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TOWARDS A L, COHOMOLOGY THEORY FOR HODGE
MODULES ON INFINITE COVERING SPACES: Lo
CONSTRUCTIBLE COHOMOLOGY AND L, DE RHAM
COHOMOLOGY FOR COHERENT D-MODULES.

PHILIPPE EYSSIDIEUX

ABssTrACT. This article constructs Von Neumann invariants for constructible
complexes and coherent D-modules on compact complex manifolds, general-
izing the work of the author on coherent La-cohomology. We formulate a
conjectural generalization of Dingoyan’s La-Mixed Hodge structures in terms
of Saito’s Mixed Hodge Modules and give partial results in this direction.
2020 AMS Classification: 32J27, 32C38, 32Q30, 14C30, 46110, 58J22.
Keywords: Complex manifolds, D-modules, Constructible sheaves, Hodge Mod-
ules, Mixed Hodge Theory, Atiyah’s La-index theorem, Group Von Neumann
algebras, Lo Betti numbers.

This article is an extension of Dingoyan’s Ls-Mixed Hodge theory [17] and a
first step towards a version of Gromov’s influential article on Ké&hler-hyperbolic
manifolds [26] that would apply to singular Kahler varieties.

Gromov found a way to use the Lo-De Rham theory of an infinite Galois covering
space of a compact Kéhler manifold X and obtain algebro-geometric restrictions
if X is Kéhler-hyperbolic, for instance a compact complex submanifold of a neat
quotient of a bounded symmetric domain. This inspired the influential works of
Campana [6, 7] and Kollar [33, 34] masterfully exploiting in Kéahler geometry the
striking ideas of [1] to study compact Kéhler manifolds with infinite fundamental
group. Gromov’s ideas were also extended in [19] to polarized Variations of Hodge
Structures (actually to harmonic bundles) on a compact Kihler manifold X. They
were also extended in [8, 22] to a theory of coherent Li-cohomology in Complex
Analytic Geometry. Some applications were given, say in [20, 21, 53], and an
extremely striking one was recently found [4].

With applications in mind, the author is interested in further extending the
theory to Mixed Hodge Modules [43].

Let X be a compact complex manifold. Let 7 : X — X be an infinite Galois
covering space with Deck(X/X) =T.

If F* is a bounded complex of C-vector spaces with constructible cohomology
on X we construct, using a classical observation of Kashiwara, cohomology groups
HZ2) ()N(, F*) that coincide in the case F'* = Cx to the La-cohomology of X, see [35].
They obey Atiyah’s Ly index theorem, Poincaré-Verdier duality and are compatible
with proper morphisms of complex analytic spaces.

If M is a coherent D-module on X, we construct, using the construction of [22],
cohomology groups H;:)R,(2)()~(’ M) that coincide in the case M = Ox to the Lo-De
Rham cohomology of X with respect to a Riemannian metric pulled back fom X
and if M =D ®p, F, F being a coherent analytic sheaf with the Ly cohomology
groups H$(X, F @ w%) constructed in [22]. They obey Atiyah’s Ly index theorem.
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We did not check except in the simplest cases whether they are compatible with
proper holomorphic mappings and did not study Verdier duality.

When an isomorphism in the derived category of sheaves rh : F* = DR(M) is
given, M being holonomic, we construct a natural isomorphism rhs; : HZ2) (}? ,F®) =

HEDR,(Q) (Xv M)

These cohomology groups are typically infinite dimensional quotients of Hilber-
tian I'-modules by non necessarily closed submodules. They are also modules over
N(T') the Von Neumann algebra of I'. But one can be much more precise.

Given I' a discrete countable group, the exact category of finite type projective
Hibert I'-modules naturally embeds in a rather simple abelian category Ey(I") due
to Farber [23]| and Liick [35] endowed with a faithful functor to Mod(N(T")). This
abelian category has projective dimension one, its projective objects being finite
type projective Hilbert I'-modules. The preceding L, cohomology groups are in the
essential image of the forgetful functor and the isomorphism rh ) lifts too.

Theorem 1. Let X be a compact compler manifold and X — X be a Galois
covering with Galois group T'. Let MD(X) be the abelian category whose objects
are triples
M = (M _ MDR,P — MBetti,O()

where M is a holonomic Dx-module admitting a good filtration, P is a perverse
sheaf of R-vector spaces and o : P g C — DR(M) is an isomorphism in the
derived category of sheaves and whose morphisms are the obvious ones.

There is a O-functor which, on the Betti side, is compatible with proper direct
images, satisfies Atiyah’s Lo index theorem and Poincaré-Verdier duality:

LydR : D°MD(X) — D E4(T)
and for each M € MD(X) and q € Z functorial isomorphisms in E¢(T")

H(LydR(M)) = HY, (X, MP) = HL o o (X, MPR).

If X is a projective algebraic manifold every coherent D x-module admits a global
good filtration - a fact the author has learned from talks given by B. Malgrange.
The author does not believe admitting a good filtration is an essential restriction
here.

For applications, it seems to be useful to consider the case X is only a compact
complex-analytic space such that one can embed X in a complex manifold Z’.
In that situation, one can construct, taking a regular neighborhood Z of X, an
infinite Galois covering space with Deck(Z/Z) = I and a I'-equivariant embedding
X7 covering the closed embedding X — Z. Theorem 1 extends to this situation
restricting one’s attention to modules on Z whose support is contained in X.

Saito’s category of Mixed Hodge Modules M HM (X) [43] is an abelian subcat-
egory of M D(X).

Corollary 2. Let X be a compact Kihler manifold and X — X be a Galois covering
with Galois group T'.

There is a O-functor which, on the Betti side, is compatible with proper direct
images, satisfies Atiyah’s Lo index theorem and Poincaré-Verdier duality:

LydR : DP"MHM (X) — DE4(T)
and for each M € MHM(X) and g € Z functorial isomorphisms in E;(T")

HY(LydR(M)) = H'(g)()?, MBetti> ) HqDR,(2)(X’ MDR).

These cohomology groups are endowed with a real structure, a real filtration W
coming from the weight filtration on MP and a complex filtration F coming from
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Saito’s Hodge filtration on MPE. These filtrations and real structures are compatible
with morphisms of Mized Hodge Modules.

It is not clear whether these filtrations define a Mixed Hodge Structure. It seems
difficult not to pass to reduced L2-cohomology. Using an idea of Dingoyan [17], we
conjecture:

Conjecture 3. Let N(I') C U(T') be the algebra of affiliated operators. Let M be a
Mized Hodge module (resp. a pure Hodge Module).

U(T) @p(r) HY(X, Lod R(M))

carries a Mized (resp. a pure) Hodge structure in the abelian category of real U(T')-
modules with finite I'-dimension. The restrictions on the Hodge numbers are as in
the compact case.

We will use the notation HY(LydR(M)) "2 H9(X, LydR(M)) whenever it is
necessary to emphasize that M lives on X and that we are considering the covering
space X — X.

We do not understand Saito’s theory well enough to conjecture a similar state-
ment for the derived category of M HM (X).

Theorem 4. Conjecture 3 is true in the following cases:

e There is a closed complex submanfold i : Z — X and a smooth polarized
Q-VSH (Z,V,F,S) on Z such that Ml = M (V) is the corresponding Hodge
Module on X.

o There is an open embedding j : U — X such that X \ U is a divisor with
simple normal crossings and a smooth Q-VSH (X,V, F,S) on X such that
M = Rj.j~'Mx (V).

e There is an open embedding j : U < X such that X \ U is a divisor with
simple normal crossings and a smooth Q-VSH (X,V, F,S) on X such that
M = Rjij~Mx (V).

The first case follows easily from [19]. The second item in case V = Qx follows
from [17] and Theorem 4 could be proved with a slight variation on Dingoyan’s
approach. We nevertheless felt it was helpful to recast Dingoyan’s results in our
language. The third case does not follow from [17]. A more general result holds, it
is enough that the Gry of the Mixed Hodge module is a direct sum of modules of
the form M;(V®).

The general case requires only to be able to settle the case of pure polarizable
Hodge modules. The author believes one can settle this in case dim(X) = 1. The
author hopes the general case will be doable when a proof of the coincidence of the
algebraic and the analytic definition of the Hodge filtration will be available.

The author believes one can endow the reduced L2-cohomology of an infinite
Galois cover of a projective algebraic variety with a functorial U (T")-Mixed Hodge
structure using techniques developped here and cohomological descent [14] and
hopes to come back to this question in a future work. Subsuming Deligne’s approach
into Saito’s is not straightforward [45] and one really needs to exercise some more
care to dare draw this conclusion.

The recent preprint [18] suggests an extension of the theory for twistor Dx-
modules might be possible.

The article is organized as follows. The first section constructs L,-constructible
cohomology. The second section constructs L, De Rham cohomology for coherent
D-module on complex manfolds. The third section reviews some facts on the ho-
mological algebra for N(I')-modules and about U(I'). The fourth section lifts the
La-cohomology theory to E¢(I') and finishes the proof of Theorem 1. It gives a
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statement of a refined form of Conjecture 3 in terms of the reduced L? cohomology
of Mixed Hodge Modules and a brief treatment of the singular case. The fifth sec-
tion studies analytic L? Hodge decomposition in the Kahler case. The sixth section
gives a proof of Theorem 4. An appendix gives more details on some technical
facts the author prefered not to include in the text. A final section indicates briefly
how using the algebra of affiliated operators simplifies the theory in [22] and gives
a version of Theorem 1 valid without good filtrations. The reader is referred to
[19, 17] for examples.

The article is a write-up of a project that was started 18 years ago with the
definition of constructible Lo-cohomology in E¢(I'). After [17] appeared, the scope
of the project was extended to include Mixed Hodge Modules. The author has given
a handful of seminar and conference talks on this project during these years and
wishes to apologize for not having made a text available. At some point, it was a
work in collaboration with P. Dingoyan, who withdrew from the projet. The author
would like to address special thanks to him for many enlightening discussions.

The author also thanks P. Bressler, S. Diverio, S. Guillermou, F. Ivorra, B. Jean,
W. Liick, J. Tapia and C. Sabbah for valuable discussions, some of them 20 years
ago, on topics related to this article.

1. CONSTRUCTIBLE L,-COHOMOLOGY

In the following 1 < p < 400 will be a real number. No applicable results will be
lost if one restricts oneself to the case p = 2. We also let Q € K C C be a subfield
of the complex numbers.

1.1. Equivariant constructible sheaves on I'-simplicial complexes. In this
section, we recall basic well-known definitions, cf [32], chap. VIIL.

Let I" be a discrete countable group. Let T be a paracompact topological space
endowed with an action of I' (by homeomorphisms). We denote by Modr(K7r),
the category of I'-equivariant sheaves of K-vector spaces !. Let A be an abelian
category, we also call D?(A) its bounded derived category®. We use the shorter
notation DY (T) := D*Modr(K7). We shall drop dependance on K when K = C.

A T-simplicial complex S is a locally finite simplicial complex endowed with a
proper left action of T', i.e. S = (5, A, i) where S is a non-empty set endowed with
an action of I' i : I' — &(S) and A is a set of non-empty finite subsets of S, the
simplices of S such that:

e For every element s of S, the singleton {s} belongs to A.

e For every element o of A, any non-empty subset 7 of o belongs to A.

e For every element s of S, the subset of A consisting in the simplices con-
taining s is finite.

e I preserves A.

e [ acts on S with finite stabilizers.

