
HAL Id: hal-03605920
https://hal.science/hal-03605920v1

Submitted on 11 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regularization of shear banding and prediction of size
effects in manufacturing operations: A micromorphic

plasticity explicit scheme
Raffaele Russo, Vikram Phalke, Didier Croizet, Mustapha Ziane, Samuel

Forest, Frank Andrés Girot Mata, Hyung-Jun Chang, Arjen Roos

To cite this version:
Raffaele Russo, Vikram Phalke, Didier Croizet, Mustapha Ziane, Samuel Forest, et al.. Regularization
of shear banding and prediction of size effects in manufacturing operations: A micromorphic plasticity
explicit scheme. International Journal of Material Forming, 2022, 15 (3), pp.21. �10.1007/s12289-022-
01657-9�. �hal-03605920�

https://hal.science/hal-03605920v1
https://hal.archives-ouvertes.fr


Vol.:(0123456789)1 3

International Journal of Material Forming           (2022) 15:21  
https://doi.org/10.1007/s12289-022-01657-9

ORIGINAL RESEARCH

Regularization of shear banding and prediction of size effects 
in manufacturing operations: A micromorphic plasticity explicit 
scheme

Raffaele Russo1,2  · Vikram Phalke2,3 · Didier Croizet4 · Mustapha Ziane4 · Samuel Forest2 · 
Frank Andrés Girot Mata1 · Hyung‑Jun Chang3 · Arjen Roos3

Received: 16 September 2021 / Accepted: 12 January 2022 
© The Author(s) 2022

Abstract
Good quality manufacturing operation simulations are essential to obtain reliable numerical predictions of the processes. 
In many cases, it is possible to observe that the deformation localizes in narrow areas, and since the primary deforma-
tion mode is under shear, these areas are called shear bands. In classical continuum mechanics models, the deformation 
localization may lead to spurious mesh dependency if the material locally experiences thermal or plastic strain softening. 
One option to regularize such a non-physical behavior is to resort to non-local continuum mechanics theories. This paper 
adopts a scalar micromorphic approach, which includes a characteristic length scale in the constitutive framework to 
enforce the plastic strain gradient theory to regularize the solution. Since many manufacturing process simulations are 
often assessed through finite element methods with an explicit solver to facilitate convergence, we present an original 
model formulation and procedure for the implementation of the micromorphic continuum in an explicit finite element 
code. The approach is illustrated in the case of the VPS explicit solver from ESI GROUP. According to the original 
formulation, we propose an easy way to implement a scalar micromorphic approach by taking advantage of an analogy 
with the thermal balance equation. The numerical implementation is verified against the analytical solution of a semi-
infinite glide problem. Finally, the correctness of the method is addressed by successfully predicting size effects both 
in a cutting and a bending tests.

Keywords Micromorphic · Strain gradient · Regularization · Explicit solver · Manufacturing simulation · Finite element 
method

Introduction

It is well known that the classical Cauchy continuum 
description is not sufficient to predict the different 
responses of the medium when either stresses or strains 

localize. Although experimental evidence strongly empha-
sized the existence of size-dependent behaviors, where 
smaller is the size, stronger is the response, the classi-
cal continuum mechanics models do not possess a char-
acteristic length scale that allows the prediction of said 
size-effects. The description of the classical continuum 
mechanics is, in fact, of a local nature, meaning that the 
configuration of the medium at any location is solely deter-
mined by the properties characterizing the continuum at 
that specific location, and the distribution of the said prop-
erties in the neighborhood of this location does not influ-
ence the local properties. Several descriptions of the con-
tinuum have been proposed in the literature as alternatives 
to the classical continuum mechanics, in the attempt of 
including a gradient-related response of the medium, and 
these theories are referred to as non-local or higher-order 
theories. In general, any continuum mechanics model, 

 * Raffaele Russo 
 raffaele.russo@ehu.eus

1 Department of Mechanical Engineering, Faculty 
of Engineering, University of the Basque Country, 
48013 Bilbao, Spain

2 MINES ParisTech, MAT – Centre des matériaux, CNRS 
UMR 7633, PSL University, BP 87 91003 Evry, France

3 Safran Tech, Rue des Jeunes Bois, Châteaufort, 
78772  Magny-Les-Hameaux, France

4 ESI Group, 3bis rue Saarinen, 94528 Rungis CEDEX, France

http://orcid.org/0000-0003-1934-2417
http://crossmark.crossref.org/dialog/?doi=10.1007/s12289-022-01657-9&domain=pdf


 International Journal of Material Forming           (2022) 15:21 

1 3

   21  Page 2 of 17

different from the classical model, belongs to the family of 
the generalized continuum mechanics. A common feature 
that is shared by all of them is the appearance of a charac-
teristic length scale in the constitutive framework, which 
naturally arises when the internal power and the constitu-
tive material model are explicitly defined [25].

Another limitation of the classical theory can be identi-
fied when tackling strain localization problems: if a spe-
cific form of the constitutive material behavior is chosen, 
the static boundary value problem loses its ellipticity and 
assumes a hyperbolic character. This problem character-
izes, but is not limited to (same behavior could be found for 
non-associated plastic flow, e.g., [29, 37, 43]), the condition 
in which the material tangent experiences a local negative 
slope. The change in the form of a boundary value problem 
causes the solution not to be uniquely determined anymore. 
The negativeness of the material tangent could be induced 
by several physical phenomena, and the one which most 
concerns our research is the thermal softening induced in 
metallic materials severely deformed. Such behavior can 
be experienced by the continuum when high temperatures 
are locally produced by the plastic deformation and sub-
sequently retained due to the the combination between 
low thermal conductivity of the materials and high strain 
rates. At relatively high temperatures, the material reduces 
its yield strength, subsequently experiencing a softening 
of a thermal nature. From the analytical point of view the 
boundary value problem is not uniquely defined, and from 
the numerical point of view (if the problem ought to be 
discretized through Finite Element Method, for instance), 
the solution appears to be spuriously mesh-dependent.

These problems are severely relevant to manufactur-
ing process simulations because the material is heavily 
deformed in a short amount of time, thus inducing defor-
mation localization and thermal softening. Moreover, it was 
already demonstrated that a strong size effect characterizes 
some manufacturing processes and that the classical con-
tinuum mechanics was no longer adequate to predict these 
behaviors  [7, 16, 24, 31, 44].

The present contribution aims to assess these two main 
problems (size-dependency and mesh-dependency) in metal 
manufacturing operations. The main objective is to propose 
a method that is capable of solving both problems. Resorting 
to a generalized continuum mechanics theory could compen-
sate for the limitations of the classical continuum mechanics 
both in terms of size-effects and spurious mesh-dependency. 
Several contributions can be found in the literature focusing 
on the description and comparison among many different 
non-local theories, some of them focusing on the so-called 
strain gradient theories [15, 19], or the gradient of internal 
variables [20], or elastic-gradient theories [3], or specifi-
cally exploiting the topic of using a generalized continuum 
mechanics theory for manufacturing operations  [34].

