Hitting probabilities for a non-convex lattice with obstacles

Giuseppe Caristi*
Department of Economics, University of Messina
via dei Verdi, 75 98122, Messina
gcaristi@unime.it

Dedicated to Professor Marius Stoka

Abstract

In this paper we consider a lattice with cell represented in fig. 1 and we determine the probability that a segment of constant length and random direction, according to the exponential distribution and \(\gamma(2) \) distribution, intersects a side of the lattice.

1 Preliminary Results

Let \(\mathcal{R}(a; m) \) the lattice with fundamental cell \(C_0 \) represented in fig. 1
where \(m < a/2 \). By this figure we have

\[
\text{area}C_0 = 3a^2 - 7m^2
\]

(1)

We want to compute the probability that a segment \(s \) of constant length \(l < \frac{a}{2} - m \) and random direction intersects a side of lattice \(\mathcal{R} \), i.e. the probability \(P_{\text{int}} \) that \(s \) intersects a side of fundamental cell \(C_0 \).

The position of segment \(s \) is determined by its center and by angle \(\varphi \) that \(s \) forms with the line \(BC \) (or \(AF \)).

To compute the probability \(P_{\text{int}} \) we consider the limiting position, for a fixed angle \(\varphi \) in the cell \(C_0 \). So we obtain the fig. 2.
and the formula

\[\text{area}\tilde{C}_0(\varphi) = \text{area}C_0 - \sum_{i=1}^{22} \text{area}a_i(\varphi). \]

(2)

By fig. 2 we have

\[|AA_5| = l \sin \varphi, \quad |AA_6| = l \cos \varphi, \]

(3)

then

\[\text{area}a_1(\varphi) + \text{area}a_2(\varphi) = \text{area}a_7(\varphi) + \text{area}a_8(\varphi) = \frac{l^2}{4} \sin 2\varphi - m^2. \]

(4)

The fig. 2 and first formula (3) give us

\[h_3 = \frac{l}{2} \cos \varphi, \quad |A_5B_1| = 2a - m - |AA_5| = 2a - m - l \sin \varphi, \]

then
areaa_3(\varphi) = \left(a - \frac{m}{2}\right)l \cos \varphi - \frac{l^2}{4} \sin 2\varphi. \quad (5)

By fig. 2 we have

\[h_4 = m \sin \varphi, \quad |B_3B_5| = \frac{l}{2}. \]

Then

\[
\begin{align*}
\text{areaa}_4(\varphi) &= \text{areaa}_{10}(\varphi) = \text{areaa}_{14}(\varphi) = \\
\text{areaa}_{16}(\varphi) &= \text{areaa}_{20}(\varphi) = \frac{ml}{2} \sin \varphi.
\end{align*}
\]

(6)

In the same we have

\[h_5 = m \cos \varphi, \quad |B_2B_6| = \frac{l}{2}, \]

so that

\[
\begin{align*}
\text{areaa}_5(\varphi) &= \text{areaa}_{11}(\varphi) = \text{areaa}_{15}(\varphi) = \\
\text{areaa}_{17}(\varphi) &= \text{areaa}_{21}(\varphi) = \frac{ml}{2} \cos \varphi.
\end{align*}
\]

(7)

The fig. 2 and second formula (3) give us

\[h_6 = \frac{l}{2} \sin \varphi, \quad |B_2C_6| = 2a - m - |AA_6| = 2a - m - l \cos \varphi, \]

then

\[
\begin{align*}
\text{areaa}_6(\varphi) &= \left(a - \frac{m}{2}\right)l \sin \varphi - \frac{l^2}{4} \sin 2\varphi.
\end{align*}
\]

(8)

By fig. 2 and by first formula (3) we have

\[h_9 = \frac{l}{2} \cos \varphi, \quad |C_5D_1| = a - m - |AA_5| = a - m - l \sin \varphi, \]

i.e.

\[
\begin{align*}
\text{areaa}_9(\varphi) &= \frac{(a - m)}{2}l \cos \varphi - \frac{l^2}{4} \sin 2\varphi.
\end{align*}
\]

