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TOWARDS A L2 COHOMOLOGY THEORY FOR HODGE

MODULES ON INFINITE COVERING SPACES: L2

CONSTRUCTIBLE COHOMOLOGY AND L2 DE RHAM

COHOMOLOGY FOR COHERENT D-MODULES.

PHILIPPE EYSSIDIEUX

Abstract. This article constructs Von Neumann invariants for constructible
complexes and coherent D-modules on compact complex manifolds, general-

izing the work of the author on coherent L2-cohomology. We formulate a
conjectural generalization of Dingoyan’s L2-Mixed Hodge structures in terms
of Saito’s Mixed Hodge Modules and give partial results in this direction.
2020 AMS Classification: 32J27, 32C38, 32Q30, 14C30, 46L10, 58J22.
Keywords: Complex manifolds, D-modules, Constructible sheaves, Hodge Mod-
ules, Mixed Hodge Theory, Atiyah’s L2-index theorem, Group Von Neumann
algebras, L2 Betti numbers.

This article is an extension of Dingoyan’s L2-Mixed Hodge theory [17] and a
first step towards a version of Gromov’s influential article on Kähler-hyperbolic
manifolds [26] that would apply to singular Kähler varieties.

Gromov found a way to use the L2-De Rham theory of an infinite Galois covering
space of a compact Kähler manifold X and obtain algebro-geometric restrictions
if X is Kähler-hyperbolic, for instance a compact complex submanifold of a neat
quotient of a bounded symmetric domain. This inspired the influential works of
Campana [6, 7] and Kollár [33, 34] masterfully exploiting in Kähler geometry the
striking ideas of [1] to study compact Kähler manifolds with infinite fundamental
group. Gromov’s ideas were also extended in [19] to polarized Variations of Hodge
Structures (actually to harmonic bundles) on a compact Kähler manifold X . They
were also extended in [8, 22] to a theory of coherent L2-cohomology in Complex
Analytic Geometry. Some applications were given, say in [20, 21, 53], and an
extremely striking one was recently found [4].

With applications in mind, the author is interested in further extending the
theory to Mixed Hodge Modules [43].

Let X be a compact complex manifold. Let π : X̃ → X be an infinite Galois
covering space with Deck(X̃/X) = Γ.

If F • is a bounded complex of C-vector spaces with constructible cohomology
on X we construct, using a classical observation of Kashiwara, cohomology groups
H•

(2)(X̃, F
•) that coïncide in the case F • = CX to the L2-cohomology of X̃, see [35].

They obey Atiyah’s L2 index theorem, Poincaré-Verdier duality and are compatible
with proper morphisms of complex analytic spaces.

IfM is a coherent D-module on X , we construct, using the construction of [22],
cohomology groups H•

DR,(2)(X̃,M) that coïncide in the caseM = OX to the L2-De

Rham cohomology of X̃ with respect to a Riemannian metric pulled back fom X
and if M = D ⊗OX

F , F being a coherent analytic sheaf with the L2 cohomology
groups H•

2 (X̃,F ⊗ ωn
X) constructed in [22]. They obey Atiyah’s L2 index theorem.

Date: March 11, 2022.
This research was partially supported by the ANR project Hodgefun ANR-16-CE40-0011-01.

1



2 P.EYSSIDIEUX

We did not check except in the simplest cases whether they are compatible with
proper holomorphic mappings and did not study Verdier duality.

When an isomorphism in the derived category of sheaves rh : F • ∼= DR(M) is
given,M being holonomic, we construct a natural isomorphism rh(2) : H•

(2)(X̃, F
•) ∼=

H•
DR,(2)(X̃,M).
These cohomology groups are typically infinite dimensional quotients of Hilber-

tian Γ-modules by non necessarily closed submodules. They are also modules over
N (Γ) the Von Neumann algebra of Γ. But one can be much more precise.

Given Γ a discrete countable group, the exact category of finite type projective
Hibert Γ-modules naturally embeds in a rather simple abelian category Ef (Γ) due
to Farber [23] and Lück [35] endowed with a faithful functor to Mod(N (Γ)). This
abelian category has projective dimension one, its projective objects being finite
type projective Hilbert Γ-modules. The preceding L2 cohomology groups are in the
essential image of the forgetful functor and the isomorphism rh(2) lifts too.

Theorem 1. Let X be a compact complex manifold and X̃ → X be a Galois
covering with Galois group Γ. Let MD(X) be the abelian category whose objects
are triples

M = (M = MDR, P = MBetti, α)

where M is a holonomic DX-module admitting a good filtration, P is a perverse
sheaf of R-vector spaces and α : P ⊗R C → DR(M) is an isomorphism in the
derived category of sheaves and whose morphisms are the obvious ones.

There is a ∂-functor which, on the Betti side, is compatible with proper direct
images, satisfies Atiyah’s L2 index theorem and Poincaré-Verdier duality:

L2dR : DbMD(X)→ DbEf (Γ)

and for each M ∈MD(X) and q ∈ Z functorial isomorphisms in Ef (Γ)

Hq(L2dR(M)) ∼= Hq

(2)(X̃,M
Betti) ∼= Hq

DR,(2)(X̃,M
DR).

IfX is a projective algebraic manifold every coherentDX -module admits a global
good filtration - a fact the author has learned from talks given by B. Malgrange.
The author does not believe admitting a good filtration is an essential restriction
here.

For applications, it seems to be useful to consider the case X is only a compact
complex-analytic space such that one can embed X in a complex manifold Z ′.
In that situation, one can construct, taking a regular neighborhood Z of X , an
infinite Galois covering space with Deck(Z̃/Z) = Γ and a Γ-equivariant embedding
X̃ → Z̃ covering the closed embedding X → Z. Theorem 1 extends to this situation
restricting one’s attention to modules on Z whose support is contained in X .

Saito’s category of Mixed Hodge Modules MHM(X) [43] is an abelian subcat-
egory of MD(X).

Corollary 2. Let X be a compact Kähler manifold and X̃ → X be a Galois covering
with Galois group Γ.

There is a ∂-functor which, on the Betti side, is compatible with proper direct
images, satisfies Atiyah’s L2 index theorem and Poincaré-Verdier duality:

L2dR : DbMHM(X)→ DbEf (Γ)

and for each M ∈MHM(X) and q ∈ Z functorial isomorphisms in Ef (Γ)

Hq(L2dR(M)) ∼= Hq

(2)(X̃,M
Betti) ∼= Hq

DR,(2)(X̃,M
DR).

These cohomology groups are endowed with a real structure, a real filtration W
coming from the weight filtration on MBetti and a complex filtration F coming from
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Saito’s Hodge filtration on MDR. These filtrations and real structures are compatible
with morphisms of Mixed Hodge Modules.

It is not clear whether these filtrations define a Mixed Hodge Structure. It seems
difficult not to pass to reduced L2-cohomology. Using an idea of Dingoyan [17], we
conjecture:

Conjecture 3. Let N (Γ) ⊂ U(Γ) be the algebra of affiliated operators. Let M be a
Mixed Hodge module (resp. a pure Hodge Module).

U(Γ)⊗N (Γ) H
q(X̃, L2dR(M))

carries a Mixed (resp. a pure) Hodge structure in the abelian category of real U(Γ)-
modules with finite Γ-dimension. The restrictions on the Hodge numbers are as in
the compact case.

We will use the notation Hq(L2dR(M))
not.
= Hq(X̃, L2dR(M)) whenever it is

necessary to emphasize that M lives on X and that we are considering the covering
space X̃ → X .

We do not understand Saito’s theory well enough to conjecture a similar state-
ment for the derived category of MHM(X).

Theorem 4. Conjecture 3 is true in the following cases:
• There is a closed complex submanfold i : Z →֒ X and a smooth polarized
Q-VSH (Z,V, F, S) on Z such that M = Mi(V) is the corresponding Hodge
Module on X.
• There is an open embedding j : U →֒ X such that X \ U is a divisor with

simple normal crossings and a smooth Q-VSH (X,V, F, S) on X such that
M = Rj∗j

−1MX(V).
• There is an open embedding j : U →֒ X such that X \ U is a divisor with

simple normal crossings and a smooth Q-VSH (X,V, F, S) on X such that
M = Rj!j

−1MX(V).

The first case follows easily from [19]. The second item in case V = QX follows
from [17] and Theorem 4 could be proved with a slight variation on Dingoyan’s
approach. We nevertheless felt it was helpful to recast Dingoyan’s results in our
language. The third case does not follow from [17]. A more general result holds, it
is enough that the GrW of the Mixed Hodge module is a direct sum of modules of
the form Mi(Vα).

The general case requires only to be able to settle the case of pure polarizable
Hodge modules. The author believes one can settle this in case dim(X) = 1. The
author hopes the general case will be doable when a proof of the coincidence of the
algebraic and the analytic definition of the Hodge filtration will be available.

The author believes one can endow the reduced L2-cohomology of an infinite
Galois cover of a projective algebraic variety with a functorial U(Γ)-Mixed Hodge
structure using techniques developped here and cohomological descent [14] and
hopes to come back to this question in a future work. Subsuming Deligne’s approach
into Saito’s is not straightforward [45] and one really needs to exercise some more
care to dare draw this conclusion.

The recent preprint [18] suggests an extension of the theory for twistor DX -
modules might be possible.

The article is organized as follows. The first section constructs Lp-constructible
cohomology. The second section constructs Lp De Rham cohomology for coherent
D-module on complex manfolds. The third section reviews some facts on the ho-
mological algebra for N (Γ)-modules and about U(Γ). The fourth section lifts the
L2-cohomology theory to Ef (Γ) and finishes the proof of Theorem 1. It gives a
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statement of a refined form of Conjecture 3 in terms of the reduced L2 cohomology
of Mixed Hodge Modules and a brief treatment of the singular case. The fifth sec-
tion studies analytic L2 Hodge decomposition in the Kähler case. The sixth section
gives a proof of Theorem 4. An appendix gives more details on some technical
facts the author prefered not to include in the text. A final section indicates briefly
how using the algebra of affiliated operators simplifies the theory in [22] and gives
a version of Theorem 1 valid without good filtrations. The reader is referred to
[19, 17] for examples.