In recent years, different generalized continuum mechan-
ics theories have been used to simulate manufacturing 
operations. A flat punch molding process was simulated 
by Guha and co-workers using the plastic strain gradient 
theory [16]. A similar theoretical framework was used to 
simulate steady-state rolling processes in  [30]. Other rel-
evant contributions in the application of non-local theories 
for manufacturing operation simulations can be found in the 
investigations of Liu et al. [22–24] and Asad et al. [2], who 
both reproduced orthogonal cutting simulations using strain 
gradient effects. More recently, Diamantopoulou and co-
workers [8] used a non-local continuum mechanics theory 
enhanced with the gradient of a scalar damage variable to 
simulate metal forming.

Besides the strain gradient theories, other general-
ized continuum mechanics theory could solve the afore-
mentioned problems. The micromorphic approaches, for 
instance, involve the gradient of a tensor of any rank, sup-
posed to perform the targeted strain gradient operation [12], 
and they can also be used to overcome the limitations of 
the classical continuum mechanics. The micromorphic 
approach introduces additional degrees of freedom in 
the problem, and, depending on the type of theory that 
is required, the computational cost might dramatically 
increase. For instance, a full-order micro-curl model, as 
the one proposed by Cordero et al. [5], requires at least 5 
additional degrees of freedom in two-dimensional settings. 
In contrast, the micromorphic approach involving a scalar 
micromorphic variable, so-called reduced-order micromor-
phic model, includes only one additional degree of freedom.

In this context, our contribution aims at investigat-
ing the size-effect predictions and regularization prop-
erties of a time-dependent strain gradient theory that is 
implemented through a scalar micromorphic framework 
using an explicit formulation, in which a viscoplastic 
micromorphic-related variable is included, but no micro-
morphic inertia is present. The main novelty of the pro-
posed method lies in the easiness of the implementation 
of the theory in an already-well-structured finite element 
solver. It represents an alternative to existing implemen-
tations of such micromorphic models like the one pro-
posed by Saanouni and Hamed [36]. The framework that 
we will present can, in fact, simply be solved through a 
common thermal-field solver, and such crucial aspect 
will be properly addressed in the present paper.

The layout of the manuscript is as follows. The for-
mulation of the analytical model is provided in Section 2 
in which both the kinematics and the energetic aspects 
of the theory are presented, alongside its thermodynamic 
description, so that the recoverable and dissipative contri-
butions are explicitly stated as such. The section concludes 
with the pivotal analogy between the thermal and the 
micromorphic balance equations, which further simplifies 
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any possible implementation of the theory in a Finite Ele-
ment software. In Section 2.7 the discretization of the 
equations and the implementation of the method in the 
explicit finite element software VPS/Pam-Crash ® from 
ESI [10] will be described. Section 3 will be used to pre-
sent a simple analytical solution that will be useful to 
verify the implementation of the model in a finite element 
framework. Finally, in Section 4 the numerical method 
will be used to simulate two manufacturing operations 
in which significant strain gradient effects are expected 
to take place, namely the shear/trimming operation and 
the bending test. The mesh-dependency will be analyzed, 
along with the size-effect in terms of cumulative plastic 
strain distribution. Conclusions follow in Section 5.

Notations In this work, the following notations are used. 
The first, second and fourth-order tensors will be indicated 
by a bar, tilde or double tilde, respectively, underneath the 
tensor: a, a

∼
 and a

≈
 . The single or double dot above of a 

degree of freedom indicates the first or second time deriva-
tive respectively. Single and double contractions are indi-
cated by single dot or double dots between the tensors and 
they operate on the inner indices of the tensors:

where Einstein index summation convention applies. The 
single and double tensor products operate as:

Theoretical formulation and finite element 
implementation

The micromorphic scheme has been proven to be a 
straightforward and relatively simple procedure to intro-
duce additional degrees of freedom to the continuum in 
order to achieve non-local regularization effects [12, 13], 
and it has been used already in several other contribu-
tions [1, 6, 8, 26, 32, 35, 36]. Among the cited works, 
the only ones to adapt and implement the micromorphic 
approach for an explicit time-dependent problems can 
be found in  [6, 8, 35, 36]. The aforementioned authors 
presented a time-dependent framework, in which the 
governing equations for the micromorphic variables 
include a second-order time derivative of the micromor-
phic variables. Additional coefficients associated with 
this term were included to characterize the inertia of the 

a
∼
⋅ b
∼
=c
∼
; ⟺ aijbjk = cik,

a
∼
∶ b

∼
=c; ⟺ aijbij = c,

a⊗ b =c
∼
; ⟺ aibj = cij,

a
∼
⊗ b

∼
=c
≈
, ⟺ aijbkl = cijkl,

micromorphic variables, a role that is usually assigned to 
the density for the governing equations of displacement 
fields. Furthermore, Davaze and co-workers [6] included 
some dissipation terms associated with the first-order 
time derivative of the micromorphic variable in govern-
ing equation so as to avoid any oscillation of the solution 
caused by the form of the partial differential equation 
(specifically induced by the presence of a second-order 
time derivative term). However, the authors of this 
research used the theory to achieve mesh-regularization 
for fracture growth simulations in metals. Exploring the 
extent of such an approach for manufacturing operation 
simulations was not their target.

In the present work, we make use of a scalar micro-
morphic approach to govern the strain gradient effect and 
to restore mesh independence. The classical continuum 
mechanics model is enhanced with one additional degree 
of freedom. The governing equations for such an addi-
tional variable will be directly derived from the definition 
of the internal power. The micromorphic approach will be 
used to control the distribution of the cumulative plastic 
strain. Therefore, the additional degree of freedom will be 
enforced to follow this quantity through a penalty term.

In this section, the kinematics of the theory will first 
be provided, from which the balance equations can be 
derived, the definition of the Helmholtz free energy and 
of the Clausius Duhem inequality will follow. Finally, 
the section will conclude with the analogy between the 
micromorphic-balance equation and the thermal field 
equation.

Kinematics and balance equations

The kinematics of the model follows the one commonly 
used in the classical continuum mechanics. The second-
order strain tensor is defined as:

with u being the displacement vector and � denotes the gra-
dient of a vector. Furthermore, the total strain tensor is addi-
tively decomposed into an elastic part �e

∼

 and a plastic part 
�p
∼

 as follows:

By indicating the velocity v as u̇ , we can define the strain 
rate as:

The variables which are supposed to carry the targeted 
strain gradient effects are selected among the available state 

(1)�

∼
= sym

[
u⊗ �

]
,

(2)�

∼
= �e

∼

+ �p
∼

,

(3)�̇

∼
= sym

[
v⊗ �

]
.
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variables which can be tensors of any rank. Here, we con-
sider a scalar variable. Two types of degrees of freedom 
(DOFs) are applied to the material point: the classical dis-
placement vector u and the additional scalar micromorphic 
variable p� associated with the cumulative plastic strain p 
through the penalty term H� to be defined later. Therefore, 
every node is endowed with 3 displacement and 1 micro-
morphic variable:

Based on the definition of the strain and of the micromorphic 
variable, we are allowed to write the internal and kinetic 
power densities of the body as dependent on the strain, the 
micromorphic variable and its gradient1:

where � is the mass density and ü is the acceleration vector. 
Here, a and b are generalized stresses associated with the 
micromorphic variable and its gradient, respectively. In this 
formulation, the densities of power generated by external 
forces and contact forces can be written as:

with fe being the density of body force, ae and be are the 
generalized body stresses associated to p� and its gradient. 
fc and ac are the classical traction and the micromorphic 
traction. The contact power density defined in Eq. 8 clearly 
states that the gradient of the micromorphic variable is not 
linked to any boundary effect. The global power balance law 
can be written as:

which, through Eqs. 5, 6, 7 and 8, transforms into:

(4)DOF = {u, p�}.

