. Weinstein 23

Figure 10. Schematic for Edge of the Wedge Proposition 3.6. Blue regions
are essential spectrum and red dotted lines have slopes of magnitude α =√

3
2
|v1|−1 =

√
3

2
(a2

11 + a11a12 + a2
12)
−1/2

: armchair type edge (left) and zigzag
type edge (right).

4. Zero energy / flat band edge states

In this section we present a complete classification of zero energy edge states (E = 0)
according to edge-type and range of parallel quasimomentum k. The main results of this
section are Theorems 4.5 and 4.6, which are shown to imply Theorem 1.2, stated in the
introduction.

From (3.1) we note that the wave function amplitudes at the A−sites and B−sites are
completely decoupled in the case of zero energy edge states. This leads to the decoupled
eigenvalue problems:

B−site edge state eigenvalue problem: Find ψB ∈ l2(Z;C2) such that

3∑
ν=1

eimνkψB(n+ nν) = 0 for n ≥ nAmin(4.1a)

ψB(n) = 0 for n < nBmin(4.1b)

and the
A−site edge state eigenvalue problem: Find ψA ∈ l2(Z;C2) such that

3∑
ν=1

e−imνkψA(n− nν) = 0 for n ≥ nBmin(4.2a)

ψA(n) = 0 for n < nAmin .(4.2b)

We shall see, for zigzag edges, there are subintervals, I, of k ∈ [0, 2π] over which the
zero energy edge state eigenvalue problem (4.1) or (4.2) has non-trivial solutions. Since the
dispersion curves k ∈ I 7→ E(k) ≡ 0 are constant, these intervals of zero energy eigenstates
are called flat bands or zero energy flat bands.
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Observe that non-zero solutions of (4.1) give rise to zero-energy edge states that live only
at the B−sites (i.e. ψA(n) = 0 for all n), while non-zero solutions of (4.2) give rise to
zero-energy edge states that live only at the A−sites (i.e. ψB(n) = 0 for all n).

Any solution of (4.1a) is connected to solutions ζ of the indicial equation

(4.3) P+(ζ, k) = 0;

where P+ is defined in (3.5). Recalling the ordering n1 < n2 < n3 we rewrite (4.3) as the
polynomial equation:

(4.4) p+(ζ, k) = 0 where p+(ζ, k) := 1 + ei(m2−m1)kζn2−n1 + ei(m3−m1)kζn3−n1 .

Similarly, any solution of (4.2a) is connected to solutions ζ of the indicial equation

(4.5) P−(ζ, k) = 0;

where P− is defined in (3.5), and the roots of the polynomial equation

(4.6) p−(ζ, k) = 0 where p−(ζ, k) := 1 + ei(m3−m2)kζn3−n2 + ei(m3−m1)kζn3−n1 .

The polynomials p±(ζ; k) both have degree n3−n1. We next review the connection between
the polynomial equations (4.4), (4.6) and the discrete boundary value problems (4.1), (4.2).
We focus initially on the properties of (4.4) as a simple transformation enables us to map
conclusions about (4.4) to conclusions about (4.6).

By Proposition 3.4, 0 is in the essential spectrum of H](k) for k = 0 or 2π for the armchair-
type edges and k = 2π/3 or 4π/3 for zigzag type edges. By Proposition 3.2, this means that,
except for these values, equations (4.4) and (4.6) have no roots (simple or multiple) on the
unit circle. Moreover, in Lemma 5.6 below we shall prove that any roots of (4.4) and (4.6)
are simple.

4.1. Solving for edge states that live on B− sites. Introduce p(k), the number of roots
of (4.4) located in the open unit disc in C:

(4.7) p(k) = #{|ζ| < 1 : p+(ζ, k) = 0} for k ∈ [0, 2π].

Let ζ1, . . . , ζp(k) denote the p(k) roots inside the unit circle, and let ζp(k)+1, . . . , ζn3−n1 denote
the roots that lie outside the unit circle. Then, since the roots are all distinct (see Lemma
5.6), the general solution of the equation (4.1a), which can be rewritten equivalently as

(4.8)
3∑

ν=1

eimνkψB(n+ nν − n1) = 0 for n ≥ nAmin + n1 ,

is of the form

ψB(n) =

n3−n1∑
j=1

Ajζ
n
j for n ≥ nAmin + n1.(4.9a)

with ψB(n) arbitrary for n < nAmin + n1 .(4.9b)
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Here, A1, . . . , An3−n1 are arbitrary coefficients. 2 Since |ζj| < 1 for j = 1, . . . , p(k) and
|ζj| > 1 for j > p(k), it follows that the l2 solutions of (4.8) are given by

ψB(n) =

p(k)∑
j=1

Ajζ
n
j for n ≥ nAmin + n1,(4.10a) (

ψB(n)
)
n<nAmin+n1

is an arbitrary vector in l2.(4.10b)

Note that since the (n3 − n1) degree polynomial in (4.4) depends on nν and k, the number
p(k) depends also on these quantitites. In Appendix A.4 we check that nAmin + n1 ≤ nBmin.
We conclude that the l2 solutions of equations (4.1) are precisely the vectors

(4.11) ψB(n) =

{∑p(k)
j=1 Ajζ

n
j for n ≥ nAmin + n1

0 for n < nAmin + n1

,

such that ψB(n) = 0 for n < nBmin. Hence, the coefficients A1, . . . , Ap(k) are subject to the
constraints

(4.12)

p(k)∑
j=1

Ajζ
n
j = 0 for nAmin + n1 ≤ n < nBmin.

The existence of B−site edge states for a given value of k, then reduces to a comparison of
the number of free constants, p(k), and the number of independent equations in the linear
homogeneous algebraic system (4.12).

Our task is now to determine the number, p(k), of roots of (4.4) in the open unit disk
which varies: (i) with the type of edge and (ii) as a function of the parallel quasi-momentum,
k. The following proposition, proved in Section 5, is the key.
Recall that s2 = a11 − a12 mod 3, s2 ∈ {−1, 0, 1}.

Proposition 4.1. Let p(k) be given by (4.7). Suppose that k /∈ {0, 2π} if s2 = 0 and that
k /∈ {2π/3, 4π/3} if s2 = ±1. Then,

(4.13) p(k) = −n1 − s21k∈( 2π
3
, 4π

3
)

From Proposition 4.1 we deduce:

Proposition 4.2 (Conditions for B−site edge states). Let k be as in Proposition 4.1. Con-
sider the eigenvalue problem (4.1) governing edge states which are supported on the B− sites
of H]. Then,

If s21k∈( 2π
3
, 4π

3
) ≥ nAmin − nBmin, then there are no nonzero l2 solutions of (4.1).(4.14)

If s21k∈( 2π
3
, 4π

3
) < nAmin − nBmin, then the space of l2 solutions of (4.1),

has dimension (nAmin − nBmin)− s21k∈( 2π
3
, 4π

3
) .(4.15)

2 For n � nBmin, where the terms of (4.8) only sample sites within the bulk, we have the expression for
ψB(n) in (4.9a). Since n1 < n2 < n3, equation (4.8) expresses ψB(n) in terms of its values at sites with
indices larger than n. Therefore, we can use (4.8) to recur down from the bulk to obtain (4.8) over the full
range n ≥ nAmin + n1.
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Proof of Proposition 4.2. The l2 solutions of equations (4.1a) are given by (4.11) where the
coefficients A1, . . . , Ap(k) are subject to the constraints (4.12). Equations (4.12) is a system
of nBmin − nAmin − n1 equations in the p(k) unknowns A1, . . . , Ap(k). Thanks to the non-
vanishing of the relevant Vandermonde determinants, we deduce that if p(k) ≤ nBmin −
nAmin − n1 which is equivalent to s21k∈( 2π

3
, 4π

3
) ≥ nAmin − nBmin by Proposition 4.1, then there

are no nonzero l2 solutions of (4.1) and if p(k) > nBmin − nAmin − n1 which is equivalent to
s21k∈( 2π

3
, 4π

3
) < nAmin − nBmin by Proposition 4.1, then the space of l2 solutions of (4.1), has

dimension p(k)− (nBmin − nAmin − n1) = (nAmin − nBmin)− s21k∈( 2π
3
, 4π

3
). �

4.2. Solving for edge states which live on A−sites. A completely analogous discussion
applies to the zero energy edge state eigenvalue problem for states which live on the A−sites,
(4.2), and the associated polynomial (4.6). Let

(4.16) q(k) = #{|ζ| < 1 : p−(ζ, k) = 0} for k ∈ [0, 2π],

and denote by ζ1, . . . , ζq(k)
the solutions of p−(ζ, k) = 0 that are inside the open unit disc.

Then, the l2 solutions of equations (4.2a) are precisely the vectors

(4.17) ψA(n) =

{∑q(k)
j=1 Ajζ

n
j for n ≥ nBmin − n3

0 for n < nBmin − n3

,

where the coefficients A1, . . . , Aq(k) are subject to the constraints

(4.18)

q(k)∑
j=1

Ajζ
n
j = 0 for nBmin − n3 ≤ n < nAmin,

In Appendix A.4 we check that nBmin − n3 ≤ nAmin.
The number, q(k), of roots of (4.6) in the open unit disk, can be computed from p(k),

which was evaluated in Proposition 4.1. Recall that s2 = a11 − a12 mod 3, s2 ∈ {−1, 0, 1}.

Proposition 4.3. Let q(k) be given by (4.16). Suppose that k /∈ {0, 2π} if s2 = 0 and that
k /∈ {2π/3, 4π/3} if s2 = ±1. Then,

(4.19) q(k) = n3 + s21k∈( 2π
3
, 4π

3
), k ∈ [0, 2π].

Proof of Proposition 4.3. Suppose k /∈ {0, 2π}, for the case s2 = 0, and k /∈ {2π/3, 4π/3},
for the case s2 = ±1. Then, P+(ζ, k) and P−(ζ, k) have no zeros on the unit circle. By the

relation P−(ζ, k) = P+(ζ̄−1, k) and Proposition 4.1, the number of zeros of P−(ζ, k) (and
therefore of p−(ζ, k)) outside the closed unit disc is equal to p(k) = −n1−s21k∈( 2π

3
, 4π

3
). Since

the polynomial p−(ζ, k) has n3 − n1 complex roots, we have that the number of roots of
p−(ζ, k) inside the open unit disc is q(k) = (n3 − n1)− p(k) = n3 + s21k∈( 2π

3
, 4π

3
). �

Equations (4.18) form a system of nAmin − nBmin + n3 equations for the q(k) unknowns
A1, . . . , Aq(k). We conclude as in Proposition 4.2 that if q(k) ≤ nAmin − nBmin + n3, then there
are no non-zero l2 solutions of (4.2), and if q(k) > nAmin − nBmin + n3, then the space of l2

solutions of (4.2) is q(k) − (nAmin − nBmin + n3) dimensional, which, by Proposition 4.3, is
equivalent to the following:
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Proposition 4.4 (Conditions for A− site edge states). Let k be as in Proposition 4.3.
Consider the eigenvalue problem (4.2) governing edge states which are supported on the A−
sites of H]. Then,

If s21k∈( 2π
3
, 4π

3
) ≤ nAmin − nBmin, then there are no nonzero l2 solutions of (4.2).(4.20)

If s21k∈( 2π
3
, 4π

3
) > nAmin − nBmin, then the space of l2 solutions of (4.2),

has dimension s21k∈( 2π
3
, 4π

3
) − (nAmin − nBmin).(4.21)

So far we have not settled the exceptional values of k for E = 0 ( k = 2π/3 and 4π/3 for
zigzag-like edges and k = 0 and 2π for armchair-like edges). Theorem 4.7 below shows that
there are no edge states in those cases.