The article is a write-up of a project that was started 18 years ago with the
definition of constructible L2-cohomology in Ef (Γ). After [17] appeared, the scope
of the project was extended to include Mixed Hodge Modules. The author has given
a handful of seminar and conference talks on this project during these years and
wishes to apologize for not having made a text available. At some point, it was a
work in collaboration with P. Dingoyan, who withdrew from the projet. The author
would like to address special thanks to him for many enlightening discussions.

The author also thanks P. Bressler, S. Diverio, S. Guillermou, F. Ivorra, B. Jean,
W. Lück, J. Tapia and C. Sabbah for valuable discussions, some of them 20 years
ago, on topics related to this article.

1. Constructible Lp-cohomology

In the following 1 ≤ p < +∞ will be a real number. No applicable results will be
lost if one restricts oneself to the case p = 2. We also let Q ⊂ K ⊂ C be a subfield
of the complex numbers.

1.1. Equivariant constructible sheaves on Γ-simplicial complexes. In this
section, we recall basic well-known definitions, cf [32], chap. VIII.

Let Γ be a discrete countable group. Let T be a paracompact topological space
endowed with an action of Γ (by homeomorphisms). We denote by ModΓ(KT ),
the category of Γ-equivariant sheaves of K-vector spaces 1. Let A be an abelian
category, we also call Db(A) its bounded derived category2. We use the shorter
notationDb

K,Γ(T ) := DbModΓ(KT ). We shall drop dependance onK whenK = C.
A Γ-simplicial complex S is a locally finite simplicial complex endowed with a

proper left action of Γ, i.e. S = (S,∆, i) where S is a non-empty set endowed with
an action of Γ i : Γ → S(S) and ∆ is a set of non-empty finite subsets of S, the
simplices of S such that:

• For every element s of S, the singleton {s} belongs to ∆.
• For every element σ of ∆, any non-empty subset τ of σ belongs to ∆.
• For every element s of S, the subset of ∆ consisting in the simplices con-

taining s is finite.
• Γ preserves ∆.
• Γ acts on S with finite stabilizers.

Obviously, Γ acts on ∆ with finite stabilizers and Γ acts properly on the topolog-
ical realization |S| of S. |S| is a closed subspace of RS (endowed with the product
topology) decomposed as |S| = ∪σ∈∆|σ| where

|σ| = {x ∈ RS |x(p) = 0 if p 6∈ σ, x(p) > 0 if p ∈ σ,
∑

p∈σ

x(p) = 1}.

Say S is finite dimensional if supσ∈∆ Card(σ) < ∞. Say S is cocompact if it is
finite dimensional and Γ\S is finite. In this case, Γ\∆ is finite and Γ\|S| is compact.

1A compatible action of Γ on a sheaf S is a continuous action on Et(S) the espace étalé of S
such that the canonical local homeomorphism Et(S) → T is Γ-equivariant.

2There is no need to restrict to the bounded derived category until section 4.2, but we will not
pursue more generality.
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A Γ-equivariant sheaf of K-vector spaces F on |S| is weakly S-constructible sheaf,
resp. S-constructible, if for every simplex σ, i−1

|σ|F is a constant sheaf3, resp. and
for every x in |S|, Fx is of finite dimension. The abelian category of S-constructible
(resp. weakly S-constructible) equivariant sheaves will be denoted by ConsK,Γ(S)
(resp. wConsK,Γ(S)) A complex of Γ-equivariant sheaves F • with bounded co-
homology (i.e.: an object of Db

Γ(|S|)) is called S-constructible (resp. weakly S-
constructible) if its cohomology sheaves Hj(F •) are S-constructible (resp. weakly
S-constructible). S-constructible complexes (resp. weakly S-constructible com-
plexes) are the objects of a full thick triangulated subcategory Db

S−c,K,Γ(|S|) (resp.
Db

w−S−c,K,Γ(|S|)) of Db
K,Γ(|S|).

Proposition 1.1.1. Let S be a finite dimensional Γ-simplicial complex. Then the
natural functors

Db(wConsK,Γ(S))→ Db
w−S−c,K,Γ(|S|), Db(ConsK,Γ(S))→ Db

S−c,K,Γ(|S|)
are equivalences of triangulated categories.

Proof: The proof of Theorems 8.1.10 and 8.1.11 p.326 in [32] (which is the
special case where Γ is the trivial group) applies here mutatis mutandis. Actually
if the action of Γ is free we can use the natural equivalence of categories between
the various categories of Γ-equivariant sheaves on |S| and of sheaves on Γ\|S| to
formally reduce the statement to [32, Chapter VIII]. �

1.2. Lp-cohomology for equivariant constructible sheaves. The case of

simplicial complexes. Let S be a finite dimensional Γ-simplicial complex. Con-
sider the natural quotient map π : |S| → Γ\|S|. It is easy to see that π! the direct
image with proper support is exact on S-constructible sheaves 4. On the category
of equivariant S-constructible sheaves, π! factorizes through the category of sheaves
of left KΓ-modules on Γ\|S|.

The left and right regular representations, denoted by λ and ρ, on the set lpΓ of
complex valued functions (aγ)γ∈Γ defined on Γ such that

∑
γ∈Γ |aγ |p < ∞ defines

a bimodule over CΓ. We call RlpΓ the right Γ-module attached to ρ. In particular,
given a sheaf F of left KΓ-modules on a topological space T , the tensor product
RlpΓ⊗KΓF is a sheaf of left CΓ-modules. It is actually a sheaf of Wl,p(Γ)-modules
where Wl,p(Γ) is the bicommutant of λ(ZΓ) in the algebra of continuous linear
endomorphisms of lpΓ.

Lemma 1.2.1. The functor F 7→ RlpΓ⊗KΓ π!F is exact on ConsK,Γ(S).

Proof: Since C is a K-vector space it is flat over K and π! commutes with ⊗KC.
Hence, it is enough to prove exactness of FC 7→ RlpΓ ⊗CΓ π!FC on S-constructible
equivariant sheaves of C-vector spaces. Since the stalk at p ∈ Γ\|S| of π!FC is
isomorphic to C[Γ/Hp̃]

⊕n where n is a nonnegative integer and Hp̃ is the stabilizer
of some lift p̃ ∈ |S| of p, it follows that it is a projective module over CΓ. Indeed,
whenever H is a finite subgroup of Γ, the pull-back injection i : C[Γ/H ] → CΓ
has a right inverse π((aγ)γ∈Γ)g = 1

Card(H)

∑
h∈H agh which is equivariant for the

left action of Γ. Exactness follows from the facts that stalks of tensor products are
computed stalkwise, that π! is exact and that a short exact sequence of projective
modules splits. �

Lemma 1.2.2. The functor F 7→ RlpΓ⊗KΓ π!F is exact on ModΓ(K|S|).

3Whenever Z is a locally closed subset of X, we denote by iZ : Z → X the resulting embedding.
4It is a direct consequence of [32] Proposition 8.1.4 p. 323 in case the action is free. The

general case is easily taken care of by a barycentric subdivision argument.
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Proof: The above proof also works with a minor modification for all sheaves of
K-vector spaces. �

Definition 1.2.3. Let F • be an object of Db(ConsK,Γ(S)). Its kth Lp- hypercoho-
mology groups is the Wl,p(Γ)-module

Hk
(p)(|S|, F •) := Hk(Γ\|S|, RlpΓ⊗KΓ π!F

•).

Lemma 1.2.4. The composition of the derived functor of H0(|S|,−) and of RlpΓ⊗KΓ

− gives a ∂-functor 5 of triangulated categories

H•
(p)(|S|,−) : Db(ConsK,Γ(S))→ Db(ModWl,p(Γ)),

where ModWl,p(Γ) stands for the category of left Wl,p(Γ)-modules such that the Lp-
hypercohomology groups are its cohomology objects.

This definition gives rise to the long exact sequence attached to a short exact
sequence and to various spectral sequences generalizing it.

Thanks to lemma 1.2.2, we also get:

Lemma 1.2.5. The same formula as in definition 1.2.3 defines an extension of
H∗

(p)(|S|,−) to a ∂-functor

H•
(p)(|S|,−) : Db

K,Γ(|S|)→ Db(ModWl,p(Γ)).

We don’t use a different notation hoping this will not cause any confusion.

1.3. The subanalytic case.

1.3.1. Subanalytic stratifications and constructible sheaves. A subanalytic6 Γ-space
is a Γ-space that can be realized as a locally closed Γ-invariant subanalytic subset
of a real analytic manifold endowed with a proper real analytic action of Γ. A
stratified subanalytic space X is a subanalytic space X̃ := |X| endowed with a
locally finite partition X̃ = ∪iXi in disjoint subanalytic submanifolds satisfying
Xi ∩ X̄j 6= ∅ =⇒ Xi ⊂ X̄j . A stratified subanalytic Γ-space X is a proper analytic
action of Γ on X̃ = |X| such that for every g ∈ Γ and every point x ∈ |X| the germ
at x of the stratification is carried by g to the germ at gx of the stratification. When
the stratification comes from a Γ-simplicial complex, one calls it a triangulation.
Proposition 8.2.5 in [32] implies that, in the cocompact case, any Γ-stratification
may be refined to a Γ-triangulation and that the Γ-triangulations form a cofinal
system with respect to refinement.

The obvious extension of the definitions and notations of section 1.1 will be left
to the reader, the only change being that X-constructible sheaves on |X| are now
assumed to be locally constant along the strata of X.

Let X̃ be a subanalytic Γ-space. A sheaf of K-vector spaces F on X̃ is called
constructible if it is constructible with respect to some subanalytic stratification of
X̃. We denote by RConsK,Γ(X̃) the category of equivariant constructible sheaves
on X̃ and by Db

K,Rc,Γ(X̃) the thick full subcategory of Db
K,Γ(X̃) consisting of com-

plexes with bounded constructible cohomology. Theorem 8.4.5 in [32, p. 339] is
easily generalized to

Proposition 1.3.1. The natural functor Db(RConsK,Γ(X̃)) → Db
Rc,K,Γ(X̃) is an

equivalence of triangulated categories if X̃ is cocompact.

5As in [28, p. 22], a ∂-functor of triangulated categories is an additive functor which commutes
with the translation functor and respects distinguished triangles.

