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ON ADF GOODNESS-OF-FIT TEST WITH PARAMETRIC
HYPOTHESES FOR ERGODIC DIFFUSION PROCESS
USING A MINIMUM DISTANCE ESTIMATOR

By Maroua BEN ABDEDDAIEM*
Laboratoire Manceau de Mathématiques, Université du Maine.

A problem of the construction of the goodness-of-fit test for a
continuous time ergodic diffusion process is considered. The basic
hypothesis is parametric and we use a minimum distance estimator
based on the local time estimator (empirical density) of the invariant
density. We construct an asymptotically distribution free test using
two linear transformations applied to the normalized deviation of the
empirical density.

1. Introduction. Goodness-of-fit (GoF) tests play an important role
in theoretical and applied statistics. They allow to verify the correspon-
dence between the proposed theoretical models and real data. The goal of
this work is the construction of the GoF test in the case of observations of
ergodic diffusion process under the parametric basic hypothesis. We propose
an asymptotically distribution free test, which is based on two linear trans-
formations of the normalized deviation of the empirical density. Note that
the test with the limit distribution not depending on the underlying model
is called asymptotically distribution free (ADF).

First of all we remind the problem of the construction of the Cramér-
von Mises test for the simple basic hypothesis in the case of the i.i.d.
classical model. We shall mention that this problem was widely studied
by many authors, e.g., [6], [7], [1] and [21]. We have n i.i.d. observations
X" = (Xy,...,X,) with distribution function F (z) and the null hypothesis
is simple H( against any fixed alternative #H:

Ho: Filz)=FHilz), Hi ENa) = Fale), z € R,

where Fp (-) is a known continuous distribution function. We have to con-
struct the Cramér-von Mises test ¥,, of asymptotic size a € (0,1), i.e.,

lim E[}‘Iln = (X.

n—0o0

*E-mail address: maroua_benabdeddaiem@hotmail.fr
Keywords and phrases: Ergodic diffusion process, goodness-of-fit test, asymptotically
distribution free test, parametric hypothesis
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Here V,, is the probability to reject the hypothesis Hy and Ej is the math-
ematical expectation under Ho. Many GoF tests are based on the following
convergence (under Hy) :

ﬁ(ﬁn(m)—Fo(I))ﬂB(Fo(fﬂ))a Fy(s) —%Z {X;<a}r

where B (-) is a Brownian bridge and F}, (z) is the empirical distribution
function. Therefore, we have the convergence for the Cramér-von Mises
statistic (with the change of variable s = Fp (x))

qbn—nfoo ~ Fy(2) dFy (2)
=>/OOB(FO(-’E))QdFo(ﬁ)=LIB(S)2dSE¢-

The limit process ¢ does not depend on the model (here Fj (-)). Hence the
Cramér-von Mises test W, = Iy .,y is ADF, of asymptotic size o and
consistent under alternative Hy, i.e.,

Pr{¢n>ca} =1, as - rehon
Indeed, the threshold ¢, which is solution of the equation
Podosiey) =ia, a € (0,1)

is the same for all possible Fy(-) (see, e.g., [21]).
Let us recall what happens in the case of the parametric null hypothesis

a5 F(:)e{F®,:),3€0=/(a,b)},

where 0 < a < b < oo and F(?,z) is known smooth function of ¥ (un-
known and one-dimensional) and z. We have to construct the GoF test ¥,
of asymptotic size a, i.e.,

lim Ey\, = o, for all ¥ € ©,

n—r00

where Ey is the mathematical expectation under H,.
Introduce the Cramér-von Mises type statistic

L o foo Un (@)* AF (D, 2),  Up (2) = Vi (By (2) — F(O,))

e 9]
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Here ¥, is the probability to reject the hypothesis Hy and Eq is the math-
ematical expectation under Ho. Many GoF tests are based on the following
convergence (under Hp) :

Vi (B (@) = Fo (@) = B(Ro (@), Fa(e) = =3 Tix,cap,
j=1

where B (-) is a Brownian bridge and F), (z) is the empirical distribution
function. Therefore, we have the convergence for the Cramér-von Mises
statistic (with the change of variable s = Fj (x))

b f 3 (ﬁn (@) - Fy (a:))2ng (z)

—00

00 1
=>/_ B (Fy (2))? dF (x)=/ B(s)?ds = ¢,

0

The limit process ¢ does not depend on the model (here Fy (-)). Hence the
Cramér-von Mises test W,, = Ly ..y is ADF, of asymptotic size o and
consistent under alternative Hi, i.e.,

Pr{on >ca} — 1, as n— +oo.
Indeed, the threshold ¢, which is solution of the equation
Pofdzicati=0; a € (0,1)

is the same for all possible Fp(-) (see, e.g., [21]).
Let us recall what happens in the case of the parametric null hypothesis

Ho F(-)e{F(¥,),?€B=/(qb}

where 0 < a < b < oo and F(9,z) is known smooth function of ¥ (un-
known and one-dimensional) and . We have to construct the GoF test ¥,
of asymptotic size «, i.e.,

lim Eﬂ\i'n —ev; for all ¥ € O,

n—00

where Ey is the mathematical expectation under Hj.
Introduce the Cramér-von Mises type statistic

. +o0 : x A A
(L) ¢n= / Un (£)2 dF(95,2), Un(z)=+n (Fn (z) — F(dn, 3:)) )

=00
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Based on the above linear transformation applied to U, (-) the “empirical
version” of U (-), we introduce the statistic

oo [ LW @ PG
and we have the convergence (under )
00 1
Oy = / W (F (9,2))* dF (9,z) = f W (t)? dt = 0.
—00 0

The limit statistic © does not depend on F(-,-) and the unknown parameter
). Therefore the test

On = Mo,k  Pol{0>ka} =0

is ADF and of asymptotique size a. Note that the linear transformation
L[] defined by (1.4) was proposed by Khmaladze [14] and is based on two
strong results. One of Shepp [28] (equivalence of Gaussian measures) and the
second of Hitsuda [12] (representation of Gaussian processes equivalent to
Wiener process). Another (direct) proof of this result was obtained recently
by Kleptsyna & Kutoyants [15] using the solution of Fredholm equation of
the second kind with degenerated kernel.

We have to emphasize that in these papers and many other works, e.g.,
Maglapheridze et al. [22], the estimator used was always the MLE and this
is important for the construction of the linear transformation L [-] (1.4) and
ADF tests and in our work it is the minimum distance estimator (MDE).

