
HAL Id: hal-03605865
https://hal.science/hal-03605865v1

Submitted on 11 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation of regional pulmonary compliance in
idiopathic pulmonary fibrosis based on personalized lung

poromechanical modeling
Cécile Patte, Pierre-Yves Brillet, Catalin Fetita, Jean Francois Bernaudin,

Thomas Gille, Hilario Nunes, Dominique Chapelle, Martin Genet

To cite this version:
Cécile Patte, Pierre-Yves Brillet, Catalin Fetita, Jean Francois Bernaudin, Thomas Gille, et al.. Es-
timation of regional pulmonary compliance in idiopathic pulmonary fibrosis based on personalized
lung poromechanical modeling. Journal of Biomechanical Engineering, 2022, 144 (9), pp.091008:1-
091008:14. �10.1115/1.4054106�. �hal-03605865�

https://hal.science/hal-03605865v1
https://hal.archives-ouvertes.fr


Estimation of regional pulmonary compliance
in idiopathic pulmonary fibrosis based on

personalized lung poromechanical modeling

Cécile Patte
Inria, Palaiseau, France
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Évry, France

Email: catalin.fetita@telecom-sudparis.eu

Jean-François Bernaudin
Hypoxie et Poumon,
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ABSTRACT
Pulmonary function is tightly linked to the lung mechanical behavior, especially large deforma-

tion during breathing. Interstitial lung diseases, such as Idiopathic Pulmonary Fibrosis (IPF), have
an impact on the pulmonary mechanics and consequently alter lung function. However, IPF re-
mains poorly understood, poorly diagnosed and poorly treated. Currently, the mechanical impact
of such diseases is assessed by pressure-volume curves, giving only global information. We de-
veloped a poromechanical model of the lung that can be personalized to a patient based on routine
clinical data. The personalization pipeline uses clinical data, mainly CT-images at two time steps
and involves the formulation of an inverse problem to estimate regional compliances. The estima-
tion problem can be formulated both in terms of “effective”, i.e., without considering the mixture
porosity, or “rescaled”, i.e., where the first-order effect of the porosity has been taken into account,
compliances. Regional compliances are estimated for one control subject and three IPF patients,
allowing to quantify the IPF-induced tissue stiffening. This personalized model could be used in the
clinic as an objective and quantitative tool for IPF diagnosis.

CONTENTS

1 Introduction 3

2 Materials and methods 4
2.1 Clinical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Lung poromechanical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Poromechanical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Constitutive framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Poromechanical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Model Personalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Thorax motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Porosity field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 Healthy and diseased regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.5 Regional compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Results 15
3.1 Verification and analysis based on synthetic data . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Regional compliances identifiability . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Pleural pressure approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Effective vs. rescaled potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Validation and analysis based on clinical data . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Effective vs. rescaled potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Displacement vs. image criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Physiological vs. arbitrary disease segmentation . . . . . . . . . . . . . . . . 19

3.3 Clinically relevant analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Regional compliances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Stress distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Discussion 22

5 Conclusion 24

2



Journal of Biomechanical Engineering

1 INTRODUCTION
Idiopathic Pulmonary Fibrosis (IPF) is a chronic pulmonary disease with a difficult diagnosis

[Walsh et al., 2017], severe prognosis [Fernández Pérez et al., 2010; Walsh et al., 2016], and limited
treatment options [Flaherty et al., 2018]. It affects the pulmonary microstructure, with interstitial
tissue scarring and thickening [Haak et al., 2018], leading to less efficient gas exchanges [Plantier
et al., 2018]. This also translates into an impact on the pulmonary mechanics: the lungs become
stiffer, affecting their extensibility and thus their function [Plantier et al., 2018]. As a consequence,
IPF patients suffer from high breathlessness, which worsens with the disease evolution.

In addition to the mechanical impact of IPF on the lungs, mechanics is believed to have a major
role in the disease progress [Carloni et al., 2013]. Indeed, a mechanical vicious circle in place
in IPF patients has been hypothesized: fibrosis induces higher stiffness and thus higher stresses
(since the strain is imposed by the breathing function), which in turns activate the production of
fibers by fibroblasts [Hinz and Suki, 2016; Haak et al., 2018]. However, this vicious cycle remains
hypothetical, and needs to be further studied—this paper is a first step toward an investigation of
the role of mechanics in the progress of IPF through personalized biomechanical modeling.

Biomechanical modeling has already been used to help the diagnosis of various diseases such
as myocardial infarction [Chabiniok et al., 2012; Genet et al., 2015]. Addressing such applications
requires patient-specific models, which have biophysical characteristics of the patients [Lee et al.,
2014; Chabiniok et al., 2016]. Concerning mechanical models, these characteristics are the ge-
ometric description of the organ, but also the specific loading inducing organ deformations and
the specific material behavior of the organ [Krishnamurthy et al., 2013]. The patient attributes are
usually derived from clinical data, like medical imaging, pressures or other relevant measurements
[Smith et al., 2011].

Specifically for the lungs, several models and estimation procedures have been proposed in
the literature. Various constitutive laws have been considered for the parenchyma, either based
on micromechanics [Concha et al., 2018; Álvarez-Barrientos et al., 2021] or directly at the tissue
scale [Birzle et al., 2019]. Some such laws have been used within full organ scale models, mostly
focusing on air flows and gas exchanges [Yin et al., 2010; Roth et al., 2017], although some models
were used for detailed solid mechanics analysis [Tawhai et al., 2009; Berger et al., 2016]. However,
[Tawhai et al., 2009] used an empirical compressible hyperelastic strain energy function not related
to the tissue microstructure nor based on experimental measurements, which was used only to
represent gross in vivo tissue behavior and whose parameters do not have a physical meaning.
[Berger et al., 2016] used the same poromechanics foundation as the present work; however, vari-
ous aspects of the model, such as the unloaded configuration and boundary conditions, which were
not critical for the analysis, were defined in a purely mathematical manner, departing from physi-
ology. Finally, in line with pure modeling approaches, existing personalized modeling approaches
mostly focus on respiratory aspects [Burrowes et al., 2008; Yin et al., 2010].

We recently proposed a lung biomechanical model, based on a novel poromechanics behavior
law, and specific boundary conditions [Patte et al., 2019; Patte, 2020; Patte et al., 2022]. The
constitutive framework relies on the general formulation of poromechanics detailed in [Chapelle
and Moireau, 2014] and based on [Biot and Temple, 1972; Coussy, 2004], describing the lung
tissue as a mixture of “solid” (tissue & blood) and fluid (air). The boundary conditions contain the
(negative) pleural pressure that inflates the lungs, and frictionless bilateral contact with the thorax.
The model focuses on the end-exhalation and end-inhalation states (which are assumed to be at
static equilibrium), and has been shown to adequately reproduce many elements of lung physiology
[Patte, 2020; Patte et al., 2022].

In this paper, we introduce a personalization pipeline associated with the lung model. It is
solely based on clinical data, namely 3DCT images, routinely acquired on IPF patients at the Avi-
cenne APHP Hospital, Bobigny, which is one of two referral centers for rare pulmonary diseases in
France. Patient-specific geometrical, kinematical and physiological (i.e., local porosity and fibrosis
state) information is directly extracted from the images by image processing. Mechanical informa-
tion, i.e., regional tissue stiffness, is estimated through an inverse problem solved by a stochastic
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derivative-free algorithm. Several aspects of the personalization procedure are investigated, and
then clinically relevant analyses are performed by applying the pipeline to one control subject and
three IPF patients. By estimating the parenchymal tissue regional stiffness in health and disease,
our personalized modeling pipeline could help better understand the role of mechanics in IPF pro-
gression, and better classify IPF patients.