Obviously, I' acts on A with finite stabilizers and I" acts properly on the topolog-
ical realization |S| of S. |S| is a closed subspace of R® (endowed with the product
topology) decomposed as |S| = Uyea|o| where

lo| = {z e R%|z(p) = 0if p & 0, z(p) > 0if p € o, Zx(p)zl}.

pEoT

Say S is finite dimensional if sup,c A Card(o) < co. Say S is cocompact if it is
finite dimensional and I'\ S is finite. In this case, I'\ A is finite and I'\|S| is compact.

LA compatible action of I on a sheaf S is a continuous action on Et(S) the espace étalé of S
such that the canonical local homeomorphism Et(S) — T is I'-equivariant.

2There is no need to restrict to the bounded derived category until section 4.2, but we will not
pursue more generality.
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A T-equivariant sheaf of K-vector spaces F on |S| is weakly S-constructible sheaf,
resp. S-constructible, if for every simplex o, z‘;l‘F is a constant sheaf®, resp. and
for every x in [S|, F; is of finite dimension. The abelian category of S-constructible
(resp. weakly S-constructible) equivariant sheaves will be denoted by Consg 1 (S)
(resp. wConsk r(S)) A complex of I'-equivariant sheaves F'* with bounded co-
homology (i.e.: an object of D2(|S|)) is called S-constructible (resp. weakly S-
constructible) if its cohomology sheaves H7(F*®) are S-constructible (resp. weakly
S-constructible). S-constructible complexes (resp. weakly S-constructible com-
plexes) are the objects of a full thick triangulated subcategory D§_07K7F(|S|) (resp.

Dy, —s—cx.r([SI)) of Dic p(ISI)-

Proposition 1.1.1. Let S be a finite dimensional I'-simplicial complex. Then the
natural functors

D*(wConsk,r(S)) = D, _s_. x.r(IS]), D°(Consk,r(S)) — DE_. k. r(SI)
are equivalences of triangulated categories.

Proof: The proof of Theorems 8.1.10 and 8.1.11 p.326 in [32] (which is the
special case where I is the trivial group) applies here mutatis mutandis. Actually
if the action of I is free we can use the natural equivalence of categories between
the various categories of I'-equivariant sheaves on [S| and of sheaves on T'\|S| to
formally reduce the statement to [32, Chapter VIII|. O

1.2. Ly,-cohomology for equivariant constructible sheaves. The case of
simplicial complexes. Let S be a finite dimensional I'-simplicial complex. Con-
sider the natural quotient map = : [S| — T'\|S|. It is easy to see that m the direct
image with proper support is exact on S-constructible sheaves 4. On the category
of equivariant S-constructible sheaves, m factorizes through the category of sheaves
of left KT-modules on T'\[S].

The left and right regular representations, denoted by A and p, on the set I,,I" of
complex valued functions (a,),er defined on I' such that 37 |a[P < oo defines
a bimodule over CI'. We call RI,I" the right I'-module attached to p. In particular,
given a sheaf F of left KI'-modules on a topological space T, the tensor product
RI,I' ® gt F is a sheaf of left CI-modules. It is actually a sheaf of W; ,(I')-modules
where W ,(I') is the bicommutant of A(ZI') in the algebra of continuous linear
endomorphisms of [,I.

Lemma 1.2.1. The functor F — Rl,I' @ gr mF' is exact on Consg r(S).

Proof: Since C is a K-vector space it is flat over K and m commutes with ® xC.
Hence, it is enough to prove exactness of F¢ — Rl,I' ®cr mFc on S-constructible
equivariant sheaves of C-vector spaces. Since the stalk at p € T'\|S| of mF¢ is
isomorphic to C[I'/ Hz)®™ where n is a nonnegative integer and Hj is the stabilizer
of some lift p € |S] of p, it follows that it is a projective module over CT". Indeed,
whenever H is a finite subgroup of T', the pull-back injection i : C[I'/H] — CT’
has a right inverse m((ay)~er)y = m > hem Ggn Which is equivariant for the
left action of I'. Exactness follows from the facts that stalks of tensor products are
computed stalkwise, that m is exact and that a short exact sequence of projective
modules splits. [

Lemma 1.2.2. The functor F' — Rl,I'’ @ xr mF is exact on Modp(K‘g‘).
3Whenever Z is a locally closed subset of X, we denote by iz : Z — X the resulting embedding.

41t is a direct consequence of [32] Proposition 8.1.4 p. 323 in case the action is free. The
general case is easily taken care of by a barycentric subdivision argument.
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Proof: The above proof also works with a minor modification for all sheaves of
K-vector spaces. [

Definition 1.2.3. Let F* be an object of D*(Cons r(S)). Its kth L,- hypercoho-
mology groups is the W ,(I')-module

HY, (IS], F*) := H*(T\[S|, R,T @ xr mF*).

Lemma 1.2.4. The composition of the derived functor of H*(|S|, —) and of Rl,I' @ g
— gives a O-functor ® of triangulated categories

¢, (IS, =) : D"(Consk r(S)) — D*(Mody, 1)),

where Modyy, () stands for the category of left Wi p(T')-modules such that the L,-
hypercohomology groups are its cohomology objects.

This definition gives rise to the long exact sequence attached to a short exact
sequence and to various spectral sequences generalizing it.
Thanks to lemma 1.2.2, we also get:

Lemma 1.2.5. The same formula as in definition 1.2.8 defines an extension of
H,) (IS], =) to a O-functor

() (IS, =) : D p(IS]) = D*(Modw, ,(ry).
We don’t use a different notation hoping this will not cause any confusion.
1.3. The subanalytic case.

1.3.1. Subanalytic stratifications and constructible sheaves. A subanalytic® I'-space
is a I'-space that can be realized as a locally closed I'-invariant subanalytic subset
of a real analytic manifold endowed with a proper real analytic action of I'. A
stratified subanalytic space X is a subanalytic space X = IX| endowed with a
locally finite partition X = U;X; in disjoint subanalytic submanifolds satisfying
X; N )_(j #+0) = X; C )_(j. A stratified subanalytic I'-space X is a proper analytic
action of ' on X = IX| such that for every g € T" and every point z € |X| the germ
at = of the stratification is carried by g to the germ at gx of the stratification. When
the stratification comes from a I'-simplicial complex, one calls it a triangulation.
Proposition 8.2.5 in [32] implies that, in the cocompact case, any I'-stratification
may be refined to a I'-triangulation and that the I'-triangulations form a cofinal
system with respect to refinement.

The obvious extension of the definitions and notations of section 1.1 will be left
to the reader, the only change being that X-constructible sheaves on |X| are now
assumed to be locally constant along the strata of X. N

Let X be a subanalytic I'-space. A sheaf of K-vector spaces F' on X is called
constructible if it is constructible with respect to some subanalytic stratification of
X. We denote by RConsKI()N( ) the category of equivariant constructible sheaves
on X and by DZI)(,]RC,F(X> the thick full subcategory of Dl}(’r(f() consisting of com-
plexes with bounded constructible cohomology. Theorem 8.4.5 in [32, p. 339] is
easily generalized to

Proposition 1.3.1. The natural functor D*(RConsk (X)) — D%, 5 (X) is an
equivalence of triangulated categories if X is cocompact.
5Asin [28, p. 22], a O-functor of triangulated categories is an additive functor which commutes

with the translation functor and respects distinguished triangles.
6Actually, ‘definable in a o-minimal structure’ is the natural hypothesis.
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1.3.2. Constructible Ly-cohomology.

Proposition 1.3.2. Let X bea cocompact subanalytic I'-space. Let F* be an object
of DD%_C7K7F(X). Its kth L,-hypercohomology groups is the Wy ,ry-module

H{, (X, F*) := H*(D\X, RI,I @ xr mF*).
There is a O-functor of triangulated categories
Zp) (‘)’Z’ _) : D]%—C,K,F()’Z) — Db(MOdWl,p(F))’
where Modyy, vy stands for the category of left Wi ,(I')-modules such that
HE,) (X, F*) = H*(H{, (X, F*)).

Proof: We can replace D%_C,K,F(Jz) by D’RCons p(X) since the natural func-
tor is an equivalence by Proposition 1.1.1 and Rl,I'®xr mC® — is exact by Lemma
1.2.5.

Since DbRConsK,p(X) is the limit of its full subcategories DbConsKI(X)7 X
running through all subanalytic I'-triangulations, this follows from definition 1.2.3.

O

1.4. Complex Analytic case. We assume here K = C and drop K from the
notation. _

Assume from now on that X is a cocompact complex I'-space. The relevant
stratifications are complex analytic stratification (by definition, a subanalytic strat-
ification is complex analytic if so are the closures of the strata) and we say that an
equivariant sheaf is constructible if is constructible with respect to some complex
analytic stratification and that a complex of equivariant sheaves is constructible
if so are its cohomology sheaves. Then Conslﬂ()z ) is a full abelian subcategory of
RConsp (X) stable by extensions, Dgp()} ), the full subcategory of D%CVF()? ) whose

cohomology objects are in Consr(X), is a thick triangulated subcategory and we
have a natural 0-functor

D'Consr(X) — DY (X).

Remark 1.4.1. This functor is an equivalence of categories zf)? is a Galois topolog-
ical covering space of the analytization of a complex projective variety using GAGA
and [39].

Definition 1.4.2. We can restrict Hf | (X, —) to D! (X) to get the constructible

(P)
L,-cohomology functor:

¢ (X, =) : DL p(X) = D" (Mody, ,r))-
An important special case is L,-intersection cohomology.

Definition 1.4.3. Let Z be a singular compact complex space and T : Z — 7 its
ungversal covering space. Its k-th intersection L, cohomology is the Wy ,(T')-module

H’(“p)(z, 7 YIC%) where ICY is the intersection cohomology sheaf of Z |2].

The initial impetus for this work was to formulate the following:

Conjecture 1.4.4. Ifp =2, and Z is a closed analytic subset of a compact Kdahler
hyperbolic manifold then H?Q)(Z, 7 YIC%) = 0 for k # dim(Z).
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1.5. Real structures. The algebra W, ,(I') carry a real structure, namely a con-
jugate linear algebra involutive automorphism t, and a real structure on a module
over W, ,(T') is just a conjugate linear automorphism on the underlying C-vector
space compatible with {. For instance [,I" has a real structure.

Modules with real structures form a R-linear abelian category Modw,  (r)r
which has an exact faithful forgetful functor to Modw, (r)r and if K C R the

functors of Proposition 1.3.2 and Definition 1.4.2 lift to Db(ModWlwp(p)yR).

2. LP-COHOMOLOGY AND DIFFERENTIAL OPERATORS FOR COHERENT SHEAVES

2.1. Coherent LP-cohomology. Let X be a complex manifold and let Ox (resp.
Dx) denote its structure sheaf (resp. the sheaf of holomorphic differential opera-
tors). Let 7 : X — X be a Galois topological covering space and I' = Gal()?/X)
be its Galois group, acting on X on the left.

If R is a sheaf of rings on X, denote by Mod(R) the abelian category of sheaves
of left R-modules by Homgp its group of morphisms and by Hom, the internal Hom
bifunctor on Mod(R). When considering right R-modules, we use the notations
Mod(R?), Homge, Homp.. If R is a ring then we denote by Rx the sheaf of
rings of locally constant functions with values in R.

Denote by Coh(Ox) the full abelian subcategory of Mod(Ox) whose objects
are the coherent analytic sheaves of X. Denote by Coh(Dyx) (resp. Hol(Dy)) its
the full abelian subcategory of Mod(Dx) whose objects are the coherent (resp.
holonomic) Dx-modules. A Ox-module is quasi coherent if it is locally the limit
of its coherent submodules.