There are at least two reasons to use this approach. The first one : the cal-
culation of the MLE involves the calculation of the large number of stochastic
integrals. Its calculation in real problems where the driving process is not
exactly Wiener process can be an unstable problem. This problem does not
exists in the calculation of the MDE. Therefore the algorithms are more
robust. The second reason is of theoretical order. In the large majority of
the known GoF tests to obtain the ADF test we are obliged to use the MLE
[14] and the theoretical study of the use of non-MLE is rather poor.

In this case, the limit expression for the underlying statistics is as follows:

1 kA 1
(1.5) U(t):B(t)—/O g}(q?,s)dB(s)fO Hpis) s fogw,s)2ds=1,

but with two different functions § (-, -) and A (-, -). Note that this representa-
tion can be obtained using the same arguments as it was done in obtention
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in the equation (1.3), i.e., as in the case of the MLE. We don’t give the
details here because the representation (1.5) will not be used in the paper.
Now, if we use the relation B(t) = W(t) — W(1)t, where W (t),0 <t <1is
a Wiener process, then we obtain

3 rl t
Ut)=W()— ;/ﬂ g1 (9, s) dW(s)fU hy (9,s) ds,

where hy (9,8) = g1 (9,s) = 1, ha (9,8) = h3 (9,8) = h(d,s), g2 (¥,5) =
1

g(v,s) and g3 (9,8) = — [ g (0, s)ds. This will increase the dimension of
0
the functions

g {"9: S) i (gl (19: 5) » 92 ('193 S) » 93 (193 3))

and
h(9,s) = (hy (9,5),he (9,5),hs (9, 5)).

Even if the estimated parameter is one-dimensional, the form of the linear
transformation (1.4) of the process (1.5) will become much more compli-
cated. This is probably the reason why this problem was not considered till
NOW.

Recently, the problem of the construction of the linear transformation in
the case of other estimators (i.e., if we have not MLE) with limit Gaussian
process

1 ot
(1.6) U(t):W(t)—‘/; g('&‘,s)dW(s)/O 500 is

was studied in [3]. Note that this representation can be obtained for a large
class of estimators in the case of the stochastic processes models. The linear
transformation is based on the solution of Fredholm equation of the second
kind with degenerated kernel. The several steps of the proof can be found
in [3]. We have to note that this linear transformation is rather cumbersome
and we understand that this result is in some sense “negative” and says
that if we have no MLE it is better to seek another method to obtain the
ADF GoF test. In our problem (see (1.6)), the main difference with the
i.i.d. case (see (1.5)) is due to the Wiener process. Therefore, it is possible
to construct a linear transformation which transforms the Gaussian process
(1.6) into Wiener process. Indeed, this property allows us to construct ADF
GoF tests for several stochastic processes models (see [3] for the continuous
time diffusion process with “small noise” and [2] for the continuous time
inhomogeneous Poisson process).
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In the present work, we consider a similar problem of the construction of
the GoF test for the continuous time ergodic diffusion process with para-
metric basic hypothesis. We propose an ADF GoF test, which is based on
two linear transformations applied to the normalized deviation of the em-
pirical density. The first one was introduced in [17] and the second one was
constructed in [3].

First we remind what happens in the case of the simple basic hypothesis
for this model of observations (see [17] for more details):

Ho: the observed diffusion process satisfies the stochastic differential

dXt — S()(Xt) dt (o) (Xg,) th, X(), 0 S t S T,

where Wy is a Wiener process, Sy(-) is some known function and Xg s the
wnetial value of X;.

In this statement, the diffusion process is supposed to be ergodic with
the density of invariant law fg, (z) (can be found, e.g., in [16]). We denote
by Fg, (x) the corresponding distribution function. Introduce the local time
estimator (empirical density) of the invariant density

(1.7 o (o) = 25,

where Ap (z) is the local time of the observed diffusion process

Dt e PO
s 9

1 (7
Ar (x) 2f sgn (X —z) dX,.
0

The above definition can be found, e.g., in [16] Chapter 1, Section 1.1.3.
The Cramér-von Mises type statistic based on the empirical density

b= [ a@?dfs, @), G = VT (fr@) - is @)
admits the following limit (under the hypothesis Hg)
5 (S0) = / ¢ (S0, 2)2dF, (z).

Here
= FS’{) (y) s ]I{y>w} d

() =205 [ il

where W (-) is double-sided Wiener process and the limit process 0 (Sp)
depends strongly on the model (here Sy(-) and o (-)) (the proof can be
found in [16]).

W (y),
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To avoid this problem and obtain the ADF test, a linear transformation
Ly [¢r] () of the random function {7(-) was proposed in [17]

(15) nial@ = [ o0) Jsw d| 2]
Therefore,

s 1
(1.9) b= /_ B @) 45, (o) = /0 T

where ws,0 < 5 < 1 is a Wiener process. Then, after transformation, the
test statistic 7 becomes as follows:

sty oo P Ml oy oot r ;
5T il /;m [ﬁ/(; a (X.s) {dXS i (Xé) dS] dFSD (EL)

with the same limit (1.9). Note that this statistic was introduced in the
similar problem in [23] to construct the Kolmogorov-Smirnov type ADF
test. Therefore, the test

1
b7 = ]I{g%xo}, P (/0 w? ds > ca) =g

is ADF under the simple basic hypothesis Hy (see [17] for more details).
The same problem was studied in [15] in the case of the parametric null
hypothesis Hg that

dX¢=S(T9,Xt) dt+U(Xt) dW;, Xo, =S =l 19€®=(a,b).

The trend coefficient S (¢, ) is some known (smooth) function which de-
pends on the unknown parameter ¢. Let the invariant density f (¥,z) be
given by

1.10)  f(9,z)= m exp {zf; 5;(2;)1;) dy} , zeR,

where G (1) is the normalizing constant defined by
i %8 (0

(1.11) G ] = f o (z)? exp{Q/ ( ’g) dy} da.
—~00 0o o(y)

We denote by F (¢, z) the corresponding distribution function.




Introduce the statistic

o0

A= [ jntir,af dPGr.), prtina) = VT (fr (@ - £0r.2)).
—00

where @T is the MLE of the parameter . Unfortunately, the immediate use

of the test ¢r = M4, 4 leads to the same problem as in the i.i.d. case.