6Actually, ‘definable in a o-minimal structure’ is the natural hypothesis.
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1.3.2. Constructible Lp-cohomology.

Proposition 1.3.2. Let X̃ be a cocompact subanalytic Γ-space. Let F• be an object
of Db

R−c,K,Γ(X̃). Its kth Lp-hypercohomology groups is the Wl,p(Γ)-module

Hk
(p)(X̃,F•) := Hk(Γ\X̃, RlpΓ⊗KΓ π!F•).

There is a ∂-functor of triangulated categories

H•
(p)(X̃,−) : Db

R−c,K,Γ(X̃)→ Db(ModWl,p(Γ)),

where ModWl,p(Γ) stands for the category of left Wl,p(Γ)-modules such that

Hk
(p)(X̃,F•) = Hk(Hk

(p)(X̃,F•)).

Proof: We can replace Db
R−c,K,Γ(X̃) by DbRConsK,Γ(X̃) since the natural func-

tor is an equivalence by Proposition 1.1.1 and RlpΓ⊗KΓπ!C⊗− is exact by Lemma
1.2.5.

Since DbRConsK,Γ(X̃) is the limit of its full subcategories DbConsK,Γ(X), X
running through all subanalytic Γ-triangulations, this follows from definition 1.2.3.

�

1.4. Complex Analytic case. We assume here K = C and drop K from the
notation.

Assume from now on that X̃ is a cocompact complex Γ-space. The relevant
stratifications are complex analytic stratification (by definition, a subanalytic strat-
ification is complex analytic if so are the closures of the strata) and we say that an
equivariant sheaf is constructible if is constructible with respect to some complex
analytic stratification and that a complex of equivariant sheaves is constructible
if so are its cohomology sheaves. Then ConsΓ(X̃) is a full abelian subcategory of
RConsΓ(X̃) stable by extensions, Db

c,Γ(X̃), the full subcategory of Db
Rc,Γ(X̃) whose

cohomology objects are in ConsΓ(X̃), is a thick triangulated subcategory and we
have a natural ∂-functor

DbConsΓ(X̃)→ Db
c,Γ(X̃).

Remark 1.4.1. This functor is an equivalence of categories if X̃ is a Galois topolog-
ical covering space of the analytization of a complex projective variety using GAGA
and [39].

Definition 1.4.2. We can restrict H•
(p)(X̃,−) to Db

c,Γ(X̃) to get the constructible
Lp-cohomology functor:

H•
(p)(X̃,−) : Db

c,Γ(X̃)→ Db(ModWl,p(Γ)).

An important special case is Lp-intersection cohomology.

Definition 1.4.3. Let Z be a singular compact complex space and π : Z̃ → Z its
universal covering space. Its k-th intersection Lp cohomology is the Wl,p(Γ)-module
Hk

(p)(Z̃, π
−1IC•Z) where IC•Z is the intersection cohomology sheaf of Z [2].

The initial impetus for this work was to formulate the following:

Conjecture 1.4.4. If p = 2, and Z is a closed analytic subset of a compact Kähler
hyperbolic manifold then Hk

(2)(Z̃, π
−1IC•Z) = 0 for k 6= dim(Z).
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1.5. Real structures. The algebra Wl,p(Γ) carry a real structure, namely a con-
jugate linear algebra involutive automorphism †, and a real structure on a module
over Wl,p(Γ) is just a conjugate linear automorphism on the underlying C-vector
space compatible with †. For instance lpΓ has a real structure.

Modules with real structures form a R-linear abelian category ModWl,p(Γ),R

which has an exact faithful forgetful functor to ModWl,p(Γ),R and if K ⊂ R the
functors of Proposition 1.3.2 and Definition 1.4.2 lift to Db(ModWl,p(Γ),R).

2. Lp-cohomology and differential operators for coherent sheaves

2.1. Coherent Lp-cohomology. Let X be a complex manifold and let OX (resp.
DX) denote its structure sheaf (resp. the sheaf of holomorphic differential opera-
tors). Let π : X̃ → X be a Galois topological covering space and Γ = Gal(X̃/X)

be its Galois group, acting on X̃ on the left.
If R is a sheaf of rings on X , denote by Mod(R) the abelian category of sheaves

of leftR-modules byHomR its group of morphisms and byHomR the internal Hom
bifunctor on Mod(R). When considering right R-modules, we use the notations
Mod(Ro), HomRo , HomRo . If R is a ring then we denote by RX the sheaf of
rings of locally constant functions with values in R.

Denote by Coh(OX) the full abelian subcategory of Mod(OX) whose objects
are the coherent analytic sheaves of X . Denote by Coh(DX) (resp. Hol(DX)) its
the full abelian subcategory of Mod(DX) whose objects are the coherent (resp.
holonomic) DX -modules. A OX -module is quasi coherent if it is locally the limit
of its coherent submodules.
For every p ∈ [1,+∞[ and F a coherent analytic sheaf on X , [22] (see also [8])

constructs a subsheaf lpπ∗F ⊂ π∗π
−1F which can be described locally as follows.

Choose ϕ : O⊕N
X → F a presentation of F on a Stein open subset U such that

π−1(U) = Γ× U then:

lpπ∗F(U) = {(sγ)γ∈Γ ∈ F(U)Γ, ∃s′γ ∈ O⊕N
X (U)Γ, ϕ(s′γ) = sγ and

∀K ⋐ U
∑

γ∈Γ

∫

K

|sγ |p < +∞}.

The independance on ϕ is checked in [22]. Given φ : F → F ′ a OX -linear morphism
of coherent sheaves

π∗π
−1φ : π∗π

−1F → π∗π
−1F ′

maps lpπ∗F into lpπ∗F ′. Denote by lpπ∗φ : lpπ∗F → lpπ∗F ′ the restriction of
π∗π

−1φ. The resulting functor lpπ∗ : Coh(OX) →Mod(Wl,p(Γ) ⊗C OX) is exact
[22] and one can define

H•
Lp(X̃,F) := H•(X, lpπ∗F).

Since Hq
Lp(X̃,F) = 0 for q > dimC(X) (at least when X is compact) this yields

a good cohomology theory on Coh(OX), indeed a a ∂-functor

DbCoh(OX)→ DbModWl,p(Γ).

Observe that if F is coherent lpπ∗F = lpπ∗OX ⊗OX
F . Hence, the functor lpπ∗

extends to Db(Mod(OX)) setting lpπ∗L := lpπ∗OX ⊗OX
L thanks to:

Lemma 2.1.1. The functor lpπ∗ = lpπ∗OX⊗OX
is exact on Mod(OX).

Proof: The problem is local. Since this functor is exact on Coh(OX), it follows
from the fact that tensor products of sheaves commute with taking the stalks [24,
p. 137] that TorOX,x

1 ((lpπ∗OX)x,OX,x/Ix) = 0 for every (finitely generated) ideal
of OX,x. Hence (lpπ∗OX)x is a flat OX,x-module and exactness follows applying
[24, p. 137] once more. �
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It should however be noted that if a sheaf F has two different OX -module struc-
tures, say F1 and F2, it may be the case that lpπ∗F1 6= lpπ∗F2 as subsheaves of
π∗π

−1F1 = π∗π
−1F2 = π∗π

−1F .

Remark 2.1.2. There is a natural structure of left DX-module on lpπ∗OX hence
lpπ∗ gives rise to an exact endofunctor of Mod(DX). When Γ is infinite, it does
not preserve the full subcategory of coherent or quasicoherent modules.

2.2. Differential operators. We need to check that differential operators between
quasicoherent analytic sheaves preserve lpπ∗.

Recall from [42] that for L,L′ two OX -modules DiffX(L,L′) is the image of the
natural injective morphism:

HomDo
X
(L ⊗OX

DX ,L′ ⊗OX
DX)→ HomCX

(L,L′)
given by the composition of the natural adjunction

HomDo
X
(L ⊗OX

DX ,L′ ⊗OX
DX)

∼→ HomOX
(L,L′ ⊗OX

DX),

L′ ⊗OX
DX being endowed with the right OX -module structure, with left compo-

sition by the natural C-linear (actually left OX -linear) morphism

νL′ : L′ ⊗OX
DX → L′

which maps ℓ ⊗ P to P (1)ℓ. One has νL′ = L′ ⊗OX
νOX

where νOX
: DX → OX

is the naturel left DX -linear (hence left OX -linear) morphism mapping P ∈ DX to
P (1) ∈ OX .

Lemma 2.2.1. Assume L′ is quasicoherent. Let (L′⊗OX
DX)l resp. (L′⊗OX

DX)r
the left resp. the right OX-modules structures of L′ ⊗OX

DX . Then:

lpπ∗(L′ ⊗OX
DX)l = lpπ∗(L′ ⊗OX

DX)r ⊂ π∗π−1L′ ⊗DX .

Proof: Let us begin by treating the case where L′ = OX . Then both lp(π∗(DX))♯,
♯ = l, r are the increasing union of the subsheaves lpπ∗(FkDX)♯ where FkDX is the
sub-OX -bimodule consisting of the holomorphic differential operators of degree≤ k.
Hence it is enough to show that lpπ∗(FkDX)l = lpπ∗(FkDX)r. The problem being
local assume we have a coordinate system on an open set U such that π−1(U) ≃
Γ× U . A section of π∗π−1FkDX of the form (

∑
|α|≤k fα,γ∂

α) is in lp(π∗(DX))l iff,
for all K ⋐ U ,

∑
γ

∫
K

∑
α |fα,γ |p < +∞ whereas a section π∗π−1FkDX of the form

(
∑

|α|≤k ∂
αgα,γ) is in lp(π∗(DX))r iff, for all K ⋐ U ,

∑

γ

∫

K

∑

α

|gα,γ |p < +∞.

