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Context: small data

Deep neural nets need typically a lot of data (∼1000 per class in
classification)

But many problems in mechanics come with a limited number of
samples: real experiments, 3D or nonlinear finite element
simulations.

(credit P.-J. Liotier,

[Liotier et al., 2015]) from [Geoffre et al., 2021]
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Context (cont.): small data and explanability

Kriging is a machine learning technique that applies to small
data, is expressive and somewhat explainable

as we will argue here.
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Kriging

Kriging (a.k.a. conditional Gaussian Processes – GPs –) is often
used in the context of expensive (numerical) experiments
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x ∈ X : index of the GP. Ex: position in space, design variable
(discrete, continuous, mixed), . . .

: costly data. Ex: displacement / stress / permeability at x ,
. . . cost, performance.
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Kriging’s language: kernels

Y (x) ∼ N (µ(x), k(x , x))

µ(x), the mean of the trajectories.
k(x , x ′) = Cov(Y (x),Y (x ′)), the covariance function a.k.a. the
kernel, k(x , x) the variance.

Ex: µ(x) = 10x2, k(x , x ′) = σ2
(

1 +
√

3 |x−x
′|

θ

)
exp

(
− |x−x ′|θ

)
,

σ2 = 1, θ = 0.2

(plots from https://durrande.shinyapps.io/gp_playground/)
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From kernel to trajectory

Mathematically,

X = {x1, . . . , xn}, Kij = k(X ,X )ij = k(x i , x j)

eigendecomposition : K = VD2V>

y(X ) = µ(X ) + VDE where E ∼ N (0, In)

In pseudo-R,

choose mean function mu() and kernel function k(,)

build a fine grid X and the covariance matrix,
K[i,j]=k(X[i],X[j])

eigendecomposition, Keig = eigen(K)

sample,
y = mu[X] + Keig$vectors %*%

diag(sqrt(Keig$values)) %*% matrix(rnorm(n))
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Kernels change a lot of things (I)

Y (x) ∼ N (µ(x), k(x , x)), µ(x) = 10x2, σ2 = 1, θ = 0.2

k(x , x ′) = σ2
(

1 +
√

3 |x−x
′|

θ

)
exp
(
− |x−x ′|

θ

)
(Matérn 3/2)

k(x , x ′) = σ2 exp
(
− |x−x ′|

θ

)
(exponential)
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Kernels change a lot of things (II)

Parameterize k(, ) : length-scales θ’s and variance σ2,
k(x , x ′) = σ2 × r(x , x ′; θ) , r(, ) correlation

k(x , x ′) = σ2 exp
(
− (x−x ′)2

θ2

)
trajectories y(x)
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Conditioning with data

Kriging = conditional GP = GP regression = (Y (x)|Y (X ) = F )
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Y (x)|Y (X ) = F is N (m(.), c(., .)) with

m(x) = µ(x) + k(x ,X )k(X ,X )−1(F − µ(X ))

c(x , x ′) = k(x , x ′)− k(x ,X )k(X ,X )−1k(X , x ′)

⇒ the kernel k(, ) is the main modeling choice
⇒ Kriging is interpolating by construction
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Tuning kernels from data: likelihood

The likelihood of the model for one observation of the vector F is

Likelihood =pY (X )(F ) =
1

(2π)n/2det(k(X ,X ))1/2
×

exp

(
−1

2
(F − µ(X ))>k(X ,X )−1(F − µ(X ))

)
Maximize L with respect to the kernel (σ, θ) and other model
parameters (e.g., those of µ()) to tune kriging
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Kernel design I

So, one would like to design the kernel to fit a given task.