Indeed, the limit distribution of this statistic (as 7' — oco) under Hy depends

on the model, i.e, S (-,-),0 (-) and the unknown parameter 9.

In order to obtain the ADF test, two linear transformations which trans-
form the limit statistic into Wiener process were introduced. It was shown
that the first linear transformation (1.8) of the statistic fr(-,-) gives us
statistic which is asymptotically equivalent to the statistic

2 L i 1 T ]I{X3<:c} A :
Er(0p 2) = ﬁjo i [dXS LX) d.s] :
Both statistics converge to the same limit Gaussian process (as 7' — o)
1 g1k
(112) U() =W () —/ R (9, 5) dW(s)f R ade | O=i=t
0 0

where

e e 8 (9,671 (9:9))

g F=t i 8)) &

1
/ h(9,s)%ds =1.
0

Here F~! (19, 5) is the inverse function of F (1,y), i.e., y is the solution of the
equation s = F (9, y), I (9) is the Fisher information and W(s),0 < s <1 is
a Wiener process. Note that the process (1.12) is in some sense a “universal
limit” which appears in the problems of goodness-of-fit testing for stochastic
processes. For example, the same limit is obtained in the cases of diffusion
process with “small noise” and inhomogeneous Poisson process (see, e.g.,
[18]). The main difference with the i.i.d. case is due to the Wiener process
here (see (1.12)), while in the i.i.d. case the Brownian bridge B () ,0 < ¢ <1
appears (see (1.3)).

The limit Gaussian process U (-) is not distribution free. Hence, the ADF
test was based on a second linear transformation L [-] given by (1.4) such
that L [U] (t) = wy, where wy, 0 < ¢ < 1is a Wiener process. The convergence

- f - [L [g“T(@T,-)] (m)]zdp(@T,z) — /O lwf dt

=)
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was proved. Then, the ADF test was defined by ¢r = Tisr>dqy (see [15] for
more details).

There are several GoF tests for the continuous time diffusion and inho-
mogeneous Poisson processes proposed, e.g, in the works [27], [19], [18] and
[4]. See also [5] where some GoF tests for diffusion and inhomogeneous Pois-
son processes with simple basic hypothesis were studied. It was shown that
these tests are ADF. The Kolmogorov-Smirnov test for ergodic diffusion
process was studied, e.g., in [9] and [10]. In [16], Section 5.4, the author
discusses some possibilities of the construction of the Kolmogorov-Smirnov
and the Cramér-von Mises tests when the ergodic diffusion process is ob-
served on continuous time. The same problem was considered in [11] but for
the hypothesis with sign-type trend coefficient. In this case, two Cramér-von
Mises GoF tests based on the empirical distribution function and the em-
pirical density were studied. More about GoF tests for the ergodic diffusion
process can be found, e.g., in Kleptsyna & Kutoyants [15] for the parametric
hypotheses and Negri & Nishiyama [23] for the simple hypotheses.

We shall mention that the general case of ergodic diffusion process with
unknown shift (one dimensional) parameter was introduced in [26]. The
authors showed that the limit distribution of the Cramér-von Mises type
statistic does not depend on the unknown parameter. Therefore, the test
based on this statistic is asymptotically parameter free (APF). Moreover,
the APF Kolmogorov-Smirnov type tests were studied in [29]. Similar re-
sults for the APF tests of the Cramér-von Mises type statistic have been
obtained by Kutoyants [17]. The author studied the case of the composite
basic hypothesis with a parametric class of diffusion processes including the
Ornstein-Uhlenbeck and simple switching processes.

More problems of the construction of the GoI" tests for the discrete time
observations were widely studied by many authors, e.g., Negri & Nishiyama
[25] in the case of the small diffusion process. In [24], the proposed ADF
GoF tests were based on continuous time observations, on discrete time
observations and on the so-called tick time sampled data for ergodic diffusion
processes.

We need some notations else to introduce the linear transformation pro-
posed in [3]. Denote

8

3 8
F ﬁfo 9(9,9)% dg, I /0 h(9,q) 9(9,q) dq, Iy :f h(9,q) dg,

(1.13) L

i /0 SR / 0.0 d
0

where the functions h(1,q) and g(«J,q) will be defined later in Section 4.
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Below we omit ¥ and s for simplicity and put g = g(¥, s) and h = h(¥, s).
Introduce the functions

1.14
( <p1)(s) =g— h—3hLg+ Ishg+ Izg’ +2hh— 2L 13g” + 115 + Iulsg
— LIg + 3129 + I Ish? — 2L, Ishg — 2L Ih + I2Ishg + I:Ish? — I4h
+ 201 Iyh — L I4g + LIpIag + LIgIshg — 2Lk + Lk + 21 13khg + Lng
— LLIsq® — Ish? + 21 Ishg — 20 T Iahg — 21 Lah? — T2k + Iah?
— 2I3hg — Inlshg — 1 Ish? + I31ag® + L1 Ish? — I3y,

1.15
( (,og(i) = 1+ Ish — 3IIsh + L I3h + Izg — 31139 + I4Isg — Ish — I, I3 Isg
+ 312139 — 2L 04159 + 213 I3h — I3 Ish + 1 I213h — I3 Isg + 3121sh
+ IIsh — LIIsh + 2L IsIyh + 3149 — Iy I3lag + 12 + 21314 + I3
+ LI I Ish — P14k — [I31hg + L I I314g — I213h — 211214
—2LI2 + BI} 4+ 21y - 2L Iy — AL Iy + 4L LIy — Al + I3lsg
+ 12I4I5g — 211 I3 Ish — IsIgh + 612 — AI3 — I I4Ish
and
(1.16)
Vo(s) = h + Ishg — 215149 + Ish? — 3Lk — 2I2I3hg — I [, I3h% + Ing
+ BRIig+ I2Ish% — I3h — Islyihg + I2g + Ijh — IaIyh— 21 Ish?
— L Ish + L o Ish + IR + I314g” + I I3h* — I3h? + L1 I314hg
— Ilz1yg? — 21:14I5hg + 21415hg + I313hg — [1TI3g + I3159% + 312h.

Let the linear transformation be given by

(1.17) Lo[U] f f 210G Q(P;E;)”?( 21909} 1 R0

Here wy, 0 <t <1 is a Wiener process, the Gaussian process U (-) is given
by (1.6) and we suppose that a(s) is a strictly positive function on [0, 1).