(5)p(i) =�
∼
∶ �̇

∼
+ a ṗ𝜒 + b ⋅ � ṗ𝜒 ,

(6)p(k) =𝜌ü ⋅ u̇,

(7)p(e) =fe ⋅ u̇ + ae ṗ𝜒 + be ⋅ �ṗ𝜒 ,

(8)p(c) =fc ⋅ u̇ + ac ṗ𝜒 ,

(9)∫
�

(
p(i) + p(k)

)
dΩ = ∫

��

p(c)dS + ∫
�

p(e)dΩ,

(10)

∫
𝛺

u̇ ⋅

[
−�

∼
⋅ � − fe + 𝜌ü

]
dΩ + ∫

𝛺

ṗ𝜒
[(
be − b

)
⋅ � + a − ae

]
dΩ

+∫
𝜕𝛺

u̇ ⋅

[
−fc + �

∼
⋅ n

]
dS + ∫

𝜕𝛺

ṗ𝜒
[
−ac +

(
be − b

)
⋅ n

]
dS = 0,

Based on the principle of virtual power, the equilibrium 
equations are obtained as:

which are bounded by the following Neumann boundary 
conditions:

where n is the outer normal to the surface closing the 
domain �.

Helmholtz free energy potential

The constitutive model of the medium characterizing the 
shape of both the classical and the generalized stresses is 
provided via the definition of their associated potential. 
The free energy density function is assumed to depend 
on the following state variables:

namely, the elastic strain, the cumulative plastic strain, the 
micromorphic variable, and its gradient. The chosen poten-
tial has the form:

where C
≈

 is the elastic fourth-order stiffness tensor, �p is the 
plastic contribution to the Helmholtz free energy (in case of 
hardening/softening it accounts for the expansion/shrinking 
of the yield surface in the stress space), and �� is the addi-
tional micromorphic contribution. A simple quadratic poten-
tial is adopted for the latter:

where A
∼

 is the higher-order modulus. For an isotropic mate-
rial, the elastic stiffness tensor C

≈
 and the tensor of higher-

order moduli reduce to the following forms:

(15){�
∼

e, p, p� ,�p�}

(16)
�(�

∼

e, p, p� ,∇p� ) =
1

2
�

∼

e ∶ C
≈
∶ �

∼

e + �p(p) + �� (p, p� ,∇p� ),

(17)�� (p, p� ,∇p� ) =
1

2
H� (p − p� )

2 +
1

2
∇p� ⋅ A

∼
⋅ ∇p� ,

(18)C
≈
=𝜆 trace

(
�

∼

)
I
∼
⊗ I

∼
+ 2𝜇I

≈
,

(19)A
∼
=A I

∼
,

1 There is a possibility here to explicitly define the kinetic and damp-
ing energy of the continuum as function of the micromorphic vari-
able as well. Such type of descriptions have already been proposed 
by other researchers[6, 28, 36]. In the present work, however, we will 
include instead a viscous contribution of the micromorphic variable 
in the constitutive model of the continuum.
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with � and � as the classical Lamé parameters and A the new 
higher order modulus. The following linear isotropic plastic 
behavior is assigned to the material:

where Hp is the hardening modulus. Nonlinear hardening 
laws are possible but not considered here for simplicity.

Clausius‑duhem inequality

The Clausius-Duhem inequality will be used to ensure the 
thermodynamic consistency of the model and to define the 
recoverable and dissipative parts of the mechanical con-
tributions. The local form of the second law of thermody-
namic for an iso-thermal transformation can be expressed 
for a continuum body as:

Expanding the time derivative of Helmholtz free potential 
with respect to the variables on which it depends, and by 
retrieving the additive elasto-plastic decomposition of the 
strain rates, the Clausius-Duhem inequality reads:

At this stage, the choice on the elastic part of the strain to be 
energetically recoverable can be made. It implies that the 
terms multiplying �̇

∼

e must vanish so as to ensure that the 
elastic strain does not contribute in entropy production, lead-
ing to:

The distinction between recoverable and dissipative parts 
of the generalized stress terms must also be drawn. For the 
gradient of the micromorphic variable, we assume that it is 
fully recoverable, therefore:

This means that the gradient of plastic strain solely con-
tributes to the free energy potential. In the case of metals, 
this can be justified by the fact that the plastic strain gra-
dient contains contributions of the dislocation density ten-
sor which is known to be associated with energy storage 
[14, 18]. Regarding now the dissipation produced by the 
variation of the micromorphic variable, its positiveness can 
be ensured, as originally suggested by Gurtin [12, 17], by 
imposing that the generalized stress a possesses a recover-
able part and a dissipative part that depends on ṗ𝜒 itself:

(20)�p(p) =
1

2
Hp p

2;

(21)p(i) − �̇� ≥ 0.

(22)
(
�

∼
−

𝜕𝜓

𝜕�
∼

e

)
∶ �̇

∼

e + �

∼
∶ �̇

∼

p −
𝜕𝜓

𝜕p
ṗ +

(
a −

𝜕𝜓

𝜕p𝜒

)
ṗ𝜒 +

(
b −

𝜕𝜓

𝜕�p𝜒

)
⋅ �ṗ𝜒 ≥ 0.

(23)�

∼
=

��

��
∼

e
= C

≈
∶ �

∼

e,

(24)b =
��

��p�
,

where C� is a parameter related to viscous micromorphic 
effects. Lastly, for the plastic part of the Helmholtz free 
energy:

where R is a thermodynamic force associated to variation of 
the cumulative plastic strain. The residual dissipation rate 
can now be written as:

The positiveness of the new parameters A and C� then 
ensures the positive definiteness of the micromorphic contri-
butions in the free energy density and in the dissipation rate.

Partial differential equation governing 
the micromorphic variable and enhanced hardening 
law

By considering the explicit definition of the Helmholtz free 
energy potential given in Eq. 17, the generalized stresses 
read:

The previous Eq. 28 indicates that the micromorphic vari-
able p� and cumulative plastic strain p are related to each 
other through the penalty term H� . In order for the micro-
morphic variable to closely match the value of the cumula-
tive plastic strain, it is necessary to ensure that the value of 
H� is relatively large. At this stage, it is possible to re-write 
the additional partial differential equation governing the 
micromorphic distribution by plugging the selected constitu-
tive behavior into it. In absence of higher-order body forces 
( ae and be ), Eq. 12 can be written as:

where ∇2 indicates the Laplacian differential operator. The 
previous equation represents the only additional equation 
that must be solved combined with the ones governing the 
displacement fields.