The paper is organized as follows. In Section 2.1, we detail the clinical data that is routinely
acquired on IPF patients and can be used to personalize a biomechanical model. Then, in Section
2.2, we briefly recall the main components of our pulmonary poromechanics model, which was
fully detailed in [Patte, 2020; Patte et al., 2022]. In Section 2.3, we describe the personalization
pipeline, which is the main technical novelty of this paper. In Section 2.4, we describe the synthetic
data that will be used to validate the model and personalization procedure. The results section is
split into three parts, focusing on validation based on synthetic (Section 3.1) and clinical (Section
3.2) data, followed by the first clinically relevant results obtained with our personalized modeling
approach (Section 3.3). The paper ends with a discussion about the impact of various hypotheses
and parameters of the model, its current limitations, and potential improvements (Section 4).

2 MATERIALS AND METHODS
2.1 Clinical data

Since the final aim of this work is to build a biomechanical model-based clinical tool, we only
rely on routine clinical data. Even though a wide range of data is acquired in the clinic and stored in
patients’ medical records, not all data are directly usable in the context of the biomechanical model
described in Section 2.2, and we focus on thoracic images only. Among the various techniques that
can be used for in vivo lung imaging, including X-rays, Computed Tomography (CT) [Fetita et al.,
2016], Magnetic Resonance Imaging (MRI) [Boucneau, 2019], Ultrasound (US) [Gargani, 2011],
we use CT scans which are routinely performed for the diagnosis, classification and monitoring of
IPF patients, notably thanks to their high spatial and temporal resolution, and large field of view.

In this study, we used 3DCT scans of three IPF patients (selected for being highly representative
of the disease) and one control subject (patient without pulmonary disease and normal thoracic
scan), which were performed at the Avicenne APHP Hospital, Bobigny, France. Patients data were
retrospectively retrieved according to the French law on medical research and compiled as required
by the Commission Nationale de l’Informatique et des Libertés (CNIL; the French data protection
authority). The study not requiring an informed consent received authorization CLEA-2019-96 from
the Comité Local d’Éthique d’Avicenne (CLEA).

Following latest recommendations [Cottin et al., 2013], two 3DCT scans were performed on
each subject, at end-exhalation and end-inhalation, allowing to capture not only the subject-specific
lung geometry, but also the breathing kinematics. Throughout the paper, images at end-exhalation
are denoted by Ie, while images at end-inhalation are denoted by Ii. The scans were performed
in the supine position, with the arms above the head and in breath-hold during image acquisition.
Details on patients and images characteristics are reported in Table 1.

2.2 Lung poromechanical modeling
The lung poromechanical model used in this study has been described in details in [Patte, 2020;

Patte et al., 2022]. We only recall here the main points used in the present work.

2.2.1 Poromechanical framework
Poromechanics foundations. We propose to model the lungs as a two-phase porous continuum,
where the solid phase corresponds to interstitial tissue and blood, and the fluid phase corresponds
to the air present in airways and alveoli. To do so we use the mixture theory [Biot and Temple, 1972;
Coussy, 2004], specifically the formulation of Chapelle and Moireau [2014], which is compatible with
large strains as required by the pulmonary setting. Thus, the lung microstructure is characterized by
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Subject Sex Age [y] Step Voxel size [mm] Image size [voxels]

C1 M 72
E 0.64× 0.64× 0.70 512× 512× 455

I 0.72× 0.72× 0.70 512× 512× 455

P1 M 67
E 0.66× 0.66× 0.70 512× 512× 446

I 0.66× 0.66× 0.70 512× 512× 446

P2 M 61
E 0.69× 0.69× 0.70 512× 512× 396

I 0.69× 0.69× 0.70 512× 512× 396

P3 F 66
E 0.68× 0.68× 0.70 512× 512× 475

I 0.62× 0.62× 0.70 512× 512× 423

Table 1: Characteristics of images used to personalize the model for each subject. In the “Subject” column,
C and P stand for Control and Patient, respectively. In the “Sex” column, F and M stand for Female and
Male, respectively. In the “Step” column, E and I stand for end-exhalation and end-inhalation, respectively.

the porosity, i.e., the volume fraction of air, which is denoted by Φf0 in a given reference configuration
(Ω0, Γ0), and φf in the deformed configuration (ω, γ). During lung deformation, fluid circulates in the
mixture, as air enters the lungs during inhalation and goes out during exhalation. The added fluid
mass per unit volume of the reference configuration is denoted by ρf+.

Specific hypotheses. As in [Chapelle and Moireau, 2014], the fluid is assumed to be incompress-
ible, and the transformation is considered as isothermal. In addition to these general assumptions,
we make the following two specific hypotheses: (i) the end-exhalation and end-inhalation states cor-
respond to static equilibriums; and (ii) in these states the internal fluid pressure is homogeneous
and equal to the atmospheric pressure, which is considered null here. Thus, the proposed model
only describes the two equilibrium states of end-exhalation and end-inhalation, and not the path in
between these states.

Kinematics. The transformation between the reference and deformed configurations is described
by the mapping

χ :=

{
Ω0 → ω

X 7→ x = χ (X)
. (1)

The associated displacement field is U(X) := χ(X)−X, and the deformation gradient is F (X) :=

∇χ = 1 + ∇U . The local volume change of the mixture is given by J := det
(
F
)
. The quantities

Φs := (1− φf) · J and Φf := φf · J , such that Φf = J − Φs, are the contributions of the solid and the
fluid phases to the mixture volume change. The right Cauchy-Green deformation tensor is denoted
by C := FT · F , and its classical first three invariants I1 := tr

(
C
)
, I2 :=

(
tr
(
C
)2 − tr

(
C2
))
/2

and I3 := det
(
C
)

= J2. Finally, the Green-Lagrange strain tensor is denoted by E :=
(
C − 1

)
/2.

These quantities are represented in Figure 1.

Equilibrium We write the global equilibrium of the mixture in weak form, i.e., under the form of
the principle of virtual work. Depending on the problem, it can be formulated on the deformed
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Figure 1: Schematic representation of the main quantities describing the system and the boundary condi-
tions considered in the mechanical problem.

configuration ω, in terms of the Cauchy stress tensor σ:

∫
ω

σ : ε (u∗) dω = Wext (u∗) ∀u∗, (2)

where ε (u∗) :=
(
∇u∗

)
sym

is the symmetric gradient of the displacement, i.e., the linearized strain
tensor, or on the reference configuration Ω0, in terms of the second Piola-Kirchhoff stress tensor Σ:
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∫
Ω0

Σ : dU E · U∗ dΩ0 = Wext (U∗) ∀U∗, (3)

where dU E · U∗ is the differential of the Green-Lagrange strain tensor. In both expressions, Wext
represents the virtual work of external forces, which will be detailed later.

A key point of the poromechanics framework, is to add another equilibrium condition, local,
between the fluid pressure, denoted by pf, and the hydrostatic pressure in the solid (associated
with solid volume change, as formally defined later), denoted by ps [Biot and Temple, 1972; Coussy,
2004; Chapelle and Moireau, 2014]:

pf = ps (4)

2.2.2 Constitutive framework
Mixture behavior. Following [Chapelle and Moireau, 2014], and as detailed in [Patte, 2020; Patte
et al., 2022], the Helmholtz free energy of the mixture ψ is decomposed into solid and fluid parts:

ψ
(
E, ρf+

)
= ψs

(
E,Φs

)
+ ψf (Φf) , (5)

where ψs and ψf are the free energies of the solid and the fluid phase, respectively. Since the
second Piola-Kirchhoff stress tensor Σ derives from ψ, we have:

Σ =
∂ψ
(
E, ρf+

)
∂E

=
∂ψs

∂E
− psJC

−1, (6)

where ps := −∂ψs

∂Φs
represents the part of the solid hydrostatic pressure associated with volume

change.