For every p € [1,+o0] and F a coherent analytic sheaf on X, [22] (see also [8])
constructs a subsheaf (P, F C m,m~'F which can be described locally as follows.
Choose ¢ : OE’EN — F a presentation of F on a Stein open subset U such that
7 Y U) =T x U then:

Pr.F(U) = {(5y)yer € F(U)', 35, € OFV(U)', o(s,) = s, and
VK €U Z/ |s4|P < +00}.
ver’ &

The independance on ¢ is checked in [22]|. Given ¢ : F — F’ a Ox-linear morphism
of coherent sheaves

T Y mer L F = mor LF
maps [P, F into (Pm,F’. Denote by Pm,¢ : IPm,F — [Pm,F’ the restriction of
7w t¢. The resulting functor IPr, : Coh(Ox) — Mod(W,,(I') ®c Ox) is exact
[22] and one can define

H$,(X,F) := H (X, "1, F).

Since H{, (X, F) =0 for ¢ > dimg(X) (at least when X is compact) this yields
a good cohomology theory on Coh(Ox), indeed a a d-functor
D"Coh(Ox) — D" Mody, ,(r).-
Observe that if F is coherent [P, F = IP1,.Ox ®o, F. Hence, the functor [Pr,
extends to D’(Mod(Ox)) setting IP7.L := IP1,0x R0, L thanks to:
Lemma 2.1.1. The functor IPm, = P1m,Ox®p, is exact on Mod(Ox).

Proof: The problem is local. Since this functor is exact on Coh(Ox), it follows
from the fact that tensor products of sheaves commute with taking the stalks [24,
p. 137] that Tor?x’m((lpmox)x, Ox /1I;) = 0 for every (finitely generated) ideal
of Ox 4. Hence (IPm,.Ox), is a flat Ox z-module and exactness follows applying
[24, p. 137] once more. O
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It should however be noted that if a sheaf F has two different Ox-module struc-
tures, say F; and F3, it may be the case that [Pw,F; # [Pm.Fo as subsheaves of
T A F = mem Y Fy = mun L F.

Remark 2.1.2. There is a natural structure of left Dx-module on IPw,Ox hence
IPm, gives rise to an exact endofunctor of Mod(Dx). When T is infinite, it does
not preserve the full subcategory of coherent or quasicoherent modules.

2.2. Differential operators. We need to check that differential operators between
quasicoherent analytic sheaves preserve [Pr,.

Recall from [42] that for £, £" two Ox-modules Diffx (£, £) is the image of the
natural injective morphism:

Hompe (L ®0y Dx,L @0y Dx) — Homcy (L, L")
given by the composition of the natural adjunction
Hompg( (ﬁ ®oyx Dx, L ®ox Dx) = Homo, (,C, L ROy Dx),

L' ®0, Dx being endowed with the right Ox-module structure, with left compo-
sition by the natural C-linear (actually left Ox-linear) morphism

Vet L' ®ox Dx — L

which maps £ ® P to P(1)¢. One has v = L' ®0, Vo, where vo, : Dx — Ox
is the naturel left Dx-linear (hence left Ox-linear) morphism mapping P € Dx to
P(l) € Ox.

Lemma 2.2.1. Assume L' is quasicoherent. Let (L' ®o, Dx); resp. (L' @0y Dx)r
the left resp. the right Ox-modules structures of L' @0, Dx. Then:

P71, (L' @0y Dx)i = P7.(L' @0y Dx), C e L' @ Dx.

Proof: Let us begin by treating the case where £’ = Ox. Then both I” (7. (Dx))s,
# = [, r are the increasing union of the subsheaves (P, (FkDX)ﬁ where F.Dx is the
sub-O x-bimodule consisting of the holomorphic differential operators of degree < k.
Hence it is enough to show that P7,(FyDx); = IPm.(FrDx),. The problem being
local assume we have a coordinate system on an open set U such that 7= }(U) ~
I'x U. A section of m,m ™' FyDx of the form (3, <, fa,y0%) is in I?(m.(Dx)) iff,
forall K € U, 37, [, 3, [fay[P < 400 whereas a section 7.7 LF,Dx of the form
(X jaj<k 9%9asy) is in IP(m (Dx)), iff, for all K € U,

S [ Y lganl < o
vy YK o

Since 9%g = g0* + 3 5, P3.0(g)0% where P, is a universal differential operator,
the Cauchy inequality gives

J; 2 anl” < Crire /s 2 lonal

if K’ € U is a compact neighborhood of K. Whence the inclusion P7.(FyDx); C
P (F;Dx)r. The reverse inclusion follows by the same token.

This implies the lemma for £’ a free Ox-module of possibly infinite rank.

Now, for the general case. The statement being local, we may choose ¢ :
OF — L’ a presentation, N being some cardinal. The definition implies that
P (L' @0 Dx)y € e L' ®0, Dx is the image by w71 of IPm, (O ®0 . Dx )y
in m,m L' ®o, Dx. The lemma follows. [J
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Lemma 2.2.2. Under the hypothesis of Lemma 2.2.1, let P € Diffix(L, L") and
let pe Homoy (L, L ®oy Dx) be the unique right Ox -linear morphism such that
P=vg op. Then

PP = Vppr, o 0 Pmyp : IPm L — IPm, L

is the restriction of m.m'P and defines a W ,(I') @c Ox-linear morphism of
sheaves.
The assignement P +— [Pm, P defines an additive functor
P7,. : Qcoh(Ox, Diffx) — Mod(VVlyp(F)X)
where Wl,p(F)X is the constant sheaf with constant value Wi ,(I") and Qcoh(Ox, Diffx )

is the additive category whose objects are quasi coherent Ox-modules and whose
morphisms are differential operators.

Proof: The definition makes sense thanks to lemma 2.2.1. The statement is thus
an easy consequence of the definition and of the properties of I[P, described above.
O

2.3. L, De Rham cohomology. Let M be a (quasi) coherent Dx-module viewed
as a Ox-module endowed with a flat connection V : M — M ®p, Q2%. The De
Rham complex of M defined as:

DRM) = (M3 M &0, Ok % Moo, 0% — ...)[dim X]

is a complex in Qcoh(Ox, Diffx). Applying the functor {Pm, we define the L? De
Rham complex [Pm, DR(M) and the LP De Rham cohomology:

Hpp 1o (X, M) := H* (X, IPm. DR(M)).

We will not try to put more structure than the natural W ,(I')-module structure
on these general LP cohomology groups.
The LP De Rham constructible cohomology groups come from a d-functor

Hpp v, : D'(Coh(Dx)) — D*(Mody, ).
Example 2.3.1. If F is a quasi coherent Ox-module,
H g 10(X,Dx @0y F) = H (X, F @ wx).

Proof: The natural augmentation € : Dx ®o, F Qo wx — F ®o, wx gives
rise to a quasi-isomorphism DR(Dx ®o F) = F @0y wx. Locally it is a Koszul

complex for the regular sequence (9y,,...,0s,). The same is actually true for its
IP7, and we get a quasi-isomorphism Pm,DR(F) g Pr.F Qo wx. O

Example 2.3.2. Denote by (P7.Cs C m,Cg the locally constant sheaf of Wy ,(T')-
modules attached to the right regular representation of I' in LPT'. Let V be a finite
rank complex local system on X and V be the Dx-module whose underlying finite
rank locally free Ox-module is V ®c,, Ox and holomorphic connection V so that

the natural morphism o : V. — V represents ker(V).
Then Hyp, 1,(X,V) = H+m) (X 107, C g @c, V) = HpH (X, v).

Proof: Left to the reader. OJ

Remark 2.3.3. With the notation of Remark 2.1.2, Pm,DR(M) = DR(IPm,. M).
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2.4. Compatibility to the Riemann-Hilbert correspondance.

Remark 2.4.1. The natural sheaf monomorphism ir : £Pm.Cs®cy Ox — Pm.Ox
is not an epimorphism. One would need a completed tensor product of sheaves in
locally convex topological vector spaces we will not try and discuss.

Proposition 2.4.2. Let M be a holonomic Dx-module. Then the natural map
RIPT ®@cr mm *DR(M) — IPr,DR(M) is a quasi-isomorphism.

Proof: The problem is local. Thus, we can assume M has a good filtration
F. Then F DR(M) is a filtration of DR(M) by differential complexes of coherent
sheaves. For ¢ > 0 F;DR(M) — DR(M) is a quasi-isomorphism [42, Lemma
1.14] (see also [3, Lemma 1.5.6 p. 31]). Hence it is enough to prove that RI’T ®cr
mr L E,DR(M) — IPm,F,DR(M) is a quasi-isomorphism for such a ¢ > 0.

Thanks to the Kashiwara constructibility theorem? [30, 36|, the cohomology of
F,DR(M) is constructible. Choosing U appropriately such that it is Stein and

HY(U,H (DR(M))) =0

for ¢ > 0. Note that the kernel and images of the differentials in F, DR(M) have
also vanishing cohomology in positive degree on U.

We have to show that every element z of Ker(d) : F, 1 pMRQ*(U) = Fy 111 M®
QFL(U) can be decomposed as a sum z = dt + g(h(z)) where

g:H"(F,DR(M)) — Ker(d) C Fyi 1M
is a section over U of the morphism of sheaves
h:Ker(d: Fpu M@ QF = FiipiiM @ QMY — HE"(DR(M))

and ¢ a section over U of Fip_ 1M ® OF~1 with local LP-estimates.

This means the following. The Fréchet structure of G(U) where G is coherent is
given by an inverse limit of a countable family of LP norms (|| — ||)nen defined by
integration on an exhaustive family of compact subsets of U if the sheaf is locally
free, of quotient norms of such L, norms in a locally presentation of the sheaf in
general [22]. A local L? estimate is then, for all n € N, a series of estimates of the
form:

[tlln < Cr-[2ns

for some n’ € N.

This follows from the continuity of d for this Fréchet structure, the fact that a
continuous operator of Fréchet spaces has closed range if it has a finite dimensional
kernel and the open mapping theorem for Fréchet spaces using a standard argument
(cf. e.g. [22, pp. 534-535]). O

Corollary 2.4.3. The natural map i, induces a natural invertible transformation
of functors on Hol(Dx):

. = > retdime(X
Thp) :HDR,LP(Xa_)HH(;; <X(X,DR()).

Remark 2.4.4. As in section 1 we may work in the more general set-up of a proper
action of I on a complex manifold X with cocompact quotient or even restrict our
attention to cocompactly supported equivariant coherent Dx or Ox-modules.

"Which is used implicitely in the statement of the proposition.
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3. FARBER’S ABELIAN CATEGORY AND ITS LOCALISATION

Up to this point, we were working with LP-cohomology. Now, it is time to admit
that unless p = 2 the objects we constructed are out of control.

We will change our notations and define A'(I') = W, o(T") and survey some rele-
vant homological algebraic aspects of modules over this operator algebra.

3.1. Hilbert I'-modules. Let us first briefly review a very nice construction due
to Farber and Liick [23]. For a longer review adapted to our purposes, see [22,
pp.539-544]. For a complete review including applications in topology and algebra,
see the bible of the subject [35].

Definition 3.1.1. A Hilbert T'-module (resp. of finite type, resp. separable) is a
topological C-vector space with a continuous I'-action which can be realized as a
closed T-invariant subspace of 12T ®H where H is a Hilbert space (resp. of finite
dimension, resp. separable).

Lemma 3.1.2. The action of CI' on a Hilbert I'-module E extends uniquely to an
action of the C*-algebra N'(T') in such a way that the image of N(T') is strongly
closed in B(E).