Previous researchers already explored the potential of the 
micromorphic theory in rate-dependent analysis under explicit 
integration schemes using a modified version of Eq. 30. For 
instance, Saanouni and Hamed proposed a theory in which 
the second-order time derivative (acceleration) of p� takes 

(25)a =
𝜕𝜓

𝜕p𝜒
+ C𝜒 ṗ𝜒 ,

(26)
��

�p
= R,

(27)�

∼
∶ �̇

∼

p − R ṗ + C𝜒 ṗ
2
𝜒
≥ 0.

(28)a = − H𝜒

(
p − p𝜒

)
+ C𝜒 ṗ𝜒 ,

(29)b =A�p� .

(30)C𝜒 ṗ𝜒 = A∇2p𝜒 + H𝜒

(
p − p𝜒

)
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the place of the first-order time derivative in Eqs. 30 [8, 36]. 
Therefore, in analogy with the PDE governing the displace-
ment fields, a form of inertia was associated to the micromor-
phic variable, whereas, in case of the present investigation, 
a viscous term associated to the micromorphic variable is 
considered. The PDE governing the micromorphic field can 
be rewritten as:

where lch is the characteristic length scale endowing the 
theory with the spatial regularization property, and �ch is 
a characteristic time. To fully solve Eq. 31, it must be cou-
pled with a constitutive model for the plastic behavior of the 
medium. Starting from the yield function:

where �eq is the von Mises equivalent stress measure and 
�0 is the initial yield stress. Assuming associated plasticity 
and the normality rule to hold, the rate of the plastic strain 
can be written as:

and the dissipation in Eq. 27 takes the form:

and in case of plastic loading:

From the specific form of the plastic part of the Helmholtz 
free energy and from Eq. 26, one can infer the stress that is 
thermodynamically associated with the cumulative plastic 
strain:

This represents the hardening law enhanced by a new 
micromorphic contribution. This shows the coupling aris-
ing in the theory between plasticity and the micromor-
phic variable. After substituting the Eq. 31, the following 
alternative expression of the enhanced hardening law is 
obtained:

The linear hardening/softening contribution (depending 
on the sign of Hp ) to the yield stress is enhanced by the 
Laplacian of the micromorphic variable, a usual term in 

(31)𝜏chṗ𝜒 = l2
ch
∇2p𝜒 + (p − p𝜒 ) with lch =

√
A

H𝜒

and 𝜏ch =
C𝜒

H𝜒

,

(32)f (�
∼
,R) = �eq − �0 − R

(33)�̇

∼

p = ṗ
𝜕f

𝜕�
∼

= ṗn
∼
,

(34)(�
∼
∶ n

∼
− R) ṗ + C𝜒 ṗ

2
𝜒
≥ 0;

(35)(𝜎eq − R) ṗ + C𝜒 ṗ
2
𝜒
= 𝜎0 ṗ + C𝜒 ṗ

2
𝜒
≥ 0;

(36)R = Hp p + H� (p − p� )

(37)R = Hp p − A∇2p𝜒 + C𝜒 ṗ𝜒

regularization methods, but also by an additional viscous 
term whose magnitude is controlled by the value of param-
eter C�.

Micromorphic‑thermal analogy

The comparison between the scalar micromorphic model 
described in the previous section and the classical thermo-
mechanical theory is here outlined. The development of 
the latter theory will not be fully reported, but we will 
make use of the main governing equations of the ther-
mal field to draw the comparison with the micromorphic 
theory previously developed. On the one hand, the addi-
tional variable in the present theory, p� , ought to be solved 
through the PDE Eq. 30, whereas, on the other hand, the 
additional degree of freedom of the classical thermo-
mechanical theory, that is temperature T, must be solved 
through a different PDE, and here the two equations are 
reported (where the Fourier conduction law is assumed to 
be valid for the heat flux)

where C is the specific heat capacity of the material, r is a 
source term and k is the thermal conductivity of the mate-
rial, that we assumed to be independent from temperature. 
Although the two equations are used to govern completely 
different physical fields, a straightforward parallelism 
among them can be identified. In Table 1, a comparison 
between different aspects of the two theories is reported. 
The analogy between these two theories inspired the idea 
of adapting an already implemented numerical resolution 
scheme (meant to be used for the thermal field) for the 
micromorphic variable. The main objective of the present 
investigation is, in fact, the analysis of the feasibility of 
such idea. The main advantage of the proposed method is 
that the micromorphic theory can be easily implemented 
in an explicit resolution scheme, while requiring very lim-
ited access and marginal effort in modifying the original 

(38)C𝜒 ṗ𝜒 =A∇2p𝜒 + H𝜒

(
p − p𝜒

)
,

(39)𝜌CṪ =k∇2T + r,

Table 1  Analogy between micromorphic gradient plasticity and ther-
mal analysis

Micromorphic Heat

DOF p� T
Constitutive law b = A∇p� q = −k∇T

Balance law C𝜒 ṗ𝜒 = A∇2
p𝜒 + H𝜒

(
p − p𝜒

)
𝜌CṪ = k∇2T + r

Source term H�

(
p − p�

)
r
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code. This aspect obviously makes the implementation of 
this theory more attractive than other methodologies which 
would require high level of accessibility to the main solver, 
since both new element and material definitions would 
need to be developed. Such an analogy has been used in 
the past for coupling chemical diffusion and mechanics in 
the implicit version of the numerical solver ABAQUS [9]. 
The analogy has also been recognized and used to imple-
ment gradient plasticity and gradient damage models, again, 
in the implicit version of ABAQUS [40]. Note that in these 
implementations, the viscous term, i.e. the transient term 
proposed in the present work, is absent.

The two PDEs are in fact so similar that in order to 
solve for the micromorphic variable, instead of the tem-
perature, only two minor modifications need to be done. 
Given the comparison between the two PDEs (Eqs. 38 
and 39), and given the form of the yield function in 
Eq.  32, the elements that require non-trivial modifi-
cations are the source term r and the yield radius: the 
former has to coincide with the difference between the 
cumulative plastic strain and the micromorphic variable 
(amplified by the H�  parameter), and the latter has to 
take into account the extra hardening due to the micro-
morphic variable:

whereas the coefficients present in the thermal balance equa-
tion can be easily substituted with the parameters charac-
terizing the micromorphic PDE. Implementing the condi-
tions Eqs. 40 and 41 represents the only real, yet minor, 
effort that is required to make use of the present theory, 
assuming the existence of a thermal solver and the possibil-
ity of applying small modifications.

Influence on the C�  parameter

The additional parameter C� naturally arises from the devel-
opment of the chosen constitutive material model for the 
generalized stress a. In order to obtain the final form of the 
governing Eq. 30, so that the thermal-micromorphic anal-
ogy is valid, the presence of the C� parameter is required, 
and it should not vanish in the case of the implementation of 
the transient problem. However, from the analysis of Eq. 28, 
it is clear that the parameter C� regulates the development 
of the viscous part of the micromorphic variable, and there-
fore that a viscous part of the micromorphic variable exists. 
Being this an additional material parameter, the question on 
the calibration of such value must be addressed.