4.3. Conclusions on the zero energy edge state eigenvalue problem. Proposition 4.2
and Proposition 4.4 can be used to determine precisely for which edge-types (balanced zigzag,
unbalanced zigzag, armchair) and for which ranges of parallel quasimomentum, k ∈ [0, 2π],
zero energy (flat band) edge states, ψ = (ψA, ψB), do / do not exist, and whether they are
supported on B−sites; ψ = (0, ψB), or on A− sites, ψ = (ψA, 0).

We shall apply Proposition 4.2 and Proposition 4.4 to deduce Theorems 4.5 and 4.6 below.
The results are summarized in the Table 2. At the end of this section we deduce Theorem
1.2 from Theorems 4.5 and 4.6.

armchair-type zigzag-type zigzag-type

a11 − a12 ≡ 0 mod 3 a11 − a12 ≡ +1 mod 3 a11 − a12 ≡ −1 mod 3

balanced edge No ES A-site ES for k ∈ ( 2π
3 ,

4π
3 ) B-site ES for k ∈ ( 2π

3 ,
4π
3 )

unbalanced edge —— B-site ES for k ∈ [0, 2π] \ [ 2π3 ,
4π
3 ] A-site ES for k ∈ [0, 2π] \ [ 2π3 ,

4π
3 ]

Table 2. Complete description of all zero energy / flat band edge states; Theorems

4.5 and 4.6.

With reference to this table, we make a few clarifying remarks. There are no unbalanced
armchair (AC) edges. The expressions A-site ES and B-site ES refer to edge states (ES)
supported exclusively on A−sites, respectively on B−sites. Whenever zero energy edge states
exist, the corresponding l2k eigenspace has dimension equal to one. This table concerns only
zero energy edge states.

Theorem 4.5 (Existence of zero-energy edge states for zigzag-type edges.). Suppose that
s2 = ±1 where s2 = a11 − a12 mod 3.

• Suppose the terminated structure is balanced (nAmin = nBmin). Then, for k ∈ (2π/3, 4π/3)
there is a one-dimensional space of zero-energy edge states for H](k). These edge
states are supported on the B−sites if s2 = −1, and on the A−sites if s2 = +1.
There are no zero energy edge states for k ∈ [0, 2π] \ [2π/3, 4π/3].
• Suppose the terminated structure is unbalanced (nAmin 6= nBmin). Then, for k ∈ [0, 2π] \

[2π/3, 4π/3] there is a one-dimensional space of zero-energy edge states for H](k).
These edge states are supported on the A−sites if s2 = −1, and on the B−sites if
s2 = +1. There are no zero energy edge states for k ∈ (2π/3, 4π/3).
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Proof. If the terminated structure is balanced, then nAmin = nBmin. If s2 = −1, Proposition
4.2-(4.15) implies that if k ∈ (2π

3
, 4π

3
), the space of l2 solutions of (4.1) (leading to zero

energy / flat band edge states supported on B−sites) has dimension 1. Proposition 4.2-
(4.14) implies that if k /∈ (2π

3
, 4π

3
) there are no l2 solutions of (4.1) and Proposition 4.4-(4.20)

implies that there are no l2 solutions of (4.2) for any k. If s2 = 1, Proposition 4.4-(4.21)
implies that if k ∈ (2π

3
, 4π

3
), the space of l2 solutions of (4.2) (leading to zero energy / flat

band edge states supported on A−sites) has dimension 1. Proposition 4.4-(4.20) implies that
if k /∈ (2π

3
, 4π

3
) there are no l2 solutions of (4.2) and Proposition 4.2-(4.14) implies that there

are no l2 solutions of (4.1) for any k.
If the terminated structure is unbalanced, then nAmin − nBmin = s2 = ±1 (see (2.25)). If
s2 = −1, Proposition 4.4-(4.21) implies that if k /∈ (2π

3
, 4π

3
), the space of l2 solutions of

(4.2) (leading to 0− energy flat band edge states supported on A−sites) has dimension 1.
Proposition 4.4-(4.20) implies that if k ∈ (2π

3
, 4π

3
) there are no l2 solutions of (4.2) and

Proposition 4.2-(4.14) implies that there are no l2 solutions of (4.1) for all k. If s2 = 1,
Proposition 4.2-(4.15) implies that if k /∈ (2π

3
, 4π

3
), the space of l2 solutions of (4.1) (leading

to 0− energy flat band edge states supported on B−sites) has dimension 1. Proposition 4.2-
(4.14) implies that if k ∈ (2π

3
, 4π

3
) there are no l2 solutions of (4.1) and Proposition 4.4-(4.20)

implies that there are no l2 solutions of (4.2) for all k. �

Theorem 4.6 (Absence of zero-energy edge states for armchair-type edges.). Suppose that
s2 = 0 where s2 = a11 − a12 mod 3. Then, for all k ∈ (0, 2π), 0 is not in the point spectrum
of H](k).

Proof. In that case, the terminated structure is always balanced, i.e. nAmin = nBmin. As s2 = 0,
Proposition 4.2-(4.14) implies there are no l2 solutions of (4.1) for all k and Proposition 4.4-
(4.20) implies there are no l2 solutions of (4.2) for all k. �

We return to the case of the exceptional quasimomenta k = 2π/3 and 4π/3 for zigzag
edges and k = 0 and 2π for armchair edges.

Theorem 4.7. There are no zero energy edge states at exceptional quasi-momenta.

Proof. Let 4 be the open unit disc and 4 its closure. Recall that

p(k) = #{ζ ∈ 4 : p+(ζ, k) = 0} = #{ζ ∈ C \ 4 : p−(ζ, k) = 0}

and

q(k) = #{ζ ∈ 4 : p−(ζ, k) = 0} = #{ζ ∈ C \ 4 : p+(ζ, k) = 0}.
For an exceptional quasi-momentum k0, there is a single zero ζ0 of p+(·, k0) on the unit circle
if the edge is of zigzag-type. If the edge is of armchair type, there are two such ζ0 (see (3.14)
and (3.15)). For k slightly above or slightly below k0, each such ζ0 perturbs either into 4 or
into C\4, thus increasing p(k) or q(k) by 1; hence p(k) = p(k0)+#{ζ0 perturbing into 4},
and q(k) = q(k0)+#{ζ0 perturbing into C\4}. On the other hand, we know p(k) and q(k)
from Propositions 4.1 and 4.3. From the above remarks it follows that p(k0) ≤ −n1 and
q(k0) ≤ n3 (we omit details). Since the relevant Vandermonde determinants are nonzero, it
follows in turn that the linear systems (4.12) and (4.18) have no nontrivial solutions, as in
the proof of Theorem 4.5. Thus, there are no zero energy edge states for the exceptional
quasi-momenta. �
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Remark 4.8. One can prove without Proposition 4.2 and Proposition 4.4 that every edge
of zigzag type gives rise to flat band edge states either for all k ∈ (2π/3, 4π/3) or for all
k ∈ (0, 2π) \ [2π/3, 4π/3]. To see this, recall the functions p(k), q(k) from (4.7) and (4.16).
For fixed k, (4.11) and (4.12) show that a flat band edge forms if p(k) > nBmin − nAmin − n1;
while (4.17) and (4.18) show that a flat band edge forms if q(k) > nAmin − nBmin + n3. Since
p(k)+q(k) = n3−n1, we conclude that an edge state with a quasimomentum k exists unless

(4.22) p(k) = nBmin − nAmin − n1 and q(k) = nAmin − nBmin + n3

For an edge of zigzag type, (4.22) must fail for all k ∈ (2π/3, 4π/3) or for all k ∈ [0, 2π] \
[2π/3, 4π/3]. That’s because the functions k 7→ p(k) and k 7→ q(k) both experience jumps
±1 at k = 2π/3 and at k = 4π/3, as a zero of p+(ζ, k) crosses the unit circle. To see that
the zero crosses the unit circle, one Taylor expands p+(ζ, k) to first order in (ζ, k) about the

zeros (eık̂⊥ , k̂) where k̂ and k̂⊥ are given by (3.10) and (3.11). We omit details and we leave
it to the reader to see how the argument breaks down for an edge of armchair type.

Remark 4.9 (Classical zigzag edge states). Recall that in our general analysis we have ex-
cluded the classical zigzag edges; see the discussion around (2.20). The analysis of zero
energy / flat band edge states for the classical zigzag edges, balanced and unbalanced, is
given, for example, in [12, 16, 22]. Without loss of generality, we consider the balanced case
(nAmin = nBmin = 0) and the unbalanced case (nAmin = 0, nBmin = 1). It is easily derived that:

(i) Balanced (aka ordinary) 0− energy zigzag edge states exist

⇐⇒ k ∈ (2π/3, 4π/3) with one-dimensional eigenspace of H](k) spanned by

ψAn =
[
−(1 + eik)

]n
, n ≥ 0, and ψAn = 0, n ≤ −1,

ψBn = 0, for all n ∈ Z,
For k = π, we take instead ψA0 = 1, ψAn = 0 for n 6= 0, and ψBn = 0, for all n ∈ Z.

(ii) Unbalanced (aka bearded) 0− energy zigzag edge states exist

⇐⇒ k ∈ [0, 2π] \ [2π/3, 4π/3] with one-dimensional eigenspace of H](k) spanned by

ψAn = 0, n ∈ Z

ψBn =

(
−1

1 + e−ik

)n
n ≥ 0, ψBn = 0, n ≤ −1.

The results of this section, together with Remark 4.9, cover all rational edges and our
results are summarized in Table 2.

Thanks to Proposition 2.5 and equations (2.25), Theorems 4.5 and 4.6 imply Theorem 1.2
of the introduction.

5. Honeycomb edge polynomials

Central to the flat band edge state classification of the previous section is Proposition 4.1
which counts the number of roots in the open unit disc, p(k), of the polynomial p+(ζ; k),
defined in (4.4). Note that this result also allows us to deduce Proposition 4.3 concerning
q(k), the number of roots of p−(ζ; k), defined in (4.6), in the open unit disc. We make a
general study of such polynomials in this section which, due to their origins, we refer to as
honeycomb edge polynomials and apply our results to prove Proposition 4.1.
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We begin by counting, for any fixed k ∈ [0, 2π], the roots, ζ, of the polynomial equation

(5.1) 1 + eiβ1kζγ1 + eiβ2kζγ2 = 0

in the open unit disc. Here, we assume that β1, β2, γ1, γ2 are integers such that

(5.2) 0 < γ1 < γ2

and

(5.3) det[β γ] = ±1 with β =

(
β1

β2

)
and γ =

(
γ1

γ2

)
In Appendix C we check that the polynomial equation p+(ζ, k) = 0 is of the form (5.1),
(5.2), (5.3) where

β1 = m2 −m1, β2 = m3 −m1,(5.4a)

γ1 = n2 − n1, γ2 = n3 − n1.(5.4b)

To analyze (5.1), we write our unknown ζ in polar form:

ζ := ρ
1
γ2 eiθ,

and set

(5.5) κ :=
γ1

γ2

∈ (0, 1) (by (5.2)).