Proposition 3.1.3. The following categories E¢(I') C E(T) :

e Objects of E(T') are triples (E1, Ea,€) where Fy et Ey are Hilbert T'-module
and e continuous I'-equivariant linear map.
o Hompm((E1, Fy,e), (F1, Fy, f)) is the set of pairs (¢1 : E1 — Fi,¢2 :
Ey; — F) of continuous T'-equivariant linear maps such that ¢gae = foéy
under the equivalence relation (¢1, ¢2) ~ (¢}, d5) < IT € Lr(FEs, F1), ¢h—
¢2 = [T
o E¢(T) is the full subcategory of E(I') whose objects (Ev, Ez,¢e) have the
property that Ey is of finite type (E1 is then also of finite type).
are abelian categories of projective dimension one. The forgetful functor ® from
E(T) to the category of N(T')-modules defined by ®((E1, E2,¢e)) := Ea/e(E1) is
faithful, respects direct sums, kernels and cokernels and is conservative.

Proof: See [22]. The main point is that the proof in [23] does not require finite
type. O

Remark 3.1.4. It is not clear to the author whether the forgetful functor ® is fully
faithful on E¢(T'). It is fully faithful on the full subcategory of projective modules
thanks to |25]. Fully faithfulness would follow if ®(E) was a projective N'(T')-module
whenever E is a finite type Hilbert I'-module but it doesn’t seem to be true.

The following corollary greatly simplifies our treatment:

Corollary 3.1.5. If f* : K* — L*® is a continuous morphism of complexes of
Hilbert T-modules whose terms are in E(T'), hence a morphism of complexes in
EM), f* induces a isomorphism in D(E(T)) if and only if ®(f*) induces an alge-
braic isomorphism in cohomology.

An object X = (E1, Eg, €) of E¢(T') has two basic invariants. Its Von Neumann
dimension dimr X € R depends only on P(X) = E»/eFE; and has properties sim-
ilar to the dimension function of ordinary linear algebra and its Novikov-Shubin
invariant NoSh(X) = (E1,eEq,e).

Remark 3.1.6. (Tapia) This construction of an abelian category is a special case
of |2, pp. 20, 40-41]. Actually Hilbert T'-modules form an exact category, even a
quasi abelian one as follows from [48, section 3.2|, which satisfies the conditions in

[2]. The same holds with N (T")-Fréchet modules.



L%-INVARIANTS OF COHERENT D-MODULES AND HODGE MODULES 13

3.2. I'-Fredholm Complexes. The main nice property complexes of Hilbert I'-
modules can have in general is being I'-Fredholm.

Definition 3.2.1. A bounded complex of Hilbert T'-modules (with a positive inner
product) (C*,dy,) is T'-Fredholm if and only if the spectral family Ef\ldmrd*d satisfies
3X > 0 such that the image of Ey has finite I'-dimension.

This notion depends on the notion of a Fredholm operator given in [35, Definition
1.20, p. 26]. It is invariant by quasi-isomorphisms in E(T") thanks to [35, Theorem
2.19 p. 83] . There is a stronger notion.

Definition 3.2.2. A bounded complex of Hilbert T'-modules (with a positive inner
product) (C*,dy) is strongly T-Fredholm if and only if it is quasi-isomorphic as
a complex in E(T') to another complex (C*, dy) whose spectral family Egd*+d*d
satisfies AN > 0 such that the image of E is a finitely generated Hilbert I'-module.

This is a stronger notion since a finite I'-dimensional Hilbert module need not
be finitely generated (e.g. for I' = Z).

Question 3.2.3. Can one drop the quasi-isomorphism? Perhaps the proof of (35,
Theorem 2.19 p. 83] can be modified using the center-valued trace.

Lemma 3.2.4. The homotopy category of bounded strongly I'-Fredholm is equiva-
lent to D*(Ef(T)).

Proof: Since the full abelian subcategory E¢(I') C E(T") has enough E(T') pro-
jective and both have finite projective dimension 1 : D*(E¢(T")) — D%f(r)(E(F))
is an equivalence.

Certainly a strongly Fredholm complex has its cohomology in E(T').

Quasi-isomorphisms in the homotopy category of complexes in E(T") are exactly
the homotopy classes of morphisms of complexes that are algebraic quasi isomor-
phisms thanks to the exactness of the faithful forgetful functor E(T') — Mody ).

Since strongly Fredholm complexes are complex of projective objects in E(T),
the functor ¢’ from the homotopy category of bounded above strongly I'-Fredholm
complexes to the derived category DYFE(T) is fully faithful and takes its values in
D%f(r)(E (I")). Since ® is an equivalence, whose image is contained in the image of

', 9’ is essentially surjective.
O

3.3. An equivalence of categories. There is a more algebraic approach to E¢(I")
[35, p. 288]. N(T) is a semihereditary [35, Theorem 6.7 p. 239| hence coherent ring.
It turns out that E;(T') is equivalent to the abelian category of finitely presentable
N (T')-modules. But the equivalence in question, denote it by v, is not given by ®.
Indeed it is constructed using the equivalence given by the functor on finite rank
free N'(I')-modules defined by M — I°T @y M. It is not obvious that it is an
equivalence.

There is also a dimension theory for arbitrary A (I')-modules which generalizes
dimpr and more or less reduces the theory of La-Betti numbers and Novikov-Shubin
invariants to algebra. However non zero N (I')-modules of dimension 0 may exist
in sharp contreast with projective Hilbert I'-modules.

3.4. Affiliated Operators. The algebra of affiliated operators U(T") is a flat ex-
tension A (T") € U(T") |35, Theorem 8.2.2| such that U(I')® NoSh(X) = 0 whenever
X is an object in E;(I"). It is a coherent ring, even a Von Neumann regular one. So
that finitely presented U (T")-modules form an abelian category of projective dimen-
sion 0 (all objects are projective!). Furthermore dimr extends to (I")-modules (no
topological structure needed) in such a way that objects of the form U(I") @/ ry E
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where F is a Hilbert I'-module of finite type are finite dimensionnal, dimr being
preserved. In particular, for a complex K*® in E(I'),

HIUT) @ K*) =UT) @pry) HI(K®) = U(T) @nry PHI(K®)).

The author does not know how to use in Complex Analytic Geometry the torsion
information lost in that process. So forgetting about it seems to be appropriate
from a pragmatic point of view.

The relevance of this localization process for Hodge theory is one of the main
ideas of [17]. There, intermediate abelian categories fitting in a succession of exact
functors of abelian categories

Ep(T) " Mod(N(T)) — Mod(N(T)) /7 — Mod(U(T'))
are introduced where 7 is a torsion theory (or an appropriate Serre subcategory).
Here we will only consider the case 7 = 7(r) in the notations of loc.cit.: when it
is possible we will work in E¢(I') and when it becomes necessary we will apply the
functor U(T)Dar(ry-

However, the reason [35] introduces affiliated operators is his [0, 4+oo]-valued
dimension theory for U(I")-modules which enables him to make the theory of L2-
Betti numbers more or less algebraic. This enables one to look at non-locally finite
simplicial complexes like K(T",1) simplifying Cheeger-Gromov’s article [10]. One
has however to do a minimal amount of functional analysis to prove the U(T')-
modules we encounter are finite dimensional or finitely generated projective. This
is why we will not just apply the functor U (I')®r(r) to the construction of the two
preceding sections with p = 2 although it is extremely tempting.

We conclude with the following lemmas:

Lemma 3.4.1. U(T) ®@pr(ry v is naturally equivalent to UT)@rry on Ey(T).

Proof: This follows from the construction of v and of the relation U(I") @ (r)

I°T' = U(T") which in turn follows from the realization of (I") as an Ore localization
of N(T) [35]. O

Lemma 3.4.2. Let E be an object of Ey(T") endowed with 3 filtrations W, F, G. F
and G are n-opposed on Gryy. P(E) if and only if U(L') @nrry F and U(T) @ prry G
are n-opposed on Gry(rygy,wrU(L) @arry £

Proof: Left to the reader. O

3.5. A natural question. The construction of a completely satisfying Lo Mixed
Hodge Theory might be eased by the use of further results from the theory of
operators algebras. A saliant feature of U(T") is that it is self injective which is
exactly, according to a remark in [35], what is needed for neat duality statements.
It would be helpful if the following question had a positive answer:

Question 3.5.1. Assume we have a complex of separable Hilbert T'-modules (or
Fréchet N (T')-modules) whose cohomology is isomorphic as a N(T')-module to the
N(T)-module underlying an object of E¢(T'). Is the complex strongly I'-Fredholm?

3.6. Real Structures. The x-algebras N(I') and U(T') carry a real structure,
namely a conjugate linear algebra involutive automorphism  commuting with the
conjugate linear algebra involutive anti-automorphism * , and a real structure on
a module over these algebras is just a conjugate linear automorphism on the un-
derlying vector space compatible with {. For instance [5I" has a real structure. We
will denote by RE(T") the category of formal quotients of real Hilbert I'-modules.
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4. REFINED L?-COHOMOLOGY

4.1. Finiteness theorem for L? constructible cohomology.

Proposition 4.1.1. Let S be a cocompact T'-simplicial complex. There is a O-
functor H3(|S|,—) : D*(Consk r(S)) — D(E¢(T)) such that, upon composition
with the forgetful functor to the derived category of N(T')-modules ®(H3(|S|, —)) =
H{o) ([S[, =) (cf. Definition 1.2.3).

Proof: First assume that S satisfies the following technical assumption: for every
pair of distinct adjacent vertices p,q € S, ¥(p) # ¥(q) where ¢ : S — T'\S is the
quotient map. In particular, the set of vertices of a given simplex maps injectively
to T'\S. Choose a well-ordering of I'\\S. This provides each simplex o with an order
<, on its vertices such that <, ,=v(<,) and if 7 C 0, <, |, =<;,. This defines a
sign €, , for every pair of simplices 7 C o such that Card(c) = Card(7) + 1, namely
€r,0 = (—1)” where (0,<5) =po < p1 < ... < PCard(o)—1 and 0 — 7 = {p, }.

Let F be an object of Consr(S). For every simplex o, set U, := Uy, |7| and
F, := H°(U,,F). For 7 C o, the sheaf structure gives a map p,, : Fr — F,. Set
CL(S,F) = ®card(o)=p+1Fo and for f. € F,

dfT = Z GT,O'pT,G'(fT)'

7Co,Card(c)=Card(7)—1

This defines a complex of I'-modules C?(S, F).

This complex is actually the Cech complex of mF in the covering (Ug)ger\s
of I'\|S| where we define U, = 7(U(p)) where p € S satisfies m(p) = ¢. Using
Proposition 8.1.4 p.323 in [32], we see that [,I'®@xr CZ (S, F) computes HE,\([S|, F).
In case p = 2; this complex is in fact a complex in Ef(T).

This construction is obviously functorial, and taking the simple complex asso-
ciated to a double complex one would construct the sought-for 0-functor. The
technical assumption on S is not always satisfied, but it holds for the barycentric
subdvision 8S. We certainly have a fully faithful forgetful functor Consg r(S) —
Consg r(8S) and we define a functor between categories of complexes to be s(laI'@ kp
C*(BS,—)). Passing to derived categories, it descends to H3(|S|, —). O

Proposition 4.1.2. Let X be a cocompact subanalytic I'-space.

There is a O-functor Hi (X, —) : D%icVF(X)) — DY(E¢(T)) such that one has
D(H3(X, ) = Hiy (X, ).

This functor enjoys the following properties:

o (Leray spectral sequence) For every proper I'-equivariant morphism f : X -
Y Ho(X,—) and Hy(Y,—) o Rf. are naturally isomorphic functors.
o (Atiyah’s Lo index theorem) If T is fized point free on X
> (=1)f dimp H(X, F*) = Y (—1)" dime H'(D\X, T\ F*).