A valid kernel is

any symmetric function, k(x , x ′) = k(x ′, x)
which is positive semi-definite

∀X ∈ X n, ∀α ∈ Rn, α>k(X ,X )α ≥ 0

Usually, kernels are taken off the shelf. Expl: Matérn, squared
exponential kernels, mentioned earlier. Other expl:
k(x , x ′) = σ2xx ′ (linear), = σ2δx ,x ′ (white noise),
= σ2 min(x , x ′) (Brownian), cf. [Le Riche and Durrande, 2019].
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Kernel design II

To create new kernels, increase their dimension, the following
transformations can be combined:

Sum
- on the same space k(x , x ′) = k1(x , x ′) + k2(x , x ′)
- on the tensor space k(x , x ′) = k1(x1, x

′
1) + k2(x2, x

′
2)

Multiplication
- on the same space k(x , x ′) = k1(x , x ′)× k2(x , x ′)
- on the tensor space k(x , x ′) = k1(x1, x

′
1)× k2(x2, x

′
2)

Composition with a function k(x , x ′) = k1(h(x), h(x ′))
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Costly shape optimization: airfoil

Predict and minimize the drag of an airfoil, from
[Gaudrie et al., 2020].

CAD shape φ generation,
not costly Navier-Stokes resolution,

f (φ) the drag, costly
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An infinite dimensional problem

Not really infinite: an airfoil is not any shape . . .
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Eigenshape decomposition I

From a database of possible shapes [φ(1), . . . , φ(5000)],

. . .

extract a basis of most impor-
tant shapes by principal component
analysis, {V 1, . . . ,V d}
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Eigenshape decomposition II

Shapes are now described with their eigencomponents α’s,
φ ≈ φ +

∑d
i=1 αiV

i

(α1, . . . , αd) make a specific manifold
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Dimension reduction in GP I

We build a GP to infer the drag from a shape, Y (α) and reduce
dimension.

Anisotropic kernel has 1 θi per dimension, isotropic has 1 for all
dimensions.

Expl: kani(x , x
′) = σ2 exp

(
−∑d

i=1
(xi−x ′i )2

θi 2

)
kiso(x , x ′) = σ2 exp

(
− (xi−x ′i )2

θ2

)
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Dimension reduction in GP II

Likelihood that favors sparsity [Yi et al., 2011]:

maxθ Likelihood(θ;F )− λ‖θ−1‖1

⇒ active and non-active dimensions, αa and αā.

GP as the sum of an anisotropic and isotropic GPs
[Allard et al., 2016]:

k(α, α′) = kani(αa, α
′
a) + kiso(αā, α

′
ā)

Expl NACA22 :
αa = (α1, α2, α3) , d = 20
⇒ 21 to 6 kernel parameters
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GPs allow global optimization

Red curve : Expected Improvement = Emax (0, fmin − Y (x))

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

Its iterative maximization defines a global optimizer based on a GP
(Bayesian Optimization)
An effective optimizer in low to medium dimensions
[Le Riche and Picheny, 2021]
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Example: NACA 22 airfoil drag minimization
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(important optimization features not covered here: how to optimize in
reduced dimension, replication strategy to stay on the manifold of feasible
α’s, cf. article). In the reduced eigenshape basis,

faster decrease of the objective function,
smoother airfoils.
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Design with mixed variables I

Many design problems are mixed = with continuous (x) and discrete
(u) optimization variables.

min
x∈Rdc ,u∈Rdd

f (x , u)

f () costly (experiments, nonlinear simulations), cannot solve the
problem for all u combinations.
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Design with mixed variables II

Example: structural design, material is discrete, dimensions are
continuous, at micro (architectured materials) or macro scale

solar cell design

from [Zhang et al., 2020]
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Design with mixed variables III

Example: structural design, shape taken out of a catalogue
(discrete), some dimensions continuous.

Design of a cantilever beam

Ĩ1 Ĩ2 Ĩ3 Ĩ4 Ĩ5 Ĩ6

Ĩ7 Ĩ8 Ĩ9 Ĩ10 Ĩ11 Ĩ12

from [Cuesta-Ramirez et al., 2021]
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Mixed GP

Usual trick: learn a metamodel from observations. Here, GP. How to
correlate discrete variables?