Equation (5.1) then becomes

(5.6) 1 + ρκ ei(β1k+γ1θ) + ρ ei(β2k+γ2θ) = 0.

We now outline our strategy for calculating

(5.7) p(k) = #{(ρ, θ) ∈ (0, 1)× [0, 2π) solving (5.6)}

as follows

(1) For given ρ1, ρ2 > 0, we consider the equation

(5.8) 1 + ρ1 e
iφ1 + ρ2 e

iφ2 = 0,

and look for the possible solutions φ1, φ2 ∈ R/2πZ. Proposition 5.1 states that, under
some constraints on ρ1 and ρ2, the solutions φ1, φ2 are given by

φ1 = σ̂α1(ρ1, ρ2) + 2π`, φ2 = σ̂α2(ρ1, ρ2) + 2π`′, `, `′ ∈ Z,

where σ̂ = ±1 and the functions α1, α2 are given in (5.12).

(2) We deduce in Proposition 5.2 that ζ = ρ
1
γ2 eiθ is a solution of (5.1) in the open unit

disc if and only if ρ and θ satisfy:
(a) ρ ∈ [ρcritical, 1) with ρcritical defined by (5.13) below,
(b)

(5.9) α1(ρκ, ρ)− κα2(ρκ, ρ) =
1

γ2

(σ̂k det[β γ] + 2π`)

for some (σ̂, `) ∈ {±1} × Z., and
(c) θ is computed from ρ, k, l, σ̂ as in (5.14b) below.
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(3) Lemma 5.4 states that the function

(5.10) ρ 7→M(ρ) := α1(ρκ, ρ)− κα2(ρκ, ρ)

is strictly decreasing in [ρcritical, 1]. Hence, the number of roots of (5.1) (equivalently,
(5.6)) inside the open unit disc is equal to the number of pairs (σ̂, `) ∈ {±1} × Z
for which the right hand side of (5.9) lies in the interval [M(1),M(ρcritical)]. This
enables us to deduce the number of ρ’s in [ρcritical, 1) which solve (5.9), and therefore
to deduce the number of ζ’s inside the open unit disc solving (5.1). Along the way,
we must also verify that all roots obtained in this manner are indeed distinct.

We now embark on this strategy. The following proposition presents, for fixed ρ1 and ρ2

satisfying explicit constraints, the solutions of (5.8). The proof, via elementary algebra and
trigonometry, is omitted.

Proposition 5.1. Equation (5.8) has a solution if and only if |ρ1−ρ2| ≤ 1 and ρ1 +ρ2 ≥ 1.
All solutions of (5.8) are given by

(5.11) φ1 = σ̂α1(ρ1, ρ2) mod 2π, φ2 = σ̂α2(ρ1, ρ2) mod 2π,

for σ̂ = +1 or −1, where

(5.12) α1(ρ1, ρ2) ≡ cos−1

(
ρ2

2 − ρ2
1 − 1

2ρ1

)
, α2(ρ1, ρ2) ≡ − cos−1

(
ρ2

1 − ρ2
2 − 1

2ρ2

)
.

In (5.12) a branch of cos−1 is chosen to take values in [0, π].

Note that the conditions imposed on ρ1 and ρ2 guarantee that the arguments of the arc
cosines in (5.12) lie in the interval [−1, 1].

Applying Proposition 5.1 to our equation (5.8), we deduce the following result.

Proposition 5.2. A complex ζ = ρ
1
γ2 eiθ is solution of (5.1) in the open unit disc if and

only if

(5.13) ρ ∈ [ρcritical, 1), where ρcritical ∈ (0, 1), ρκcritical + ρcritical = 1

and (ρ, θ) satisfy, for some ` ∈ Z:

α1(ρκ, ρ)− κα2(ρκ, ρ) =
1

γ2

(det[β γ]σ̂k + 2π`) ,(5.14a)

θ =
σ̂

γ2

α2(ρκ, ρ)− β2

γ2

(k + 2π det[β γ]σ̂`) mod 2πZ,(5.14b)

with σ̂ = +1 or −1.

Proof. By Proposition 5.1, equation (5.8) has a solution if and only if

|ρ− ρκ| ≤ 1 and ρ+ ρκ ≥ 1.

These conditions hold if and only if ρ ∈ [ρcritical, ρ+] where ρcritical is defined in (5.13) and
ρ+ > 1 is such that ρ+−ρκ+ = 1. Since we are interested in roots, ζ, inside the open unit disc,

we restrict our attention to ρ ∈ [ρcritical, 1). By Proposition 5.1, the solutions ζ = ρ
1
γ2 eiθ of
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(5.1) inside the open unit disc correspond to (ρ, k, θ) with ρ ∈ [ρcritical, 1) and (k, θ) satisfying

β1k + γ1θ = σ̂α1(ρκ, ρ) mod 2π(5.15a)

β2k + γ2θ = σ̂α2(ρκ, ρ) mod 2π(5.15b)

with either σ̂ = +1 or σ̂ = −1. We invert the system (5.15) by using(
β1 γ1

β2 γ2

)−1

= (det[β γ])−1

(
γ2 −γ1

−β2 β1

)
,

where det[β γ] = ±1 by our assumption (5.3). Hence, the solution of (5.15) is given by(
k
θ

)
= det[β γ]σ̂

(
γ2 α1(ρκ, ρ)− γ1 α2(ρκ, ρ) + 2π`′

−β2 α1(ρκ, ρ) + β1 α2(ρκ, ρ) + 2π`′′

)
,(5.16)

for arbitrary integers `′ and `′′. By elementary computation using (5.3) and (5.5), we may
rewrite (5.16) as (5.14). This completes the proof of Proposition 5.2. �

Thanks to (5.14a) and (5.14b) we can find all (ρ, θ) such that ζ = ρ
1
γ2 eiθ is a root of (5.1),

which lies inside the unit circle, as follows:

Step 1: Given k ∈ [0, 2π], find all (σ̂, `) with σ̂ ∈ {−1,+1} and ` ∈ Z, such that equation
(5.14a) admits a solution ρ ∈ [ρcritical, 1).

Step 2: For k, σ̂, ` and ρ produced by Step 1, we compute θ from (5.14b).

The two following lemmata will be useful for the proof of the main result of this section
which gives p(k), defined in (5.7).

Lemma 5.3. For any fixed k satisfying the constraint k ∈ [0, 2π] \
{

0, 2π
3
, π, 4π

3
, 2π
}

, any two

distinct (σ̂, `) arising from Step 1 give rise to two distinct solutions of (5.1). Hence, the roots

ζ = ρ
1
γ2 eiθ of (5.1), which lie inside the open unit circle, are in one-to-one correspondence

with the pairs (σ̂, `) obtained in Step 1.

Proof. Let (σ̂, `) and (σ̂′, `′) be two distinct pairs arising in Step 1. From (σ̂, `) we produce
ρ by solving (5.14a) in Step 1, and then from Step 2 we obtain θ from (5.14b). We then

set ζ = ρ
1
γ2 eiθ. Similarly, from (σ̂′, `′), we produce ρ′ by solving (5.14a), then obtain θ′ from

(5.14b), and then set ζ ′ = (ρ′)
1
γ2 eiθ

′
. We must show that ζ 6= ζ ′. We distinguish two cases.

Case 1: σ̂ = σ̂′ and ` 6= `′. Then, (5.14a) implies that M(ρ)−M(ρ′) = (2π/γ2) (`−`′) 6= 0,
where M is defined in (5.10). Therefore, ρ 6= ρ′, and hence ζ 6= ζ ′.

Case 2: σ̂ 6= σ̂′ If ζ = ζ ′, then ρ = ρ′, so from (5.14a) det[β γ]σ̂k+ 2π` = det[β γ]σ̂′k+ 2π`′

and hence det[β γ](σ̂ − σ̂′)k = 2π(`′ − `). Since σ̂ 6= σ̂′, det[β γ](σ̂ − σ̂′) = ±2 and therefore
k ∈ Zπ, which is ruled out by our hypothesis. �

To count all (σ̂, `) obtained in Step 1 above, we make use of a crucial property of (5.14a).

Lemma 5.4 (Monotonicity Lemma). Let κ ∈ (0, 1), and let ρcritical ∈ (0, 1) be the solution
of the equation ρκcritical + ρcritical = 1. Then, the function M defined in (5.10) is strictly
decreasing on [ρcritical, 1].
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For the proof of this lemma, see Appendix D. We shall next count the number of pairs (σ̂, l)
arising from Step 1, apply the Monotonicity Lemma 5.4 to deduce the number of possible
ρ’s in [ρcritical, 1] and finally establish the following result:

Proposition 5.5. Consider the polynomial equation (5.1): 1 + eiβ1kζγ1 + eiβ2kζγ2 = 0, where
k ∈ [0, 2π] \ {0, 2π

3
, 4π

3
, 2π}, and βj, γj, (j = 1, 2) are integers satisfying the constraints:

0 < γ1 < γ2 and det[β γ] = ±1. We express γ1 + γ2 modulo 3 as:

γ1 + γ2 = 3k̂ + ŝ, with k̂ ∈ Z and ŝ ∈ {−1, 0,+1};

see (5.2) and (5.3). Then, p(k), defined in (5.7), is given by

(5.17) p(k) = k̂ + ŝ1k∈( 2π
3
, 4π

3
).

Proof. We begin noting that M(ρ) can be explicitly evaluated at ρ = ρcritical and ρ = 1.
Directly from (5.12) we have that

(1) for ρ = ρcritical (see (5.13)) we have α1(ρκ, ρ) = π, α2(ρκ, ρ) = −π and hence,

(5.18) M(ρcritical) = π(1 + κ) =
π(γ1 + γ2)

γ2

.

(2) for ρ = 1, we have α1(ρκ, ρ) = 2π
3

and α2(ρκ, ρ) = −2π
3

and hence,

(5.19) M(1) =
2π

3
(1 + κ) =

2π

3

(γ1 + γ2)

γ2

.

From (5.18), (5.19) and Monotonicity Lemma 5.4, it follows that for any given k, σ̂ and `
in Step 1, equation (5.14a) has a unique solution ρ ∈ [ρcritical, 1) provided

det[β γ]σ̂k + 2π`

γ2

lies in

(
2π

3

(γ1 + γ2)

γ2

,
π(γ1 + γ2)

γ2

]
and (5.14a) has no solutions ρ ∈ [ρcritical, 1) otherwise. Therefore, for fixed k ∈ (0, 2π) and
σ̂ ∈ {−1,+1}, the integers ` for which (5.14a) admits a solution ρ ∈ [ρcritical, 1) are precisely
the integers ` for which

(5.20) det[β γ]σ̂k + 2π` ∈
(

2π

3
(γ1 + γ2) , π(γ1 + γ2)

]
When (5.20) holds, the solution ρ ∈ [ρcritical, 1) of (5.14a) is unique. We can therefore count
the number of distinct (σ̂, `) arising from Step 1 for fixed k.