In our work the basic model is a continuous time ergodic diffusion process
XT = [X;,0 <t < T} solution of the stochastic differential equation

dX, = S(X)di Fo (X WG, Xy TO0<t<T,
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where Wy, 0 <t < T is a Wiener process. The trend coefficient S (-) is an
unknown function, the diffusion coefficient o (z)? > 0 is known and Xj is
the initial value of X;. We consider the parametric null hypothesis

Ho, = S() € {5(19,),’196 @:(G',b)};
i.e, the process X7 is solution of the equation
dXt:S('ﬁ?Xt) dt+U(Xt) th7 XO: OStSTﬂ

where S (9, z) is known smooth function. We suppose that this process
has ergodic properties with invariant density (1.10). In Section 3, we intro-
duce for the unknown parameter ¥ the MDE based on the invariant density
f (9, ) and the local time estimator (1.7) (see [16])

A= au"ginf/R [fT () — f (19,2:)]2 dx

JeO

In Section 4, we consider the Cramér-von Mises type statistic

5T:/Do UT( ) dF('ﬁTs )7 n%(ﬁ§1,$):\/f(fT(m)_f( ;”,I))

)

and under Hy, we obtain the convergence

7?}( ?‘[‘:w)=>n(193$)1

where
oo F (9 I
(ﬁxpzfm)] i y;’”\)/ﬂ—{y} W)
(1.18)
—2J(® ij (]I?;y;;}f(ﬂ o) f(9,z) dz dW (y) f(9, ).

Our goal is to transform the limit process (1.18) into Wiener process in
order to construct the ADF test. We do it in two steps. We apply the first
linear transformation (see (1.8)) to the process 7 (-,-)

nbl@=[ o) 101) d[%}

which admits the representation U () (1.6) and the functions g (-,-) and
h (-, -) will be defined in Section 4 below.



In order to obtain the Wiener process, we introduce the second linear
transformation Ly [-] (1.17) of the Gaussian process U (-) such that

Ly [U] () = wy, O=t<1

First, we show the asymptotic equivalence between L; [7] (-) and the process

R R 1 x
119) o) = —= [ LS X, - s(enX,) &,

i.e., both statistics converge to the same process (1.6). We shall mention
that the statistic (1.19) was introduced in [15] where the MLE was used for
the unknown parameter.

Now, we have to realize the similar transformation Lo [-] (1.17) with the
process (1.19) which is much easier to calculate and then we show in Section
5 the convergence in distribution

Ly [é7] () = L2 [U] (t) =w;, 0<t<1.

Hence, we have

0 1
& = / (L2 [é2] (@))% dF (8%, z) —> ]0 il

=00

Therefore, we present in Theorem 2 below the test ¢, = 1 {3350} which is

ADF because the limit distribution of 4}, does not depend on S(-,-), o (-)
and .

2. Preliminaries. Suppose that we have continuous time observations
XT = {X;,0 < t < T} of a diffusion process, which is solution of the
stochastic differential equation

dX,'=S(%;) di+ o (Xe) dWh .| Xo, JOSEST,

where Wy, 0 <t < T is a Wiener process. The trend coefficient S () is an
unknown function, the diffusion coefficient o (;1:)2 > 0 is known and X is
the initial value of X;.

We consider the problem of testing the parametric (composite) hypothesis

Ho :  S()e{8(9,-),9 €6 =(ab)},
where 0 < a < b < 00, i.e., the process X7 is solution of the equation

(2.1) dX, = S0, X)) dt o (X)) dWy, = Xp, O<t=T
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Here S (9, x) is known smooth function depending on the unknown param-
eter U.

We assume that the trend coefficient S (9,z),9 € © and the diffusion
coefficient o () satisty the condition £S (existence of the solution) :

ES. The function S (9,x) is locally bounded, the function cr(m)2 > 0 is
continuous and for some C > 0, the condition

z8 (9,z) + o (z)? < C (14 2?)

holds.

By this condition, the stochastic differential equation (2.1) has a unique
weak solution for all ¥ € © (see for instance [8]).

Denote by P the class of functions with polynomial majorants (p > 0)

P={h(): M) =CQ+[z")}.

REMARK 1. The functions S (9,-) and o (-)* are such that for all ¥ € ©

z y
V(ﬁ,:}:):/ exp{?f S(ﬂ,z) dz} dy — +oo, as = — too
0 ot Seiz)

and
G (1) < oo,

where G (1) is the normalizing constant given by (1.11).

Let us introduce the following condition (ergodicity):
Ag. The functions S (9,-), o (-)il € P and for all ¥

S (9, )

> < 0.

lim sup sgn (z)
|z[—00 9ed o (z)

If this condition is fulfilled then the stochastic process X7 is recurrent posi-
tive, i.e., it has ergodic properties. Then there exists an invariant distribution
with the density function (1.10) (see, e.g., [16] for more details).

Introduce the regularity conditions R. (can be found in Kutoyants [16])
Ri. The invariant density function f (9,x) is differentiable w.r.t. ¥ for all
x € R and the derivative f (9,x) € P is uniformly continuous in the follow-
ing sense: for any Yy € © andv >0

lim sup sup
v=0 950 |[9—th|<v

£, = £ @0,)|| = 0.



46

Ro. The identifiability condition is

LI @.) = £ (o)l > 0.

. 2
Rs3. The function J (¥) = Hf (9, )H is positive uniformly in 9. Here || - ||

is the L2 -norm:
(2.2) | .0 = fR 7 (9, 2)2 de.

In the presentation below we suppose that these conditions are always
tulfilled.

3. Minimum distance estimator. The MDE is based on the invari-
ant density (1.10) and the empirical density (1.7). It is defined as a solution
of the problem

bl

|70 ()= £ @3, = int || £ ) = £ (9,9

where 9 € © = (a,b) is the one-dimensional (unknown) parameter. The
properties and the asymptotic (7" — oo) behavior of this estimator for this
model were studied under regularity conditions R and Ag in [16].

The MDE 97 can be written as well as follows:

(8.1) Op = arg inf/R (fT (x)—f (ﬁ,w))gdas

€0

and it satisfies the minimum distance equation (MDEq) (can be found in

[16])
| (fr@ 1 03.2)) f 05,2) az =0

Let us put u}, = \/?(191} —¥). Then, by Taylor’s formula, f (W) =

f(W,z)+ (9% —9) f(¥,z), where | — 9| < |97 — 9|, the MDEq becomes as

follows:
fR (ﬁ (fT (®) ~F (19,:{:)) — up f(@,iﬂ)) f (%, z) dz = 0.