Solid effective behavior. The following decomposition of the solid free energy ψs is considered
as proposed in [Chapelle and Moireau, 2014]:

ψs

(
E,Φs

)
= W skel

(
E
)

+W bulk (Φs) (7)

where W skel
(
E
)

is the free energy of the solid considered as a structure and W bulk (Φs) accounts
for the compressibility of the solid phase. We consider the following energies as proposed in [Patte,
2020; Patte et al., 2022]:



W skel
(
E
)

= α
(

eδ(J
2−1−2 ln(J))−1

)
+ β1 (I1 − 3− 2 ln(J)) + β2 (I2 − 3− 4 ln(J))

W bulk (Φs) = κ

(
Φs

1− Φf0
− 1− ln

(
Φs

1− Φf0

)) , (8)
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where α, β1, β2, δ, κ are material parameters. κ is the solid bulk modulus, which should be taken
large with respect to the shear modulus to ensure quasi-incompressibility of the solid part. These
parameters represent the effective behavior of the solid part of the mixture, which depends on the
porosity of the mixture.

Solid rescaled behavior. In order to introduce, in the simplest possible way, the porosity depen-
dency into the mixture behavior, we define the following rescaling of the effective energy using the
reference porosity:

ψs = (1− Φf0) ψ̃s, (9)

which leads to

{
W skel

(
E
)

= (1− Φf0) W̃skel
(
E
)

W bulk (Φs) = (1− Φf0) W̃bulk (Φs) ,
(10)

where ψ̃s, W̃skel and W̃bulk are the rescaled free energies per unit solid mass, corresponding to the
effective free energies ψs, W skel, W bulk respectively. The effective mechanical parameters θ and the
rescaled mechanical parameters θ̃ are then linked by:

θ = (1− Φf0) θ̃ ∀θ ∈ {α, β1, β2, κ} (11)

The parameter δ remains the same in both effective and rescaled behaviors since it describes
the non-linear part of the energy. Nevertheless, using these rescaled potentials, the mixture can
be fully heterogeneous (which has been shown to allow for a better fit of ex vivo experimental
measurements [Mariano et al., 2020]) even with homogeneous material parameters, as long as the
porosity is heterogeneous.

Compliance measure. For the compliance analysis we need a quantity that is independent from
the chosen constitutive behavior, so we define the global compliance between two time points t0
and t1 as the volume change divided by the pressure change:

Ct0→t1 =
Vt1 − Vt0

ppl,t1 − ppl,t0

(12)

In the rest of the paper, we will denote by C the compliance between the end-exhalation and end-
inhalation states for a normal breathing at rest, i.e., when the pleural pressure values are 0.5 kPa
and 0.8 kPa, respectively.

2.2.3 Poromechanical formulation
As illustrated in Figure 1, the initial configuration corresponds to the end-exhalation configuration

and the deformed configuration to the end-inhalation configuration. Since the constitutive behavior
of the solid phase is nonlinear and the initial configuration is loaded, the unloaded configuration has
to be determined. Thus, the computation of breathing from the initial to the deformed configuration
has to be performed in two steps:

Step 1: First, the computation of the unloaded configuration from the initial configuration, which
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allows to deduce the reference porosity field and the initial stress field;
Step 2: Then, the computation of the deformed configuration knowing the unloaded configuration.

From the end-exhalation to the unloaded configuration. Step 1 is an inverse problem which
is fully described in [Patte, 2020; Patte et al., 2022]. The boundary conditions used for this step are
only the negative pleural pressure on the whole surface of the lung. Rigid body motions are also
blocked by applying the “3-2-1 method” on the three nodes defining the most orthogonal trihedron
in the mesh: the origin is blocked in all three directions, the first node in the second and third
directions, and the second node in the third direction. The weak formulation of the problem is:

Find (u0, φf0) ,


∀u∗,

∫
ωe

σ(u0, φf0) : ε(u∗) dω = −
∫
γe

ppl,e n · u∗ dγ

∀x, pf = −∂W bulk

∂Φs
(u0, φf0) ,

(13)

where a change of variable has been performed (the unknown is the inverse displacement u0, or
equivalently the inverse mapping χ−1

0
, associated with the deformation gradient f

0
:= ∇χ−1

0
= 1 +

∇u0 and the volume change j0 := det f
0
), as originally proposed in [Govindjee and Mihalic, 1998].

The Cauchy stress tensor is here defined as σ (u0, φf0) = j0 f
−1

0
·
(

Σ (u0, φf0) ◦ χ−1
0

)
· f−T

0
, where

the second Piola-Kirchhoff stress tensor is given by Σ (u0, φf0) =
∂W skel

∂E
(u0, φf0)−ps (u0, φf0) J0C

−1

0

with ps (u0, φf0) = −∂W bulk

∂Φs
(u0, φf0).

From the unloaded to the end-inhalation configuration. The boundary conditions in Step 2
are more complex since breathing involves a complex environment (pleura, diaphragm, intercostal
muscle, etc.). In addition to the negative pleural pressure on the whole surface of the lung, a
bilateral contact between the lung surface and the thorax surface is considered. This contact is as-
sumed to be frictionless and with no separation of the surfaces in contact. The thorax displacement
is also taken into account.

Under the previously mentioned hypotheses, the lung poromechanical behavior is described by
the following system:

Find (U,Φf) ,

∀U∗,
∫

Ω0

∂W skel

∂E
: dU E · U∗ dΩ0 −

∫
Ω0

pfJC
−1 : dU E · U∗ dΩ0

= −
∫

Γ0

pplJ
(
F−T ·N0

)
· U∗ dΓ0

∀X, pf = −∂W bulk

∂Φs

.
(14)

The first equation corresponds to the global mechanical equilibrium of the pulmonary mixture, i.e.,
Equation (3). Note that here the fluid pressure pf is known, taken as zero (atmospheric pressure)
in our case.
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2.2.4 Implementation
The computation of the reference configuration (Step 1 of the direct problem) has been imple-

mented using the FEniCS library [Alnæs et al., 2015; Logg et al., 2012]. Step 2 is computed with
Abaqus1. The contact is defined as a master-slave, finite-sliding and node-to-surface. The mas-
ter surface and the slave surface, i.e., the thorax surface and the lung surface, respectively, are
adjusted at the start of the simulation to remove gaps and overlaps.

2.3 Model Personalization
Using the clinical data described in Section 2.1, several components of the poromechanical

model described in Section 2.2 can be personalized for a given subject. We now describe the per-
sonalization of the lung and thorax geometries, the disease extent, the thorax motion and material
parameters, namely the porosity field and one regional compliance parameter. The whole model
personalization pipeline is illustrated in Figure 2.

Figure 2: Summary of the personalization pipeline. (DIC = Digital Image Correlation. HU = Hounsfield
Units.)

2.3.1 Geometry
As described in Section 2.2, the proposed lung model requires two finite element meshes: a

volume mesh for the lungs, and a surface mesh for the thorax, which is used to define proper

1https://www.3ds.com/products-services/simulia/products/abaqus
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boundary conditions for the lungs. Patient-specific meshes are obtained from the clinical images
described in Section 2.1 as follows.