Since ∂αg = g∂α +
∑

β<α Pβ,α(g)∂
β where Pβ,α is a universal differential operator,

the Cauchy inequality gives
∫

K

∑

α

|fα,γ |p ≤ CK,K′

∫

K′

∑

α

|gα,γ |p

if K ′
⋐ U is a compact neighborhood of K. Whence the inclusion lpπ∗(FkDX)l ⊂

lpπ∗(FkDX)r. The reverse inclusion follows by the same token.
This implies the lemma for L′ a free OX -module of possibly infinite rank.
Now, for the general case. The statement being local, we may choose ϕ :

ON
X → L′ a presentation, N being some cardinal. The definition implies that

lpπ∗(L′⊗OX
DX)♯ ∈ π∗π−1L′⊗OX

DX is the image by π∗π−1ϕ of lpπ∗(ON
X⊗OX

DX)♯
in π∗π−1L′ ⊗OX

DX . The lemma follows. �
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Lemma 2.2.2. Under the hypothesis of Lemma 2.2.1, let P ∈ DiffX(L,L′) and
let p ∈ HomOX

(L,L′ ⊗OX
DX) be the unique right OX-linear morphism such that

P = νL′ ◦ p. Then

lpπ∗P := νlpπ∗L′ ◦ lpπ∗p : lpπ∗L → lpπ∗L′

is the restriction of π∗π−1P and defines a Wl,p(Γ) ⊗C OX-linear morphism of
sheaves.

The assignement P 7→ lpπ∗P defines an additive functor

lpπ∗ : Qcoh(OX ,DiffX) −→Mod(Wl,p(Γ)
X
)

where Wl,p(Γ)
X

is the constant sheaf with constant value Wl,p(Γ) and Qcoh(OX ,DiffX)

is the additive category whose objects are quasi coherent OX-modules and whose
morphisms are differential operators.

Proof: The definition makes sense thanks to lemma 2.2.1. The statement is thus
an easy consequence of the definition and of the properties of lpπ∗ described above.
�

2.3. Lp De Rham cohomology. LetM be a (quasi) coherent DX -module viewed
as a OX -module endowed with a flat connection ∇ : M → M⊗OX

Ω1
X . The De

Rham complex ofM defined as:

DR(M) = (M ∇→M⊗OX
Ω1

X
∇→M⊗OX

Ω2
X → . . .)[dimX ]

is a complex in Qcoh(OX ,DiffX). Applying the functor lpπ∗ we define the Lp De
Rham complex lpπ∗DR(M) and the Lp De Rham cohomology:

H•
DR,Lp(X̃,M) := H•(X, lpπ∗DR(M)).

We will not try to put more structure than the natural Wl,p(Γ)-module structure
on these general Lp cohomology groups.

The Lp De Rham constructible cohomology groups come from a ∂-functor

H•
DR,Lp, : D

b(Coh(DX))→ Db(ModWl,p(Γ)).

Example 2.3.1. If F is a quasi coherent OX -module,

H•
DR,Lp(X̃,DX ⊗OX

F) = H•
Lp(X̃,F ⊗ ωX).

Proof: The natural augmentation ǫ : DX ⊗OX
F ⊗OX

ωX → F ⊗OX
ωX gives

rise to a quasi-isomorphism DR(DX ⊗OX
F) ǫ→ F ⊗OX

ωX . Locally it is a Koszul
complex for the regular sequence (∂x1

, . . . , ∂xn
). The same is actually true for its

lpπ∗ and we get a quasi-isomorphism lpπ∗DR(F) lpπ∗ǫ−→ lpπ∗F ⊗OX
ωX . �

Example 2.3.2. Denote by ℓpπ∗CX̃
⊂ π∗CX̃

the locally constant sheaf of Wl,p(Γ)-
modules attached to the right regular representation of Γ in LpΓ. Let V be a finite
rank complex local system on X and V be the DX-module whose underlying finite
rank locally free OX -module is V ⊗CX

OX and holomorphic connection ∇ so that
the natural morphism σ : V→ V represents ker(∇).

Then H•
DR,Lp(X̃,V) = H•+dim(X)(X, lpπ∗CX̃

⊗CX
V) = H•+dim(X)

(p) (X̃,V).

Proof: Left to the reader. �

Remark 2.3.3. With the notation of Remark 2.1.2, lpπ∗DR(M) = DR(lpπ∗M).
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2.4. Compatibility to the Riemann-Hilbert correspondance.

Remark 2.4.1. The natural sheaf monomorphism iπ : ℓpπ∗CX̃
⊗CX

OX → lpπ∗OX

is not an epimorphism. One would need a completed tensor product of sheaves in
locally convex topological vector spaces we will not try and discuss.

Proposition 2.4.2. Let M be a holonomic DX-module. Then the natural map
RlpΓ⊗CΓ π!π

−1DR(M)→ lpπ∗DR(M) is a quasi-isomorphism.

Proof: The problem is local. Thus, we can assume M has a good filtration
F.. Then F.DR(M) is a filtration of DR(M) by differential complexes of coherent
sheaves. For q ≫ 0 FqDR(M) → DR(M) is a quasi-isomorphism [42, Lemma
1.14] (see also [3, Lemma 1.5.6 p. 31]). Hence it is enough to prove that RlpΓ⊗CΓ

π!π
−1FqDR(M)→ lpπ∗FqDR(M) is a quasi-isomorphism for such a q ≫ 0.
Thanks to the Kashiwara constructibility theorem7 [30, 36], the cohomology of

FqDR(M) is constructible. Choosing U appropriately such that it is Stein and

Hi(U,Hj(DR(M))) = 0

for i > 0. Note that the kernel and images of the differentials in FqDR(M) have
also vanishing cohomology in positive degree on U .

We have to show that every element z ofKer(d) : Fq+kM⊗Ωk(U)→ Fq+k+1M⊗
Ωk+1(U) can be decomposed as a sum z = dt+ g(h(z)) where

g : Hk−n(FqDR(M))→ Ker(d) ⊂ Fq+kM

is a section over U of the morphism of sheaves

h : Ker(d : Fq+kM⊗ Ωk → Fq+k+1M⊗ Ωk+1)→ Hk−n(DR(M))

and t a section over U of Fq+k−1M⊗ Ωk−1 with local Lp-estimates.
This means the following. The Fréchet structure of G(U) where G is coherent is

given by an inverse limit of a countable family of Lp norms (‖ − ‖n)n∈N defined by
integration on an exhaustive family of compact subsets of U if the sheaf is locally
free, of quotient norms of such Lp norms in a locally presentation of the sheaf in
general [22]. A local Lp estimate is then, for all n ∈ N, a series of estimates of the
form:

‖t‖n ≤ Cn.‖z‖n′

for some n′ ∈ N.
This follows from the continuity of d for this Fréchet structure, the fact that a

continuous operator of Fréchet spaces has closed range if it has a finite dimensional
kernel and the open mapping theorem for Fréchet spaces using a standard argument
(cf. e.g. [22, pp. 534-535]). �

Corollary 2.4.3. The natural map iπ induces a natural invertible transformation
of functors on Hol(DX):

rh(p) : H
•
DR,Lp(X̃,_)

≃←− H•+dimC(X̃
(p) (X̃,DR(_)).

Remark 2.4.4. As in section 1 we may work in the more general set-up of a proper
action of Γ on a complex manifold X̃ with cocompact quotient or even restrict our
attention to cocompactly supported equivariant coherent DX or OX-modules.

7Which is used implicitely in the statement of the proposition.
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3. Farber’s abelian category and its localisation

Up to this point, we were working with Lp-cohomology. Now, it is time to admit
that unless p = 2 the objects we constructed are out of control.

We will change our notations and define N (Γ) =Wl,2(Γ) and survey some rele-
vant homological algebraic aspects of modules over this operator algebra.

3.1. Hilbert Γ-modules. Let us first briefly review a very nice construction due
to Farber and Lück [23]. For a longer review adapted to our purposes, see [22,
pp.539-544]. For a complete review including applications in topology and algebra,
see the bible of the subject [35].

Definition 3.1.1. A Hilbert Γ-module (resp. of finite type, resp. separable) is a
topological C-vector space with a continuous Γ-action which can be realized as a
closed Γ-invariant subspace of l2Γ⊗̂H where H is a Hilbert space (resp. of finite
dimension, resp. separable).

Lemma 3.1.2. The action of CΓ on a Hilbert Γ-module E extends uniquely to an
action of the C∗-algebra N (Γ) in such a way that the image of N (Γ) is strongly
closed in B(E).

Proposition 3.1.3. The following categories Ef (Γ) ⊂ E(Γ) :
• Objects of E(Γ) are triples (E1, E2, e) where E1 et E2 are Hilbert Γ-module

and e continuous Γ-equivariant linear map.
• HomE(Γ)((E1, F2, e), (F1, F2, f)) is the set of pairs (φ1 : E1 → F1, φ2 :
E2 → F2) of continuous Γ-equivariant linear maps such that φ2e = fφ1
under the equivalence relation (φ1, φ2) ∼ (φ′1, φ

′
2)⇔ ∃T ∈ LΓ(E2, F1), φ

′
2−

φ2 = fT .
• Ef (Γ) is the full subcategory of E(Γ) whose objects (E1, E2, e) have the

property that E2 is of finite type (E1 is then also of finite type).
are abelian categories of projective dimension one. The forgetful functor Φ from
E(Γ) to the category of N (Γ)-modules defined by Φ((E1, E2, e)) := E2/e(E1) is
faithful, respects direct sums, kernels and cokernels and is conservative.

Proof: See [22]. The main point is that the proof in [23] does not require finite
type. �

Remark 3.1.4. It is not clear to the author whether the forgetful functor Φ is fully
faithful on Ef (Γ). It is fully faithful on the full subcategory of projective modules
thanks to [25]. Fully faithfulness would follow if Φ(E) was a projective N (Γ)-module
whenever E is a finite type Hilbert Γ-module but it doesn’t seem to be true.

The following corollary greatly simplifies our treatment:

Corollary 3.1.5. If f• : K• → L• is a continuous morphism of complexes of
Hilbert Γ-modules whose terms are in E(Γ), hence a morphism of complexes in
E(Γ), f• induces a isomorphism in D(E(Γ)) if and only if Φ(f•) induces an alge-
braic isomorphism in cohomology.

An object X = (E1, E2, e) of Ef (Γ) has two basic invariants. Its Von Neumann
dimension dimΓX ∈ R depends only on P (X) = E2/eE1 and has properties sim-
ilar to the dimension function of ordinary linear algebra and its Novikov-Shubin
invariant NoSh(X) = (E1, eE1, e).