(40)r =H� (p − p� );

(41)f =�eq − �0 − Hp p − H� (p − p� );

The purpose of using the micromorphic analysis, in the 
present investigation, is to gain indirect control on the dis-
tribution of the cumulative plastic strain and its gradient, 
thus the constraint on the micromorphic variable to closely 
follow the value of the cumulative plastic strain through 
the penalty parameter. The present theory also accounts 
for the development of viscous stresses generated by not-
negligible strain rates, and the micromorphic variable fol-
lows the value of the cumulative plastic strain, regardless 
of whether the plastic strain increment is caused by quasi-
static or viscous stresses. The adoption of large values 
of the C� parameters (compared to H� ) would allow the 
viscous part of the micromorphic variable to produce addi-
tional meaningful generalized stress (see Eq. 28), therefore 
altering the value that it should have, based only on the 
difference between micromorphic variable and cumulative 
plastic strain (effectively producing the same stress as if 
this difference was larger). Therefore, too large values of 
C� would somehow corrupt and interfere with the equiva-
lence between cumulative plastic strain and micromorphic 
variable. On the contrary, by neglecting any meaningful 
contribution of the viscous micromorphic term to exist, we 
lose the analogy with transient thermal analysis proposed 
here for the implementation.

Therefore, for the present investigation, the C� parameter 
must exist, so that the thermal-micromorphic analogy holds, 
but its value should not be too large. The allowed magnitude 
for this parameter will be tested by checking an analytical 
solution in the static case, considered in Section 3.1.

Numerical implementation

The micromorphic plasticity model has been implemented 
in VPS Explicit [10], a finite element software developed 
by ESI Group solving both dynamics and heat problems. 
In order to account for the large deformation expected 
during manufacturing operations, the theory has been 
developed according to the VPS standard method, that is, 
using rate-type constitutive equations. This does not alter 
the theory so far presented, since the micromorphic part 
remains unchanged. For the same reason, the space gradi-
ents that are encountered in this manuscript are meant to 
be evaluated with respect to the current configuration of 
the medium, as in an Updated-Lagrangian approach. The 
additive decomposition is applied to the strain rate tensor, 
which can be split into elastic and plastic contributions:

where D
∼

 is the strain rate, and the elastic constitutive model 
is rewritten by means of a hypoelasticity relation:

(42)D
∼
= D

∼

e + D
∼

p,
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where 
◦

�

∼
 is the Jaumann stress rate, and it can be re-written as:

where W
∼

 is the spin tensor. The finite element solution is 
obtained by establishing the weak form of Eqs. 11 and 12 
using the Galerkin method. The dynamic balance Eq. 11 is 
weighted with the test velocities u̇ whereas the micromor-
phic balance Eq. 12 is weighted with the test micromorphic 
variable rates ṗ𝜒 . Integration over the domain is achieved by 
the use of the divergence theorem to lower the order of the 
derivatives. The natural boundary conditions are incorpo-
rated as forcing terms, leading to the equations to be discre-
tized by finite-element interpolations. The discretization of 
the displacement and micromorphic fields over the domain 
is achieved by using proper-order interpolation functions. 
The following algebraic equations are derived:

where M
∼

 is the mass matrix, F
ext

 is the vector of external 
nodal forces, F

int
 is the vector of internal nodal forces, C

∼�
 is 

the viscosity parameter matrix, a
r
 is the vector containing 

the nodal generalized forces generated by the source terms 
and a

int
 is the vector of nodal generalized forces induced by 

Laplacian of the micromorphic variable. In Eq. 46 the simi-
larity with the discretized algebraic equation to solve the 
heat equation in thermal analysis can be appreciated once 
again. In fact, VPS Explicit uses the same form of equation 
to solve the heat equation:

where � is the nodal temperature vector, C
∼

 is the heat capacity 
matrix, Q

��
 is the nodal heat flow depending on the heat flux 

on the outer surface �� , Q
�

 is the nodal heat flow depending 
on the internal heat source and Q

K
 is the internal nodal heat 

flow depending on the heat flux inside the domain �.

(43)
◦

�

∼
= C

≈
∶ D

∼

e,

(44)
◦

�

∼
= �̇

∼
−W

∼
⋅ �

∼
+ �

∼
⋅W

∼
,

(45)M
∼
⋅ Ü =F

ext
− F

int
;

(46)C
∼𝜒

⋅ �̇
𝜒
=a

r
− a

int
;

(47)C
∼
⋅ �̇ = Q

𝜕𝛺
+Q

𝛺
−Q

K
;

A central difference explicit scheme associated to the 
lumped mass matrix is used to solve Eq. 45. Assuming that 
the problem is initially found at time t0 and that the objec-
tive is to evaluate its status at time t1 = t0 + Δt , the following 
standard steps are taken:

A forward Euler scheme associated with the viscosity 
lumped matrix is implemented to solve Eq. 46:

A weak micromorphic-mechanical coupling is implemented 
in VPS Explicit, that is, the two equations are solved sepa-
rately so that displacements are considered constants while 
solving for p� and vice-versa. The micromorphic field influ-
ences the plastic behavior of the continuum (through con-
dition Eq. 40), and, in return, the cumulative plastic strain 
(the difference between the cumulative plastic strain and the 
micromorphic variable) acts as a source term in the micro-
morphic balance equation (in condition Eq. 41).

Regarding the mechanical behavior, a user material 
routine implements the mechanical model as previously 
defined. The values of the micromorphic variables at the 
Gauss quadrature points are interpolated by mean of the 
interpolation functions from the nodal values. So the user 
material routine not only integrates the mechanical behav-
ior but also computes the source term H� (p − p� ) at the 
Gauss points. Regarding the micromorphic treatment, a 
specific function is developed inside the thermal solver in 
order to recover the source term from the material compu-
tations previously evaluated. The main algorithmic steps 
of the explicit resolution over the time increment Δt may 
be summarized by the following scheme:

(48)Ü
t0
=M

∼

−1

t0

⋅

[
F
extt0

− F
intt0

]
;

(49)U̇
t0+

Δt

2

=U̇
t0−

𝛥t

2

+ Δt Ü
t0
;

(50)U
t1
=U

t0
+ 𝛥t U̇

t0+
𝛥t

2

;

(51)ṗ𝜒t0

=C
∼𝜒t0

⋅

[
a
rt0

− a
intt0

]
;

(52)p𝜒t1

=p𝜒t0

+ Δt ṗ𝜒t0

;
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The critical time step for the time integration of the 
equations is taken as the minimum between the critical 
time step for the mechanical and the micromorphic inte-
gration. The critical time step for the mechanical integra-
tion follows the standard definition, whereas the critical 
time step for the integration of the micromorphic variable 
is the the same used for the thermal variable (following the 
micromorphic-thermal analogy exploited in Section 2.5), 
but using the micromorphic parameters:

where V is the volume of the element and Smax is the largest 
surface of the element.