Lung geometry. For each subject, the lungs are segmented on the end-exhalation images (Ie),
leading to a binary mask denoted by Ml,e. This is performed using the algorithm described in [Fetita
et al., 2016], which is specifically developed for the segmentation of fibrotic lungs. Indeed, if in CT
images healthy lungs are easily distinguishable from their surroundings (because the contrast in
air/water content, and thus in image intensity, is high), it is not the case for lungs with fibrotic
regions, for which the image intensity contrast with the surrounding can be very low. One example
mask is shown in Figure 3.

Then, a finite element mesh is generated from the segmentation. To do so, the lung surface is
extracted from the lung mask using MeVisLab [Ritter et al., 2011], and is used to generate a surface
mesh and then a volume mesh using GMSH [Remacle et al., 2009; Geuzaine and Remacle, 2009].

Thorax geometry. For the rib cage finite element geometry, only a surface mesh is required.
For each subject, the rib cage is manually segmented using MeVisLab on the same end-exhalation
image Ie as the lung, leading to another binary mask denoted by Mt,e, with special care to generate
a rib cage surface matching with the lung surface in the contact area between the rib cage and the
lung. The thorax surface is then extracted using MeVisLab, and a surface finite element mesh is
generated using GMSH [Remacle et al., 2009; Geuzaine and Remacle, 2009].

2.3.2 Thorax motion
In the model, the thorax surface motion is prescribed. It can be extracted from the clinical

images described in Section 2.1 as follows. For each subject, a binary mask of the thorax at end-
inhalation, denoted by Mt,i, is generated following the same procedure as the binary mask of the
thorax at end-exhalation Mt,e. A displacement field between the two masks is computed using
the finite element motion tracking tool described in [Genet et al., 2018], using a small hyperelastic
regularization to prevent convergence issues induced by the ill-posedness of the shape tracking
problem. This displacement field is then projected onto the thorax surface finite element mesh.

2.3.3 Porosity field
Porosity information can be computed from CT images [Hedlund et al., 1983]. Indeed, CT

measures the attenuation of X-rays by tissue, hence the contrast in CT images comes from a
difference in tissue density. CT image pixels are displayed according to the mean attenuation of the
tissue volume that they represent formulated in the Hounsfield Units (HU) scale. Typically, water
and air have an attenuation of 0 HU and −1000 HU, respectively.

Considering a linear variation of porosity with HU, the local porosity can be computed for each
pixel with the following expression:

φf(x) =
HU(x)−HUtissue

HUair −HUtissue
, (15)

with HUtissue = 0 HU considering that biological tissues are mainly composed of water and HUair =
−1000 HU.

Thus, for each subject, the porosity field from the end-exhalation image Ie is projected onto the
lung finite element mesh. For each element, the porosity is taken constant, and equal to the mean
of the pixel values for all the pixels lying inside the element. This projection is performed using VTK
2, as described in details in [Genet et al., 2015]. And thanks to this heterogeneous porosity field,

2http://www.vtk.org
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in the rescaled parameters formulation, the mixture behavior is actually fully heterogeneous even
when considering homogeneous material parameters.

2.3.4 Healthy and diseased regions
In the CT images, the lung regions affected by IPF are denser and thus brighter than healthy

regions. For all patients, these fibrotic regions are manually segmented in the end-exhalation image
Ie using ITK-SNAP [Yushkevich et al., 2006], and the segmentation is validated by a radiologist.
Then, this segmentation is projected onto the lung finite element mesh. For each element, if more
than half the pixels lying inside the element are fibrotic then the element is considered fibrotic,
otherwise it is considered healthy. Eventually, the mesh is composed of two binary regions, i.e., the
healthy and diseased regions.

2.3.5 Regional compliance
Estimation problem general formulation. Patient-specific mechanical parameters of the skele-
ton energy W skel are estimated using the above lung poromechanical model and clinical data. This
inverse problem is formulated as an optimization problem, in which the solution is the set of me-
chanical parameters Θ minimizing a cost function f , characterizing the distance between the model
and the data. Thus, the model best fits the data for the set of parameters Θ, solution of the optimiza-
tion problem. Two different cost functions are investigated, differing by the nature of the considered
data: the first one is based on displacement fields that can be extracted from the images, as de-
scribed in the next paragraph, while the second one is based on the images directly.

Lung motion tracking. In order to provide an image-based estimation of the displacement field
of the lungs between end-exhalation and end-inhalation, denoted by UDIC, we employ the finite
element Digital Image Correlation (DIC) method detailed in [Genet et al., 2016, 2018]. However,
thoracic image registration involves several difficulties [Yin et al., 2009; Hurtado et al., 2016; Vish-
nevskiy et al., 2017], including the very large breathing displacements (as the lung base is pulled
by the diaphragm by several centimeters), and the displacement discontinuity at the border (as the
lung is sliding against the thorax). Thus, for each subject the lung motion tracking is performed in
multiple steps:

1. A binary mask of the lungs at end-inhalation, denoted by Ml,i, is generated following the same
procedure as the binary mask of the lungs at end-exhalation Ml,e.

2. A finite element mesh is created from the binary mask at end-exhalation Ml,e, including a layer
of elements lying outside the mask.

3. The displacement between the masks at end-exhalation Ml,e and end-inhalation Ml,i is com-
puted, following [Genet et al., 2018] and including a very small hyperelastic regularization term
[Gullberg, 2005] to prevent convergence issues induced by the ill-posedness of the shape reg-
istration problem. It corresponds to the displacement of the lung shape, and is denoted by
U shape. During this process, the mesh layer ensures that voxels on both sides of the mask
border are considered, so that the border motion is well tracked.

4. Two masked images, denoted by IMl,e and IMl,i, are computed as the multiplication of the
CT image Ie/i and the binary masks Ml,e/i, so that pixels inside the lungs are textured as in
the CT image and pixels outside the lungs have zero intensity.

5. The displacement between the masked images at end-exhalation IMl,e and end-inhalation
IMl,i is computed, following [Genet et al., 2018] and including an equilibrium gap regulariza-
tion term [Claire et al., 2004] to impose that the tracked displacement field be compatible with
mechanical equilibrium. It corresponds to the estimated lung displacement UDIC. For this
process, the displacement field U shape is used as an initial guess, making the tracking robust.

Ie/i, Ml,e/i and IMl,e/i can be seen in Figure 3, both for end-exhalation and end-inhalation. The
registration process is done for each lung separately.
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Ie/i Ml,e/i IMl,e/i

End-
exhalation

End-
inhalation

Figure 3: Visualization of the different images used in the whole process of image registration. I are the raw
images, Ml are the binary images computed by the segmentation of lungs on I, IMl are the multiplication
between I and Ml. The first step of the image registration consists in correlating lung shape between Ml,e

and Ml,i. Then lung volume is correlated during the second step using IMl,e and IMl,e

Cost function based on displacement fields. The first cost function considered to estimate
compliance parameters corresponds to the Finite Element Model Updating (FEMU) approach [Hild
and Roux, 2006; Avril et al., 2008; Azzouna et al., 2013], and relies on displacement fields com-
puted through motion tracking. It compares the displacement field U(θ) computed with the model
for a given set of parameters θ with the displacement field UDIC computed by image registration. It
corresponds to the following expression:

fdisp (θ) :=
‖U (θ)− UDIC‖L2

‖UDIC‖L2

(16)

Cost function based on images. The second considered cost function corresponds to an inte-
grated image correlation approach [Réthoré et al., 2009; Leclerc et al., 2009], and relies on the
images themselves. It is composed of two terms weighted by the factor k:

fimag (θ) := freg (θ) + kfshape (θ) , (17)

where

freg (θ) :=

∥∥∥Ml,eMl,i

(
Ii ◦ χ (θ)− Ie

)∥∥∥
L2

‖Ml,eMl,iIe‖L2

(18)

is the same energy that is minimized during image registration, comparing image intensities, and
fshape (θ) quantifies the similarity between the computed and the measured end-inhalation shapes,
which is needed mainly for fibrosis cases. Indeed, as was already mentioned, the fibrotic parts and
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lung surroundings have a similar image intensity. Thus, the lung shape resulting from the estimation
process tends to be overinflated. The shape term is computed using the Dice coefficient [Taha and
Hanbury, 2015] between two binary images, Ml,i coming from the lung segmentation of Ii and
Ml,i,model (θ) masking Ii with the deformed mesh surface computed with the model for a given set
of parameters θ, and is defined as:

fshape (Ml,i,Ml,i,model (θ)) :=
2TP

2TP + FP + FN
, (19)

where TP , FP and FN are the true positives, the false positives and the false negatives respec-
tively. In the image registration term freg, the use of the factor Ml,eMl,i implies that only the pixels
corresponding to the lung area are taken into account, which makes freg independent from the sur-
rounding area of the image. Computing the cost function fimag using unmasked or masked images
will then lead to the same value. The choice of the weight factor k is made in such a way as to
balance the variation of each term of fimag.