Remark 3.1.6. (Tapia) This construction of an abelian category is a special case
of [2, pp. 20, 40-41]. Actually Hilbert Γ-modules form an exact category, even a
quasi abelian one as follows from [48, section 3.2], which satisfies the conditions in
[2]. The same holds with N (Γ)-Fréchet modules.
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3.2. Γ-Fredholm Complexes. The main nice property complexes of Hilbert Γ-
modules can have in general is being Γ-Fredholm.

Definition 3.2.1. A bounded complex of Hilbert Γ-modules (with a positive inner
product) (Ck, dk) is Γ-Fredholm if and only if the spectral family Edd∗+d∗d

λ satisfies
∃λ > 0 such that the image of Eλ has finite Γ-dimension.

This notion depends on the notion of a Fredholm operator given in [35, Definition
1.20, p. 26]. It is invariant by quasi-isomorphisms in E(Γ) thanks to [35, Theorem
2.19 p. 83] . There is a stronger notion.

Definition 3.2.2. A bounded complex of Hilbert Γ-modules (with a positive inner
product) (C̄k, d̄k) is strongly Γ-Fredholm if and only if it is quasi-isomorphic as
a complex in E(Γ) to another complex (Ck, dk) whose spectral family Edd∗+d∗d

λ

satisfies ∃λ > 0 such that the image of Eλ is a finitely generated Hilbert Γ-module.

This is a stronger notion since a finite Γ-dimensional Hilbert module need not
be finitely generated (e.g. for Γ = Z).

Question 3.2.3. Can one drop the quasi-isomorphism? Perhaps the proof of [35,
Theorem 2.19 p. 83] can be modified using the center-valued trace.

Lemma 3.2.4. The homotopy category of bounded strongly Γ-Fredholm is equiva-
lent to Db(Ef (Γ)).

Proof: Since the full abelian subcategory Ef (Γ) ⊂ E(Γ) has enough E(Γ) pro-
jective and both have finite projective dimension ψ : Db(Ef (Γ)) → Db

Ef (Γ)
(E(Γ))

is an equivalence.
Certainly a strongly Fredholm complex has its cohomology in Ef (Γ).
Quasi-isomorphisms in the homotopy category of complexes in E(Γ) are exactly

the homotopy classes of morphisms of complexes that are algebraic quasi isomor-
phisms thanks to the exactness of the faithful forgetful functor E(Γ)→ModN (Γ).

Since strongly Fredholm complexes are complex of projective objects in E(Γ),
the functor ψ′ from the homotopy category of bounded above strongly Γ-Fredholm
complexes to the derived category DbE(Γ) is fully faithful and takes its values in
Db

Ef (Γ)
(E(Γ)). Since ψ is an equivalence, whose image is contained in the image of

ψ′, ψ′ is essentially surjective.
�

3.3. An equivalence of categories. There is a more algebraic approach to Ef (Γ)
[35, p. 288]. N (Γ) is a semihereditary [35, Theorem 6.7 p. 239] hence coherent ring.
It turns out that Ef (Γ) is equivalent to the abelian category of finitely presentable
N (Γ)-modules. But the equivalence in question, denote it by ν, is not given by Φ.
Indeed it is constructed using the equivalence given by the functor on finite rank
free N (Γ)-modules defined by M 7→ l2Γ ⊗N (Γ) M . It is not obvious that it is an
equivalence.

There is also a dimension theory for arbitrary N (Γ)-modules which generalizes
dimΓ and more or less reduces the theory of L2-Betti numbers and Novikov-Shubin
invariants to algebra. However non zero N (Γ)-modules of dimension 0 may exist
in sharp contreast with projective Hilbert Γ-modules.

3.4. Affiliated Operators. The algebra of affiliated operators U(Γ) is a flat ex-
tension N (Γ) ⊂ U(Γ) [35, Theorem 8.2.2] such that U(Γ)⊗NoSh(X) = 0 whenever
X is an object in Ef (Γ). It is a coherent ring, even a Von Neumann regular one. So
that finitely presented U(Γ)-modules form an abelian category of projective dimen-
sion 0 (all objects are projective!). Furthermore dimΓ extends to U(Γ)-modules (no
topological structure needed) in such a way that objects of the form U(Γ)⊗N (Γ) E
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where E is a Hilbert Γ-module of finite type are finite dimensionnal, dimΓ being
preserved. In particular, for a complex K• in Ef (Γ),

Hq(U(Γ)⊗K•) = U(Γ)⊗N (Γ) H̄
q(K•) = U(Γ)⊗N (Γ) P (H

q(K•)).

The author does not know how to use in Complex Analytic Geometry the torsion
information lost in that process. So forgetting about it seems to be appropriate
from a pragmatic point of view.

The relevance of this localization process for Hodge theory is one of the main
ideas of [17]. There, intermediate abelian categories fitting in a succession of exact
functors of abelian categories

Ef (Γ)
faith.−→ Mod(N (Γ))→Mod(N (Γ))/τ →Mod(U(Γ))

are introduced where τ is a torsion theory (or an appropriate Serre subcategory).
Here we will only consider the case τ = τU(Γ) in the notations of loc.cit.: when it
is possible we will work in Ef (Γ) and when it becomes necessary we will apply the
functor U(Γ)⊗N (Γ).

However, the reason [35] introduces affiliated operators is his [0,+∞]-valued
dimension theory for U(Γ)-modules which enables him to make the theory of L2-
Betti numbers more or less algebraic. This enables one to look at non-locally finite
simplicial complexes like K(Γ, 1) simplifying Cheeger-Gromov’s article [10]. One
has however to do a minimal amount of functional analysis to prove the U(Γ)-
modules we encounter are finite dimensional or finitely generated projective. This
is why we will not just apply the functor U(Γ)⊗N (Γ) to the construction of the two
preceding sections with p = 2 although it is extremely tempting.

We conclude with the following lemmas:

Lemma 3.4.1. U(Γ)⊗N (Γ) ν is naturally equivalent to U(Γ)⊗N (Γ) on Ef (Γ).

Proof: This follows from the construction of ν and of the relation U(Γ) ⊗N (Γ)

l2Γ = U(Γ) which in turn follows from the realization of U(Γ) as an Ore localization
of N (Γ) [35]. �

Lemma 3.4.2. Let E be an object of Ef (Γ) endowed with 3 filtrations W , F , G. F̄
and Ḡ are n-opposed on GrW̄nP (E) if and only if U(Γ)⊗N (Γ) F and U(Γ)⊗N (Γ)G
are n-opposed on GrU(Γ)⊗NgWnU(Γ)⊗N (Γ) E

Proof: Left to the reader. �

3.5. A natural question. The construction of a completely satisfying L2 Mixed
Hodge Theory might be eased by the use of further results from the theory of
operators algebras. A saliant feature of U(Γ) is that it is self injective which is
exactly, according to a remark in [35], what is needed for neat duality statements.
It would be helpful if the following question had a positive answer:

Question 3.5.1. Assume we have a complex of separable Hilbert Γ-modules (or
Fréchet N (Γ)-modules) whose cohomology is isomorphic as a N (Γ)-module to the
N (Γ)-module underlying an object of Ef (Γ). Is the complex strongly Γ-Fredholm?

3.6. Real Structures. The ∗-algebras N (Γ) and U(Γ) carry a real structure,
namely a conjugate linear algebra involutive automorphism † commuting with the
conjugate linear algebra involutive anti-automorphism ∗ , and a real structure on
a module over these algebras is just a conjugate linear automorphism on the un-
derlying vector space compatible with †. For instance l2Γ has a real structure. We
will denote by REf (Γ) the category of formal quotients of real Hilbert Γ-modules.
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4. Refined L2-cohomology

4.1. Finiteness theorem for L2 constructible cohomology.

Proposition 4.1.1. Let S be a cocompact Γ-simplicial complex. There is a ∂-
functor H∗

2(|S|,−) : Db(ConsK,Γ(S)) → Db(Ef (Γ)) such that, upon composition
with the forgetful functor to the derived category of N (Γ)-modules Φ(H∗

2(|S|,−)) =
H∗

(2)(|S|,−) (cf. Definition 1.2.3).

Proof: First assume that S satisfies the following technical assumption: for every
pair of distinct adjacent vertices p, q ∈ S, ψ(p) 6= ψ(q) where ψ : S → Γ\S is the
quotient map. In particular, the set of vertices of a given simplex maps injectively
to Γ\S. Choose a well-ordering of Γ\S. This provides each simplex σ with an order
<σ on its vertices such that <γ.σ= γ(<σ) and if τ ⊂ σ, <σ |τ =<τ . This defines a
sign ǫτ,σ for every pair of simplices τ ⊂ σ such that Card(σ) = Card(τ)+1, namely
ǫτ,σ = (−1)ν where (σ,<σ) = p0 < p1 < . . . < pCard(σ)−1 and σ − τ = {pν}.

Let F be an object of ConsΓ(S). For every simplex σ, set Uσ := ∪σ⊂τ |τ | and
Fσ := H0(Uσ,F). For τ ⊂ σ, the sheaf structure gives a map ρτ,σ : Fτ → Fσ. Set
Cp

c (S,F) := ⊕Card(σ)=p+1Fσ and for fτ ∈ Fτ ,

dfτ =
∑

τ⊂σ,Card(σ)=Card(τ)−1

ǫτ,σρτ,σ(fτ ).

This defines a complex of Γ-modules C•
c (S,F).

This complex is actually the Čech complex of π!F in the covering (U ′
q)q∈Γ\S

of Γ\|S| where we define U ′
q = π(U(p)) where p ∈ S satisfies π(p) = q. Using

Proposition 8.1.4 p.323 in [32], we see that lpΓ⊗KΓC
•
c (S,F) computes H•

(p)(|S|,F).
In case p = 2; this complex is in fact a complex in Ef (Γ).