Strain localization in simple shear test

Analytical solution

The analytical solution is developed for the rate-independ-
ent static case as a reference for validation of the FE scheme 
at the static limit. It is inspired from similar solution pro-
posed by [26, 38, 39]. Consider a periodic strip made of a 
thick rectangular plate of the width W along X1 direction, 
the length L along X2 direction, and the thickness T along X3 
direction (Fig. 1) undergoing simple shear. A macroscopic 
deformation � is applied such that

where � is the periodic displacement fluctuation. Due to 
equilibrium conditions, the shear stress component is homo-
geneous so that the equivalent stress �eq is invariant along 
X

1
 , X

2
 and X

3
 , hence

(53)Δtcr
micr

∝

(
V

Smax

)2 C�

4A
;

(54)
u = �̄

∼
⋅ X + �(X), with �̄

∼
= �̄�12(e1 ⊗ e

2
+ e

2
⊗ e

1
),

(55)�eq(X1
,X

2
,X

3
) = �eq.

The yield condition including the linear softening term and 
the micromorphic contribution (with C� = 0 here) can be 
written as

The PDE governing the micromorphic variable is given by

Elimination of the variable p in the previous equation by 
means of the yield condition Eq. 56 leads to the following 
form of the PDE to be solved for p�:

In case of linear softening Eq. 58 takes the form

where � is the characteristic width of the deformation 
zone. The expressions for constants � and � can be found in 
Appendix 7. The PDE Eq. 59 governing p� is only valid in 
the region X2 ∈ [

−�

2
,
�

2
] and the solution is of the form

For symmetry reasons, p� (X2) = p� (−X2) leads to �2 = 0 . 
At the elastic/plastic interfaces, i.e at X2 = ±

�

2
 , continuity 

of micromorphic variable p� and of the generalized stress 
normal to the interface M ⋅ X

2
 must hold, hence

(56)
f = 𝜎eq − (𝜎0 + Hpp + H𝜒 (p − p𝜒 )) = 0 with Hp < 0.

(57)A
�2p�

�X2
2

= H� (p� − p).

(58)A
�2p�

�X2
2

−
HpH�

Hp + H�

p� +
H�

Hp + H�

(�eq − �0) = 0.

(59)
�2p�

�X2
2

−

(
2�

�

)2

p� = −

(
2�

�

)2

�,

(60)p� (X2) = �1 cos

(
2�

X2

�

)
+ �2 sin

(
2�

X2

�

)
− �.

(61)p�

(
±

�

2

)
≃ p

(
±

�

2

)
= 0,

Fig. 1  Geometry of the shear 
localization strip problem
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where we make the approximation that p� is sufficiently 
close to p, i.e. that the penalty coefficient is large enough. 
Combining Eqs. 61 and 62 with 60 leads to

Moreover, the equivalent stress is expressed as

where � is the elastic shear modulus. From the yield condi-
tion, p can be replaced by �eq−�0+H�p�

Hp+H�

 in Eq. 64 and integra-

(62)M

(
±

�

2

)
⋅ X

2
= A

dp�

dX2

||||X2=±
�

2

= 0.

(63)�1 =
(�eq − �0)

Hp

.

(64)�eq =
�

L ∫
L

2

−L

2

(
�12 − p

2

)
dX2,

tion gives an expression for �eq as a function of applied mac-
roscopic shear �̄�12 and then the uniform shear stress writes

where � is the shear modulus of the material.

FE solution

The FE simulations are performed with a periodic strip. 
The associated 2D coordinate system and geometry are 
shown in Fig.  1. The strip has been meshed with 3D 
8-nodes elements onto which plane strain conditions 
were applied by imposing zero out-of-plane displace-
ment to all the nodes. The nodes at the bottom of the strip 
( X2 = −L∕2 ) were clamped along X1 and X2 . The nodes 

(65)𝜎eq =
�̄�12 +

𝜎0

Ze

1

𝜇
+

1

Ze

, with
1

Ze
=

𝜆

HpL
.

Table 2  Numerical values of material parameters used for the simulation of a periodic strip undergoing simple shear

E � � �0 Hp H� A C� L

75 GPa 0.3 2.8 × 103 Kg/m3 100 MPa -500 MPa 106 MPa 0.08 N 90 MPa.s 1.0 mm

Fig. 2  Localization of plastic 
strain in a periodic strip 
undergoing simple shear for two 
different mesh sizes
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on the top surface ( X2 = L∕2 ) were clamped along X2 and 
a Dirichlet type of boundary condition was applied along 
X1 whereas the displacements along X2 were fixed. Linear 
shape functions have been used to interpolate the nodal 
fields, and full integration schemes have been used for 
the material behavior. Numerically, in order to trigger 
the strain localization in a periodic strip, a small defect 
is introduced at the centre (Fig. 1). The defect is one ele-
ment having an initial yield stress 3% less than the matrix. 
Isotropic elasticity is considered. The material parameters 
used for the analytical solution and FE simulations are 
presented in Table 2.

Figure 2a and b show the cumulative plastic strain fields 
with the classical and the micromorphic models using two 
different mesh discretizations, one coarse and one fine mesh 
(using 0.010 mm and 0.003 mm thick elements respectively). 
Given the fact that in this example the shear band is already 
known to have a thickness of ≈ 0.08 mm, the chosen mesh size 
lies well within a safe regime for the gradient effects to be prop-
erly captured. The classical plasticity model exhibits pathologi-
cal mesh dependency and width of the shear band always col-
lapse to one element irrespective of the mesh size. In contrast, 
the width of the formed shear band with the micromorphic 
model is finite and independent of the mesh size. This indicates 
the capabilities of the implemented micromorphic theory in an 
explicit scheme to solve the shear strain localization problem.

Furthermore, the cumulative plastic strain variation along 
X2 obtained from the FE solution is validated against the 
analytical solution developed for the rate-independent case 
(cf. Eq. 60), see Fig. 3. The FE simulation is validated for 
�̄�12 = 0.01 . Moreover, simulations are performed by changing 
the simulation time while keeping the same applied total shear 
strains. Fig. 3b shows that the perfect agreement with an ana-
lytical solution is obtained for t = 10 sec. which corresponds 
to low enough strain rate to make the viscous contribution in 
Eq. 37 negligible. Larger strain rates are observed to limit the 
localization since the maximum strain in the band decreases 
for increasing strain rates. Since the total strain is imposed, this 

means that a higher elastic strain compensates the lower plastic 
strain which means that stress values are higher.

In order to retrieve the quasi-static solution, also the 
viscous parameter C� had to be chosen small enough. The 
reason is to minimize as much as possible any viscous-like 
component of the generalized stress a in Eq. 28 to retrieve 
the rate–independent solution.

Metals at high temperatures are known to be strain rate 
sensitive. This effect is generally taken into account by 
means of an appropriate viscoplastic flow rule, for instance 
based on a Norton power law. In the present work, rate-inde-
pendent plasticity only has been considered but the generali-
zation to viscoplasticity is straightforward in the proposed 
framework. Note that the proposed model presents an addi-
tional strain rate sensitivity, via the viscosity parameter C� . 
This will require appropriate calibration for instance using 
strain field measurements during localization.