Kernel design rules used:
multiplication and composition with a function,

k ((x , u), (x ′, u′)) = σ2
dc∏
i=1

r(xi , x
′
i )×

dd∏
i=1

r (h(ui), h(u′i))
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Latent variables I

The discrete variables are the expression of hidden quantities, the
latent variables.
The distances between these variables can be summarized by the
transformation h() (link with explainability).
h() : D 7→ R2 is sufficient in practice, [Zhang et al., 2020]

level 1

level 2

level 3

underlying (physical) latent variable space

h(level 3)

h(level 2)

h(level 1)

2D (numerical) latent variable space
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Latent variables II

Identification of the latent variables

r(ui , u
′
i) = 〈h(ui), h(u′i)〉 , h(ui = l ij ) = hij

and the hij are the 2×∑nd
i=1(nb levels(ui)− 1) parameters estimated

from the data by maximization of the likelihood (with the θ’s of the
continuous variables and σ2).

⇒ the GP Y (x , h(u)) can be built.

The correlation between the discrete variables is learnt from data
through the latent variables h.
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Latent variables III

Beam example: dd = 1 discrete variable with 12 levels (the shapes
below) with a physical latent variable, the normalized inertia
Ĩ = I/S2; dc = 2 continuous variables, the length and the
cross-section. Correlations learned from 96 samples:

Ĩ1=0.083 Ĩ2 = 0.139 Ĩ3 = 0.380

Ĩ4 = 0.080 Ĩ5 = 0.133 Ĩ6 = 0.363

Ĩ7 = 0.086 Ĩ8 = 0.136 Ĩ9 = 0.360

Ĩ10 = 0.092 Ĩ11 = 0.138 Ĩ12 = 0.369
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Latent variables IV

Example: latent variables of an Anti-Reflective Coating,
from [Zhang et al., 2020].

The order found is consistent with the refractive indices of the
material. (z ≡ h in our notation)
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From latent variables to problem relaxation I

Choice of the next experiment/simulation :

max
(x , u) ∈ Rdc × Ddd

Expected Improvement(x , u)

but discrete optimization is not trivial in general.

Facilitate it by relaxation into a continuous set of latent variables,
h̃ ∈ R2
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From latent variables to problem relaxation II

Only the correlation of the discrete variables changes :
r (h(u), h(u′))→ r(h̃, h̃′)

The relaxed optimization problem is:

min
(x , h̃) ∈ Rdc+2dd

Expected Improvement(x , h̃)

such that min
u∈Ddd

‖h(u)− h̃‖ ≤ ε

Encouraging experimental results found in
[Cuesta-Ramirez et al., 2021].
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Permeability is a random (tensor) field

collaboration with Sami ben Elhaj Salah, Julien Bruchon, Nicolas Moulin, Pierre-Jacques Liotier
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Principle

create a new 
permeability field 
by sampling a GP

resin infusion simulation by 
finite elements P1/P1 & level set

Which kernel for the permeability field?
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A kernel based on Darcy’s law I

Assumption: the standard deviation of the permeability (written
Y (x) here!) is proportional to the pressure gradient.
Since V (x) = −Y (x)/µ∇P(x), for a scalar (isotropic) permeability,

k(x , x ′) = ‖V (x)‖‖V (x ′)‖σ̃2r(x , x ′)

where r(x , x ′) = exp(−‖x − x ′‖2/θ2) and V (x) calculated with a
constant nominal permeability.

A valid kernel by multiplication and composition with a function of a
linear kernel.

Var (Y (x)) = ‖V (x)‖2σ̃2 , Corr (Y (x),Y (x ′)) = r(x , x ′)
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A kernel based on Darcy’s law II

(white lines = resin fronts at t = 23s)
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Kernels for macroscopic folds I
Not enough experiments to train a neural net, yet we know how the
folds look like.
α rotation angle of the permeability tensor.
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Kernels for macroscopic folds II

The rotation angle α(x , y) is modeled as a GP whose kernel is

k

((
x
y

)
,

(
x ′

y ′

))
= a (x , y) a (x ′, y ′) k

((
R(x , y)
θ(x , y)

)
,

(
R(x ′, y ′)
θ(x ′, y ′)

))
where a(x , y) is an activation (of the randomness) function and
(R , θ) polar coordinates. It is a valid kernel.

random randomdeterminist.determinist.

a(x,y)

x,y
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Kernels for macroscopic folds III
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Conclusions

Kriging is a machine learning technique

fitted to small data because it is interpolating and sparsely
parameterized

yet, thanks to kernel design, it is flexible and partly explainable.
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