This construction is obviously functorial, and taking the simple complex asso-
ciated to a double complex one would construct the sought-for ∂-functor. The
technical assumption on S is not always satisfied, but it holds for the barycentric
subdvision βS. We certainly have a fully faithful forgetful functor ConsK,Γ(S) →
ConsK,Γ(βS) and we define a functor between categories of complexes to be s(l2Γ⊗KΓ

C•(βS,−)). Passing to derived categories, it descends to H∗
2(|S|,−). �

Proposition 4.1.2. Let X̃ be a cocompact subanalytic Γ-space.
There is a ∂-functor H∗

2(X̃,−) : Db
R−c,Γ(X̃)) → Db(Ef (Γ)) such that one has

Φ(H∗
2(X,−)) = H∗

(2)(X,−).
This functor enjoys the following properties:

• (Leray spectral sequence) For every proper Γ-equivariant morphism f : X̃ →
Ỹ H2(X̃,−) and H2(Ỹ ,−) ◦Rf∗ are naturally isomorphic functors.
• (Atiyah’s L2 index theorem) If Γ is fixed point free on X̃

∑

i

(−1)i dimΓ Hi
2(X̃,F•) =

∑

i

(−1)i dimC Hi(Γ\X̃,Γ\F•).

Proof: As in the proof of Theorem 1.3.2, the first part derives from Proposition
4.1.1. The proof of the additionnal statements is simpler than the proof of similar
statements for coherent cohomology in [22] and will not be given in detail. �

If X̃ is complex analytic, we will restrict H∗
2(X̃,−) to Db(ConsΓ(X̃)). We will

also denote by H
k

2(X̃,−) the k-th reduced cohomology functor

H
k

2(X̃,−) = P (Hk(H∗
2(X̃,−)).

It is a projective Hilbert Γ-module and one has dimΓ Hi
2(X̃,F•) = dimΓ H

i

2(X̃,F•).
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4.2. Finiteness theorem for L2 coherent De Rham cohomology. Assume in
this subsection that X be a compact complex manifold. The L2 coherent cohomol-
ogy functor

H•
L2(X̃,−) : DbCoh(OX)→ Db(Ef (Γ))

defined in [22, Théorème 5.3.8] comes from a C-linear functor denoted by C from a
category A of coherent OX -modules endowed with local locally free presentations
taking values in the so-called qhtf complexes of an additive category MontMod of
so-called Montelian modules which contain E(Γ) as a full subcategory.

The homotopy category of qhtf complexes of Montelian modules localized with
respect to a specific class of quasi-isomorphisms is naturally equivalent toDb(Ef (Γ)).

The resulting functor Cb(A)→ Db(Ef (Γ)) factors through Db(Coh(OX)).
C is essentially the Čech cohomology of l2π∗ with respect to some Stein covering

U0 of X . Actually, we can choose an appropriate germ at t = 0 of an increasing
family of coverings Ut defined for t ≥ 0 such that U = U0 and:

C∗(t) = C•(Ut, l
2π∗F)→ C•(Ut′ , l

2π∗F)

is a quasi-isomorphism for t′ ≤ t. Then C(F) = (C∗(t))t≥0 up to some inessential
auxiliary data. We relegate to an appendix the more detailed discussion of these
auxiliary data.

Lemma 4.2.1. The functor C′ extends to CbCoh(OX ,DiffX) the full subcategory
of CbM(OX ,DiffX) whose objects are differential complexes of coherent analytic
sheaves as an additive functor.

Proof: Since differential operators between coherent analytic sheaves act contin-
uously on the Fréchet space of their sections, the arguments of [22] apply. �

Recall from [42] that the correct notion of quasi isomorphism in the trian-
gulated category KbM(OX ,DiffX) of homotopy classes of bounded complexes in
M(OX ,DiffX) are the differential quasi isomorphisms. We denote by dqi this lo-
calizing class which is a priori smaller than the class qi of sheaf-theoretic quasi-
isomorphisms. The class dqi is needed to invert the De Rham functor and one has
a ∂-functor

ν : KbCoh(OX ,DiffX)dqi → KbCoh(OX ,DiffX)qi.

Here KbCoh(OX ,DiffX)dqi stands for the essential image of CbCoh(OX ,DiffX)
(the essential image is a stricly full category).

Corollary 4.2.2. The functor H•
L2(X̃,−) extends to a ∂-functor

H•
2 (X̃,−) : KbCoh(OX ,DiffX)dqi → Db(Ef (Γ))

such that Φ ◦H•
DR,2(X̃,−) is naturally isomorphic to H•(X, l2π∗−).

Proof: This follows from the fact that a complex in Ef (Γ) is acyclic iff it is
algebraically acyclic by Corollary 3.1.5. �

We will from now on make a technical assumption, namely that the coherent
DX -modules we consider admit a global good filtration. A second possibility would
be to work on the category FiltMod(DX).

Lemma 4.2.3. Let K• ∈ Ob(KbCoh(DX)). Let F. be a filtration of K• induc-
ing a good filtration on each term. Then FpDR(K•) → DR(K•) is a quasi iso-
morphism for p ≫ 0 and FpDR(K•) is independant of p ≫ 0 up to a unique
differential quasi-isomorphism hence defines unambiguously an object DR′(K•) of
KbCoh(OX ,DiffX)dqi. This assignement is functorial.
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Proof: See [42], in particular for the functorial behaviour of this construction. �
It is tempting to believe that one could work with local good filtrations (actually

with the local presentations inducing them) using simplicial gluing techniques as in
[22, Section 6] but we shall refrain from doing so.

We can thus define a ∂-functor

tDR : DbCoh(DX)goodfilt → KbCoh(OX ,DiffX)dqi

which is compatible to the restriction to DbCoh(DX) of Saito’s equivalence:

DR : DbMod(DX)→ KbM(OX ,DiffX)dqi

Proposition 4.2.4. The functor

H•
DR,2(X̃,−) = H•

2 (X̃,−) ◦ tDR : DbCoh(DX)goodfilt → Db(Ef (Γ))

is a ∂-functor such that Φ ◦H•
DR,2(X̃,−) is naturally equivalent to the restriction

of the functor H•
DR,L2(X̃,−) .

Once again, one can define the reduced L2 cohomology of M a holonomic DX -
module admitting a good filtration (or a complex of such):

H̄k
DR,2(X̃,M) = P (Hk

DR,2(X̃,M)).

Remark 4.2.5. When F is a coherent OX-module, one can form the induced DX-
module ind(F) := DX ⊗F , a coherent DX-module with a global good filtration, and
there is a morphism of complexes of sheaves DR(ind(F)) → F ⊗ ωn

X which is a
quasi-isomorphism. We have a natural isomorphism in Db(Ef (Γ))

H•
DR,2(X̃,DX ⊗OX

F) ≃ Hq
2 (X̃,F ⊗ ωn

X)

where we use the notation of [22] for coherent L2-cohomology.

4.3. L2 Poincaré-Verdier Duality. If S be a cocompact (in particular finite
dimensionnal) Γ-simplicial complex ConsK,Γ(S) can described combinatorially in
terms of the poset (Σ(S),≤) where Σ(S) is the set of simplices and σ ≤ τ if and
only if σ is a face of τ . The partial order is Γ-equivariant. Then ConsK,Γ(S) is
the category of Γ-equivariant functors

(Σ(S),≤)→ Finite− dimensionnal K −Vector Spaces.

This is nothing but a reformulation of a part of the construction in the proof of
Proposition 4.1.1. We call the maps Fτ → Fσ when τ ≤ σ the corestriction maps
of F ∈ Ob(ConsK,Γ(S)).

Poincaré-Verdier has an explicit combinatorial formulation [52, 47, 12] which is
presented very efficiently in the note [11] and was apparently first observed by A.
Shephard in his 1985 unpublished thesis under R. MacPherson’s direction.

Proposition 4.3.1. Let F be a Γ-constructible sheaf. Then its Verdier dual is
represented by the complex of injective Γ-constructible sheaves :

D(F ) = . . . −→
⊕

dim(σ)=i

ισ̄∗K σ̄ ⊗ F∨
σ

∂−→
⊕

dim(τ)=i−1

ιτ̄∗K τ̄ ⊗ F∨
τ −→ . . .

where
• ισ : σ̄ → |S| is the closed embedding,
• For every i ∈ N, Di(F ) =

⊕
ισ̄∗K σ̄ ⊗ F∨

σ is placed in degree −i,
• The (τ, σ) matrix component of ∂ is the tensor product of the transpose of

the corestriction map Fτ → Fσ when τ ≤ σ and the homology boundary
map ισ̄∗K σ̄ → ιτ̄∗K τ̄ and 0 if τ is not a facet of σ̄ .
• V 7→ V ∨ is the usual duality functor on finite-dimensionnal K - Vector

Spaces,
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If F • is a bounded complex of Γ-constructible sheaves D(F •) is represented by the
totalisation of the double complex obtained by applying D.

This proposition gives a lift of Verdier Duality to the category of complexes,
before taking the derived category.

Now if F is a Γ-constructible sheaf, we may construct F∨ by applying the usual
duality functor and get a Γ-constructible cosheaf, namely a contravariant functor

(Σ(S),≤)→ Finite− dimensionnal K −Vector Spaces.

We may construct its homology chain complex C•(S, F∨) , concentrated in positive
degrees, and view it as a cochain complex C−•(S, F∨) concentrated in negative
degrees. These are complexes of projective KΓ-modules.

Lemma 4.3.2. There is a functorial monomorphism of complexes of KΓ-modules:

C−•(S, F∨)→ C•
c (S,D(F ))

such that the quotient complex is acyclic.

Proof. The complex C•
c (S,D

i(F )) is the same as
⊕

dim(σ)=i

C•(σ̄)⊗ F∨
σ

where C•(σ̄) is the simplicial cochain complex of the closed simples σ̄.
We have a natural cochain equivalence K[0] → C•(σ̄) sending 1 to the cochain

which 1 on all vertices of σ̄. This enables to construct a Γ-equivariant cochain
equivalence: ⊕

dim(σ)=i

F∨
σ [0]→

⊕

dim(σ)=i

C•(σ̄)⊗ F∨
σ

which commutes with the natural boundaries by construction. This proves the
lemma since C•

c (S,D(F )) is the simple complex attached to the double complex
C•

c (S,D
•(F )). �

Lemma 4.3.3. Let F • be a bounded complex of Γ-constructible sheaves, then there
is a functorial map of bounded complexes of projective Hilbert Γ-modules obtained
by taking the simple complex attached to

l2Γ⊗KΓ C−•(S, F •∨)→ l2Γ⊗KΓ C
•
c (S,D(F

•)).