Estimated parameters. Either the effective parameters
{
α, β1, β2, δ

}
or the rescaled parameters{

α̃, β̃1, β̃2, δ
}

can be estimated: the estimation of the rescaled parameters requires a porosity field
Φf0 contrary to the estimation of the effective parameters. However, the estimation of four param-
eters with such data (images at only two different time steps, with essentially a surface pressure
loading) is highly ill-posed. Consequently, only the main stiffness parameters, Θ̃ = {α̃} or Θ = {α},
are estimated and the others are set. The parameters are taken homogeneous by regions, which
are defined as sets of elements. In this study, the lung is considered as composed of either one or
two regions, typically to represent healthy and fibrotic tissues, but there is no restriction to consider
more than two regions.

Implementation. The optimization process is solved using the stochastic derivative-free numeri-
cal optimization algorithm CMA-ES [Hansen and Auger, 2014; Hansen, 2016], which evaluates the
direct problem several times with different sets of parameters. For each evaluation of the direct
problem, a set of parameters is considered and both steps described in Section 2.2 are computed,
i.e., the computation of the unloaded configuration and the computation of the deformed configura-
tion. At each iteration, the evaluations of the cost function are performed in parallel.

2.4 Synthetic data
In order to validate the mechanical parameters estimation, which corresponds to the material

part of the model personalization, we generate synthetic data for both model parametrizations (i.e.,
effective and rescaled parameters) and both cost functions (i.e., displacement-based and image-
based). This synthetic data is based on the model of subject P1. All ingredients of the model are
fixed: the lung and thorax geometries, the partition into healthy and diseased regions, the material
parameters and the porosity, the thorax displacement and the pleural pressure.

Synthetic displacements. First, a synthetic displacement field, denoted by UDIC,synth, is gen-
erated by simply running the model. It will be used as synthetic data for the validation of the
displacement-based fdisp cost function.

Synthetic images. Then, using the same simulation, two synthetic images are generated: an
initial image Ie,synth and a deformed image Ii,synth, corresponding to the end-exhalation and the
end-inhalation configurations, respectively. They will be used as synthetic data for the validation of
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the image-based fimag cost function. The intensity field of Ie,synth is defined as

Ie,synth (x) =

{
0 if x 6∈ Ω∣∣∣sin πx0

s

∣∣∣ ∣∣∣sin πx1

s

∣∣∣ ∣∣∣sin πx2

s

∣∣∣ if x ∈ Ω,
(20)

with x0, x1, x2 the three spatial coordinates of x and s = 1/3 cm the tagging period. This is the
simplest model of tagged MRI, which we use here for its good tracking properties [Škardová et al.,
2019]. Such an intensity field means that the image is textured only in the lung volume. The
intensity field of Ii,synth is defined as

Ii,synth (x) = Ie,synth

(
χ

synth
(x)
)

(21)

where χ
synth

is the transformation associated with the synthetic displacements UDIC,synth.

3 RESULTS
In this section, we present results based on both synthetic and clinical data. All the simulations

are performed under the free breathing assumption (pf = 0) since all subjects studied were breath-
ing freely. Unless specific values are mentioned in the following paragraphs, the model parameters
used in the simulations are presented in Table 2.

Simulations with
effective parameters

Simulations with
rescaled parameters

Material

β1 [kPa] 0.1 -

β2 [kPa] 0.2 -

β̃1 [kPa] - 0.2

β̃2 [kPa] - 0.4

δ [-] 0.5 0.5

Loading

pf [kPa] 0.00

ppl,e [kPa] -0.50

ppl,i [kPa] -1.85

Table 2: Model parameters used in simulations, with either the effective parameters or the rescaled parame-
ters. The parameters are the effective parameters θ = {β1, β2, δ} of the solid free energy ψs, or the rescaled
parameters θ̃ = {β̃1, β̃2, δ} of the solid free energy ψ̃s, as well as the fluid pressure pf (which is zero accord-
ing to the free breathing assumption), the end-exhalation pleural pressure ppl,e, the end-inhalation pleural
pressure ppl,i.
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3.1 Verification and analysis based on synthetic data
This section focuses on results with synthetic data, as described in Section 2.4. The personal-

ized model of the subject P1 is used (geometry, boundary conditions and porosity). However, the
data used in the estimation pipeline, either lung displacements or images, is synthetic.

3.1.1 Regional compliances identifiability
We first validate the estimation process with synthetic data for which exact material parameters

are known. Such synthetic data are generated as described in Section 2.4: parameters are set,
then the resulting displacement field is computed through the direct problem (data used with the
displacement-based cost function fdisp) and an initial image is generated and deformed based on
this displacement field to generate the deformed image (data used with the image-based cost func-
tion fimag). More specifically, the model components of the subject P1 are used: lung and thorax
geometries, thorax displacement, porosity field and disease segmentation. Two datasets are gen-
erated, with effective and rescaled parameters, respectively. The model parameters concerning the
pressure loading or the fixed material parameters are those presented in Table 2. The parameters
that were used to generate the synthetic data and that are estimated are reported as Θsynth in
Table 3.

The validation is performed for both cost functions, displacement-based and image-based, as
well as for both types of parameters, effective and rescaled. The results are presented in Table 3.
Among all the cases, the error in the parameter value is at most 1%. The synthetic parameters
are then well estimated using the CMA-ES algorithm, for both cost functions and both types of
parameters.

fdisp fimag

Θsynth Θestim Error (%) Θestim Error (%)

Effective
αh 0.052 0.0520 3.7 · 10−4 0.0520 −1.2 · 10−2

α1 0.052 0.0520 0.0520

αd 0.67 0.6700 −1.5 · 10−5 0.6702 2.7 · 10−2

Rescaled
α̃h 0.09 0.0910 1.1 0.0910 1.1

α̃d 0.62 0.6200 3.9 · 10−3 0.6200 2.3 · 10−4

Table 3: Synthetic validation of the estimation process with both criteria (displacement-based fdisp and
image-based fimag) and both effective and rescaled parameters. αh and α̃h are the effective and rescaled
parameters of the healthy region respectively, whereas αd and α̃d characterize the diseased region. Θsynth

are the parameters chosen to create the synthetic data as explained in Section 2.4. Θestim are the estimated
parameters, resulting from the optimization algorithm explained in Section 2.3.5. The error between the
synthetic parameters and the estimated parameters is computed as (Θestim −Θsynth)/Θsynth.