Now, using the consistency of the MDE, we can write

wp = (/;f(ﬁ,m)Qdm)_l/H;ﬁ(fT (z) _f(ﬁ,:r:)) f(®,x) dz+ o(1).
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Remind that we have the convergence

(3.2) VT (fT (x)—f (19,.’1?)) =91V, x) ]OO F(0,y) — Niy>q) W (y),

0o (Y)W f (DY)

where W (-) is double-sided Wiener process. For the proof see [16].
Therefore, by Fubini’s theorem, ¥}, admits the following representation
(3.3)

V(S — 9) —> 2J(8 f fm = ]I{y>)’”} (8. )4 (0, )00 W)

Here J (99) is given by (2.2).

Moreover, under regularity conditions R and Ay, the MDE 97, is consis-
tent and asymptotically normal (for details see Chapter 2, Section 2.2 in
[16])

LoAVT (97 — 9)} = L{E} = N (0,5 (9)),

where
oA =TT / f f(@,z) f (9,2) Dy (z,y) f (9,y) f (¥, y) dz dy.
B JR

Here

. [ (9,8) ~ Ligoqp] [F (9,6) ~ Ty
St ( o (€7 (0.6 |

4. Cramér-von Mises type statistic. We are going to study the ADF
GoF test based on the Cramér-von Mises type statistic

b= [ i 03 4F 93, 0),
where
(4.1) iy (95,2) = VT (fr () -  (9%,2))

and % is the MDE defined by (3.1). We will show that we have the conver-
gence (the proof will be given later in Theorem 1)

o

bp = 6= [ n(9,z)?dF (9, z),

o —00

where 7 (-, ) is given by (1.18).
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Remark that the limit statistic § depends strongly on the model, i.e.,
f (+,-) and the unknown parameter . Therefore the test based on this statis-
tic is not ADF. To avoid this difficulty, we have to transform the limit process
(1.18) into Wiener process. Indeed, we propose a first transformation (1.8)
for the process 7 (-,-)

42 L=/ o ey d [%] —U(F(5,3)).

Remind that the above transformation was introduced in the problem of the
simple basic hypothesis in [17]. Further, let us define the functions

1 $(9, F~1 (9, s))
o {F7L{18,8))

na|

(4.3) h(9,s)=2J(9)"C )

and

Reeanetei Bl o e
@y gw9=cot [ asz)b(ﬁgs)fwf (0,)) dt,

where a (9,8) = o (F1 (9,9)), b(9,5) = f (9, F~1 (9,9)),

e il >
(4.5) 0(«9)=.[0 Uﬂ ;[(;M])Ilf)—”&}?]ﬂf(ﬂ,zf—l (ﬂ,t))dt} dv

f S 0, Sj))) ds, /Dlg'(ﬁ’,s)2 da =11

Here F~'(¥9,5) is the inverse function of F(¥,y), i.e., y is solution of the
equation s = F (9, y).

Then, we show in Lemma 1 that the transformation (4.2) has the following
representation

and

1 t
(d6).. V() =w(s) _fo g(9,s) dw (s)/o h(9,s) ds, 0= f= 1

where w (s),0 < s < 1 is some Wiener process.

Moreover, we show that the transformation L; [] (4.2) of o} (-,-) (4.1)
gives us a statistic which is asymptotically equivalent to the process &7 (-, )
(1.19). This means that both statistics have the same limit Gaussian process
(4.6). Therefore, our ADF test will be based on the statistic &7 (-, -) instead
of Ly [ny] () for simplicity of calculus.



49

The last step in the construction of the ADF GoF test is to apply the
second linear transformation Ly [-] (1.17) to the limit Gaussian process U (-)
(4.6) and to obtain the Wiener process

Ly [U] (t) = wy, it =
Below we realize this program. We have the following result.
THEOREM 1. Let the conditions R, ES and Ay be fulfilled, then
(4.7) ny (97,2) = n(9,2), & (I1,2) = U (F (9,2))

and
&

U(F(a?,;r)):/

=00

o @) f(5) d[%] |

Due to Theorem 1, it is easily seen that

A / " L ] (@) dF (9%, 2)

—0C0

e b : ar (97,9)
=" (f_w"(y) £ 93.) d[zf(%y)

and the statistic

2
) dF (0%, z)

o0
A% = / &r (5, )2 dF (9%, z)

have the same limit process

A:/_: (f;g(y) £(9,9) d[%;%%%])zd}?(ﬁ,m)zfolU(tfdt.

Here the Gaussian process U (-) is defined by (4.6). Then, it is obvious to
see that the test

fe=lncocy Flaedse oDl

is not ADF. So we introduce the linear transformation Lg[-] given by (1.17)
such that

(4.8) /01 [Lo[U] (8))* dt = folwf dt, Bl

Based on Lg[-], we construct the ADF GoF test in next Section using the
“empirical version” of the test statistic with the same limit (4.8).
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5. ADF GoF Test. In this Section, our purpose is to construct the
ADF GoF test. Recall that the starting statistic

w95, 2) = VT (fr (@) - f (95.2))

converges to the random function 7 (-, -) defined by (1.18). In order to obtain
the distribution free limit statistic, we transform 7 (-,-) into Wiener process
in two steps. Indeed, the first linear transformation Ly ] (-) given by (4.2)
leads to the Gaussian process U () defined by (4.6) which is the same limit
of the process

1 - llI{X <z}
19*,:r:=—/ —— 2 [dX; — S (¥, X;) ds].
fT( 78 ) ﬁ . O'(XS) [ ( T ) ]
Then, we apply the second linear transformation (1.17) such that
Lo [U] () = wy, D= i<

Now, we have to realize the similar transformation with the process &p (-, ),
which is the “empirical version” of the Gaussian process U (-). To finish, we
have to show the convergence in distribution to the Wiener process

L [ér] () = wy, D= E <"1,

Therefore, the test 5. = 11 {o3>ca) with

00 1
%= [ [alen @) aF ,3) = [ f a
will be ADF because the limit distribution of 4}, does not depend on S (-, -),
o (-) and 9.