Proof: As in the proof of Theorem 1.3.2, the first part derives from Proposition
4.1.1. The proof of the additionnal statements is simpler than the proof of similar
statements for coherent cohomology in [22] and will not be given in detail. [

If X is complex analytic, we will restrict Hj(X, —) to D’(Consr(X)). We will
also denote by ﬁg(f( , —) the k-th reduced cohomology functor

H, (X, —) = P(H*(H3(X, -)).

It is a projective Hilbert T-module and one has dimp Hj (X, F*) = dimr ﬁ; (X, F*).
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4.2. Finiteness theorem for L? coherent De Rham cohomology. Assume in
this subsection that X be a compact complex manifold. The L? coherent cohomol-
ogy functor

2,(X,—): D’Coh(Ox) — D"(E;(I))

defined in [22, Théoréme 5.3.8] comes from a C-linear functor denoted by C from a
category A of coherent O x-modules endowed with local locally free presentations
taking values in the so-called ghtf complexes of an additive category MontM od of
so-called Montelian modules which contain E(T") as a full subcategory.

The homotopy category of ghtf complexes of Montelian modules localized with
respect to a specific class of quasi-isomorphisms is naturally equivalent to D®(E(T)).

The resulting functor C*(A) — DP(E;(T)) factors through D°(Coh(Ox)).

C is essentially the Cech cohomology of I?7, with respect to some Stein covering
$y of X. Actually, we can choose an appropriate germ at t = 0 of an increasing
family of coverings $; defined for ¢ > 0 such that & = ${y and:

C.(t) = C*(8hy, Pma F) — C* (S, P70, F)

is a quasi-isomorphism for ¢’ < ¢. Then C(F) = (Cx(t))i>0 up to some inessential
auxiliary data. We relegate to an appendix the more detailed discussion of these
auxiliary data.

Lemma 4.2.1. The functor C' extends to C*Coh(Ox, Diffx) the full subcategory
of C®M(Ox, Diffx) whose objects are differential complexes of coherent analytic
sheaves as an additive functor.

Proof: Since differential operators between coherent analytic sheaves act contin-
uously on the Fréchet space of their sections, the arguments of [22] apply. O

Recall from [42] that the correct notion of quasi isomorphism in the trian-
gulated category KM (Ox, Diffx) of homotopy classes of bounded complexes in
M(Ox, Diffx) are the differential quasi isomorphisms. We denote by dgi this lo-
calizing class which is a priori smaller than the class gi of sheaf-theoretic quasi-
isomorphisms. The class dqi is needed to invert the De Rham functor and one has
a O-functor

|2 KbCOh(Ox,Diﬁx)dqi — KbCOh(Ox,Diﬁx)qi.

Here KbCOh(OX,Diffx)dqi stands for the essential image of C®*Coh(Ox, Diffx)
(the essential image is a stricly full category).

Corollary 4.2.2. The functor H;, ()?, —) extends to a O-functor

H3(X,—): K’Coh(Ox, Diffx) g — D(Ef (')

such that ® o Hpp (X, —) is naturally isomorphic to H®(X, *m.—).

Proof: This follows from the fact that a complex in E¢(T") is acyclic iff it is
algebraically acyclic by Corollary 3.1.5. [J

We will from now on make a technical assumption, namely that the coherent
Dx-modules we consider admit a global good filtration. A second possibility would
be to work on the category FiltMod(Dx).

Lemma 4.2.3. Let K® ¢ Ob(KbCoh(DX)). Let F be a filtration of K® induc-
ing a good filtration on each term. Then F,DR(K®) — DR(K®) is a quasi iso-
morphism for p > 0 and F,DR(K®) is independant of p > 0 up to a unique
differential quasi-isomorphism hence defines unambiguously an object DR'(K®) of
KbCoh(OX,DiffX)dqi. This assignement is functorial.
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Proof: See [42], in particular for the functorial behaviour of this construction. O

It is tempting to believe that one could work with local good filtrations (actually
with the local presentations inducing them) using simplicial gluing techniques as in
[22, Section 6] but we shall refrain from doing so.

We can thus define a d-functor

tDR : D’Coh(Dx)ooaritc — K Coh(Ox, Diffx)qi
which is compatible to the restriction to D?Coh(Dx) of Saito’s equivalence:
DR : D’Mod(Dx) — K"M(Ox, Diffx)44i
Proposition 4.2.4. The functor
H}po(X,—) = H3(X,~) o tDR : D*Coh(Dx)gooarir — D'(E;(T))

is a O-functor such that ® o HBRQ(;(, —) is naturally equivalent to the restriction
of the functor H},p ;> ()?, -).

Once again, one can define the reduced Lo cohomology of M a holonomic Dx-
module admitting a good filtration (or a complex of such):

HE)RQ(Xa M) = P(HIE)R,2()~(a M))

Remark 4.2.5. When F is a coherent Ox-module, one can form the induced Dx -
module ind(F) := Dx ® F, a coherent Dx -module with a global good filtration, and
there is a morphism of complexes of sheaves DR(ind(F)) — F @ w’% which is a
quasi-isomorphism. We have a natural isomorphism in D°(E(T))

Hp (X, Dx @0y F) = HY(X,F @ w})
where we use the notation of [22| for coherent L?-cohomology.

4.3. L? Poincaré-Verdier Duality. If S be a cocompact (in particular finite
dimensionnal) I'-simplicial complex Consg r(S) can described combinatorially in
terms of the poset (3(S), <) where X(S) is the set of simplices and o < 7 if and

only if ¢ is a face of 7. The partial order is I'-equivariant. Then Consg r(S) is
the category of I'-equivariant functors

(3(S), <) — Finite — dimensionnal K — Vector Spaces.

This is nothing but a reformulation of a part of the construction in the proof of
Proposition 4.1.1. We call the maps F, — F, when 7 < ¢ the corestriction maps
of F' € Ob(Consk r(S)).

Poincaré-Verdier has an explicit combinatorial formulation [52, 47, 12| which is
presented very efficiently in the note [11] and was apparently first observed by A.
Shephard in his 1985 unpublished thesis under R. MacPherson’s direction.

Proposition 4.3.1. Let F be a I'-constructible sheaf. Then its Verdier dual is
represented by the complex of injective I'-constructible sheaves :

DF)=...— P K, 9F L @ K, @F — ...
dim(o)=1 dim(7)=i—1
where

® 1y : 0 — |S| is the closed embedding,

o For everyi €N, DI(F) = @ 15.K, @ F) is placed in degree —i,

e The (1,0) matriz component of O is the tensor product of the transpose of
the corestriction map Fr — F, when 7 < ¢ and the homology boundary
map te+ K5 — 17 K- and 0 if T is not a facet of & .

o V = VV is the usual duality functor on finite-dimensionnal K - Vector
Spaces,
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If F* is a bounded complex of T'-constructible sheaves D(F'®) is represented by the
totalisation of the double complex obtained by applying D.

This proposition gives a lift of Verdier Duality to the category of complexes,
before taking the derived category.

Now if F is a I'-constructible sheaf, we may construct F'V by applying the usual
duality functor and get a I'-constructible cosheaf, namely a contravariant functor

(3(S), <) — Finite — dimensionnal K — Vector Spaces.

We may construct its homology chain complex C,o(S, FV) , concentrated in positive
degrees, and view it as a cochain complex C_4(S,F"Y) concentrated in negative
degrees. These are complexes of projective KT'-modules.

Lemma 4.3.2. There is a functorial monomorphism of complezes of KT -modules:
C_u(S.F¥) = C2(S,D(F))
such that the quotient complex is acyclic.

Proof. The complex C2(S,D*(F)) is the same as
P cG)eF
dim(o)=1

where C*() is the simplicial cochain complex of the closed simples 7.
We have a natural cochain equivalence K[0] — C*(7) sending 1 to the cochain
which 1 on all vertices of . This enables to construct a I'-equivariant cochain

equivalence:
b Fo- @ ce) eF
dim(o)=1 dim(o)=1
which commutes with the natural boundaries by construction. This proves the
lemma since C2(S,D(F')) is the simple complex attached to the double complex
C2(S,D*(F)). O

Lemma 4.3.3. Let F'* be a bounded complex of T'-constructible sheaves, then there
is a functorial map of bounded complexes of projective Hilbert I'-modules obtained
by taking the simple complex attached to

PT @xr C_oS, F*Y) = I°T @1 C2(S,D(F*)).
Proof. Obvious. O

Lemma 4.3.4. Given F* an object of D*(Consk r(S), there is a functorial perfect
duality of projective Hilbert I'-modules

Hy (S|, F* ®x C) ® Hy (S|, D(F*) ®x C) = C
which preserves the natural real structure if K C R.

Proof. This follows from the previous lemma and [35, Lemma 2.17 (2), p. 82]. O

Proposition 4.3.5. Notations of Proposition 4.1.2. There is a functorial perfect
duality of projective Hilbert I'-modules

(X, F* ®x C) @ H, (X, RHom®(F*,w*) ®x C) — C

which preserves the natural real structure if K C R where w® = D(K ) is the
Verdier dualizing complez.

Proof. This is a restatement the previous lemma. (I

Corollary 4.3.6. dimr T, (X, F* ®x C) = dimr H, (X, RHom®(F*,w*) @ C).
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Remark 4.3.7. It is extremely tempting to conjecture that, with the notations of
[22], we have a Lo-Serre Duality theorem for Coherent analytic sheaves on complex
spaces stating that there is perfect duality:

HY(X,F)® Hy (X, RHom$ (F,Q%)) — C,

where Q% 1is the dualizing complex and that this even holds for coherent D x -modules
if X is smooth. Proving this conjecture is likely to be quite technical and does not
seem promising for applications.

4.4. The comparison isomorphism. We need to show that the comparison iso-
morphism which a priori lives is a quasi-isomorphism of complexes of N (I")-module
lifts to a quasi isomorphism of bounded complexes in E(I"). This is not completely
trivial. However, with the notations in Theorem 1:

Lemma 4.4.1. If 3 is a triangulation of X refining a stratification S of X and
DR(M) has S-constructible cohomology, and if P is a bounded complex of ¥ -
constructible sheaves of C-vector spaces then one represent the quasi-isomorphism
a by a morphism of complexes & : P — F,DR(M) composed with the natural
quasi-isomorphism F,DR(M) — DR(M) for some p > 1.

Proof. This follows from [32, Prop 8.1.9]. O

Corollary 4.4.2. If S\l is a finite covering by Oka-Weil domains such that:

e it refines the covering U of X by the stars of the vertices of
e the non empty intersections are contractible,
we have a quasi-isomorphism of N (I')-Fréchet modules, the leftmost two being in

Ep(I): )
C* (U, P) «+— C*(4, P) = C* (4, F,DR(M)).

Now we have a model of Hy p R()? , M which is a bounded complex of finite type
projective Hilbert I'-Modules with a quasi isomorphism:

L* = C*(, F,DR(M)).

Since the left hand side underlies a ghtf complex of Montelian modules, by [22,
Proposition 4.4.14], one constructs a morphism of complexes of projective Hilbert
I'-module which is a quasi isomorphism

C*(y,P)— M*

and is the promised lift of 7y to an isomorphism in D*(E(T)). The functoriality
of the construction is left to the reader. This concludes the proof of Theorem 1.