For simplicity, assume k /∈ {0, π, 2π} so that

1

2
(γ1 + γ2)− k

2π
/∈ Z.
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The number of such (σ̂, `) is equal to

(5.21)

p(k) = #
{
` ∈ Z : k + 2π` ∈

(
2π

3
(γ1 + γ2) , π(γ1 + γ2)

]}
+ #

{
` ∈ Z : −k + 2π` ∈

(
2π

3
(γ1 + γ2) , π(γ1 + γ2)

]}
= #

{
` ∈ Z : ` ∈

(
1

3
(γ1 + γ2)− k

2π
,

1

2
(γ1 + γ2)− k

2π

]}
+ #

{
˜̀∈ Z : ˜̀∈

[
−1

2
(γ1 + γ2)− k

2π
, −1

3
(γ1 + γ2)− k

2π

)}
= #

{
` ∈ Z : ` ∈

(
1

3
(γ1 + γ2)− k

2π
,

1

2
(γ1 + γ2)− k

2π
)

]}
+ #

{
ˆ̀∈ Z : ˆ̀∈

[
1

2
(γ1 + γ2)− k

2π
,

2

3
(γ1 + γ2)− k

2π

)}
= #

{
` ∈ Z : ` ∈

(
1

3
(γ1 + γ2)− k

2π
,

2

3
(γ1 + γ2)− k

2π
)

)}
.

In proving (5.21) we have used symmetry and translation via the correpondences ˜̀ = −`
and ˆ̀= ˜̀+ (γ1 + γ2). Now let

k ∈ [0, 2π] \
{

0,
2π

3
, π,

4π

3
, 2π
}

Then, we deduce that p(k), the number of (σ̂, `) arising from Step 1 is equal to

(5.22) p(k) =
⌊2

3
(γ1 + γ2)− k

2π

⌋
−
⌊1

3
(γ1 + γ2)− k

2π

⌋
,

where bxc denotes the largest integer smaller than or equal to x.
By Lemma 5.6, proved below, there are no multiple roots. Let us verify finally that (5.17)

follows from (5.22). We write γ1 +γ2 = 3k̂+ ŝ with k̂ ∈ Z and ŝ ∈ {−1, 0,+1} so that (5.22)
yields

p(k) =
⌊
2k̂ +

2

3
ŝ− k

2π

⌋
−
⌊
k̂ +

1

3
ŝ− k

2π

⌋
= k̂ +

⌊2

3
ŝ− k

2π

⌋
−
⌊1

3
ŝ− k

2π

⌋
and the result follows from the identity⌊2

3
ŝ− ξ

⌋
−
⌊1

3
ŝ− ξ

⌋
= ŝ1ξ∈( 1

3
, 2
3

), for ŝ ∈ {−1, 0,+1}, ξ ∈ (0, 1) \
{1

3
,
2

3

}
.

Finally, note that although we excluded k = π above, Proposition 5.5 also holds for k = π
because the roots of (5.1) depend continuously on k, and because we can show that there
are no roots on the unit circle for k = π by an argument analogous to that used in the proof
of Proposition 3.4.

�

We now use Proposition 5.5 to prove Proposition 4.1 concerning p(k), the number of roots,
ζ, of (4.4), p+(ζ, k) = 0, in the open unit circle. Suppose first that k /∈ {0, 2π/3, 4π/3, 2π}.
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Since n1 < n2 < n3, we see that equation (4.4) is of the form (5.1) with γ1 = n2 − n1 and
γ2 = n3 − n1, which satisfy (5.2) and (5.3) by Appendix C. By (2.14) and (2.17) we have

γ1 + γ2 = n1 + n2 + n3 − 3n1 = ñ1 + ñ2 + ñ3 − 3n1 = 3k2 + (a12 − a11)− 3n1 = −s2 − 3n1.

Therefore, ŝ = −s2 and k̂ = −n1. Substitution into the expression for p(k) in (5.17)
of Proposition 5.5 yields the assertion of Proposition 4.1 concerning p(k), the number of
roots of p+(ζ, k) inside the unit disc. Finally, the cases k ∈ {0, 2π} (for zigzag edges) and
k ∈ {2π/3, 4π/3} (for armchair edges) can be dealt with using a continuity argument.

All details of the proof of Proposition 4.1 are now complete except that we must rule out
multiple roots. We now address this point.

Lemma 5.6. Let β1, β2, γ1 and γ2 be integers and such that 0 < γ1 < γ2. Then for all
k ∈ [0, 2π], equation (5.1) has no multiple roots.

Proof. First note that ζ = 0 is not a root. A multiple root must satisfy (5.1) and

(5.23) γ1e
iβ1kζγ1−1 + γ2e

iβ2kζγ2−1 = 0.

Hence,

ζγ2−γ1 = −γ1

γ2

ei(β1−β2)k

implying, since 0 < γ1 < γ2, that |ζ| < 1. On the other hand, (5.23) together with (5.1)
implies that (

1− γ1

γ2

)
eiβ1kζγ1 = −1

implying, since 0 < γ1 < γ2, that |ζ| > 1, a contradiction. �

We summarize the section in the following result.

Proposition 5.7.

(A) For 0 < κ < 1, define functions fκ, gκ of one variable as follows.

• Define ρcritical ∈ (0, 1) as the solution of ρκcritical + ρcritical = 1.

For t ∈ [
2π

3
(1 + κ), π(1 + κ)], define gκ(t) to be the unique solution

ρ ∈ [ρcritical, 1] of the equation M(ρ) ≡ α1(ρκ, ρ)− κα2(ρκ, ρ) = t.

• For t ∈ [
2π

3
(1 + κ), π(1 + κ)], define fκ(t) = α2(ρκ, ρ) for ρ = gκ(t).
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(B) Now let β1, β2, γ1, γ2 be integers, with 0 < γ1 < γ2 and det[β γ] ∈ {−1,+1}. Set
κ = γ1/γ2 ∈ (0, 1). Assume k ∈ [0, 2π] \ {0, 2π/3, 4π/3, 2π}. Then,

• The polynomial equation (5.1) has only simple roots.

• Let γ1 + γ2 = 3k̂ + ŝ, where k̂ ∈ Z and ŝ ∈ {−1, 0,+1}. Then,

p(k) = #
{
|ζ| < 1 : ζ is a root of (5.1)

}
= k̂ + ŝ1k∈( 2π

3
, 4π

3
)

• Moreover, the roots of (5.1) in the open unit disc are determined from

all the pairs (σ̂, l) ∈ {−1,+1} × Z such that

t ≡ 1

γ2

(det[β γ] σ̂k + 2πl) lies in

(
2π

3
(1 + κ), π(1 + κ)

]
.

by setting ρ = gκ(t), θ =
σ̂

γ2

fκ(t)− β2 det[β γ]σ̂ t

and finally taking ζ = ρ
1
γ2 eiθ.

Furthermore, distinct (σ̂, l) give rise to distinct roots ζ of (5.1).

6. Explicit formulas for zero energy (flat band) edge states

In this section we provide explicit formulas for the zero energy edge states when they exist.
In Section 4, we have found that

• When zero energy edge states living on B− sites exist (see Theorem 4.5), they are
given by

(6.1) ψB(n) =

p∑
j=1

Ajζ
j if n ≥ nAmin + n1, ψB(n) = 0 otherwise

and the A1, . . . , Ap satisfy the system of p− 1 equations:

(6.2)

p∑
j=1

Ajζ
j = 0 for nAmin + n1 ≤ n < nBmin.

Here, ζ1, . . . , ζp are distinct complex numbers in the open unit disc, roots of (4.4)
and the space of (Aj)1≤j≤p satisfying (6.2) is one-dimensional.
• When zero energy edge states living on A− sites exist (see Theorem 4.5), they are

given by

(6.3) ψA(n) =

q∑
j=1

Ajζ
j if n ≥ nBmin − n3, ψA(n) = 0 otherwise

and the A1, . . . , Aq satisfy the system of q − 1 equations:

(6.4)

q∑
j=1

Ajζ
j = 0 for nBmin − n3 ≤ n < nAmin.

Note that the ζj and Aj in (6.1) differ from those in (6.3); the ζ1, . . . , ζq are distinct
complex numbers in the open unit disc; roots of (4.6) and the space of (Aj)1≤j≤q
satisfying (6.4) is one-dimensional.
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In both cases we have given distinct complex numbers ζ1, . . . , ζr in the open unit disc, and
the zero energy state is given by the vector of amplitudes

(6.5) Ψ(n) =
r∑
j=1

Ajζ
n
j if n ≥ nbase,

where the A1, . . . , Ar satisfy the r − 1 homogeneous equations:

(6.6)
r∑
j=1

Ajζ
n
j = 0 for nbase ≤ n < nbase + r − 1

Our goal here is to produce formulas for non-zero solutions of (6.5), (6.6). By replacing in
(6.5), (6.6) the coefficients A1, . . . , Ap with A1ζ

nbase−1
1 , . . . , Apζ

nbase−1
p , we may take nbase = 1.

The following result provides explicit representations of zero energy / flat band edge states.

Proposition 6.1 (Representation formulae for 0− energy edge states). Let ζj(k), with 1 ≤
j ≤ r, denote the zeros of the relevant polynomial (P+(ζ, k) or P−(ζ, k)) inside the open unit
disc. Assume that a11 − a12 6= 0 mod 3 so that there exist edge states. Finally, assume that
k lies in an appropriate subinterval of (0, 2π) for which there are edge states; see Table 2.
Then, the edge state Ψ is given by the three equivalent formulas

(6.7) Ψ(n) =
∑

k1+···+kr=n
k1,...,kr≥1

ζk1
1 · · · ζkrr , for n ≥ 1

(6.8) Ψ(n) =
1

2π

∫ 2π

0

einθ
r∏
j=1

[
ζj

eiθ − ζj

]
dθ for n ≥ 1 ,

(6.9) Ψ(n) =
r∏
i=1

ζi ×
r∑
j=1

ζn−1
j∏

l∈{1,...,r}\{j} (ζl − ζj)
for n ≥ 1 .

The normalization constant for Ψ(n) can be obtained from:

‖Ψ‖2
l2(N) = |ζ1|2 · · · |ζr|2 ×

r∑
j=1

ζr−1
j

1− |ζj|2
∏

l∈{1,...,r}\{j}

1

(ζl − ζj)(1− ζjζl)
.(6.10)

Proof of (6.7). Our starting point is the identity

(6.11) Assume ξ 6= η. Then, for all n ≥ 1,
∑

k1+k2=n
k1,k2≥1

ξk1ηk2 =
ξ

η − ξ
ηn +

η

ξ − η
ξn .

The expression (6.7) for Ψ(n) with nbase = 1 follows from (6.5) and the following

Lemma 6.2. Let ζ1, . . . , ζr denote distinct complex numbers. Then, there exist A1, . . . , Ar ∈
C such that

(6.12) For all n ≥ 1,
∑

k1+···+kr=n
k1,...,kr≥1

ζk1
1 · · · ζkrr =

r∑
j=1

Ajζ
n
j .

Note, in particular, that this expression vanishes for 1 ≤ n < r.
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Proof of the Lemma 6.2: We proceed by induction on r. The relation (6.12) for r = 1 holds
with A1 = 1. Now fix r ≥ 2 let ζ1, . . . , ζr be distinct complex numbers. Assume (6.12)
holds for r − 1 in place of r: since ζ1, . . . , ζr−1 are distinct complex numbers, there exist
B1, . . . , Br−1 such that

For all p ≥ 1,
∑

k1+···+kr−1=p
k1,...,kr−1≥1

ζk1
1 · · · ζkr−1

r =
r−1∑
j=1

Bjζ
p
j .