Proof. Obvious. �

Lemma 4.3.4. Given F • an object of Db(ConsK,Γ(S), there is a functorial perfect
duality of projective Hilbert Γ-modules

H
i

2 (|S|, F • ⊗K C)⊗H
−i

2 (|S|,D(F •)⊗K C)→ C

which preserves the natural real structure if K ⊂ R.

Proof. This follows from the previous lemma and [35, Lemma 2.17 (2), p. 82]. �

Proposition 4.3.5. Notations of Proposition 4.1.2. There is a functorial perfect
duality of projective Hilbert Γ-modules

H
i

2 (X̃, F
• ⊗K C)⊗H

−i

2 (X̃, RHom•(F •, ω•)⊗K C)→ C

which preserves the natural real structure if K ⊂ R where ω• = D(K
X̃
) is the

Verdier dualizing complex.

Proof. This is a restatement the previous lemma. �

Corollary 4.3.6. dimΓ H
i

2 (X̃, F
•⊗K C) = dimΓ H

−i

2 (X̃, RHom•(F •, ω•)⊗K C).
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Remark 4.3.7. It is extremely tempting to conjecture that, with the notations of
[22], we have a L2-Serre Duality theorem for Coherent analytic sheaves on complex
spaces stating that there is perfect duality:

H̄q
2 (X̃,F)⊗ H̄−q

2 (X̃, RHom•
OX

(F ,Ω•
X))→ C,

where Ω•
X is the dualizing complex and that this even holds for coherent DX-modules

if X is smooth. Proving this conjecture is likely to be quite technical and does not
seem promising for applications.

4.4. The comparison isomorphism. We need to show that the comparison iso-
morphism which a priori lives is a quasi-isomorphism of complexes of N (Γ)-module
lifts to a quasi isomorphism of bounded complexes in Ef (Γ). This is not completely
trivial. However, with the notations in Theorem 1:

Lemma 4.4.1. If Σ is a triangulation of X refining a stratification S of X and
DR(M) has S-constructible cohomology, and if P is a bounded complex of Σ -
constructible sheaves of C-vector spaces then one represent the quasi-isomorphism
α by a morphism of complexes α̃ : P → FpDR(M) composed with the natural
quasi-isomorphism FpDR(M)→ DR(M) for some p≫ 1.

Proof. This follows from [32, Prop 8.1.9]. �

Corollary 4.4.2. If U is a finite covering by Oka-Weil domains such that:
• it refines the covering V of X by the stars of the vertices of Σ
• the non empty intersections are contractible,

we have a quasi-isomorphism of N (Γ)-Fréchet modules, the leftmost two being in
Ef (Γ):

C•(V, P )←− C•(U, P ) α̃−→ C•(U, FpDR(M)).

Now we have a model of H2,DR(X̃,M which is a bounded complex of finite type
projective Hilbert Γ-Modules with a quasi isomorphism:

L• → C•(U, FpDR(M)).

Since the left hand side underlies a qhtf complex of Montelian modules, by [22,
Proposition 4.4.14], one constructs a morphism of complexes of projective Hilbert
Γ-module which is a quasi isomorphism

C•(V, P )→M•

and is the promised lift of rh2 to an isomorphism in Db(Ef (Γ)). The functoriality
of the construction is left to the reader. This concludes the proof of Theorem 1.

4.5. L2-cohomology of Mixed Hodge Modules. Now, X is a complex projec-
tive manifold.

Let M be a Mixed Hodge Module in the sense of [43]. It is a triple

((M, F,W ), (MB ,WB), α)

where:
• (M, F,W ) is a bifiltered DX -module (which is regular holonomic),
• (M, F ) is a good filtration,
• MB is a perverse sheaf over Q,
• WB is a filtration of MB in the abelian category of perverse sheaves,
• α : DR(M) → MB ⊗Q C an isomorphism in Db

c(X,C), actually a filtered
quasi isomorphism if the weight filtrations are taken into account.

all these data satisfying some non-trivial conditions.
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Proposition-Definition 4.5.1. We can define in Ef (Γ), a real structure and a
real weight filtration W on the N (Γ)-module Hk

2(X̃, π
−1MB) by taking the image

of the functorial morphism

Hk
2(X̃, π

−1W•MB) −→ Hk
2(X̃, π

−1MB)

and a filtration FDR,2 on Hk
DR,2(X̃,M) by taking the image of the natural map

Hk
2 (X̃, F•DR(M))→ Hk

2 (X̃,DR(M)).

Transporting the FDR,2 filtration by the isomorphism rh2 induced by α between
these objects of EfΓ, we get a real structure , a real W -filtration, the weight filtra-
tion, and a complex filtration F , which we shall call the algebraically defined Hodge
filtration, on Hk

2 (X̃,M) := Hk
2(X̃, π

−1MB).
There is a perfect duality of the Hilbert Γ-modules H̄q

2 (X̃,M) and H̄−q
2 (X̃,D(M)).

Proof. This is a direct application of our construction. The last statement follows
from Proposition 4.3.5. �

The following implies Conjecture 3 in the introduction.

Conjecture 4.5.2. After taking reduced cohomology and closure of W,F , the
real structure, the weight filtration and the algebraically defined Hodge filtration
on Hk

2 (X̃,M) are the constituents of a functorial graded polarisable Mixed Hodge
structure in the abelian category REf (Γ).

The mixed Hodge numbers (namely the dimension of its Ip,q) obey the same
restrictions as in [13, 14, 43].

If M is pure polarized, L is the cup product by a Hodge class, and S is a polar-
ization defined by the combination of a Saito polarization and L2-Poincaré Verdier
duality, (

⊕
kH

k
2 (X̃,M), L, S) is a polarized Hodge-Lefschetz in REf (Γ) in the sense

of [40, Part 0, Chapter 3].

In the rest of the article we will see what can be done in that direction using only
standard results. To establish the Mixed Hodge structure, it is enough to prove
that, after tensoring with U(Γ), F and F † become n-opposed inGrnW , hence that the
tensor product with U(Γ) is a U(Γ)-Mixed Hodge Structure thanks to Lemma 3.4.2.
The Hodge Lefschetz structure seems to require that the construction of the Hodge
filtration is compatible with [9][31]. The duality statement survives after tensoring
with U(Γ) thanks to the duality anti-equivalence on finitely generated U(Γ)-modules
given by M 7→M∨ = HomU(Γ)(M,U(Γ)) (recall that U(Γ) is selfinjective and that
all finitely generated U(Γ) modules are projective ) the following form:

Lemma 4.5.3. There is natural isomorphism

U(Γ)⊗N (Γ) H
k
2 (X̃,M)→ (U(Γ)⊗N (Γ) H

−k
2 (X̃,D(M))∨.

Proof: This follows from Proposition 4.3.5. �

5. Analytical L2 Hodge Structures

5.1. Complex polarized VHS on complete Kähler manifolds.

Definition 5.1.1. Let M be a complex manifold. A quadruple (M,V, F ., S) is
called a complex polarized variation of Hodge structure (a VHS) iff V is a flat
bundle of finite dimensionnal complex vector spaces with flat connection D, F . a
deacreasing filtration by holomorphic subbundles of V indexed by integers and S a
flat non degenerate (−1)w-hermitian pairing such that

(1) The C∞ vector bundle V associated to V decomposes as a direct sum V =
⊕p+q=wH

p,q with FP = ⊕p≥PH
p,q
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(2) p 6= r)⇒ S(Hp,q, Hr,s) = 0 and (
√
−1)p−qS is positive definite on Hp,q

(3) D1,0F p ⊂ F p−1 ⊗ Ω1,0
M

The subbundle Hp,q can be given an holomorphic structure by the isomorphism
Hp,q → F p/F p+1. Denote by d′′p the corresponding Dolbeault operator and set
d′′ = ⊕pd

′′
p . D1,0 induces a C∞-linear map ∇′

p : Hp,q → Hp−1,q+1 ⊗ Ω1 called
the Gauss-Manin connection and set ∇′ = ⊕p∇′

p. The Hermitian metric H =

⊕p(
√
−1)p−qSHp,q will be called the Hodge metric. The triple (V, d′′,∇′) is a Higgs

bundle.
Following Deligne, we define EP,Q(V) = ⊕p+r=P,s+q=QH

p,q ⊗ Er,s and D′′ =
d′′ + ∇′. One also defines Ek(V) = ⊕r+s=k ⊕p,q H

p,q ⊗ Er,s. It follows that
D′′EP,Q(V) ⊂ EP,Q+1(V). Then, see [54], given any Kähler metric ω

X̃
on M = X̃ ,

taking formal adjoints of differential operators with respect to this Kähler metric
and the Hodge metric on V, the usual Kähler identities hold.

If furthermore the metric ω
X̃

is complete then the Dirac operators D′′ + d′′, D+
d, . . . and the Laplace operator ∆D = 2∆D′′ = 2∆D′ are formally self-adjoint un-
bounded operators on the Hilbert space of L2 forms with values in V see [19, Section
5.1] in this case or [5] and the references therein for the general theory. Thanks to
[16, Chap. VIII, Theorem 3.2], it also follows that the closure of D,D′′, D′ is given
by the naïve ansatz (namely the domain of D is the space of globally L2 forms φ
such that Dφ taken in the sense of distributions is globally L2), the Hilbert space
adjoints of D,D′′, D′ are given by the naïve adjoints (namely the domain of d is the
space of globally L2 forms φ such that dφ taken in the sense of distributions is glob-
ally L2) and that the L2 decomposition theorem holds replacing images ofD,D′, D′′

and their adjoints by their closure , namely we have an orthogonal decomposition:

L2(X̃, Ek(V)) = Hk(X̃,V)⊕ Im(D)⊕ Im(d),

where H := ker(∆D) is the space of L2 harmonic forms and similarly for D′′.
The L2 De Rham complex L2DR•(X̃,V) (resp. its Dolbeault counterpart) is

the complex of bounded linear operators obtained by restriccting D (resp. D′′) to
its domain. The L2 de Rham cohomology groups ker(D)/DDom(D) (resp. their
L2-Dolbeault counterparts) are not represented by harmonic forms but the reduced
cohomology groups ker(D)/DDom(D) (resp.) are.