4.5. La-cohomology of Mixed Hodge Modules. Now, X is a complex projec-
tive manifold.
Let M be a Mixed Hodge Module in the sense of [43]. It is a triple

(M, F, W), (MP, W), a)
where:
(M, F,W) is a bifiltered Dx-module (which is regular holonomic),
(M, F) is a good filtration,
MP is a perverse sheaf over Q,
W is a filtration of MZ in the abelian category of perverse sheaves,
a: DR(M) — M® ®g C an isomorphism in D%(X,C), actually a filtered
quasi isomorphism if the weight filtrations are taken into account.

all these data satisfying some non-trivial conditions.
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Proposition-Definition 4.5.1. We can define in E¢(I'), a real structure and a
real weight filtration W on the N(I')-module H5(X, 7= MP) by taking the image
of the functorial morphism

HE (X, 7' W MP) — HE (X, 7~ 'MP)
and a filtration Fpra on H§R72()~(,M) by taking the image of the natural map
HY(X,FuDR(M)) — HY(X, DR(M)).

Transporting the Fpra filtration by the isomorphism rhy induced by o between
these objects of E¢I', we get a real structure , a real W -filtration, the weight filtra-
tion, and a complex filtration F, which we shall call the algebraically defined Hodge
filtration, on HE(X,M) := HE(X, 7~ 'MP).

There is a perfect duality of the Hilbert T'-modules Hg()?, M) and H{q(f(, D(M)).

Proof. This is a direct application of our construction. The last statement follows
from Proposition 4.3.5. O

The following implies Conjecture 3 in the introduction.

Conjecture 4.5.2. After taking reduced cohomology and closure of W, F, the
real structure, the weight filtration and the algebraically defined Hodge filtration
on HY(X,M) are the constituents of a functorial graded polarisable Mived Hodge
structure in the abelian category RE;(T).

The mized Hodge numbers (namely the dimension of its IP9) obey the same
restrictions as in [13, 14, 43].

If M is pure polarized, L is the cup product by a Hodge class, and S is a polar-
ization defined by the combination of a Saito polarization and Lo-Poincaré Verdier
duality, (B, HY ()?, M), L, S) is a polarized Hodge-Lefschetz in RE(I") in the sense
of [40, Part 0, Chapter 3].

In the rest of the article we will see what can be done in that direction using only
standard results. To establish the Mixed Hodge structure, it is enough to prove
that, after tensoring with /(I"), F' and F' become n-opposed in Gr,, hence that the
tensor product with U(T") is a U(T")-Mixed Hodge Structure thanks to Lemma 3.4.2.
The Hodge Lefschetz structure seems to require that the construction of the Hodge
filtration is compatible with [9][31]. The duality statement survives after tensoring
with U(I") thanks to the duality anti-equivalence on finitely generated U (I")-modules
given by M — MY = Homyry(M,U(T)) (recall that ¢(T') is selfinjective and that
all finitely generated U (T") modules are projective ) the following form:

Lemma 4.5.3. There is natural isomorphism

UD) @pry HE (X, M) — U(D) @pry Hy (X, D(M))Y.
Proof: This follows from Proposition 4.3.5. [

5. ANALYTICAL Ly HODGE STRUCTURES
5.1. Complex polarized VHS on complete Kihler manifolds.

Definition 5.1.1. Let M be a complex manifold. A quadruple (M,V,F-,S) is
called a complex polarized variation of Hodge structure (a VHS) iff V is a flat
bundle of finite dimensionnal complex vector spaces with flat connection D, F" a
deacreasing filtration by holomorphic subbundles of V indexed by integers and S a
flat non degenerate (—1)*-hermitian pairing such that

(1) The C* wvector bundle V associated to V decomposes as a direct sum V =
BptqewHP? with F¥ = &> p HP
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(2) p#r)= S(HP H"®) =0 and (v—1)P~1S is positive definite on HP4
(3) DYOFP C FP=1 @ Q)

The subbundle H?'? can be given an holomorphic structure by the isomorphism
HP4 — FP/FPTL Denote by d;’ the corresponding Dolbeault operator and set
d" = @pdy. D? induces a C*°-linear map Vj, : H?? — HP~h4t1 @ O called
the Gauss-Manin connection and set V' = @,,V;. The Hermitian metric H =
®p(v/—1)P79Syr.a will be called the Hodge metric. The triple (V,d”, V') is a Higgs
bundle.

Following Deligne, we define EP?(V) = Bptr=Pstq=H"? ® E™° and D" =
d’ + V'. One also defines E¥(V) = @, s—r @py H?? @ E™*. Tt follows that
D"EFQ(V) € EPQ+Y(V). Then, see [54], given any Kihler metric wg on M = X,
taking formal adjoints of differential operators with respect to this Kéhler metric
and the Hodge metric on V, the usual Kéhler identities hold.

If furthermore the metric wg is complete then the Dirac operators D" +0", D +
0,... and the Laplace operator Ap = 2Ap» = 2Aps are formally self-adjoint un-
bounded operators on the Hilbert space of Ly forms with values in V see [19, Section
5.1] in this case or [5] and the references therein for the general theory. Thanks to
[16, Chap. VIII, Theorem 3.2], it also follows that the closure of D, D", D’ is given
by the naive ansatz (namely the domain of D is the space of globally Lo forms ¢
such that D¢ taken in the sense of distributions is globally L), the Hilbert space
adjoints of D, D" D" are given by the naive adjoints (namely the domain of 9 is the
space of globally Ly forms ¢ such that 0¢ taken in the sense of distributions is glob-
ally L) and that the Ly decomposition theorem holds replacing images of D, D', D"
and their adjoints by their closure , namely we have an orthogonal decomposition:

LA(X,E*(V)) = H*(X,V) @ Tm(D) @ Im(2),
where H := ker(Ap) is the space of Ly harmonic forms and similarly for D"”.

The Ly De Rham complex L2DR*(X,V) (resp. its Dolbeault counterpart) is
the complex of bounded linear operators obtained by restriccting D (resp. D”) to
its domain. The Ly de Rham cohomology groups ker(D)/DDom(D) (resp. their
Ls-Dolbeault counterparts) are not represented by harmonic forms but the reduced
cohomology groups ker(D)/DDom(D) (resp.) are.

Lemma 5.1.2. The k-th reduced L? cohomology of the complete Kdihler manifold
X with coefficients in the VHS V has a Hodge structure of weight w + k.

Proof. Tt follows from the fact Ap = 2Ap» commutes with the decomposition in
(P, Q) type. O

Lemma 5.1.3. The Hodge-Lefschetz package holds for the reduced L? cohomology
of the complete Kdhler manifold X with coefficients in the VHS V. More precisely
(Hy(X,V),L) is a Hodge-Lefschetz structure polarized by J5% S(=A=)) in the sense
of [40, Part 0, Chapter 3].

Proof. The usual proof applies. O

Since Ap is essentially self-adjoint there exists a spectral decomposition

Ap = / AdE)y
0

where (E))x>o is the spectral family of Ap, an increasing orthonormal projector-
valued function on [0, +oo[ converging strongly to Id . The support of this spectral
projector valued measure dFE) is the spectrum of Ap. Ey is the Hilbert space
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projector on the closed subspace H := ker(Ap) and E) is the projector on the
space of Ly forms ¢ such that:

VneN <ADp,d > A" < ¢, 0> .

The E)\ commute with decomposition in (P, Q)-type and actually with all the op-
erators D, D', D"”.0,...,L,A. The statement that £/ commutes with a differential
operator means in particular that it preserves its domain.

For future use, we record the following more precise notation, for every A > 0:

E¥(X,V) = Im(E\) N L2DR*(X, V).

This gives a subcomplex of the L? De Rham complex:

Ey(X,V)=(...B}(X,V) 2 B Y(X, V) > ).

This first order differential operators have closed range if and only if E. = Ej
for some € > 0 namely if and and only 0 is isolated in the spectrum of the Laplace
operator. This fails for instance on the complex line.

The natural analog of the space of smooth forms in the compact case is the
following subcomplex of LZDR®*(X,V):

L’DR3(X,V) = (@ ) Dom(Ap| 2 (z.r)s D).
k n>0
It is a complex of A/(I')-Fréchet spaces and we have L2DR®_ (X, V) C C°>*(X,V)
by standard elliptic estimates. The same construction works also for the Dolbeault
complex. See [5] for a wider perspective.

Lemma 5.1.4. Assume X' > XA > 0. Then the following inclusions of complezes:

E3(X,V)C E3.(X,V) c L?DRS_(X,V) C L>DR*(X,V).

are quasi-isomorphisms. In fact E;()?,V) is a homotopy retract of the three
other complexes.

The same holds for the L?-Dolbeault complex of a TI'-equivariant holomorphic
hermitian vector bundle.

Proof: Define g = [\ n~'dE,. Then g, a continuous linear operator, preserves
all the 4 complexes above and so does h = 0g. Now, one has [D,h] = Id — E. The
proof works for the Dolbeault complex too, using the Dolbeault laplacian and d”.
[l

Hence E;()? ,V) = L2DR*® ()? , V) is an isomorphism in the derived category of
the abelian category of formal quotients of Hilbert spaces (aka separable Hilbert
{1}-modules). And E3(X,V) — L2DRS (X,V) is an isomorphism in the derived
category constructed in [48].

We endow the 4 complexes in Lemma 5.1.4 with filtration induced by the Hodge
filtration FP = ®p>, EP?(V) on L%(X, E*(V)). This filtration is in each degree a
closed subspace which is furthermore a summand. Actually the first three complexes
are bigraded in the usual fashion.

Lemma 5.1.5. The first two inclusions of Lemma 5.1.4 are filtered quasi-isomorphisms.

Proof: We have to prove that the maps between the F-exact sequences are iso-
morphic at the F; page. The usual proof does work perfectly well for the first three
complexes. Indeed GTFE;()?, V) = (Ear(Ap»),D") and GrpL?DR% (X,V) =
LzDolb;O(f( , V) whose cohomology are isomorphic by the Dolbeault version of
Lemma 5.1.4. O
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Remark 5.1.6. For the third one, it seems to be more delicate. One has:
GrpL?DR%(X,V) G GrpL*DR*(X,V) G L*Dolb*(X, V).

Using "g we get obtain a quasi-isomorphism of the two extreme complexes with
GrrE\(X,V), hence the natural inclusion is a quasi isomorphism between them.
The problem is that 0" g does not seem to preserve GrEL2DR®*(X,V). This group

contains Dom(D") N Dom(D") which is preserved but the inclusion may be strict.

However, the classical case applies without any modification under a strong hy-
pothesis that fails in the simplest case of the universal covering space of a genus
one curve:

Lemma 5.1.7. Zero is isolated in the spectrum of Ap if and only if (Ey,0) C
(Ex, D) is a quasi-isomorphism.

Lemma 5.1.8. If zero is isolated in the spectrum of Ap then:

(1) The decomposition theorem is valid without taking the closure of Im(D),
Im(0d). Namely, Im(D) and Im(d) are L*-closed and:

L*(X, E*(V)) = H*(X,V) & Im(D) & Im(d),

and also we have an equivariant decomposition as a direct sum of closed
Fréchet subspaces:

L?DRF (X,V) = H*(X,V)® D(L?DR*'(X,V)) ® o(L2 DR+ (X, V).

(2) The decomposition theorem for the L? Dolbeault complex is valid without
taking the closure of Im(D"), Im(d").

(3) The decomposition theorem for the L* D' complex is valid without taking

the closure of Im(D"), Im(d).
(4) The D'D" lemma holds. Namely,

¢ € L°DR" (X, V)N Im(D') N Im(D") = 3 € L*DR**(X,V) ¢ = D'D"p.

(5) The Hodge to De Rham spectral sequence of LQDR’;O()?,V) degenerates at
FEy and D is F-strict. _

(6) The Hodge to De Rham spectral sequence of ES(X,V) degenerates at E;
and D is F-strict.