We obtain

∑
k1+···+kr=n
k1,...,kr≥1

ζk1
1 · · · ζkrr =

∑
kr+p=n
kr,p≥1

 ∑
k1+···+kr−1=p
k1,...,kr−1≥1

ζk1
1 · · · ζkr−1

r

 ζkrr =
∑

kr+p=n
kr,p≥1

[
r−1∑
j=1

Bjζ
p
j

]
ζkrr

=
r−1∑
j=1

Bj

 ∑
kr+p=n
kr,p≥1

ζpj ζ
kr
r

 =
r−1∑
j=1

[
Bj

(
ζr

ζj − ζr

)]
ζnj +

[
r−1∑
j=1

Bj

(
ζj

ζr − ζj

)]
ζnr

where we have used the identity (6.11) to obtain the last equality. This has the form (6.12),
so the proof of Lemma 6.2 is complete and therewith that of (6.7). �

Proof of (6.8). We may easily use Fourier analysis to re-express (6.7). Note that the expres-

sion for Ψ(n), given by (6.7), extends naturally to vanish for all n < 1. We introduce Ψ̂(θ),
the discrete Fourier transform of {Ψ(n)}n∈Z:

(6.13) Ψ̂(θ) =
∑
n≥1

Ψ(n) e−inθ for θ ∈ R/2πZ.

Hence,
(6.14)

Ψ̂(θ) =
∑
n≥1

∑
k1+···+kn=n
k1,...,kr≥1

(ζ1e
−iθ)k1 · · · (ζre−iθ)kr =

r∏
j=1

[∑
κ≥1

(ζje
−iθ)κ

]
=

r∏
j=1

[
ζje
−iθ

1− ζje−iθ

]

Note that the above formal manipulations are justified because the roots ζ1, . . . , ζr lie within
the open unit disc. In particular, the sum (6.13) converges. From (6.7) and (6.14) we
deduce, by inversion of the discrete Fourier transform, (6.8) for the solution of (6.5), (6.6)
with nbase = 1. �

Proof of (6.9). The representation (6.9) follows from (6.8) via a residue calculation. Chang-
ing variables: z = eiθ, (iz)−1dz = dθ, we obtain for n ≥ 1:

Ψ(n) =
1

2πi

∫
|z|=1

zn−1

r∏
j=1

ζj
z − ζj

dz =
r∏
i=1

ζi ×
r∑
j=1

ζn−1
j∏

l∈{1,...,r}\{j} (ζl − ζj)
.

�
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Proof of (6.10). A similar residue calculation gives the normalization constant of the wave
function. Using the expression in (6.14) we have

‖Ψ‖2
l2(N) =

∑
n≥1

|Ψ(n)|2 =
1

2π

∫ 2π

0

|Ψ̂(θ)|2dθ =
1

2π

∫ 2π

0

r∏
j=1

ζj
eiθ − ζj

ζj

e−iθ − ζj
dθ

So,

‖Ψ‖2
l2(N) = |ζ1|2 · · · |ζr|2 ×

1

2πi

∫
|z|=1

r∏
j=1

1

(z − ζj)(z−1 − ζ̄j)
z−1dz

= |ζ1|2 · · · |ζr|2 ×
1

2πi

∫
|z|=1

zr−1

r∏
j=1

1

(z − ζj)(1− ζ̄jz)
dz

= |ζ1|2 · · · |ζr|2 ×
r∑
j=1

ζr−1
j

1− |ζj|2
∏

l∈{1,...,r}\{j}

1

(ζl − ζj)(1− ζjζl)

�

7. Non-zero energy, dispersive edge states

By the results of Section 4, if a11− a12 = ±1 mod 3 then there are flat band / edge states
over the parallel-quasimomentum ranges:

(2π/3, 4π/3) (balanced zigzag edge) or [0, 2π/3) ∪ (4π/3, 2π] (unbalanced zigzag cut);

see Theorem 4.5.

These flat edge state curves bifurcate from band-crossings3 in the essential spectrum of
H]. Any wave-packet constructed via superposition of such flat band edge states will not
transport and will not disperse since the group velocities vanish identically.

In this section, we investigate the existence of dispersive non-zero energy edge states. In
contrast, wave packets constructed via superposition of such edge states will transport,
spread out and decay with time along the edge. We present strong numerical evidence for
the existence of non-zero energy edge state curves for edges of both zigzag and armchair type.
Moreover, our simulations indicate a strong dependence of the number of such bifurcation
curves on the characteristics of the edge.

7.1. Setup for the study of non-zero energy edge states. Motivated by Remark 3.5,
we expect all eigenvalue curves k 7→ E(k) to lie in the region

(7.1) K =
{

(k,E) : E ∈ bounded component of R \ σess(H](k))
}
.

Throughout this section we restrict our search for dispersion curves to (k,E) varying in
K. Fix any k ∈ [0, 2π]. We seek E ∈ R \ σess(H](k)) for which there exists a non-trivial

3with origins in the Dirac points of Hbulk acting in l2(H).
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solution in l2(Z,C2) of the equations (3.1a,3.1b,3.1c,3.1d). For n large and positive, the
system (3.1a-3.1b) can be rewritten as

(7.2)
3∑

ν=1

(
0 eimνk

0 0

)
ψ(n+ nν) +

3∑
ν=1

(
0 0

e−imνk 0

)
ψ(n− nν)−

(
E 0
0 E

)
ψ(n) = 0.

As explained in Section 3.1, we study solutions of eigenvalue problem for H](k) (3.1a-3.1b) by
starting with exponential solutions of the form ψ(n) = ζnξ, where 0 6= ξ ∈ Ker(Pk(ζ)−EI ),
Pk(ζ) is defined in (3.5), and ζ satisfies

(7.3) det ( Pk(ζ)− EI ) = 0.

Although the eigenvalues of H](k) are real, we will examine (7.2) and (7.3) for complex
E ∈ C \ specess (H](k)). This will allow us to later apply elementary complex function
theory to check the accuracy of our numerical computations.

It is easy to see that

(7.4) ( Pk(ζ)− EI ) ξ = 0 ⇐⇒
(
Pk
(

1/ζ̄
)
− EI

)
σ1ξ̄ = 0.

Therefore,

{ψ(n)} = {ζnξ} satisfies (3.1a-3.1b) iff {ψ̃(n)} = {
(

1/ζ̄
)n
σ1ξ̄} satisfies (3.1a-3.1b).

Here, σ1 is the standard Pauli matrix given in (1.1).
Noting that any roots of (7.3) must be non-zero, we multiply (7.3) by eik(m3−m1)ζn3−n1

and obtain an equivalent polynomial equation of degree 2(n3 − n1) for the roots ζ of (7.3):

qk(ζ, E) = 0, where

qk(ζ, E) ≡

(
3∑
j=1

eik(mj−m1)ζ(nj−n1)

)
×

(
3∑
j=1

e−ik(mj−m3)ζ−(nj−n3)

)
− eik(m3−m1)ζn3−n1E2.

The sets

J+
k (E) ≡

{
ζ : |ζ| < 1 and det (Pk(ζ)− EI) = 0

}
,

J−k (E) ≡
{
ζ : |ζ| > 1 and det (Pk(ζ)− EI) = 0

}
generate bulk solutions ζnξ, which decay as n→ +∞ or n→ −∞, respectively.

By Proposition 3.2, we show easily that if E ∈ C and E /∈ specess(H](k)), then each of
the 2(n3−n1) roots of qk(ζ, E) = 0 is either strictly inside or strictly outside the unit circle.
For simplicity of the presentation, we make the following assumption regarding (k,E):

(7.5) Assumption: The roots, ζ, of PE,k(ζ) := det ( Pk(ζ)− EI ) = 0 are all simple.

Note that this assumption implies that the nullspace of Pk(ζ)−EI is of dimension 1 4. The
following study could be extended to the case where Assumption (7.5) is not satisfied; we
note that in all of our simulations this assumption is satisfied.

By (7.4), we deduce that

#J+
k (E) = #J−k (E) = n3 − n1.

4Indeed, if not, suppose v1 and v2 are linearly independent vectors in the the nullspace of Pk(ζ0) − EI
then for ζ near ζ0, (Pk(ζ)− EI)v1 and (Pk(ζ)− EI)v2 are both O(ζ − ζ0) and hence det ( Pk(ζ)− EI ) =
O(ζ − ζ0)2).
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Let ζj(k,E) for j = 1, . . . , n3 − n1 denote the n3 − n1 distinct simple roots of PE,k(ζ) in
J+
k (E), and ζj(k,E) for j = n3 − n1 + 1, . . . , 2(n3 − n1) the n3 − n1 distinct simple roots of
PE,k(ζ) in J−k (E)

For each root ζj(k,E), we pick a nonzero vector ξj(k,E) in the one dimensional nullspace of
Pk(ζj) − EI. For most of our discussion the particular choice of ξj(k,E) will be irrelevant.
However, our approach to checking the accuracy of our numerical computations requires
ξj(k,E) to depend analytically on E for fixed k. In particular, we shall require that if
(k,E0) ∈ K then ξj(k,E) varies analytically E in a sufficiently small open complex disc
centered at E0. It is straightforward to verify that if PE,k (ζj(k,E)) = 0 then

(7.6) ξj(k,E) :=

(
P+(ζj(k,E), k) + E
P−(ζj(k,E), k) + E

)
,

is in the nullspace of Pk(ζj)− EI, and we make the following assumption on ξj(k,E):
(7.7)
Assumption: All the vectors ξj(k,E) given by (7.6), where j = 1, . . . , (n3 − n1), are non-zero.

This assumption holds for all (k,E) encountered in our numerical simulations. Perhaps it
holds for all (k,E) ∈ K for any rational edge; we have not investigated whether this is the
case5 Until Proposition 7.2, our particular choice of the ξj(k,E) will play no role.

By assumption (7.5) and since the roots ζj are nonzero, the general solution of (3.1a)-
(3.1b) can be written as

ψ(n) =

2(n3−n1)∑
j=1

Aj [ζj(k,E)]n ξj(k,E), for n large and positive,

where A1, . . . , A2(n3−n1) are 2(n3 − n1)− complex parameters. Consequently, an `2 vector
satisfying (3.1a)-(3.1b) for n large can be written as a linear combination of the n3 − n1

vectors ξj(k,E) corresponding to roots ζj ∈ J+
k (E):

(7.8) ψ(n) =

n3−n1∑
j=1

Aj [ζj(k,E)]n ξj(k,E), for n large and positive.

Recall that an edge state of H](k) is `2 and solves (3.1a)-(3.1b) and the boundary condi-
tions (3.1c)-(3.1d). Let us now determine the range of n over which an edge state has the
form (7.8), and the set of algebraic constraints on the coefficients A1, . . . , A(n3−n1) implied
by the boundary conditions. Relation (3.1a) is equivalent to

3∑
ν=1

eimνkψB(n− n1 + nν)) = EψA(n− n1), for n ≥ nAmin + n1.(7.9)

5One could dispense with Assumption (7.7). If for (k,E0) ∈ K and a particular j the vector given by
(7.6) vanishes, then for E in a complex neighborhood of E0 we can choose instead of (7.6) the vector given

by

(
P+(ζ, k)

E

)
which varies analytically and can be shown to be nonzero.
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And similarly, (3.1b) is equivalent to

3∑
ν=1

e−imνkψA(n− nν + n3) = EψB(n+ n3), for n ≥ nBmin − n3.(7.10)

Both equations in (7.9)-(7.10) apply to the range n ≥ max(nAmin + n1, n
B
min − n3). Con-

sequently, ψ can be written as (7.8) for n ≥ max(nAmin + n1, n
B
min − n3); see Footnote 2.