3.1.2 Pleural pressure approximation
The patient-specific pleural pressure is not measured in our study. As a consequence, a generic

inhalation pressure of −1.85 kPa ≈ −18.6 cmH2O, chosen in the physiological range, is used for all
patients and the results of the parameter estimation are relative to this value. This is why the
impact of the pleural pressure uncertainty on the compliance is investigated in this section. To
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that purpose, we consider the same synthetic data as in Section 3.1.1 for which the end-inhalation
pleural pressure ppl,i,synth is known (ppl,i,synth = −1.85 kPa ≈ −18.6 cmH2O). Then, we estimate
the material parameters using this data and a model where the only change is the end-inhalation
pleural pressure ppl,i, which is different from ppl,i,synth. The four cases considered have the following
values for the end-inhalation pleural pressure: ppl,i = λ ppl,i,synth with λ ∈ {0.8, 0.9, 1.1, 1.2}. The
material parameters are estimated with the displacement-based cost function fdisp for both effective
and rescaled parameters.

The results of the four cases studied are presented in Figure 4. The regional pressure-volume
curves for each pressure value are shown in the left plots; in the right plots, the regional compliance
error as well as the compliance ratio (diseased compliance over healthy compliance) error are
plotted as a function of λ, for each type of parameter.

The compliance is underestimated when the pressure is overestimated (which is consistent with
the fact that we consider a higher pressure for the same deformation), and vice versa, for both
effective and rescaled parameters. Moreover, the compliance error is larger in the diseased region
(which is stiffer) than in the healthy region (which is less stiff). However, the compliance error is
reduced when considering rescaled parameters compared to effective parameters.

The compliance ratio is also impacted by the pressure in the model, for both effective and
rescaled parameters. Indeed, we see an underestimation of the compliance ratio when the pressure
is itself underestimated, and vice versa. However, the error on the compliance ratio is reduced
compared to the error on the compliances themselves.

3.1.3 Effective vs. rescaled potentials
In order to investigate the error induced by the use of effective potentials, which basically neglect

the porosity variations within the lung regions, we use the synthetic data generated with rescaled
potentials (which thus take into account the local porosities of the lung), and estimate effective
parameters using the displacement-based cost function fdisp. The resulting optimized cost function
is 3.75%, which is rather small compared to the errors obtained with in vivo data (17–23%, see
Section 3.2). This result reflects that the porosity is quite homogeneous in each region, and that
the porosity heterogeneity, mainly located at the interface between regions, does not impact the
compliance estimation results significantly.

3.2 Validation and analysis based on clinical data
This section presents results with clinical data from one control and three diseased subjects, as

described in Section 2.1.

3.2.1 Effective vs. rescaled potentials
We start by comparing the results obtained with effective and rescaled parameters. Both com-

putations are performed for each subject and each cost function. Since there is no ground truth
associated with this data, we compare the optimized cost function value, i.e., the fit between the
estimated model and the data. The normalized difference between the optimal cost function value
using rescaled parameters compared to the optimal cost function value using effective parameters
is presented in Table 4.

For subjects C1 & P1, using rescaled parameters (thus taking into account local variations
of porosity within lung regions) allows the optimized model to better fit the data, using both
displacement-based and image-based cost functions. For subjects P2 & P3, it is the opposite:
effective parameters allow for a better fit.

3.2.2 Displacement vs. image criteria
Another question raised in this work is the comparison between displacement-based and image-

based criteria. Thus, for each subject and each type of parameters (effective vs. rescaled), we now
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(a) With effective parameters.
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(b) With rescaled parameters.

Figure 4: Impact of the non patient-specific pressure applied in the model on the estimated compliance and
compliance ratio (diseased compliance over healthy compliance), using both effective parameters (a) and
rescaled parameters (b). λ is the ratio between the pressure used in the estimation and the pressure used
to generate the synthetic data. For both types of parameters: (left) Visualization of pressure-volume curves
for each pressure case (colored lines), compared to the pressure-volume curves obtained with the pressure
used to create the synthetic data (black line); (right) Compliance error for each region as a function of the
value of the pressure applied in the model, as well as the compliance ratio (Ch/Cd) error.

fdisp fimag

C1 −0.46% −2.30%

P1 −2.77% −0.46%

P2 +9.45% +6.24%

P3 +13.09% +9.32%

Table 4: Evaluation of the use of rescaled parameters compared to effective parameters. The values,
expressed in %, are computed as (f(Θ̃estim) − f(Θestim))/f(Θestim). They are presented for both criteria,
fdisp and fimag.

compare the compliance estimated from displacement data and the compliance estimated from
image data. For the patients, we estimated both the global compliance (i.e., one zone), and the
regional compliances (i.e., two zones, healthy vs. diseased).

The results are represented in a Bland-Altman plot, shown in Figure 5. The difference between
compliances estimated based on both criteria is plotted as a function of the mean compliance. The
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bias in the difference between compliances is 0.04±0.21 L/kPa, which means that in average the
image-based criterion fimag gives a slightly higher compliance than the displacement criterion fdisp.
However, the bias is small compared to other error sources, and can be neglected. Consequently,
both criteria can be considered to be equivalent.

0.0 0.5 1.0
Cim + CDIC

2  (L/kPa)
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0.5
C i

m
C D
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bias = 0.04 ± 0.21

Figure 5: Bland–Altman plot to compare the image and displacement criteria. The quantities used for the
comparison are the compliances computed by both criteria. CDIC and Cim are the compliances estimated
with the displacement criterion and the image criterion, respectively.

3.2.3 Physiological vs. arbitrary disease segmentation
We now investigate the impact of disease segmentation on the model-data fit. To do so, we

define arbitrary disease segmentations, and compare the associated estimations to the estimation
based on the physiological disease segmentation. We perform this study based on the data from
subject P1 only. Twenty-six different lung divisions are defined. In all cases, the organ is divided
into two parts by a plane defined by its normal and its position along the normal. We consider
thirteen normals corresponding to the edges and diagonals of a cube to define each plane. For
each normal, we consider two divisions, by putting the diseased region on one side or the other,
while maintaining the exact disease volume ratio, which is 31% for subject P1. For each division,
the estimation of the material parameters is performed using the displacement-based criterion fdisp

and the rescaled parameters only.
The results are presented in Figure 6, as a box plot showing the distribution of the optimized

values of the cost function. The two-region model is better in all the cases than the one-region
model. This is expected, since the number of optimization parameters is higher. Out of 26 models
based on arbitrary disease segmentations, 22 (i.e., 85%) lead to a larger optimal cost function, i.e.,
a worst model-data fit, compared to the model based on physiological disease segmentation.

In order to further analyze these statistical results, a Shapiro-Wilk test is first performed to de-
termine whether the distribution is normally distributed. The p-value is 0.13%, which is not enough
to accept the hypothesis of a normal distribution. Thus, a non-parametric Mann–Whitney U test
is performed to evaluate if the optimized cost function of the two-region model based on the dis-
ease segmentation is smaller than the optimized cost function of a two-region model based on
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random segmentation. The resulting p-value is 13.7%, which is rather small, but not small enough
to conclude with certainty. However, to put this value into perspective, we also tested that the op-
timized cost function of a random two-region model is smaller than the optimized cost functions of
a one-region model, which is indeed certain since the parameter space of the one-region model
is contained into the parameter space of the two-region model, and found a p-value of 5.4%. This
suggests that more data is required to conclude with certainty. Nevertheless, we conclude from this
analysis that the two-region model based on physiological disease segmentation almost certainly
better fits the data than a two-region model with arbitrary disease segmentation.
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Figure 6: Box plot representing the value of fdisp(Θ̃estim) for the 26 cases of divisions into two regions. The
box extends from the lower to upper quartile values. The horizontal black line is the median, whereas the
triangle is the mean. The lower and upper whiskers extend to Q1 − 1.5(Q3 − Q1) and Q3 + 1.5(Q3 − Q1)
respectively, with Q1 and Q3 the lower and upper quartiles, respectively. The box plot can be compared to
the value of fdisp(Θestim) in the case of the use of one region (blue line) and the case where the two regions
come from the disease segmentation (orange line).