Let us realize this program. Denote the functions

S(d,2)
o (2)

~

(5.1) h(9,2) =2 J @) C )3

and

o 1 Fl?z)— Kguy
52 02)=Cw) [T e

Here .J () is defined by (2.2) and

f@,y) f(@,y) dy.

% prgkin F(9,2) — Tspy 100 & 10 b
63 Cw= [ |[ ZoT =0 0w & 00
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Introduce

I
ﬁ
=
—_
<
&
o
=
™
o
‘-_h
=
™
~—
=B
3

! Y L R,
L :f §(9,2)2F(9,2) dz, I

f3=fy h(9,2) f(9,2) dz, 4=fy h(9,2)? f(9,2) dz

e —00
and put
g y
il / Q) 0, 2) .
—00
Further, we define the functions @1 (-,-), @2 (-, -) and 95 (-, -) given by (1.14),
(1.15) and (1.16), respectively, where we replace g and h by g = g (¥, y) and

h = h (1,y), respectively. Then, we introduce the statistic

(5.4)
Wp,z) = U(F (9,2))
e [@uy) B, 2) + Da(9,9) 90, 2)]

g Lok /_oo @2(d, y)

To construct the test, we have to replace U(F (¥, x)) by & (97, x) and the
functions A (-,-), § (-,-), ¢1 (-+-), @2 (-, -) and ey (-, -) by their “empirical ver-
sions” based only on the observations. In fact, we insert the MDE 47 instead
of the unknown parameter ¥ in the expressions of the above functions.

In the construction of the test we have to introduce two conditions else.
R4. We suppose that o (s) defined by (1.15) is strictly positive function on
[l 15
Rs. The function S (9, x) has two continuous derivatives w.r.t. ¥ such that

dU(F(9,2)) f(9,y) dy.

S(0,z), S(0,z)eP

and the functions S (9, z) and o (x) have continuous derwatives w.r.t. x such
that y
S"(9.2), ez’

Moreover, due to the consistency of the MDE, we have (as T' — o0)
@2 (07,y) — P2 (9,y) — 0.

Hence, we can introduce the function

o * —1 N *
st 9% = ©2 (ﬁr 1y) 3 if ©2 (ﬁTay) > 0}
%2 (1,y) { 0, otherwise,
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which asymptotically coincides with @ (1, y)_1 and therefore the limit dis-
tribution does not changed.
We construct the ADF GoF test based on the following statistic

Wi(z) = ér (0%, 2) / f bF (9.9) [01(959) h (95 2)

(5.5)
+ a0, 1) § (9%, 2) |dér (95, 2) AF (9, 9)

where &7 (-, ) is defined by (1.19). Then, we have to show the convergence
in distribution
Wi(z) = L [U] (t) = w;.

The main technical problem in the realization of this program is the def-
inition of the following stochastic integrals:

e
(5.6) N (85,9) = f b (9%, 2) dér (9%, 2)
and

y
(5.7) M (93,y) = f G105 2) Qe (0 2.

Remark that we cannot compute these integrals directly because the inte-
grands contain the MDE 1. which depends on the whole trajectory X1 =
{X:,0 <t <T}. Therefore, the corresponding stochastic integrals (5.6) and
(5.7) are not well defined.

To avoid this problem, we express the stochastic integrals in terms of
ordinary integrals using Itd’s formula. We shall mention that this approach
was introduced in a similar problem in [15] and [19].

Let us suppose that A (-,-) and § (-, -) are piece-wise continuous functions
and consider the calculation of the integrals

b b
/ h(9,z) dér (4, 2), / g (¥, 2) dér (9, 2) .
For any partition a = 21 < 29 < --- < z;, = b, we can write
m—1 i
> b9, 2) [Er (9, k1) — ér (8, 24)]
K=l

Tml

19 Zk
Z ]I{ZkSXs<Zk+1} dX
0 k=1
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Tm—1 ¢
h(’ﬂ Zk
0 Z I[{ZkSXs<zk+1} S('l?,XS) ds.
k=1

Therefore as max |zx41 — 2x| — 0, we obtain the limit

Z (9, Zk) [€7 (9, 2r41) — &7 (9, 2)]

k:
1 h (9, X,)
= ﬁfo el Mo x,<by dXs

h(9,X
\/—‘/ é(X ) ]I{GSX,s(b} 8(191X9) ds

and for a = —oco and b = y (our case), we have the equality
Y 1 Ene.x)

h(9,z) dér (9, :—/—’751[ dX,

[ b drwn= o [ 205 100 ax,

1 (T hw,X5) .
i T/?fo e e B0 ) g
By using the same argument, we obtain

4 (&, X,
[ 302 der@=0 [ 20X g ax,

L ] i
= ﬁL m— ]I{Xs<y} S ('ﬂ,Xs) ds.

Now, we introduce the function

F(9,y,x) :/ Rl 2ide,
Xo
where
1 S (¥, 2)
o (2)°

Here C (9) and J (9) are given by (5.3) and (2.2), respectively. By the Ito
formula,

R(9,y,2)=2J (9)"' C(9)2 T

1l
dF (9,y, Xs) = F. (9,9, Xs) dX, — = B 8 X e (Xe) P ds;

we can write

T X 1 T
/R(ﬁ,y,Xs) dXs/ B2 dz-f B g 2o () s,
0 J x5 2 Jo
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Indeed, we obtain

Y X
f_whw 2) der (9, 2) = \/_ BECYERE
1 I TR ;
e ﬁ ’ |:R (ﬂ,y; Xs) S (19,X3) =i 5 R, ('19,3,11 XS) o (XS) } du.

Hence, we have no more stochastic integral and we can substitute the MDE
7. Now, the process (5.6) is well defined and has the following expression

Xt

\/_ %
* 1 *
'EE \/—f [ T9T7y1-XS) S(TST!XS) + 5 R’:t (ﬁT!ya -XS) a (Xs)z] dS

N(ﬂTa ) R(ﬂ;’ay:z) dz

Using once more the Ito formula, the representation (5.8) becomes as follows:

y X7
f_ §(8)2) dbr (9,2) = f Q@2 as

1

T
S v 2 o
= [Qw,y,xs)bw,m A (Xs)] d

Here

GOV P 02 el .
Q@) = SO [ ZEIHE 5,4) f (914 dy Ty

Therefore, the process (5.7) is well defined and has the following represen-
tation

M (9%,9) = — XTQ(@* ) d
Iay Tayaz Z
510 ﬁ

e \/—/ [ ﬁT?ya ) S(ﬁ;’uxs)"_% Q’z (ﬁ;“:vas) U(Xs)z ds.