Let us first assume that nAmin + n1 ≥ nBmin − n3; we comment below on the case where
nAmin + n1 < nBmin − n3. Then, the solutions of (3.1a-3.1b-3.1c-3.1d satisfy precisely

ψA(n) =

n3−n1∑
j=1

Aj [ζj(k,E)]n ξAj (k,E), for n ≥ nAmin + n1(7.11)

ψB(n) =

n3−n1∑
j=1

Aj [ζj(k,E)]n ξBj (k,E), for n ≥ nAmin + n1,(7.12)

3∑
ν=1

e−imνkψA(n− nν + n3) = EψB(n+ n3), for nBmin − n3 ≤ n < nAmin + n1(7.13)

ψA(n) = 0, for n < nAmin,(7.14)

ψB(n) = 0, for n < nBmin.(7.15)

First, (7.11),(7.14) and (7.12),(7.15) imply that A1, . . . , An3−n1 are subject to the constraints

n3−n1∑
j=1

Aj [ζj(k,E)]n ξAj (k,E) = 0, for nAmin + n1 ≤ n < nAmin(7.16)

n3−n1∑
j=1

Aj [ζj(k,E)]n ξBj (k,E) = 0, for nAmin + n1 ≤ n < nBmin(7.17)

Let us now show that (7.13) is equivalent to the assertion that (7.16) holds also in the
range nBmin − n3 ≤ n < nAmin + n1. Let us focus first on the right hand side (7.13). Since
nBmin−n3 ≤ n < nAmin +n1, we have n+n3 ≥ nBmin ≥ nAmin +n1. Therefore, ψB(n+n3) can be
re-expressed using (7.12). Turning to the three terms, ψA(n−nν+n3), on the left hand side of
(7.13), we observe: concerning the term ψA(n−n1 +n3), since n−n1 +n3 ≥ nAmin > nAmin +n1

(because n1 < 0), it follows that ψA(n−n1+n3) can be re-expressed using (7.11). Concerning
the term ψA(n − n2 + n3), we have that if n − n2 + n3 ≥ nAmin + n1, then ψA(n − n2 + n3)
can be re-expressed via (7.11), and otherwise ψA(n− n2 + n3) = 0. And finally, concerning
the term ψA(n− n3 + n3) = ψA(n), since n < nAmin we have ψA(n) = 0. These observations
imply that the relations (7.13) can be rewritten as

n3−n1∑
j=1

Aj

[
e−im1k [ζj(k,E)]n−n1+n3 ξAj (k,E) + 1n−n2+n3≥nAmin+n1

e−im2k[ζj(k,E)]n−n2+n3ξAj (k,E)

−E[ζj(k,E)]n+n3 ξBj (k,E)
]

= 0, for nBmin − n3 ≤ n < nAmin + n1
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We may simplify this system by noting that [Pk(ζj(k,E))−EI][ξj(k,E)] = 0 for each j, see
(3.4)-(3.5). It follows that

n3−n1∑
j=1

Aj

[
−e−im2k1

n−n2+n3<n
A
min

+n1
[ζj(k,E)]n−n2+n3 − e−im3k[ζj(k,E)]n

]
ξAj (k,E) = 0,

for nBmin − n3 ≤ n < nAmin + n1

This system can be rewritten as a triangular system6 in terms ofRn :=
∑n3−n1

j=1 Aj[ζj(k,E)]nξAj (k,E)

e−im2k1
n−n2+n3<n

A
min

+n1
Rn−n2+n3 + e−im3kRn = 0, for nBmin − n3 ≤ n < nAmin + n1

whose only solution is Rn = 0 for nBmin − n3 ≤ n < nAmin + n1.

Gathering (7.16), (7.17) and this last result, we conclude the edge state eigenvalue prob-
lem (3.1a)-(3.1b), (3.1c)- (3.1d) is satisfied if and only if A1, . . . , An3−n1 are subject to the
constraints

n3−n1∑
j=1

Aj [ζj(k,E)]n ξAj (k,E) = 0, for nBmin − n3 ≤ n < nAmin(7.18)

n3−n1∑
j=1

Aj [ζj(k,E)]n ξBj (k,E) = 0, for nAmin + n1 ≤ n < nBmin .(7.19)

A similar analysis in the case where nAmin + n1 < nBmin − n3 also leads to (7.18)-(7.19).
Let us count the number of equations. Altogether we have: (nAmin − nBmin + n3) + (nBmin −

nAmin−n1) = n3−n1 equations. Thus, (7.18)-(7.19) is a linear homogeneous system of n3−n1

equations in n3 − n1 unknowns A := (A1, . . . , An3−n1)T .
We abbreviate this system of n3 − n1 equations in n3 − n1 unknowns by

(7.20) M(k,E)A = 0,

we denote its determinant

∆(k,E) := detM(k,E)(7.21)

Although M(k,E) depends on the choice of the vectors ξj(k,E), we do not explicitly indicate
this dependence. However, the zeros of E 7→ ∆(k,E) do not depend on the choice of n3−n1

vectors, ξj(k,E).

Proposition 7.1. Assume that E0 ∈ C is not in the essential spectrum of H](k) and that
Assumption (7.5) is satisfied. Then, E0 is an eigenvalue of H](k) if and only if ∆(k,E0) = 0.

Furthermore, if (k,E0) is such that ∆(k,E0) = 0, then the corresponding edge states ψ ∈

6Since n2 < n3, we have nBmin−n3 ≤ n ≤ n−n2 +n3 < nAmin +n1 whenever 1
n−n2+n3<nA

min
+n1

= 1 so that

the system is indeed triangular.
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l2(Z) are given by

ψA(n) =

nν3−nν1∑
j=1

Aj [ζj(k,E0)]n ξAj (k,E0), n ≥ nAmin

ψB(n) =

nν3−nν1∑
j=1

Aj [ζj(k,E0)]n ξBj (k,E0), n ≥ nBmin.

ψA(n) = 0 for all n < nAmin

ψB(n) = 0 for all n < nBmin

where A = (A1, . . . , An3−n1)> is an arbitrary solution of (7.20).

Fix (k,E0) ∈ K satisfying Assumptions (7.5) and (7.7). As E varies in a small complex
disc D about E0, those assumptions hold also for (k,E), and E /∈ specess (H](k)). Therefore,
the roots ζj(k,E), the vectors ξj(k,E) given by (7.6), the matrix M(k,E) and its determinant
∆(k,E) are all analytic functions of E ∈ D. We can easily deduce the following from the
argument of footnote 4.

Proposition 7.2. Suppose that (k,E0) ∈ K, Assumptions (7.5) and (7.7) are satisfied and
the vectors ξj(k,E0) ∈ C2 are chosen according to (7.6). Then ∂E∆(k,E0) is well defined
and if ∆(k,E0) = 0 but ∂E∆(k,E0) 6= 0 then the space of edge states is one-dimensional.

7.2. Numerical results on dispersive edge states. We numerically search for (k,E) ∈ K

such that ∆(k,E) = 0. To do so, given (k,E) ∈ K, we may carry out the following algorithm:

• Compute the 2(n3 − n1) roots ζ of PE,k(ζ) := det ( Pk(ζ)− EI ). The roots are
calculated by computing the eigenvalues of the associated companion matrix We
verify Assumption 7.5; the roots, ζ, are distinct. In all of our computations, eval-
uation of the polynomial on computed roots gives a residual of order 10−13. See
Figure 11 for some examples. The roots are ordered as explained in the previous
section: ζj(k,E), j = 1, . . . , n3 − n1 denote the n3 − n1 roots which lie inside the
unit circle (in red in Figure 11) and ζj(k,E), j = n3 − n1 + 1, . . . , 2(n3 − n1) denote
the n3 − n1 roots which lie outside (in blue in Figure 11).
• Deduce whether E ∈ specess(H(k)) or not by using Proposition 3.2-(iii), see Figures

8 and 9.
• Compute, for each root ζ(k,E), the vector given by (7.6).
• Construct the matrix M(k,E) appearing in (7.20) and compute its determinant

∆(k,E).

We make a heat map of the function (k,E) 7→ log |∆(k,E)| over the (Nk + 1) × (NE + 1)
grid of points:

(7.22) k ∈
{
`

2π

Nk

, ` ∈ {0, 1, . . . , Nk}
}

and E ∈
{
− Elim + j

2Elim

NE

, ` ∈ {0, 1, . . . , NE}
}
,

where Nk, NE, Elim are specified for each simulation. In all figures, the dark areas correspond
to the essential spectrum; see Figures 1, 2, 8, 9, 12, 15, 16, 17. Outside the dark areas, in
particular for (k,E) ∈ K (see (7.1)), we seek edge state curves by studying where (k,E) 7→
log |∆(k,E)| takes on very large negative values. In Figure 12, we consider 4 different edges,
three of zigzag-type and one of armchair-type, with numerical parameters and Nk = NE =
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(a) a11 = 4, a12 = 1 (b) a11 = 5, a12 = 1 (c) a11 = 6, a12 = 1

Figure 11. The roots of the polynomial PE,k(ζ) for E = 0.1 and k = 3 for
three different edges

1000 and specified values of Elim. The function E 7→ |∆(k,E)| appears to vanish at E = 0
for k ∈ (2π/3, 4π/3), for all three choices of zigzag-type edges (subplots (B),(C) and (D))
but not to vanish at E = 0 for all k ∈ (0, 2π) for the armchair-type edge (subplot (A)).
This illustrates Proposition 4.2 and Proposition 4.4 7. Moreover |∆(k,E)| appears to vanish
along other (non-flat) curves. Such curves appear in Figure 2 for the 3 different edges 8.
We suspect, and we shall confirm, the existence of edge states for (k,E) varying along these
curves.

To confirm existence of edge state near (k,E) = (k0, E0), we investigate E 7→ ∆(k0, E)
in a neighborhood of E0. We first check that Assumptions (7.5) and (7.7) hold and that
(k0, E0) ∈ K. From the discussion at the end of Section 7.1, we know that for E varying in
some open complex neighborhood of E0, the roots of (7.3) are still simple and do not lie on
the unit circle. Hence, E 7→ ∆(k0, E) is well-defined and analytic in this neighborhood. We
can then apply the algorithm presented above for any value E in this neighborhood.

For example, we find approximate zeros of the mapping E 7→ ∆(k0, E) for three cases: (a)
(a11, a12) = (4, 1) and (k0, E0) = (3, 0.33), (b) (a11, a12) = (5, 1) and (k0, E0) = (0.27, 0.24)
and (c) (a11, a12) = (6, 1) and (k0, E0) = (1, 0.11).