3.3 Clinically relevant analysis
The results in this Section are obtained with the image criterion fimag, since we justified previ-

ously that both criteria give statistically equivalent results.

3.3.1 Regional compliances
The global pulmonary compliance is a common biomarker for clinicians to study the impact of

pulmonary fibrosis on the lungs. With our model, the regional compliance can be also estimated,
which gives information not accessible with direct measurements. The compliances, global and re-
gional, are shown for each subject in Figure 7. Note that compliances cannot be directly compared
between subjects since the value is relative to the pleural pressure value used in this work, which
is not patient-specific.

The results of the subject P2 are different from those of subjects P1 & P3. A very likely ex-
planation for this lies in the very different amount of breathing, since the volume variation between
end-exhalation and end-inhalation is only 14%, whereas it is between 80 and 90% for the other
subjects. In what follows, we thus consider only subjects C1, P1 & P3.
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For both patients P1 & P3, the global compliance is between healthy and diseased compli-
ances, which can be easily understood since the global compliance aggregates the contributions
of both regions. Moreover, the healthy region is more compliant than the diseased region, which is
consistent with the current knowledge of pulmonary fibrosis [Gibson, 2001; Plantier et al., 2018].

For subjects C1, P1 & P3, effective compliance is smaller than rescaled compliance, which is
expected since it is directly impacted by the porosity. More importantly, for patients P1 & P3, the
ratio between healthy and diseased compliances is larger for effective parameters compared to
rescaled parameters. This is also a consequence of the fact that rescaled parameters are less
dependent on the porosity.
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Figure 7: Effective and rescaled compliances estimated for each subject. For each case, the global compli-
ance, in black, is estimated with a one-region model, whereas the compliance of both healthy and diseased
regions, in blue and orange respectively, are estimated with a two-region model. For the control case C1,
only the global compliance is estimated. Two types of compliance are estimated: (left) the effective compli-
ance, and (right) the rescaled compliance.

3.3.2 Stress distribution

It is assumed that mechanics plays a major role in the pulmonary fibrosis evolution. Indeed, the
assumption of a mechanical vicious circle in place for this disease has been formulated: fibrosis
leads to stiffer tissue and increased stresses, which activates the production of collagen fibers by
fibroblasts and induces still more fibrosis [Liu et al., 2010; Hinz and Suki, 2016; Haak et al., 2018;
Wu et al., 2019]. Our model allows to investigate the impact of the disease on the stress field, as
shown for patient P1 in Figure 8. It can be observed that the stress field is largely heterogeneous
close to the interface between the two regions, i.e., the healthy and the diseased regions. In
some interfacial areas, the stress is up to twice as large as further away from the interface. This
stress concentration seems to support the mechanical vicious circle assumption, although a more
quantitative analysis, with more data, would be necessary to conclude with certainty.

21



Journal of Biomechanical Engineering

Figure 8: Comparison of the mixture hydrostatic pressure (i.e., trace of Cauchy stress tensor) and the
disease segmentation in the same slice. (left) Visualization of the mixture hydrostatic pressure in a sagittal
slice of the lung. (right) Visualization of the segmentation of the fibrosis. The fibrotic region is in red,
whereas the healthy region is in blue.

4 DISCUSSION
In this paper, we introduced a personalization procedure for a recent pulmonary poromechanical

model, which relies exclusively on routine clinical data, namely thoracic 3DCT images. In particular,
during the model personalization, patient-specific regional mechanical parameters are estimated,
which cannot be measured noninvasively in vivo. To demonstrate its applicability, and investigate
its performance, the model personalization has been applied to one control and three diseased
patients datasets. We now discuss several aspects of the personalization procedure, including
current limitations and potential improvements.

Quasi-static assumption. Since only two images are acquired in routine clinical practice, we
used a quasi-static lung model, assuming the two images correspond to static equilibrium. This
could be revisited with the advancement of dynamic thoracic MR [Boucneau et al., 2020] or CT
imaging. Our model would then need to be updated to account for inertia, and viscosity [Birzle and
Wall, 2019; Sattari et al., 2020]. Furthermore, going from static to dynamic imaging would remove
any potential stress relaxation effect associated with breath-holding.

Two-phase mixture assumption. The model currently only considers a two-phase mixture (solid
+ air), and does not represent explictely structural components such as fissures, airway structures,
etc.. They are, however, implicitely taken into account through the heterogeneous porosity field
extracted from the images and projected onto the mesh, although the underlying assumption is
that the stiffness of the solid part of the mixture is homogeneous within one region of the mesh.
Nevertheless, the impact of adding an explicit representation of the fissures or the airway tree [Lo
et al., 2012], with a specific constitutive law, on the model personalization should be investigated.

Pleural pressure. As discussed in Section 3.1.2, the results presented in this paper are relative
to the pleural pressure applied at end-exhalation and end-inhalation, since no patient-specific pres-
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sure is available. Consequently, the estimated compliances are relative to that pressure. Measuring
the patient-specific pressure would allow to compute the absolute compliance and to make compar-
isons between subjects. Such data could be acquired using an esophageal balloon to measure the
esophageal pressure, considered as very close to the pleural pressure [Hoppin et al., 1969; Agos-
toni, 1972; Akoumianaki et al., 2014], under the scanner. However, this measurement is not part
of the clinical routine for patients suffering from pulmonary fibrosis. Alternatively, in future studies
we could prescribe the compliance in the healthy region and estimate the pleural pressure together
with the compliance of the fibrotic region.

Effective vs. rescaled potentials. The choice of using poromechanics was made notably to
take into account the porosity of the lungs. However, as seen in Section 3.1.3, the use of effective
potentials, which do not explicitly take into account porosity variations and are thus equivalent to a
simple hyperelastic model, still displays a good performance. Moreover, as seen in Section 3.2.1,
if for subjects C1 & P1 the model based on rescaled potentials better fits the data than the model
based on effective potentials, it is not the case for subjects P2 & P3. One possible explanation is
that for subjects C1 & P1, the porosity variations are rather smooth and induce strain variations that
can be well represented by the finite element mesh, in the tracking and in the model; in this case,
taking into account the local variations of porosity allows the model to better fit the data. Conversely,
for subjects P2 & P3, the fibrotic regions are more patchy, such that the porosity variations, and thus
the strain variations, are sharper and cannot be well represented over the finite element mesh; in
this case the cost function is biased, which affects the estimation. A thorough analysis of the impact
of mesh size, for both the tracking and the model itself, will be conducted in a subsequent study.

Nevertheless, even with the current modeling and personalization approach, the use of porome-
chanics has several advantages compared to standard hyperelasticity. First, as illustrated in [Patte,
2020; Patte et al., 2022], it allows to study various breathing regimes, including ventilated breath-
ing. Moreover, it brings useful information about the material properties and stress state of the
solid constituent, which cannot be measured in vivo. Furthermore, it allows to introduce the ef-
fect of porosity onto the mixture behavior, which we did here in the simplest possible way with the
rescaled parameters. Such a model could also be used to study the impact of porosity or of porosity
gradient in the lungs.