Now, using the representations (5.9) and (5.10), the statistic (5.5) becomes
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as follows:

(5.11)

ko * 5 ~ * -~ * 1 XT *
Wit (x) = &r (191“,3?)‘*‘] 993_ (97, y) ¢1(97, ) [—fo R (¥7,y,2) dz
(o 0} 0

i o * * 1 * *
— \/Tfo [R(ﬁT,y,Xs)S(ﬁT,XS)+iR;(ﬁT,y,XS)J(XS)Z] ds|dF (97, v)

Tog * 7 * 1 il *
+/ @3 (07, y) 2 (97, ) [ﬁ 3 Q (V%,y,2) dz
0

—00

i

H * % ]. i :
et TT— 3 1'Q('19T7 ans)S('ﬁT,XS) - §Q;(§T1y7Xs)g(Xs)2:| dS dF(T?T,y)

Let us put

o0
5= [ Wit@? dF (9.0).
—00
The main result of this paper is given in the following Theorem.

THEOREM 2. Suppose that the conditions £ES, Ag, R, R4 and Rs are
fulfilled, then the test

1
9
I = s e} P(/O w; dt>ca) =
is ADF and of asymptotic size « € (0,1).
6. Appendix.

6.1. Proof of Theorem 1. By Taylor’s formula, the statistic ny (-,-) de-
fined by (4.1) has the following representation

i (07,2) = VT (fr (@) = £ (9,2)) = VT (9 = 9) f(9,2) + 0 (1).
Remind that the normalized difference v/T'( fr (z)— f (¥, x)) has the asymp-

totic behavior (3.2) and the MDE 997, admits the representation (3.3). There-
fore, the following convergence (1" — o)

oo F (9, ) — Liyns
O a) = n(0,2) =21 00) [ D2 iy

e G(y) f('ﬁay)



56

= 191; {?’Dm} T Ttde (0,
27 (9 [] - f9,2) f (0,2) dz dW (y) F(9,z)

holds (under hypothesis #g). Here f (9, z) is the derivative of the invariant
density (1.10) w.r.t. ¢

to=rioo (550 [ o)

In the following Lemma, we show that the transformation (4.2) admits the
representation (4.6).

LEMMA 1. Let the conditions R,ES and Ay be fulfilled, then we have
the equality

1 t
U (t)=wi(t) —f g (d,s) dw(s)f h(9,s) ds,
0 0
where w (t) ,0 <t < 1 is a Wiener process.

Proof. Following (1.18) and (4.2), we have

e g n (9, y)
UiF (0,2 = / 2f (19,y)]

" o) 1w d|
_fm o(y) F¥,y) d fm F;f’)");(];{z;y} AW (z):|

5 /. / “”’ ]I{W}f( DF@, )W) [ =

Here W () is double-sided Wiener process. Further,

/oo F(9,2)— ]I{z>y} qW (z)]
—oo 0(2)V/f (9,2)

=]_z o (y) f('ﬁ,y)d[f_y %\(/&Z——T;?dW(Z)J

+f_x b / Fﬁz)—l W(z)]

=]_1\/de@ -

€T

dF(ﬂ v).

/_w oy} F(dg) 0
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Therefore, we obtain

U (F(9,5)) = f Y I V@)

o f fR = ]I{W)"”} F(9, 2)dF (9, 2)dW (y) /

Let us change the variables t = F(9,z), s = F(¢,y), a(¥,s) = o (F'(9,s)),
b(9,s) = f (9, F~1(d,s)) and

dF(t? y).

F=1(9,s)
w(s>=f_ VIO dw (), 0<s<l

is a Wiener process. Hence, we can write (0 <t < 1)
U (t)
[s — Tisny] £ /i S, F~1(9,5))
s f f s (9, P (0, )dedus) i s

o o(F~(d9))
=w(t) — [9(195 ) dw (s fhﬁ‘sd

and the Lemma is proved.

Below, we show that the linear transformation (4.2) of 7} (-,-) gives us
a statistic which is asymptotically equivalent to (1.19). Indeed, by Taylor’s
formula, we have (under H)

ATy =
Er (9%, 2) = w\/lt] {X3<‘)} [dX, — S (9, X,) ds]

Bl
\/_ / {X”q} S (9%, X5) — S (9, X)) ds

’ 1T Rl 8(9, X5)
— VT (9% —9) ng > (%) ds + o(1).

Using central limit theorem for stochastic integrals, the first stochastic in-
tegral is asymptotically normal (as T' — 00)

1 T
\*/1_%]0 Iix,<zy dWs = f \/m dW (y) ~ N (0, F (9, x))
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and by the law of large numbers, we have for the second ordinary integral
(a8 T' — 00)

1 TI[{X5<$}S(?9:#XS) E S(ﬁvy)
e

Therefore, using the above convergence results and (3.3), one can write

r (5%, ) = / i \/f (0,) AW (y)

f/R 6 ]I{‘”‘)“”}f(ﬁ 2)dF (9, z)dW y)/ S0%9) 4 g, )

=U( F('t?x

Hence, we have the asymptotic equivalence between the linear transforma-
tion (4.2) of 0} (-, ) and the statistic &7 (-, -), which proves the Theorem.

6.2. Proof of Theorem 2. It is enough to verify the convergence
5T—/ Wi*(z)? dF (9%, z) :>f wam dF (9,z) = 6"

under hypothesis Ho. Here wp(y ;) and Wr*(z) are given by (5.4) and (5.11),
respectively.