We corroborate the existence of a zero near each E0 by computing the winding number
of the mapping E 7→ ∆(k0, E) along a sufficiently small circle about E0. In Figure 13 we
display, corresponding to each approximate zero (k0, E0), the image of a discretization of a
small circle about E0:

E ∈ {E0 + rEe
ıj 2π
Nc , j ∈ {0, . . . , Nc − 1}}, (rE = 0.01, Nc = 50).

For E ∈ {E0 + rEe
ıθE , θE ∈ [0, 2π]} and rE small enough, ∆(k0, E) can be rewritten as

∆(k0, E) = ρ∆(θE)eıθ∆(θE) with ρ∆ and θ∆ continuous with respect to θE. The winding

7These plots, however, do not reveal whether the edge states live on B− sites or a A−sites of H].
8In Figure 2 we present curves along which |∆(E, k)| falls below some small threshold value. The curves

have been darkened for clarity.
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E

k

(a) a11 = 4, a12 = 1, Elim = 0.6

k

E

(b) a11 = 5, a12 = 1, Elim = 0.4 (balanced)

k

(c) a11 = 6, a12 = 1, Elim = 0.4 (balanced)

k

(d) a11 = 8, a12 = 1, Elim = 0.4 (unbal-
anced)

Figure 12. Plots of (k,E) 7→ log |∆(k,E)| for k ∈ (0, 2π) (Nk = 1000 points)
and E ∈ (−Elim, Elim) (NE = 1000 points), see (7.22). Note that the color
scale is different from one figure to another.

number is then given by

W (k0, E0) =
θ∆(2π)− θ∆(0)

2π
.

In all the cases mentioned, the winding number is equal to 1, implying that there exists
a simple root of E 7→ ∆(k0, E) near E0. By Proposition 7.2, the space of edge states
corresponding to a pair near (k0, E0) is one dimensional. We have checked the robustness of
our winding number calculation by computing it for a range of sufficiently small radii, rE;
see Figure 14.

We consider now a sequence of armchair edges defined by a12 = 1 as a11 increases. We
observe the presence of multiple dispersive (non-flat) edge state curves bifurcating from
(k,E) = (0, 0) (and from (k,E) = (2π, 0)), we see that the number of curves increases when
a11 increases; see Figure 15. Similar observations hold for ordinary zigzag-like edges; see
Figure 16. Note that as a11 tends to infinity, the sequence of studied edges (a11 increasing
and a12 = 1) tends to the ordinary classical zigzag edge. Although the classical zigzag edge
has a single dispersion curve, which is flat only over a limited range of k, the nearly flat
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a11 = 4, a12 = 1

Im∆(k0, E)

Re∆(k0, E)

a11 = 5, a12 = 1

Re∆(k0, E)

a11 = 6, a12 = 1

Re∆(k0, E)

Figure 13. Plots of ∆(k0, E)in the complex plane when E takes the values
specified in (7.22) with rE = 0.01 and Nc = 50.

rE = 0.005

Im∆(k0, E)

Re∆(k0, E)

rE = 0.02

Re∆(k0, E)

rE = 0.03

Re∆(k0, E)

Figure 14. For the edge a11 = 6, a12 = 1, plots of ∆(k0, E) in the complex
plane when E takes the values specified in (7.22) with Nc = 50 and various
values of rE.

dispersion curves in Figures 15 and 16 extend over all k ∈ (0, 2π). Note however that the
definition of quasimomentum depends on the edge.

Let us now consider a sequence of edges, defined by parameters (a
(n)
11 , a

(n)
12 ) given by

∀n ≥ 3, a
(n)
11 = Fn and a

(n)
12 = Fn+1,

where (Fn)n is the Fibonacci sequence, defined recursively via

F1 = F2 = 1, Fn+2 = Fn+1 + Fn,

and giving an approximation of the golden ratio

lim
n→+∞

a
(n)
12

a
(n)
11

= lim
n→+∞

Fn+1

Fn
=

1 +
√

5

2
.

For this sequence, we do not observe an increasing number of dispersion curves; see Figure
17. Instead we see a single dispersion curve and its mirror image, again tending to a flat
band as n tends to infinity. Note that color scale is not the same from one plot to another,
which reflects the sensitive dependence of the determinant ∆(k,E) on E. The existence of
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edge states is validated as previously by computing winding numbers near the energies on
suspected dispersive curves.

a11 = 7, Elim = 0.4

E

a11 = 10, Elim = 0.3 a11 = 13, Elim = 0.2

a11 = 16, Elim = 0.2 a11 = 19, Elim = 0.15 a11 = 19, Elim = 0.05

a11 = 22, Elim = 0.15 a11 = 22, Elim = 0.02 a11 = 22, Elim = 0.002

a
(6)
11 = 25, Elim = 0.2

k

a
(7)
11 = 25, Elim = 0.02

k

a
(7)
11 = 25, Elim = 0.001

k

Figure 15. Plots of (k,E) 7→ log |∆(E, k)| for k ∈ (0, π) (Nk = 1000 points)
and E ∈ (−Elim, Elim) (NE = 1000 points) for various armchair-like edges with
a12 = 1.

Thus, we have found strong numerical evidence for the existence edge states, whose en-
ergies lie on (non-flat) dispersion curves in the gap of the essential spectrum. In our simu-
lations, all edge state curves (flat and non-flat) appear to emerge (bifurcate) from and ter-
minate at band-crossings. Any edge state energies which are not in the gap of the essential
spectrum must be embedded in the essential spectrum. We have not addressed the general
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a11 = 5, Elim = 0.4

E

a11 = 8, Elim = 0.3 a11 = 11, Elim = 0.2

a11 = 14, Elim = 0.2 a11 = 17, Elim = 0.15 a11 = 20, Elim = 0.1

a11 = 20, a
(6)
12 = 1, Elim = 0.01

k

a11 = 23, Elim = 0.1

k

a11 = 22, Elim = 0.01

k

Figure 16. Plots of (k,E) 7→ log |∆(E, k)| for k ∈ (0, π) (Nk = 600 points)
and E ∈ (−Elim, Elim) (NE = 600 points) for various ordinary zigzag-like edges
with a12 = 1.

question of the existence of edge state energies or curves of edge state energies embedded in
the essential spectrum; see Remark 3.5.

Appendix A. Changing basis

In this section we prove (2.15b), (2.17), that the ñν ’s defined in (2.17) are all distinct
except in the classical zigzag case and finally the inequality (2.21). Note that thanks to (2.3)
and (2.9), in terms of the {v1,v2} basis, the eν are given by

(A.1)

e1 =
1

3

(
v
◦

1 + v
◦

2

)
=

1

3
(a22 − a21)v1 +

1

3
(a11 − a12)v2

e2 =
1

3

(
v
◦

1 − 2v
◦

2

)
=

1

3
(a22 + 2a21)v1 −

1

3
(a12 + 2a11)v2

e3 =
1

3

(
−2v

◦
1 + v

◦
2

)
= −1

3
(a21 + 2a22)v1 +

1

3
(a11 + 2a12)v2
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a
(3)
11 = 2, a

(3)
12 = 3, Elim = 0.5

E

a
(4)
11 = 3, a

(4)
12 = 5, Elim = 0.3 a

(5)
11 = 5, a

(5)
12 = 8, Elim = 0.3

a
(6)
11 = 8, a

(6)
12 = 13, Elim = 0.1

E

a
(7)
11 = 13, a

(7)
12 = 21, Elim = 0.1 a

(8)
11 = 21, a

(8)
12 = 34, Elim = 0.05

a
(8)
11 = 34, a

(8)
12 = 55, Elim = 0.04

E

k

a
(8)
11 = 55, a

(8)
12 = 89 (zoom)

k

a
(8)
11 = 55, a

(8)
12 = 89, Elim = 0.02

k

Figure 17. Plots of (k,E) 7→ log |∆(k,E)| for k ∈ (0, π) (Nk = 1000 points)
and E ∈ (−Elim, Elim) (NE = 1000 points) and with nAmin = nBmin = 0 for the
Fibonacci sequence.

A.1. Points vA and vB that lie in the fundamental cell. The fundamental cell Γ(0, 0),
defined in (2.13), contains the A−point given by (2.15a). We look now for the B-point vB
which lies in Γ(0, 0), i.e. we look for integers q1, q2 such that vB = q1v1 +q2v2 +v

◦
B ∈ Γ(0, 0),

where v◦B = e1. By (A.1), we have vB ∈ Γ(0, 0) if and only if

q1 +
1

3
(a22 − a21), q2 +

1

3
(a11 − a12) ∈

(
−1

2
,+

1

2

]
By (2.14), this holds if and only if q1 = −k1, q2 = −k2 so that vB are given by (2.15b).

A.2. A−points and B− points in the cell Γ(m,n). The A−points and B−points of
our honeycomb are given, respectively, by vA + mv1 + nv2 and vB + mv1 + nv2, where
(m,n) ∈ Z2. Since vA,vB ∈ Γ(0, 0), it follows that

(A.2)

vA +mv1 + nv2, vB +mv1 + nv2 ∈ Γ(m,n) = Γ(0, 0) +mv1 + nv2

=
{
x1v1 + x2v2 : x1 ∈ (m− 1

2
,m+

1

2
], x2 ∈ (m− 1

2
,m+

1

2
]
}
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Since Γ(m,n) partition R2, it follows that for any given (m,n) ∈ Z2, the points in (A.2) are
the only points of the honeycomb that lie in Γ(m,n).

Next we represent the vectors eν + (vA − vB) for ν = 1, 2, 3 with respect to the basis
{v1,v2}. Using (A.1), (2.15a), (2.15b) and (2.14), we deduce easily (2.16) where the m̃ν ’s
and ñν ’s are given by (2.17). Note, thanks to (2.14) that

m̃1 + m̃2 + m̃3 = 3k1 + a21 − a22 = −s1 ∈ {−1, 0,+1}

and

(A.3) ñ1 + ñ2 + ñ3 = 3k2 − a11 + a12 = −s2 ∈ {−1, 0,+1}.

A.3. Except in the zigzag case, the integers ñ1, ñ2, ñ3 are distinct. The integers ñ1,
ñ2, ñ3 are distinct if and only if

(A.4) a11 6= 0, a12 6= 0, a11 6= −a12

We enumerate the cases where (A.4) fails to hold. Recall that a11a22−a12a21 = 1. Therefore,

a11 = 0 implies −a12a21 = 1. Hence, a12 = ±1;

a12 = 0 implies a11a22 = 1. Hence, a11 = ±1;

a11 = −a12 implies a11(a22 + a21) = 1. Hence, a11 = −a12 = 1 or a11 = −a12 = −1.

Therefore, ñ1, ñ2, ñ3 are distinct except in the following cases:

(A.5)

(a11, a12) = (0, 1), (a11, a12) = (0,−1)

(a11, a12) = (1, 0), (a11, a12) = (−1, 0)

(a11, a12) = (1,−1), (a11, a12) = (−1, 1)

It is easily verified that all terminated honeycombs along an edge direction given in (A.5)
are equivalent to a balanced zigzag edge or an unbalanced zigzag edge by a symmetry of the
honeycomb; see Definition 2.3 and Figure 6 .