(9)

The fig. 2 give us

\[|E_4E_5| = m, \quad |E_4E_{15}| = l \cos \varphi - m, \]

(10)
therefore

\[\text{areaa}_{13}(\varphi) = \frac{m^2}{2} \cos \varphi. \]

(11)

Considering the fig. 2 and second formula (10) we can write

\[h_{12} = \frac{l}{2} \cos \varphi, \quad |D_2D_{15}| = a - 2m - |E_4E_{15}| = a - m - l \cos \varphi, \]

then

\[\text{areaa}_{12}(\varphi) = \frac{(a - m)l}{2} \sin \varphi - \frac{l^2}{4} \sin 2\varphi. \]

(12)

By fig. 2 follows \(a_{18} = a_2, a_{13} = a_1 \). Then, considering formulas (4) and (11), we have

\[\text{areaa}_{18}(\varphi) = \text{areaa}_1(\varphi) + \text{areaa}_2(\varphi) - \text{areaa}_{13}(\varphi), \]

i.e.

\[\text{areaa}_{18}(\varphi) = \frac{l^2}{4} \sin 2\varphi - m^2 - \frac{m^2}{2} \cos \varphi. \]

(13)

The fig. 2 and relation (3) give us

\[|E_1E_7| = |A_1A_5| = l \sin \varphi - m, \quad |E_7F_1| = a - 2m - |E_1E_7| = a - m - l \sin \varphi, \]

\[h_{19} = \frac{l}{2} \cos \varphi. \]

Therefore

\[\text{areaa}_{19}(\varphi) = \frac{(a - m)l}{2} \cos \varphi - \frac{l^2}{4} \sin 2\varphi. \]

(14)

In the end by fig. 2 and by formula (3) we have

\[h_{22} = \frac{l}{2} \sin \varphi, \quad |A_6F_2| = a - m - |A_{A_6}| = a - m - l \cos \varphi, \]

then

\[\text{areaa}_{22}(\varphi) = \frac{(a - m)l}{2} \sin \varphi - \frac{l^2}{4} \sin 2\varphi. \]

(15)

Considering the relations (4), (5), ..., (9), (11), (12), ..., (15) we obtain

\[A(\varphi) = \sum_{i=1}^{22} \text{areaa}_i(\varphi) = l(2a + m)(\sin \varphi + \cos \varphi) - \frac{l^2}{2} \sin 2\varphi - 3m^2. \]

(16)

Replacing this expression in (2) follows
\[\text{area} \tilde{C}_0(\varphi) = \text{area} C_0 - A(\varphi). \] (17)

Denoting with \(M \) the set of segments \(s \) that have the center in the cell \(C_0 \) and with \(N \) the set of segments \(s \) entirely contained in the cell \(C_0 \) we have [2]:

\[P_{\text{int}} = 1 - \frac{\mu(N)}{\mu(M)}, \] (18)

where \(\mu \) is Lebesgue measure in the Euclidean plane.

To compute the measures \(\mu(M) \) and \(\mu(N) \) we use the cinematic measure of Poincaré [1]:

\[dk = dx \land dy \land d\varphi, \]

where \(x, y \) are the coordinates of the center of \(s \) and \(\varphi \) the fixed angle.

Assuming that the direction of line support of the segment \(s \) is a random variable with probability density \(f(\varphi) \) and, for \(\varphi \in [0, \pi/2] \), we have:

\[
\mu(M) = \int_0^{\pi/2} f(\varphi) d\varphi \int_0^{\pi/2} dx dy = \int_0^{\pi/2} (\text{area} C_0) f(\varphi) d\varphi = (\text{area} C_0) \int_0^{\pi/2} f(\varphi) d\varphi. \] (19)