Note that due to the consistency of the MDE 7., we have the convergence
(as T — 00)

h(9%,2) — h(9, 2), G (9%, 2) — §(9,2),
J(9%) — J(9), (9, 2) — ta(9, 2)
and
P1 (19;}1 Z) % i @1("9: z), 952("9’}?2) TR ¢ @2("932)'

Remind that we proved the convergence (in Theorem 1)
Then, we have to show that (under Hp)

(6.3) N (97,y) = N (9,9),
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where N (97, y) is defined by (5.9) and

N(ﬂ,y):/_y h (8, 2) dU (F (9, 2))

- J(»&)—léw)éf \/ ) AW (2

_4Cw)? ]I{z>y}
TR ffR AT F(9,y) f(9,y) dy dW (2)

[_m f))f(ﬁ 2) da

Here the function & (-,-) is given by (5.1). The process N ( 7, y) has the
following representation

(6.4)

Xr
\/_ Xo

4 1
(RO 3K 507, + 5 R (05.0:X) 0 ()] d

N (1971, y)

!
VT Jo
1
ey

1 g, * ik *
= ﬁ - [R (ﬂTyya XS) S(ﬁsXs) ar 5 R’m ('ﬁTaya XS) g (XS)2jl dS

R(V7,y,2) dz
R(9%,y,2) dz

; v i - * s * *
- /0 R0, 5, Xs) [S(5 Xo) — S(B, X;)| ds = La(8% ) — Kb(9 1),

Combining Ito’s formula and the central limit theorem for stochastic inte-
grals, we obtain

Lo T i TOR
I 19*1 == - *:yzz z
T\V, Y JT - T
1 5 * i / * 2
_ﬁ ] R (97, y, Xs) S(ﬁ,XS)+§Rm (9%, y, Xs) o (Xs)"| ds

1 i
% ﬁ/o R(9,y,Xs) 0 (X,) dW, +o(1)
:>/ R(9,y,2) o (2) Vf (9,2) dW (2)

where W (-) is double-sided Wiener process. Further, by Taylor’s formula,
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the law of large numbers and the representation (3.3), we can write

i
K3 (8,y) = % fo R (5., Xs) [S (9%, X.) — S (9, X)) ds

i
= VT (9% — )1/ R(ﬂT,y,X)S(&,X,g)ds

— Ly

0 7 /[R J(z)m F,9) f (9,y) dy dW (2)
/ B0, 2).5(0,2) 10520

Therefore, we obtain N (9%, y) = N (v,y) , where N (¥, y) is given by (6.4).
In the same manner, we show that we have the convergence (under #y)

(6.5) M (97,y) = M (9,y),
whete M (%, 4 is defived by (5:10), and
(6.6)

M (O = /y §(9,2) dU (F (8, 2))

/ / “) H{T”}f(ﬁy £ (0,9)dy VT (@,2) dW (2

_ — 7% (9, 2) = Tnyy -
17 (9) ffR Tk 10.9) F @) dy W (2

/ f e ZZf(T};{Z>y} f(9,y) f(ﬂ,y) dy S('ﬁyz) F@.2)dz.

Here the function g (-, -) is given by (5.2). For the process M (97, y), we have
the following representation

M\»—n

X
M (9%, y) = \/— ‘. Q (97,9, 2) dz
0

1 rE " 1 x

¥ ﬁ 5 [Q ('ﬂ;"ayaxs) S(lﬁT7XS) i 5 Q’I (ﬂTaans) o (X3)2:l ds
ey

Taln s

i T
= [ @@y x) s0.x0+ 5 QL 0hw X0) 0 (X

Q (V7,y,2) dz
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i i f
% ﬁfo Q (9%, y, Xs) [S (%, Xs) — S (9, X,)] ds
= B (9%, y) — K% (9%, y).

Due to the It6 formula and the central limit theorem for stochastic integrals,
we can write

X

VT Jx,
z 1
[Q (03,9, %) S (0, X2) + 5 @ (9,9, Xa) 0 ()

It (9%, y) = Q (91,9, 2) dz

1
VT Jo

1 T
b T/?fo Q (9,9, Xs) o (Xs) dW, +o(1)
:>/_ Q(P,y,2) a(z)vVf (3, 2)dW (2).

Further, we have

% 1 T
K 0.9) = = fo Q (93, X.) [S (9%, Xa) — 8 (9, X,)] ds

1 JE! (NS
VT (05— 9) = f Q (5,9, X,) S(9, X,) ds

2 ]/R i59.2) ]I{”y}f( ¥) £ (8,4) dy dW (2)

o(z) )

/_ Q (9,y,2) S(9,z2) f(¥,2) dz.

Therefore M (95, y) = M (¥, y), where M (14, y) is defined by (6.6). Finally,
(6.2), (6.3) and (6.5) give us the convergence

Wr* (2) = wr@,q2)-

Now, to obtain (6.1), we will prove the convergence of the integrals by
checking the following three conditions: (see [13] and [15])

IS onianiiay s o

(W;f (ml) o= sy W’;* (I?k)) = (wF{'z?,wl)a O 7wF(19,cc;c)) )

where Wiy z) and Wi* (z) are defined by (5.4) and (5.11), respectively.
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2. dont | liii=ile 2
4

(6.7) Ey |Ws* (1) — Wr* ($2)|2 <C |zy — 9|2

where C' and L are some positive constants.
3. For any k > 0, there exist L > 0 such that

(6.8) / EsWi* (z)? f (9%, z) dz < k.
|z|>L

The first convergence of finite-dimensional distributions follows from (6.2),
(6.3) and (6.5) for any xi,...,zk.
Then, in order to obtain the estimate (6.7), we write

Eg [Wi* (x1) — Wi (29)|* < 3 By |&r (05, 1) — &r (0%, 2) |2
X

ot (9%.9) (9%, 9) [ = o= | RORy.2) ds
Xo

Ty

1 3By

2
= [ (R, 3, X2)S(05, Xs) + 5 Rol0h, 0, Xo)o (X, )ds|dF (95, v)|
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Further, by the Cauchy-Schwarz inequality, we have
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Here for any measurable function [ (-), we use the following relation (can be
found in [16], Section 1.1.3)
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where fr (z) is the empirical density given by (1.7).

Remind that by the conditions Ay and Rs5, the functions S (9,-) and
o (-)i] have polynomial majorants P (y). In addition, the invariant density
(1.10) has exponentially decreasing tails by condition Ay, i.e., there exist
the constants Cy > 0 and A > 0 such that

Fd,a) = Cy ezl
Therefore,
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Then, we have
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Indeed, here we used the 1t6 formula
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Additionally, by Fubini’s theorem and the Cauchy-Schwarz inequality, we
write
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Therefore, using the conditions Ay and Rs, we obtain
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Similarly, we obtain the following estimate
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Now, we have to check the condition (6.8). Indeed,
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2
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Moreover, using the same representation as above, we have
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Finally, the convergence (6.1) is proved and the test 5. is ADF.
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