5.2. Polarized VHS on Galois covering spaces of compact Kihler mani-
folds. Let X be a compact Ké&hler manifold and (X,V, F-,S) be a polarized com-
plex Variation of Hodge Structure of weight w. Assume X is a Galois covering space
of X so that its Galois group I' acts properly discontinuously by automorphisms on
()?, 7 wx, 77V, 77 F 771S). Then it is easy to see that all the Hilbert spaces
considered in the previous section are separable projective I'-modules and as such
are endowed with a A/(T")-module structure. Furthermore if the VHS is real the
E) and the De Rham Ly cohomology groups carry a natural real structure. Basic
elliptic theory gives:

Proposition 5.2.1. The L2-De Rham complex L2DR*(X,7~'V) is strongly T-
Fredholm.

Proof: This is essentially in [1]. One can counstruct a I' equivariant parametrix
namely a L? bounded I'-equivariant operator

L?’DR*(X,7~'V) = L>DR*(X, 7 'V)[-1]
such that [D, P] = I — S where S is a smoothing operator. This also follows from

[50] which applies to any elliptic complex (including the case of operators!). For
the reader’s convenience, we will however give an easy argument.
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Let (¢a)aca be a finite family of smooth real functions such that
doea=1
acA
and Supp(¢,) C U, where U, is an open subset of X small enough so that
7Y U,) 2T x U,.
If v € L?DRF ()?, 77 YV), ¢atp identifies with an element with compact support

in L2I'®L2DR*(U,,V) (Hilbert space tensor product) which we may prolongate by
0 to an element ¢,v of L2I'®L?DR*(X,V). By construction the map ®:

L2DRF(X, 7 'V) = (L’D)AQL2DR*(X,V) 1+ ®(1) = (ath)aca

is a I-equivariant Hilbert space isometric (hence closed) embedding.
Let opyp+~ be the symbol of the operator D + D*. For every v in the domain
of D+ D* on L2DRF(X,771V) we have:

(D + D*)¢a1/} = d)a (D + D*)T/f + Wﬁlo—(d(ba)w'

Summing up, we obtain

(D + D*)d|| + K[[¢]l = [Hdpzpa @ (D + D*)(¢ath)acall 2 [[(D + D*)¢|| — K¢
where K = Card(A) maxzex |0z
Assume now ¢ € Ef, (X, 77'V). Then [|(D + D*)¢| < A||¢||. Hence

[1dyrkoe ® (D + D*)(Gat)acall < (A + K)[[Y]..
Introduce the tensor product by Id(z2rya of the spectral projector E, of (v, V :
pri  (LT)AGL2DRM(X,V) — (LT)AQEX(X, V).

Then if \/u > A + K we have Hpr,’j o ®()|| > €l||y]]. for e = V/u— A — K > 0.
It follows that we have a closed embedding of Hilbert I'-modules:

prio®: BY(X, 77'V) - (LT)AQEF (X, V).
Since E;f (X,V) is a finite dimensional vector space by standard elliptic theory it

follows that E’j(}z ,m~1V) is a finitely generated Hilbert I'-module for every A > 0.
We conclude using;:

Lemma 5.2.2. The Ly De Rham and Dolbeault complezes are T'-Fredholm (resp.
strongly) if and only if there exists € > 0 such that E, is a finite T'-dimensinal (resp.
finite type) projective module.

Proof: We leave this exercise to the reader. See [35]. O
O

In the most general relevant case, I' need not act in a cocompact fashion, hence
we have to add the I'-Fredholm hypothesis to state the following:

Lemma 5.2.3. Assume L>DR® ()?, 77YV) is I'-Fredholm. The following inclusions
of complexes:

E3(X, 7" 'V) C Ex (X, 7~ 'V) € L’DR*,(X,n~'V) Cc L2DR*(X, 7~ 'V)

are quasi-isomorphisms of complexes of Hilbert (resp. Fréchet for the third one)
D-modules and define the same element of D®(Ese,(T)) (resp. of the derived cate-
gory of the exact category of N'(T')-Fréchet modules) all of whose cohomology groups
have finite I'-dimension.

Lemma 5.2.4. Assume L2DR*(X, 7~V is D-Fredholm.
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(1) The decomposition theorem is valid. Namely, we have a direct sum decom-
position of U(T) modules

UT) @n(r) L2()~(, Ek(ﬂ71V)) =U(T) @prr) ’Hk(f(, 77'V) @ Im(D) & Im(?).

2) The decomposition theorem for the corresponding U(T")-Dolbeault complexes

( g
1s valid.

(3) The decomposition theorem for the U(T")-D’ complezes is valid.

(4) UT) @nry E§(X,n7'V) C UT) @prry ES(X,771V) is a filtered quasi-
isomorphism where X > 0. B

(5) The Hodge to De Rham spectral sequence of U(T) @prry EX(X,771V) de-
generates at E1 and D is F-strict. B

(6) The Hodge to De Rham spectral sequence of U(T) @y L2DRS (X, 77 1V)
degenerates at F1 and D is F-strict.

(7) Dingoyan’s D'D" lemma holds. Namely,

¢ € L*DR*(X, V) nIm(D') N Im(D") = 33u € UT)* up = D' D"y,

Proof: As in [17], (1), (2), (3) follow from [17, Lemme 2.15] and the fact these
complexes are I'-Fredholm. Observing that the formation of the cohomology of a
complex commutes with U(I')@x ), since N(I') — U(T) is flat, (4) follows from
the fact that we have an isomorphism on cohomology after tensoring with U(T"),
and we also have an isomophism on cohomology after passing to Gry since the L2-
Dolbeault complex is I'-Fredholm too (I'-Fredholmness means that F) has finite
I-dimension for A > 0 small enough). (5) follows from (4) and the fact that the
statement is trivially true for A = 0 and invariant by filtered quasi-isomorphism.
(6) follows in the same way from Lemma 5.1.5 and (5). (7) follows by an easy
adaptation of the argument of [17, Lemma 3.13].

O

Theorem 5.2.5. The k-th cohomology group of U(T') @) LQDR;O()W(,FAV)
carries a U(T)-Hodge structure of weight k + w which we call the analytic Hodge
filtration.
It gives rise to a weight w + k real Hodge structure on U(I") @ prry HE(X,M).
Every Kdhler class on X induces a Hodge-Lefschetz isomorphism

LF:UT) @prry Hy ™M (X, V) = UT) @prry Hy™OTF(X V).

5.3. U(I')-Hodge Complex. Now its is time to compare with the previous con-
struction.

We can construct on X a resolution of [?m, 7~V by the sheafified L? De Rham
complex. This is a complex of sheaves [?DR*(V) whose value over U C X is given
in degree k by

loc

PDR*(V)(U) = {we L (x " (U), E*(z7'V)) VK € U /K |w||?+ || Dw||* < 400}

One can construct a polarizable Hodge module M = My (V) such that M? =
V[dim(X)], with a trivial W-filtration, the underlying filtered Dx-module the
YV = V ®c Ox endowed with the filtration F- made increasing, the underlying

perverse sheaf is V[dim(X)] and the comparison morphism « is the usual resolution
V[dim(X)] — DR(V).
Proposition 5.3.1. There is a natural filtered quasi isomorphism of complexes in
E(T)

CDy : (C(DR(V),F) — (L?DRS,(X,n'V), F)
such that the composition with the comparison morphism induced by o:

rhy : HY(X,77'V) = C(DR(V)) =~ Hpp o(X,V)
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is the Cech-De Rham comparison isomorphism.

Proof. First observe that C'Ds indeed maps into LQDRC'>O and that there is indeed
a morphism of complexes. Then, it is a routine task to check that these maps are
quasi-isomorphisms and that they have the stated compatibility. It is a filtered
quasi-isomorphism thanks to the Cech-Dolbeault isomorphism for Grf'V described
in the appendix.

O

Proposition 5.3.2. Consider a locally finite covering 4 of X by small enough
Oka-Weil domains, we can define a morphism of filtered N'(T')-Fréchet complezes

(€, Pr, DR(MEE(V))), F) — (L?DR%, (X, 7~ V), F)
which is a filtered quasi isomorphism of complexes of N'(T')-modules.

Proof. The preceding argument gives also this. (I

Using the flatness of N(I") € U(T"), we deduce:

Corollary 5.3.3. Tensoring by U(T"), we obtain a filtered morphism of complexes
of U(T")-modules

UT) @pry (C* (W, Pr. DRMET(V))), F) = U(T) @ry (L’ DRE(X,77'V), F)
which is a filtered quasi isomorphism.

Before summarizing the outcome of the discussion, we need the following defini-
tion [14]:

Definition 5.3.4. A Hodge complex of U(T')-modules with real structure and weight
w is a triple: (A®,(B*, F),v) where A® is a complex of U(T')-modules with real
structures, v : A* — B*® an isomorphism in the derived category of U(T')-modules
such that the F-spectral sequence degenerates at E1 and the pair of filtrations (F, F)
on H*(B*®) is a Hodge structure of weight w + k in the category of U(T')-modules.

We say (B®, F) underlies a Hodge complex of U(T')-modules with real structure
and weight w if it can be completed to such a triple.

Theorem 5.3.5. Let X be a compact Kihler manifold and (X,V,F-,S) be a po-
larized complex Variation of Hodge Structure of weight w.

(1) The F-spectral sequence of U(L) @ ry (C* (U, Pm. DR(MER(V))), F) de-
generates at Ey.

(2) The algebraically defined Hodge filtration gives rise to a weight w + k real
Hodge structure on U(T) @prry H (X, V) which coincides with the analyt-
ically defined one.

(3) UD) @pr(ry (C* (8, Pm DR(MER(V))), F) underlies a weight w Hodge com-
plex of U(T')-modules with real structure and finite U(T")-dimensional coho-
mology objects.

(4) Every Kdihler class on X induces a Hodge-Lefschetz isomorphism

LF :UT) @p(ry Hy™ ™ (X, V) 5 u(r) ®N(T) Hy ™ (X v,

Proof. Tmmediate. We use the natural quasi-isomorphism U(T") ® N () The to con-
stuct the Hodge complex in the third statement. Actually, the cohomology objects
are in the abelian category of finitely presented U (I")-modules.

O
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5.4. Using analytic realisations of Hodge Modules. Assume now that U C X
is a Kihler snc compactification and let X — X be a Galois covering space. Endow
U with a Poincaré Kihler metric wy [54, 9, 31]. The lift wg of wy to U := U xx X
is a complete Kéhler metric which is Poincaré with respect to the partial Kéahler
snc compactification U ¢ X. Consider (U,V,F",S) a (say real) polarized VHS on
U with quasi unipotent monodromy. Recall the fundamental result of [9, 31] that
the sheafified L? De Rham complex DR3(U, V) with respect to the Poincaré metric
on U is a fine model of the perverse sheaf ZCx (V).

A trivial modification of the definition in [31] replacing U — X with U —
X yields sheaves on X we shall denote by 27, DRE(U, 7=1V) and the operators
D', D", D betwwen these sheaves on X and we have:

Proposition 5.4.1. 27, DR(U, 7~ V) is a fine model of I*m, 7 ICx (V).
Proof: Same method as in the proof of Proposition 2.4.2. Left to the reader. O

Corollary 5.4.2. Under the current assumptions, the k-th cohomology of the Ly De
Rham complex of U with values in 7~V in the Poincaré metric wg s 1somorphic

as a N(T)-module to the N'(T')-module underlying HE(X, 7 1ZCx (V)).

Corollary 5.4.3. If the L? De Rham complex is strongly I'-Fredholm, the reduced
k-th cohomology group twisted by U(T),

UT) @y HE(X, 771 TCx (V) = HY(X,U(D) @xrqry Pmar ™ ICx (V)
carries a natural real U(T)-Hodge structure of weight k + w.