Then, considering formula (17), we can write

\[
\mu(N) = \int_0^{\pi/2} f(\varphi) d\varphi \int_0^{\pi/2} dx dy = \int_0^{\pi/2} \left[\text{area} \tilde{C}_0(\varphi) \right] f(\varphi) d\varphi = \int_0^{\pi/2} \left(\text{area} C_0 - A(\varphi) \right) f(\varphi) d\varphi = (\text{area} C_0) \int_0^{\pi/2} f(\varphi) d\varphi - \int_0^{\pi/2} A(\varphi) f(\varphi) d\varphi. \] (20)

The (18), (19) and (20) we have that

\[
P_{\text{int}} = \frac{1}{(\text{area} C_0) \int_0^{\pi/2} f(\varphi) d\varphi} \int_0^{\pi/2} A(\varphi) f(\varphi) d\varphi,
\]
i.e., with (1) and (16),

\[
P_{\text{int}} = \frac{1}{(3a^2 - 7m^2) \int_0^{\pi/2} f(\varphi) d\varphi} \int_0^{\pi/2} \left[l(2a + m)(\sin \varphi + \cos \varphi) - \frac{l^2}{2} \sin 2\varphi - 3m^2 \right] f(\varphi) d\varphi. \] (21)

Now we consider the exponential distribution and \(\gamma \) (2) distribution.
2 Exponential distribution

We have \(f(\varphi) = e^{-\varphi}, \ (\varphi \geq 0) \).

From paper [3] we have the formulas:

\[
\int_0^{\pi/2} e^{-\varphi} d\varphi = 1 - e^{-\frac{\pi}{2}}, \quad \int_0^{\pi/2} e^{-\varphi} \sin \varphi d\varphi = \frac{1}{2} \left(1 - e^{-\frac{\pi}{2}}\right),
\]

\[
\int_0^{\pi/2} e^{-\varphi} \cos \varphi d\varphi = \frac{1}{2} \left(1 + e^{-\frac{\pi}{2}}\right), \quad \int_0^{\pi/2} e^{-\varphi} \sin 2\varphi d\varphi = \frac{2}{5} \left(1 + e^{-\frac{\pi}{2}}\right).
\]

Replacing these values in the (21) we obtain

\[
P_{int} = \frac{1}{(3a^2 - 7m^2) \left(1 - e^{-\frac{\pi}{2}}\right)} \left[(2a + m) l - \frac{l^2}{5} \left(1 + e^{-\frac{\pi}{2}}\right) - 3m^2 \left(1 - e^{-\frac{\pi}{2}}\right) \right].
\]

3 Distribution \(\gamma(2) \)

We have \(f(\varphi) = \varphi e^{-\varphi}, \ (\varphi \geq 0) \).

From [3] we have

\[
\int_0^{\pi/2} \varphi e^{-\varphi} d\varphi = 1 - \left(\frac{\pi}{2} + 1\right) e^{-\frac{\pi}{2}}, \quad \int_0^{\pi/2} \varphi e^{-\varphi} \sin \varphi d\varphi = \frac{1}{2} - \frac{\pi}{4} e^{-\frac{\pi}{2}},
\]

\[
\int_0^{\pi/2} \varphi e^{-\varphi} \cos \varphi d\varphi = \frac{1}{2} e^{-\frac{\pi}{2}} \left(1 + \frac{\pi}{2}\right), \quad \int_0^{\pi/2} e^{-\varphi} \sin 2\varphi d\varphi = \frac{4}{25} + \left(\frac{\pi}{5} + \frac{4}{25}\right) e^{-\frac{\pi}{2}}.
\]

Replacing this one in the (21) we have

\[
P_{int} = \frac{1}{2 (3a^2 - 7m^2) \left[1 - \left(\frac{\pi}{2} + 1\right) e^{-\frac{\pi}{2}}\right]}
\]

\[
\left\{ (2a + m) l \left(1 + e^{-\frac{\pi}{2}}\right) - \frac{l^2}{25} \left[4 + (5\pi + 4) e^{-\frac{\pi}{2}}\right] - 6m^2 \left[1 - \left(\frac{\pi}{2} + 1\right) e^{-\frac{\pi}{2}}\right] \right\}.
\]

References