A.4. A few elementary inequalities involving ñν. Suppose ñ1, ñ2, ñ3 are all distinct.
If all the ñν are non-negative , then ñ1 + ñ2 + ñ3 ≥ 0 + 1 + 2 = 3, which contradicts
(A.3). Similarly, if the ñν are all non-positive, then ñ1 + ñ2 + ñ3 ≤ 0 − 1 − 2 = −3, again
contradicting (A.3). Hence, min{ñ1, ñ2, ñ3} < 0 < max{ñ1, ñ2, ñ3}. Recall (see (2.20)) that
we let (n1, n2, n3) denote the permutation of ñ1, ñ2, ñ3 satisfying n1 < n2 < n3; Therefore,
n1 < 0 < n3, which is (2.21). Recall that by (2.25), nBmin−nAmin ∈ {−1, 0,+1}. Consequently,
(2.21) implies

nAmin + n1 ≤ nBmin and nBmin − n3 ≤ nAmin.

Appendix B. The Wedge of the Edge Proposition

Proof of Proposition 3.6. We use here the notations:

β =

(
β1

β2

)
, γ =

(
γ1

γ2

)
, ∆β = β1 − β2, ∆γ = γ1 − γ2.

We recall that (k, k̂⊥) is given by (3.10)- (3.11). We consider κ > 0; the other cases can
be deduced by symmetry of the essential spectrum. For each fixed k, the mapping k⊥ 7→
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±|h(k, k⊥)| sweeps out the essential spectrum of H](k). Introduce k̃⊥(k) such that

η+(k) = min
k⊥
|h(k, k⊥)| = +|h(k, k̃⊥(k))|, η−(k) = −min

k⊥
|h(k, k⊥)| = −|h(k, k̃⊥(k))|.

Note that k̂⊥ ≡ k̃⊥(k̂) and note that η±(k̂⊥) = 0. To find k̃⊥(k) (and then η±(k)) for k near

k̂ we first expand s(κ, κ⊥) ≡ |h(k̂ + κ, k̂⊥ + κ⊥)|2 for |(κ, κ⊥)| small, where (k̂, k̂⊥) is given
by (3.10)- (3.11). Note that

s(κ, κ⊥) =
∣∣∣1 + ω̂1e

i(β1κ+γ1κ⊥) + ω̂2e
i(β2κ+γ2κ⊥)

∣∣∣2,
where ω̂1 = ei(β1k̂+γ1k̂⊥) and ω̂2 = ei(β2k̂+γ2k̂⊥) are distinct nontrivial cube roots of unity. The
function (κ, κ⊥) 7→ s(κ, κ⊥) is smooth and its minimum value is achieved at (κ, κ⊥) = (0, 0);
s(0, 0) = |1 + ω̂1 + ω̂2|2 = 0. Expanding for (κ, κ⊥) small, we obtain:

s(κ, κ⊥) = −
2∑
j=1

1

2
(ω̂j+ω̂j)(βjκ+γjκ⊥)2− 1

2

(
ω̂1 ω̂2 + ω̂1 ω̂2

)
[∆βκ+∆γκ⊥)]2 + q3(κ, κ⊥),

where q3(κ, κ⊥) is smooth and of cubic order for |(κ, κ⊥)| small. Since ω̂j, j = 1, 2 are distinct

nontrivial cube roots of unity, <ω̂1 = <ω̂2 = <(ω̂1 ω̂2) = −1/2, and therefore

s(κ, κ⊥) =
1

2

[
2∑
j=1

(βjκ+ γjκ⊥)2 + [∆βκ+ ∆γκ⊥)]2

]
+ q3(κ, κ⊥).(B.1)

Fix κ small. Then, from (B.1) we find that the minimum of κ⊥ 7→ s(κ, κ⊥) is attained at

(B.2) κ̃⊥(κ) ≡ −
(β · γ + ∆β∆γ

|γ|2 + (∆γ)2

)
κ + O(κ2).

Substitution of (B.2) into (B.1) yields

(B.3) s (κ, κ̃⊥(κ)) =
1

2

(|β|2 + (∆β)2) (|γ|2 + (∆γ)2)− (β · γ + ∆β∆γ)2

|γ|2 + (∆γ)2
κ2 + O(κ3).

The leading term in (B.3) can be simplified using the identities

det[β γ])2 = |β|2 |γ|2− (β · γ)2 and |β|2(∆γ)2 + |γ|2(∆β)2− 2β · γ∆β∆γ = |β∆γ− γ∆β|2

We find, by (5.3)

(B.4) s (κ, κ̃⊥(κ)) =
3

2

1

|γ|2 + (∆γ)2
κ2 +O(κ3)

We simplify the denominator using (3.9) and (2.17):

|γ|2 + (∆γ)2 = (n2 − n1)2 + (n3 − n1)2 + (n2 − n3)2 = 2
(
a2

11 + a11a12 + a2
12

)
.

Finally, substitution into (B.4) yields (3.16) and the proof of Proposition 3.3 is complete. �
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Appendix C. p+(ζ, k) and p−(ζ, k) are honeycomb edge polynomials

A honeycomb edge polynomial (see Section 5) is a polynomial of the form (5.1) where
k ∈ [0, 2π] and β1, β2, γ1, γ2 are integers such that (5.2) (5.3) are satisfied. In this appendix we
verify that the polynomials p+ and p− defined by (4.4),(4.6) are honeycomb edge polynomials.

We first note using (2.17) that

det

1 m̃1 ñ1

1 m̃2 ñ2

1 m̃3 ñ3

 = det

1 k1 k2

0 a21 −a11

0 −a22 a12

 = a21a12 − a11a22 = −1.

Now the matrix 1 m1 n1

1 m2 n2

1 m3 n3


is obtained from the above matrix by permutation of the rows (so that n1 < n2 < n3).
Hence,

σdet := det

1 m1 n1

1 m2 n2

1 m3 n3

 ∈ {−1,+1}.

Furthermore,

σdet = det

1 m1 n1

0 m2 −m1 n2 − n1

0 m3 −m1 n3 − n1

 = det

(
m2 −m1 n2 − n1

m3 −m1 n3 − n1

)
∈ {−1,+1},(C.1)

and, on the other hand,

σdet = det

0 m1 −m3 n1 − n3

0 m2 −m3 n2 − n3

1 m3 n3

 = det

(
m1 −m3 n1 − n3

m2 −m3 n2 − n3

)
∈ {−1,+1}.(C.2)

We can verify now that the polynomials p±(ζ, k) are honeycomb edge polynomials.
First consider p+(ζ, k). We have β1 = m2 − m1, γ1 = n2 − n1, β2 = m3 − m1 and

γ2 = n3 − n1. Since n1 < n2 < n3, the condition (5.2) holds and furthermore by (C.1) the
condition (5.3) holds.

We turn to p−(ζ, k). Here, β1 = m3 −m2, γ1 = n3 − n2, β2 = m3 −m1 and γ2 = n3 − n1.
Again since n1 < n2 < n3, the condition (5.2) holds and furthermore by (C.2) the condition
(5.3) holds.

Appendix D. Monotonicity Lemma 5.4

Let us recall that the functions (ρ1, ρ2) 7→ αj(ρ1, ρ2) for j ∈ {1, 2} defined in (5.12)
are real-valued if ρ1 + ρ2 ≥ 1 and |ρ1 − ρ2| ≤ 1. Fix κ ∈ (0, 1) and let us consider the
function ρ 7→M(ρ) defined in (5.10) For ρc := ρcritical ∈ (0, 1) defined in (5.13), we have that
ρ 7→ ρκ + ρ is monotone: ρ ≥ ρc =⇒ ρκ + ρ ≥ 1 and hence M(ρ) is real-valued on [ρc, 1).
We now prove Lemma 5.4, i. e. that M(ρ) is monotone decreasing over the interval [ρc, 1).

The proof follows from the following three claims.
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(1) Claim 1: The function r defined by

(D.1) r(ρ) := 2(1 + ρ2)ρ2κ − ρ4κ − (1− ρ2)2 .

is such that r(ρ) ≥ 0 for all ρ ∈ [ρc, 1).
(2) Claim 2: We have

κ
[
(1− κ)ρ2κ − 1

]
+ (κ− 1)ρ2 < 0

for any fixed 0 < κ < 1, and all ρ ∈ (0, 1).
(3) Claim 3:

(D.2) M ′(ρ) =
2

ρ

1√
r(ρ)

[
κ
[
(1− κ)ρ2κ − 1

]
+ (κ− 1)ρ2

]
,

where r is defined (D.1).

D.1. Proof of Claim 1. Let us first show that r(ρc) = 0. Since ρκc = 1− ρc,
r(ρc) = 2(1 + ρ2

c) · (1− ρc)2 − (1− ρc)4 − (1− ρc)2(1 + ρc)
2 = 0.

Now we show that r′(ρ) > 0 for all ρ ∈ (0, 1). Direct computation yields

r′(ρ) =
4κ

ρ

(
ρ2κ(1− ρ2κ) + ρ2κ+2

)
+

4

ρ
ρ2κ+2 + 4ρ(1− ρ2)

For ρ ∈ (0, 1), we have r′(ρ) > 0.

D.2. Proof of Claim 2. Claim 2 is clear since κ ∈ (0, 1) and ρ ∈ (0, 1).

D.3. Proof of Claim 3. We rewrite

M(ρ) = arccos(X(ρ)) + κ (arccos(Y (ρ)) ,

where

X(ρ) =
ρ2 − ρ2κ − 1

2ρκ
, Y (ρ) =

ρ2κ − ρ2 − 1

2ρ
We deduce that

M ′(ρ) = arccos′(X(ρ)) ∂ρX(ρ) + κ arccos′(Y (ρ)) ∂ρY (ρ)

where we recall that arccos′(x) = −(1− x2)−1/2.

D.3.1. Calculation of arccos′(X(ρ)) and arccos′(Y (ρ)). We have that

arccos′(X(ρ)) = − 2ρκ√
r(ρ)

(D.3)

arccos′(Y (ρ)) = − 2ρ√
r(ρ)

(D.4)

where r(ρ) is defined in (D.1), by using that

(2ρκ)2 − (ρ2 − ρ2κ − 1)2 = 4ρ2κ − ((ρ2 − 1)− ρ2κ)2 = r(ρ),

and
(2ρ)2 − (ρ2κ − ρ2 − 1)2 = 4ρ2 − (ρ2 + 1)2︸ ︷︷ ︸

−(1−ρ2)2

−ρ4κ + 2ρ2κ(ρ2 + 1) = r(ρ).
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D.3.2. Calculation of ∂ρX(ρ) and ∂ρY (ρ).

∂ρX(ρ) =
(2ρκ) (2ρ− 2κρ2κ−1)− (ρ2 − ρ2κ − 1) (2κρκ−1)

(2ρκ)2
(D.5)

∂ρY (ρ) =
(2ρ) (2κρ2κ−1 − 2ρ)− (ρ2κ − ρ2 − 1) (2)

(2ρ)2
(D.6)

D.3.3. Calculation of M ′(ρ). Multiplying (D.3) and (D.5), we deduce

arccos′(X(ρ))∂ρX(ρ) =
1

ρ

1√
r(ρ)

×
(
−2ρ2 + κ(ρ2κ + ρ2 − 1)

)
,(D.7)

and multiplying (D.4) and (D.6) yields

arccos′(Y (ρ))∂ρY (ρ) =
1

ρ

1√
r(ρ)

×
(
(1− 2κ)ρ2κ + ρ2 − 1

)
(D.8)

Since M ′(ρ) = (D.7) + κ × (D.8), we deduce (D.2).
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