Numerical examples

In this section, the applicability of the implemented scalar 
micromorphic strain gradient theory is tested for two addi-
tional cases: a shearing operation process and a bending test. 
The aim of this section is to exploit the analogy explained in 
Section 2.5, whose numerical implementation has been pre-
viously presented, to prove that simulations of manufactur-
ing operations using the micromorphic continuum under an 
explicit integration scheme can be successfully performed.

Industry best practice discourages the employment of 
complex numerical methods to produce simulations, mainly 
to guarantee a high degree of reliability of the results and 
computational efficiency in terms of CPU time. Regarding 
this reasonable concerns, the results that will be presented 
here are to be considered as proof of the simplicity of the 
method, which requires only one additional parameter to be 
calibrated, that is A (see the discussion on the C� parameter 
in Section 2.6).

Fig. 3  Validation of FE solution 
against the analytical solution. 
(a) Equivalent plastic strain 
distribution obtained for a 
simulation of 10 seconds for 
two different mesh discretiza-
tions (101 vs. 303 elements); 
(b) equivalent plastic strain 
distribution obtained with a fine 
mesh for different total time
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As previously explained in the introduction, the relevance 
of the application of regularization procedures in manufac-
turing operations is vital, especially in cases in which the 
thermal power has a major presence. Thermal softening can 
take place when high rates of plastic strain are produced, and 
similar softening can be reproduced by assigning a negative 
slope to the hardening function in Eq. 36. The regularization 
potential of the proposed method is investigated in the shear-
ing operation section. Moreover, one of the missing features 
of the classical continuum mechanics is the capability of 
predicting any size effect. This becomes of major relevance 
whenever the deformation localizes is small regions or in the 
case of forming of micro-components [21, 46]. The ability 
of the proposed method to capture the size effect is proven 
in the bending section.

Shearing operation

The shear band formation is a commonly observed phe-
nomenon in manufacturing operations in case of heavy 
deformation, for instance, high-speed shaping, forging, 
machining, and several other processes [4, 27]. Numeri-
cally, the shear band simulation shows spurious mesh 
dependency when we consider a classical plasticity 
approach with strain softening. Dynamics combined with 
viscosity or/and heat conduction are known to provide 
regularization but the involved length scales are often too 
small for efficient FE modeling so that strain gradient or 
micromorphic plasticity is still useful to introduce physi-
cally more realistic length scales [41, 45].

Shearing operation is most commonly used in the metal 
forming industries for sheet metal cutting. In this section, the 
implemented micromorphic approach is used for the regu-
larization of shear band formation in shearing operation.

The shearing operation is performed on a sheet of 5 mm 
thickness under plane strain conditions with one element 
across the width. The geometry is shown in Fig. 4. The 
sheet has been meshed with 3D 8-nodes elements with lin-
ear shape functions and full integration schemes. The lower 
tool is fixed, while velocity is applied to the upper tool in 
the downward direction. At the initial deformation stage, a 
linearly increasing velocity up to 4mm∕sec. is applied. Once 
the velocity of 4mm∕sec. is achieved, it is kept constant in 
the later stage of the deformation. The contact between the 
deformable sheet and tools is taken into account using a con-
stant coefficient of friction 0.3. The tools are considered as 
rigid bodies, while the sheet is assigned with an elastoplas-
tic material behavior using linear strain softening. Isotropic 
elasticity is considered. The used material parameters in the 
numerical simulations are presented in Table 3.

At first, simulations are performed with classical 
plasticity using three different mesh discretizations. The 
elements size of the different meshes in the region of 
interest span from 0.2 to 0.04 mm respectively, and, as 
it will be possible to appreciate in Fig. 6, this element 
size is extremely small if compared with the shear band 
thickness, thus ensuring that the gradient effect are cor-
rectly captured. The limitation of the classical plasticity 
model, known as pathological mesh dependency in the 
strain localization problem can be observed from Fig. 5a 

Fig. 4  Geometry used for the 
shear operation simulation

Table 3  Numerical values of material parameters used for the simulation of the shearing operation

E � � �0 Hp H� A C�

75 GPa 0.3 2.8 × 103 kg/m3 100 MPa -500 MPa 106MPa [128, 320, 800] N 90 MPa.s
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and e by the contours of the cumulative plastic strain. The 
magnitude of the cumulative plastic strain is different for 
two different mesh discretizations, and it increases with 

finer mesh. Furthermore, the observed width of the shear 
band is different for two different mesh discretizations 
and it always collapses to one element size irrespective of 
the mesh size. In contrast, the formed width of the shear 
band using the micromorphic approach is finite and does 
not depend on the mesh density as seen from Fig. 5b and 
f. In addition, the magnitude of the cumulative plastic 
strain reaches asymptotic values while reducing the mesh 
size.

Furthermore, the effect of the diffusivity coefficient A 
on the shear band widths is investigated. Figure 6 shows 
the variation of cumulative plastic strain for three differ-
ent values of the gradient parameters A, 128 N, 320 N, 
and 800 N. As the value of A increases the intensity of 
plastic strain gradient within the shear region reduces. 
As expected from the analytical expression for the length 
scale in Eq. 66, the width of the shear band increases 
with an increase in the A value. For the three different 
values of the A parameter, 128 N, 320 N and 800 N, the 
observed widths of the shear bands are 2.4 mm, 2.8 mm, 
and 3.5 mm, respectively. If the characteristic length was 
evaluated through Eq. 66, the values of 3 mm, 5 mm and 
8 mm would be the results. The divergence of these values 

Fig. 5  Mesh size effect on the 
plastic strain localization during 
shearing simulation. On the left 
the results were predicted by the 
classical plasticity model, on 
the right by the micromorphic. 
From the top to the bottom, 
increasing mesh size

Fig. 6  Effect of the variation of the characteristic length scale on the 
plastic strain distribution during shearing simulation
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is due to the fact that the boundary conditions are not the 
same, thus the deformation state is not pure shear.

Bending

The bending test is used to verify that the implemented 
micromorphic model is able to capture the size effect for 
hardening plasticity. It is possible to find in literature 
many studies that experimentally highlighted the pres-
ence of extra hardening in the bending moment, when-
ever the specimen geometry was reaching sub-millime-
ters dimension, approaching grain size. In 1994 Fleck 
and co-workers [11] reported hardening behavior in a 
copper wire under torsion for wire diameters in the order 
of 10 − 100 micro-meters, whereas tensile tests performed 
on the same wires found no evidence of size effect. 
Stölken and Evans  [42] designed a micro-bend test to 
measure the plastic characteristic length scale associ-
ated with the strain gradient, subsequently reporting the 
results pertaining to thin ( 12.5�m ↦ 50�m ) Nickel foils.

In Fig. 7, the geometry and the boundary conditions of 
the specimen are reported. The specimen has been discre-
tized using 3D type of elements under plane strain condi-
tions. Linear shape functions are used to interpolate nodal 
values, and full integration scheme is used for the elements. 
One element spans the 1 mm width and 10 elements span 
half the thickness of the beam (mesh size of 0.1 mm) so that 
there should be enough elements to capture the size effect. 
The left face of the beam is clamped, whereas a material 
rotation is enforced on the nodes of the right face through a 
coupling involving the nodes of the right face and an aux-
iliary node. The resultant bending moment is probed at the 
auxiliary node. A total rotation of 45◦ is applied.