Proof: Immediate. [

We do not have a proof of the I'-Fredholmness in this case. It is not clear
whether the filtrations of this analytically defined Hodge Structure coincide with
the algebraic ones we have constructed in this article.

Remark 5.4.4. It has been announced in [51] that one can construct for every
indecomposable Hodge module M a distinguished complete metric on the reqular
part U of its strict support. Distinguished means that the sheafified L?> De Rham
complex DR3(U,V) with respect to the distinguished metric on U is a fine model of
the perverse sheaf MPe' . The above considerations apply to distinguished metrics.

6. PROOF OF THEOREM 4

Let X be a compact Kéhler manifold and i be a finite covering of X by suffi-
ciently small Oka-Weil domains.

6.1. Direct image by a closed immersion. Let:: Z — X be a closed immersion
of a smooth compact complex manifold and (Z,V, F-,S) be a polarized complex
Variation of Hodge Structure of weight w. The case when Z = X follows from
Theorem 5.3.5.

Then MMM, (V) = M;(V). The filtered Dx-module (MPE(V), F) can be
computed as iy (M2T(V), F). DR(MPE(V)) is not equal to i, DR(M2T(V)) except
if Z = X where i, = Ri, is the ordinary sheaf theoretic direct image. Nevertheless,
Wwe can prove:

Lemma 6.1.1. U (D)@ n ) (RT(X, PmMP), (C* (8, Pm MPE(V), F), rhy) is ald(T)
Hodge Complez.

Proof. For ¢ > 1, there is a filtered quasi isomorphism
Fy(DR(MP®(V)), F) — (DR(MPF(V)), F)
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and there is a (differential) filtered quasi-isomorphism of bounded differential com-
plexes cohenrent sheaves of

i DRMZ"(V)) = Fy(DR(MP*(V)), F).

On the other hand, one does have i, V[dim(Z)] = MZ(V) and the comparison
isomorphism satisfies o, (vy = ix o n.

Consider a locally finite covering 4 of X by small enough Oka-Weil domains. We
have a canonical identification of filtered N (I')-Fréchet complexes

c* L, ’r, i, DRIMEZE(V)), F) = (C*(i 'Y, *m, DR(MEZE(V))), F)

in particular it is a filtered quasi isomorphism.
It follows that there is a filtered quasi isomorphism

UT)@pr) (C (YU, P, DRIMZE(V))), F) = UT)@p(r) (C* (8, P MPE(V), F).
which is compatible with the comparison isomorphism. Hence, the lemma is a

consequence of Theorem 5.3.5. O

It follows from the construction that the real Hodge structure on U(T") @n ()
H9(X, L2dR(MP®(V)) is the same as the one on U(T)® ) H9(Z, L*dR(MZE(V)).
The first part of Theorem 4 is proved.

6.2. Comparison with Dingoyan’s work. In this subsection, we finish the proof
of the second case of Theorem 4.

Definition 6.2.1 ([14]). A Mized Hodge complex of U(T')-modules with real struc-
ture is a triple ((A®, W), (B*, W, F),~) where A® is a bireqular increasingly filtered
complez of U(T')-modules with real structure, v : (A*, W) — (B*, W) an isomor-
phism in the filtered derived category of U(T')-modules such that, for all k € Z,

(Griy A®, (Griy B®, Griy F), Griy )
is Hodge complexes of weight k with real structure.

Lemma 6.2.2 ([14]). If (A, W), (B, W, F),~) is a Mized Hodge complex of U(T')-

modules with real structure, for all n € Z
(H™(A), Im(H™(W) — H"(A)), H" ()" (Fan(m)), (H" (7)™ (Fpn())))
where Fyn gy = Im(H"(F) — H™(B)) is a real U(T') mized Hodge structure.

Lemma 6.2.3. Let X be a compact Kihler manifold and M such that the GrI’fV
satisfy Conjecture 3. Then M satisfies Conjecture 3.

Proof. Under these hypotheses, we see immediately that:
UT) @y (RU(X, PrMP, W), (C* (W, PrMPR(V), W, F), rhy)
is a U(T")-Mixed Hodge Complex. O

Thanks to [43] -see [48, Example 5.4] for one smooth divisor- the second case of
Theorem 1 follows from the first case and Lemma 6.2.3.

The third one also follows using some of the properties of of Verdier duality
on Mixed Modules, see [43]. Indeed Rjij 'Mx (V) = DRj.j 'Mx(VY) hence
Rj1j~"Mx (V) is a Mixed Hodge Module. Furthermore D(G7f,M) = Gry;* (D(M))
and D(M;(V)) = M;(VV).
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APPENDIX: FRECHET SHEAVES AND THE FUNCTOR C

Cech model.

Given B a Banach algebra and X a secound countable locally compact topo-
logical space, a B-Fréchet sheaf is just a sheaf taking its values in the category
of Fréchet spaces with a continuous action of B. A coherent analytic sheaf on a
complex analytic space is a C-Fréchet sheaf [27, Chapter VIII], in fact a sheaf of
Fréchet modules over the structure sheaf which is a C-Fréchet sheaf of algebras, see
29, 49].

Given F a I'-equivariant coherent analytic sheaf on a proper I'-complex man-
ifold X, the sheaf [?7.F is a Fréchet sheaf of N(I')-modules as follows from the
construction in [8, 22| but it is not Montel in the sense of [27].

The sheaf [°m, F is not Montel when T is infinite. There must be a good concept
of I'-Montel sheaves (see [22] for the corresponding notion of I'-compactness and
cp. [27, p. 235]) but we don’t want to try and develop it. It will be enough for our
present purposes to use the ad hoc theory given in [22].

For a locally finite covering 84 of F\)~( by small enough Oka-Weil domains [27, p.
211] we can define C* (4, I>7, F) the Cech complex of 127, F. Here, an open subset
Q is small enough if and only if the preimage in Xisa disjoint union of open subsets
finite over €.

By a standard application of Leray’s theorem, C* (4, [?7,F) computes the coho-
mology of 1?7, F.

The complex C*(4, ?m.F) does not depend on il in the derived category D
of the exact category of A (I')-Fréchet modules (cf. Remark 3.1.6) hence in the
derived category of the abelian category of A (TI')-modules. In [22] it is proved that
the functor defined D’Coh(Ox) — DMod(N(I')) defined by F + C*(4, I*7.F)
at the level of complexes lifts uniquely and functorially to D°(E(I")) under the
natural functor DP(Ef(T')) — DMod(N'(I')) if I\ X is compact. More generally,
this holds if I'\ Supp(F) is compact. We denote by C : D’Coh(Ox) — D*(E;(I)))
the resulting functor.

The main ingredient is a construction of a quasi-isomorphism

K® — C*(U, 1?7, F)

from a bounded complex of projective finite-type Hilbert I'-modules K*® represent-
ing C(F).

To this end, one uses that the I'-Fréchet space 27, F () of an open subset 2 C X
is the inverse limit of a sequence of Hilbert I'-modules with I'-compact transition
maps and the fact that Hilbert I-modules are projective in E(T").

Actually one has to do something slightly more complicated, one has a germ at
t = 0 of an increasing family of coverings il; defined for ¢ > 0 such that 4 = 4l
and:

C.(t) = C*(Uys, T F) — C* (Y, 1* . F)

is a quasi-isomorphism for ¢’ < ¢ and there there is a germ at ¢ = 0 of a decreasing
family of Hilbert I'-modules (C(t);0) such that C(t) — C(t') is I'-compact for ¢ > ¢’
and C,(t) = hm,, C(t') if t > 0. The family (C(¢))+>0 is an inessential auxiliary
datum but it is instrumental to the construction of K'®, its essential uniqueness and
its functorial properties. At least when F is locally free, C(t) is the subspace of Lo
Cech cochains in C, (t), Lo being measured with respect to a smooth volume form.

Dolbeault model.
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In the case where F is locally free and X is smooth there is a much better way
to proceed. Define

Dolb(X, F) = {s € Li,o(X,E(F)), /~ IslI* + [19s]|* < +o0}
X

where the norms and volume form are computed with respect to a I'-equivariant
hermitian metric on F and a I'-equivariant hermitian metric on X

Indeed it is very natural to use the natural map of complexes of A/ (T")-Fréchet
modules which will be refered to as C'Ds, the Cech-Dolbeault comparison map :

C* (81,127, F) — Dolb3(X, F)) = (... = Dolbk(X, F)) -2 Doltt+1(X, F) — ...)

attached to a smooth partition of unity (¢,) subordinate to 4 sending the ¢-
cochain (540a(1)...a(q))|a|=q¢ to the twisted (0, ¢ form:

Y Sava()a@IPa() A -+ 0alg—1)-Palq)-

lal=q

The complex Dolb$(X,F)) is complex of separable I-Hilbert modules and the
resulting map K* — Dolb$(X, F)) is an algebraic isomorphism induced by a con-
tinuous maps at level of the representatives hence Dolb3 ()N( ,F)) € D%f(F)Esep(F)
and is quasi-isomorphic to C(F) € DYE;(T).

Cech-De Rham comparison map
In a similar fashion, if V is a local system on X, and the intersections of elements
of 4l are contractible, we can construct, as in [15], a quasi-isomorphism of separable
projective Hilbert I-modules in the essential image of D E(T")

CDR; : C* (U, >, V) = L?DR*(X, V).

Given a smooth partition of unity (¢, ) subordinate to {1, it is defined by sending
the Cech g-cochain (S40a(1)...a(q))|a|=¢ tO the twisted ¢ form:

D Savo1).a(@@%a©) A - dba(g-1)-ba(q):

la|=q

CONCLUDING REMARKS

Assume now X be a complex analytic space that need not be smooth nor reduced.
Once one knows that dimy,ry Hy (X, 1?7, F) < 400, e.g. that it lies in the essential
image of Ef(T'), for all F € Coh(Ox), two purely algebraic properties, the special
model of the Leray spectral sequence used in [22, section 6.1], whose main feature is
that it comes from a Ey(I")-spectral sequence, can be replaced with the usual Leray
spectral sequence and Liick’s theory of dimas(ry to prove the version of Atiyah’s Lo-
index theorem given in [22, Theorem 6.2.1]. The abstract nonsense in [22] needed
to establish the functoriality of the lift to E;(I') can also be eliminated.

We conclude by stating a weaker form Theorem 1 in terms of finite dimensional
N (I')-modules, thus losing the information contained in Novikov-Shubin invariants.
It follows from the part of the proof of Theorem 1 where global good filtrations are
used (subsections 4.2, 4.4):

Theorem 5. Let X be a complex manifold and X — X be a Galois covering with
Galois group T'. Let M D'(X) be the abelian category whose objects are triples

M = (M — MDR,P — MBetti,a)
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where M is a holonomic Dx-module supported on a I'-cocompact analytic subspace,
P is a perverse sheaf of R-vector spaces and « : P @g C — DR(M) is an isomor-
phism in the derived category of sheaves and whose morphisms are the obvious ones.

There is a O-functor which, on the Betti side, is compatible with proper direct
images, satisfies Atiyah’s Lo index theorem.:

LydR : DPM D' (X) — Essentiallmage(D(Ef(T)) > D*Mod(N(T)))
and for each M € MD(X) and q € Z functorial isomorphisms in E¢(T")

H9(LadR(M)) =2 H‘(ZQ)(X, MBetti) o HqDR,(2)(X’ MPR).

The functor U(L) @ nrry L2dR : DPMD'(X) — D*Mod(U(T')) takes its values in
the essential image of the the category of complexes of finite type projective U(T")-
modules, is compatible with proper direct images, satisfies Atiyah’s Lo index theorem
and Poincaré-Verdier duality.
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