Displacement vs. image criteria. Two criteria have been investigated: one using a displacement
field, like in FEMU approaches, and one using images directly, as an integrated image correlation
approach. The displacement criterion is easier to understand since the result can be expressed in
terms of a length, the RMSE error. For example, the RMSE errors for the cases P1 and P3 are
4.9mm and 11.4mm, respectively. It allows to quantify the accuracy of the method in a meaningful
way, especially for clinicians. However, the use of the displacement method requires to perform
image registration between both images, which introduces another source of error. On the other
hand, the image criterion includes the same term of similarity between images than in image regis-
tration and allows to perform in one step what is done in two steps with the displacement criterion.
Nevertheless, the optimized value of this criterion is less meaningful. Moreover, because of the
current choice for the shape registration term, this criterion is not differentiable, which restricts its
use in other minimization tools.

Disease segmentation. An important clinical outcome of our proposed modeling and personal-
ization pipeline is the estimation of regional compliances, in the healthy and diseased regions of
the lungs. We have shown that a two-region model is more accurate with respect to the data than a
one-region model, since more optimization degrees of freedom are present in a two-region model.
Based on our study, in most cases the definition of two regions matching with the disease seg-
mentation also brings better results than the definition of two random regions, which is a promising
result. However, more data is needed to further substantiate this finding.
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Regional homogeneity. We assumed homogeneous material properties in each region. Note
however that, as already mentioned in Section 2.2.2, in the case of rescaled potentials the actual
behavior is heterogeneous due to the porosity field extracted from the images. Nevertheless, this
assumption could be further studied by defining several regions for the control subject or by defining
several healthy and diseased regions for the patients. Then, the variability of estimated material
parameters in each region would give information about the lung inhomogeneity.

Parameter optimization. If inverse problems are generally ill-posed, the one formulated in the
proposed personalization procedure has relatively few parameters (one for controls, two for pa-
tients) and relatively large data (the full displacement field or image) so that parameter convergence
was always smooth and fast. Nevertheless, a fully quantitative analysis of parameter identifiability
would help to gain confidence in the personalization procedure.

Clinical implications. The results obtained in this work are consistent with the current knowledge
of the disease. Indeed, the effective global compliance of the control subject C1 is 1.75 L/kPa,
whereas Galetke et al. [2007] showed that the global compliance of one lung is 1.67± 0.55 L/kPa.
The result has an adequate value, even though it is relative to the non patient-specific pressure of
the model. Then, the personalization for the diseased subjects led to a stiffer diseased region than
the healthy region, which is consistent with the literature [Georges et al., 2007; Booth et al., 2012;
Liu et al., 2015; Haak et al., 2018]. More precisely, when considering rescaled parameters, we
obtained that the solid tissue in the diseased region is stiffer than in the healthy region, which is an
information difficult to measure experimentally. The personalization pipeline allows then to quantify
the stiffening of the organ with the pulmonary fibrosis.

When applied with more patients, stiffening quantification obtained from the personalized model
can be studied in relation to other clinical quantities in order to investigate any correlation. In
particular, stiffening could be linked to the disease severity, either determined by the volume of the
diseased region or Diffusing capacity of the Lung for Carbon monOxide (DLCO), or the disease
decline at six or twelve months.

The finding of a stress concentration at the border of the fibrotic region is also a result of major
clinical interest. It is a first step towards the confirmation of the hypothesis of the mechanical vicious
circle which would govern pulmonary fibrosis. The validation of this phenomenon on more cases
would help to better understand and then predict the disease progress.

Some limitations appeared with the patient P2. The diseased region for this patient appeared
to have a similar or higher compliance than that of the healthy region, which seems inconsistent
with what is known on pulmonary fibrosis. One hypothesis would be that it corresponds to some
specific characteristics of the disease. After further investigations, it is more likely that the cause
comes from the data itself. Indeed, the image registration does not show smaller deformation in
the diseased region. The diseased region is also quite small (about 7% of the total volume), very
discontinuous and not significantly thick compared to the element size, as can be seen in Figure 9.
A finer mesh might be required to analyze patients with such disease patterns.

Experimental validation In order to fully validate the compliances estimated from the images
using our personalized mdodeling procedure, more controlled experiments should be used. Ex
vivo experimental procedures including rich instrumentations have recently been developed for
lung tissue [Richardson et al., 2019; Mariano et al., 2020]. They could be used in conjunction with
in vivo imaging.

5 CONCLUSION
We presented a poromechanical model of the lung, which is personalized to patients using

routine clinical images. Applied on one control and three diseased subjects suffering from idiopathic
pulmonary fibrosis, it allows in particular to quantify the regional pulmonary compliance. The results
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Figure 9: Details about the patient P2 to understand the related results. (a) Distribution of the local variation
of volume J for each region. In the healthy region, Jhealthy = 1.13 ± 0.15, whereas in the diseased region,
Jdiseased = 1.32±0.42. (b) Visualization of the regions in a plane: the blue part is the healthy region, whereas
the red part is the diseased region.

are consistent with the knowledge of the disease, especially as regards the stiffening of the fibrotic
regions. The estimation process brings information about regional compliances, which are not
available in vivo. This work brings a proof of concept and still needs to be applied with more
patients before being used in clinical routine for diagnosis purposes. A first step towards a better
understanding of the IPF physiology is also provided by the evidence of a stress concentration at
the border of the fibrotic zone, which would confirm the hypothesis of the mechanical vicious circle
underlying IPF progress. In the longer term, this personalized model could be used with longitudinal
data to study the prognosis of the disease, as well as the mechanical impact of drugs.
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C., Faivre, J.-B., Ferreti, G., Just, N., Kouzan, S., Lebargy, F., Marchand Adam, S., Philippe,
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Sisson, T. H., Horowitz, J. C., Rosas, I. O., Fredenburgh, L. E., Feghali-Bostwick, C., Varelas, X.,
Tager, A. M., and Tschumperlin, D. J. (2015). Mechanosignaling through YAP and TAZ drives
fibroblast activation and fibrosis. American Journal of Physiology-Lung Cellular and Molecular
Physiology, 308(4):L344–L357.

Liu, F., Mih, J. D., Shea, B. S., Kho, A. T., Sharif, A. S., Tager, A. M., and Tschumperlin, D. J. (2010).
Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. The Journal
of Cell Biology, 190(4):693–706.

Lo, P., van Ginneken, B., Reinhardt, J. M., Yavarna, T., de Jong, P. A., Irving, B., Fetita, C., Ortner,
M., Pinho, R., Sijbers, J., Feuerstein, M., Fabijanska, A., Bauer, C., Beichel, R., Mendoza, C. S.,
Wiemker, R., Lee, J., Reeves, A. P., Born, S., Weinheimer, O., van Rikxoort, E. M., Tschirren,
J., Mori, K., Odry, B., Naidich, D. P., Hartmann, I., Hoffman, E. A., Prokop, M., Pedersen, J. H.,
and de Bruijne, M. (2012). Extraction of Airways From CT (EXACT’09). IEEE Transactions on
Medical Imaging, 31(11):2093–2107.

Logg, A., Mardal, K., and Wells, G. (2012). Automated Solution of Differential Equations by the
Finite Element Method: The FEniCS Book. Lecture Notes in Computational Science and Engi-
neering. Springer Berlin Heidelberg.

Mariano, C. A., Sattari, S., Maghsoudi-Ganjeh, M., Tartibi, M., Lo, D. D., and Eskandari, M. (2020).
Novel Mechanical Strain Characterization of Ventilated ex vivo Porcine and Murine Lung using
Digital Image Correlation. Frontiers in Physiology, 11:600492.

Patte, C. (2020). Personalized pulmonary mechanics: modeling, estimation and application to
pulmonary fibrosis. PhD thesis, Inria, École Polytechnique, France.
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