The size effect can be experimentally encountered 
whenever the geometry of the specimen reduces down to 
approximately the grain size of the metal. Virtually, the 
same phenomenon could be achieved by keeping constant 
the geometry of the specimen and simultaneously increas-
ing the characteristic length scale. The effectiveness of the 
formulation in predicting the size effect through the bending 
test has been verified by employing the latter method. The 
numerical framework previously presented does not explic-
itly make use of the grain size, but a characteristic length 
scale in Eq. 31 was identified, and this will serve the same 
purpose. The use of larger or smaller characteristic lengths 
will respectively induce a stiffer or softer global response of 
the specimen. Three different values of gradient parameter 
A have been used. The other material parameters used in 
the simulation of the bending tests are reported in Table 4. 

Fig. 7  Geometry and the applied boundary conditions on the beam 
used for the bending simulations

Table 4  Numerical values of 
material parameters used for the 
simulation of the bending test

E � � �0 Hp H� A C�

75 GPa 0.3 2.8 103 kg/m3 100 MPa 200 MPa 106MPa 128-800 N 90 MPa.s

Fig. 8  Cumulative plastic strain 
field during bending process 
using micromorphic medium 
(a) and normalized bending 
moment vs rotation angle for 
different high order moduli (b)
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In the attempt of replicating a quasi-static bending test, the 
chosen value of the C� parameters is relatively small, so 
that any viscous contribution of the micromorphic variable 
would be negligible.

In Fig.  8a the distribution of the cumulative plas-
tic strain for the bending test using the micromorphic 
model is reported. Besides the edge effect induced by 
the boundary condition at the right surface, the solution 
appears to be invariant along the longitudinal direction 
of the strip.

The classical and micromorphic solutions in terms 
of normalized bending moment vs. applied rotation are 
shown in Fig. 8b. The probed bending moment has been 
normalized with respect to the first moment of area of the 
beam cross-section, that is b h2 , where b is the width of 
the rectangular cross-section, and h is the height of the 
rectangular cross-section. From Fig. 8b, it can be appreci-
ated that the classical solution is retrieved by using the 
micromorphic approach with a null penalty term H� and 
null higher-order modulus (A). Three values of the higher-
order modulus (respectively three different characteristic 
lengths scales) are used for the test: 128 N, 320 N, and 
800 N. The curves belonging to the micromorphic theory 
clearly demonstrate the ability of the method to capture the 
size effect. The extra hardening reported in Fig. 8b follows 
the same trend as the one relative to the experimental tests 
reported by Stölken and Evans [42].

In the case of bending, the micromorphic medium 
does not need to regularize any localization phenomenon; 
rather, it has to predict an additional hardening, as pre-
sented in the manuscript. The characteristic length scale 

can be identified in this case by lch =
√

A(Hp+H� )

|Hp|H�

 . The 

obtained characteristic length scales using A = 128 N, 
320 N, and 800 N are 0.8 mm, 1.26 mm, and 2.0 mm 
respectively. The chosen mesh size ensures that many 
elements are contained within the characteristic length. 
These characteristic length scales can be normalized by 
the thickness h of the beam. The obtained lch∕h ratios for 
A = 128 N, 320 N and 800 N are 0.40, 0.63 and 1.0, 
respectively. Figure 8b shows that for high lch∕h ratio, i.e. 
high A value, stronger response can be predicted.

The plasticity material model used for the bending test 
is characterized by a linear hardening behavior (Table 4). 
From the analysis of the curves, it can be inferred that the 
regularization, and subsequently the size effect, is affect-
ing the solution only in the plastic regime, whereas the 
initial elastic stiffness of the curves is the same regard-
less of the characteristic length scale used in the model. 
This is the expected behavior, given the fact that the 
present micromorphic theory regulates the localization 
of the plastic field. Thus there should be no difference 
between the curves in the elastic regime. In hardening 

plasticity, the plastic strain gradient contribution leads 
to an increased apparent hardening of the beam in the 
plastic regime. The peak in terms of adimentionalized 
bending moment in Fig.  8b is to be attributed to the 
dynamic nature of the test, and it affects all the curves 
regardless of the classical or micromorphic nature of the 
theory used.

Conclusion

In this manuscript, a micromorphic strain gradient plas-
ticity model has been formulated and implemented in a 
commercial explicit finite element code in order to per-
form simulations of manufacturing operations in time-
dependent environments. The reasons to account for the 
strain gradient while simulating manufacturing operations 
deal with regularization of strain localization phenomena 
in softening plasticity, on the one hand, and prediction 
of size effects in hardening plasticity. The originality of 
the approach lies in the use of the micromorphic model 
instead of strict strain gradient plasticity and in the intro-
duction of a viscosity contribution to the micromorphic 
plastic evolution. The advantage of these two ingredients 
is that they ease the numerical implementation in a com-
mercial finite element code by mimicking the transient 
heat equations. Earlier formulations are based on strict 
strain gradient plasticity without transient term, on the 
one hand, or on the introduction of micromorphic inertia 
instead of the proposed viscous term.

The main outcome of the present research lies in the 
proof that it is possible to implement an explicit micro-
morphic model in a relatively easy and straightforward 
manner. This was achieved by slightly modifying the pre-
existing routines of material integration and thermal field 
resolution in the VPC/PAMCRASH software developed 
by ESI. This proof of concept is meant to demonstrate 
that limited effort is required to implement the micromor-
phic theory in any other software that allows for minor 
modification in their procedures.

The implemented theory has been demonstrated to 
recover the analytical solution for a semi-infinite glide layer 
under quasi-static loading conditions. The supplementary 
shearing tests highlighted the need to use of the strain gra-
dient theory in case deformation localizes, and the typical 
extra hardening in bending has also been modeled.

Most importantly, it has been proven that the size effect 
can be predicted with this method and that manufactur-
ing operations can be simulated with such theory with 
a limited increase in computational cost and only one 
additional material parameter (the characteristic length). 
The same model can therefore be used to address regu-
larization issues in softening plasticity and “smaller is 
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harder” size effects in microforming. Further work should 
be dedicated to develop case studies involving real mate-
rial data and more complex 3D specimen geometries. In 
particular the consideration of adiabatic shear banding can 
be included in the approach in a way similar to the work 
done in [33] whereas full coupling with heat conduction 
phenomenon would require more intrusive programming 
in the considered commercial code.

Appendix

A Analytical reference solution for linear 
strain softening

The PDE Eq. 58 governing the micromorphic variable is a 
second-order, in-homogeneous, linear differential equation 
with constant coefficients. It is parabolic if Hp = 0 and elliptic 
if Hp > 0 . In case of linear softening Eq. 58 takes the form as 
in Eq. 59. The constants � and � are defined as follows:

where width of the deformation zone � is a characteristic 
length scale. Note that for large value of H� ( H𝜒 ≫ Hp ), the 
characteristic length scale � takes the form

The gradient parameter A controls the width of the shear 
band. With increasing A value, width of the shear band 
increases.
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