Lemma 5.1.2. The k-th reduced L2 cohomology of the complete Kähler manifold
X̃ with coefficients in the VHS V has a Hodge structure of weight w + k.

Proof. It follows from the fact ∆D = 2∆D′′ commutes with the decomposition in
(P,Q) type. �

Lemma 5.1.3. The Hodge-Lefschetz package holds for the reduced L2 cohomology
of the complete Kähler manifold X̃ with coefficients in the VHS V. More precisely
(H

∗
2(X̃,V), L) is a Hodge-Lefschetz structure polarized by

∫
X̃
S(−∧−)) in the sense

of [40, Part 0, Chapter 3].

Proof. The usual proof applies. �

Since ∆D is essentially self-adjoint there exists a spectral decomposition

∆D =

∫ ∞

0

λdEλ

where (Eλ)λ>0 is the spectral family of ∆D, an increasing orthonormal projector-
valued function on [0,+∞[ converging strongly to Id . The support of this spectral
projector valued measure dEλ is the spectrum of ∆D. E0 is the Hilbert space



22 P.EYSSIDIEUX

projector on the closed subspace H := ker(∆D) and Eλ is the projector on the
space of L2 forms φ such that:

∀n ∈ N < ∆n
Dφ, φ >≤ λn < φ, φ > .

The Eλ commute with decomposition in (P,Q)-type and actually with all the op-
erators D,D′, D′′, d, . . . , L,Λ. The statement that Eλ commutes with a differential
operator means in particular that it preserves its domain.

For future use, we record the following more precise notation, for every λ > 0:

Ek
λ(X̃,V) = Im(Eλ) ∩ L2DRk(X̃,V).

This gives a subcomplex of the L2 De Rham complex:

E•
λ(X̃,V) = (. . . Ek

λ(X̃,V)
D−→ Ek+1

λ (X̃,V)→ . . .).

This first order differential operators have closed range if and only if Eǫ = E0

for some ǫ > 0 namely if and and only 0 is isolated in the spectrum of the Laplace
operator. This fails for instance on the complex line.

The natural analog of the space of smooth forms in the compact case is the
following subcomplex of L2DR•(X̃,V):

L2DR•
∞(X̃,V) = (

⊕

k

⋂

n>0

Dom(∆n
D|L2(X̃,Ek)), D).

It is a complex ofN (Γ)-Fréchet spaces and we have L2DR•
∞(X̃,V) ⊂ C∞,•(X̃,V)

by standard elliptic estimates. The same construction works also for the Dolbeault
complex. See [5] for a wider perspective.

Lemma 5.1.4. Assume λ′ > λ > 0. Then the following inclusions of complexes:

E•
λ(X̃,V) ⊂ E•

λ′(X̃,V) ⊂ L2DR•
∞(X̃,V) ⊂ L2DR•(X̃,V).

are quasi-isomorphisms. In fact E•
λ(X̃,V) is a homotopy retract of the three

other complexes.
The same holds for the L2-Dolbeault complex of a Γ-equivariant holomorphic

hermitian vector bundle.

Proof: Define g =
∫∞

λ
µ−1dEµ. Then g, a continuous linear operator, preserves

all the 4 complexes above and so does h = dg. Now, one has [D,h] = Id−Eλ. The
proof works for the Dolbeault complex too, using the Dolbeault laplacian and d

′′.
�

Hence E•
λ(X̃,V) → L2DR•(X̃,V) is an isomorphism in the derived category of

the abelian category of formal quotients of Hilbert spaces (aka separable Hilbert
{1}-modules). And E•

λ(X̃,V) → L2DR•
∞(X̃,V) is an isomorphism in the derived

category constructed in [48].
We endow the 4 complexes in Lemma 5.1.4 with filtration induced by the Hodge

filtration F p = ⊕P≥pE
P,Q(V) on L2(X̃, Ek(V)). This filtration is in each degree a

closed subspace which is furthermore a summand. Actually the first three complexes
are bigraded in the usual fashion.

Lemma 5.1.5. The first two inclusions of Lemma 5.1.4 are filtered quasi-isomorphisms.

Proof: We have to prove that the maps between the F -exact sequences are iso-
morphic at the E1 page. The usual proof does work perfectly well for the first three
complexes. Indeed GrFE

•
λ(X̃,V) = (E2λ(∆D′′ ), D′′) and GrFL

2DR•
∞(X̃,V) =

L2Dolb•∞(X̃,V) whose cohomology are isomorphic by the Dolbeault version of
Lemma 5.1.4. �
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Remark 5.1.6. For the third one, it seems to be more delicate. One has:

GrFL
2DR•

∞(X̃,V) $ GrFL
2DR•(X̃,V) $ L2Dolb•(X̃,V).

Using d′′g we get obtain a quasi-isomorphism of the two extreme complexes with
GrFEλ(X̃,V), hence the natural inclusion is a quasi isomorphism between them.
The problem is that d′′g does not seem to preserve GrPFL

2DR•(X̃,V). This group
contains Dom(D′) ∩Dom(D′′) which is preserved but the inclusion may be strict.

However, the classical case applies without any modification under a strong hy-
pothesis that fails in the simplest case of the universal covering space of a genus
one curve:

Lemma 5.1.7. Zero is isolated in the spectrum of ∆D if and only if (E0, 0) ⊂
(Eλ, D) is a quasi-isomorphism.

Lemma 5.1.8. If zero is isolated in the spectrum of ∆D then:
(1) The decomposition theorem is valid without taking the closure of Im(D),

Im(d). Namely, Im(D) and Im(d) are L2-closed and:

L2(X̃, Ek(V)) = Hk(X̃,V)⊕ Im(D)⊕ Im(d),

and also we have an equivariant decomposition as a direct sum of closed
Fréchet subspaces:

L2DRk
∞(X̃,V) = Hk(X̃,V)⊕D(L2DRk−1

∞ (X̃,V))⊕ d(L2DRk+1
∞ (X̃,V)).

(2) The decomposition theorem for the L2 Dolbeault complex is valid without
taking the closure of Im(D′′), Im(d′′).

(3) The decomposition theorem for the L2 D′ complex is valid without taking
the closure of Im(D′), Im(d′).

(4) The D′D′′ lemma holds. Namely,

φ ∈ L2DRk
∞(X̃,V) ∩ Im(D′) ∩ Im(D′′)⇒ ∃ψ ∈ L2DRk−2

∞ (X̃,V) φ = D′D′′ψ.

(5) The Hodge to De Rham spectral sequence of L2DRk
∞(X̃,V) degenerates at

E1 and D is F -strict.
(6) The Hodge to De Rham spectral sequence of E•

λ(X̃,V) degenerates at E1

and D is F -strict.

5.2. Polarized VHS on Galois covering spaces of compact Kähler mani-

folds. Let X be a compact Kähler manifold and (X,V, F ., S) be a polarized com-
plex Variation of Hodge Structure of weight w. Assume X̃ is a Galois covering space
of X so that its Galois group Γ acts properly discontinuously by automorphisms on
(X̃, π−1ωX , π

−1V, π−1F ., π−1S). Then it is easy to see that all the Hilbert spaces
considered in the previous section are separable projective Γ-modules and as such
are endowed with a N (Γ)-module structure. Furthermore if the VHS is real the
Eλ and the De Rham L2 cohomology groups carry a natural real structure. Basic
elliptic theory gives:

Proposition 5.2.1. The L2-De Rham complex L2DR•(X̃, π−1V) is strongly Γ-
Fredholm.

Proof: This is essentially in [1]. One can construct a Γ equivariant parametrix
namely a L2 bounded Γ-equivariant operator

L2DR•(X̃, π−1V)→ L2DR•(X̃, π−1V)[−1]
such that [D,P ] = I − S where S is a smoothing operator. This also follows from
[50] which applies to any elliptic complex (including the case of operators!). For
the reader’s convenience, we will however give an easy argument.
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Let (φa)a∈A be a finite family of smooth real functions such that
∑

a∈A

φ2a = 1

and Supp(φa) ⊂ Ua where Ua is an open subset of X small enough so that
π−1(Ua) ∼= Γ× Ua.

If ψ ∈ L2DRk(X̃, π−1V), φaψ identifies with an element with compact support
in L2Γ⊗̂L2DRk(Ua,V) (Hilbert space tensor product) which we may prolongate by
0 to an element φaψ of L2Γ⊗̂L2DRk(X,V). By construction the map Φ:

L2DRk(X̃, π−1V)→ (L2Γ)A⊗̂L2DRk(X,V) ψ 7→ Φ(ψ) = (φaψ)a∈A

is a Γ-equivariant Hilbert space isometric (hence closed) embedding.
Let σD+D∗ be the symbol of the operator D +D∗. For every ψ in the domain

of D +D∗ on L2DRk(X̃, π−1V) we have:

(D +D∗)φaψ = φa(D +D∗)ψ + π−1σ(dφa)ψ.

Summing up, we obtain

‖(D +D∗)ψ‖+K‖ψ‖ ≥ ‖IdL2ΓA ⊗ (D +D∗)(φaψ)a∈A‖ ≥ ‖(D +D∗)ψ‖ −K‖ψ‖
where K = Card(A)maxx∈X ‖σx‖.
Assume now ψ ∈ Ek

λ2(X̃, π−1V). Then ‖(D +D∗)ψ‖ ≤ λ‖ψ‖. Hence

‖Idprkµ◦Φ ⊗ (D +D∗)(φaψ)a∈A‖ ≤ (λ+K)‖ψ‖..
Introduce the tensor product by Id(L2Γ)A of the spectral projector Eµ of (v,V :

prkµ : (L2Γ)A⊗̂L2DRk(X,V)→ (L2Γ)A⊗̂Ek
µ(X,V).

Then if
√
µ > λ+K we have ‖prkµ ◦ Φ(ψ)‖ ≥ ǫ‖ψ‖. for ǫ =

√
µ− λ−K > 0.

It follows that we have a closed embedding of Hilbert Γ-modules:

prkµ ◦ Φ : Ek
λ(X̃, π

−1V)→ (L2Γ)A⊗̂Ek
µ(X,V).

Since Ek
µ(X,V) is a finite dimensional vector space by standard elliptic theory it

follows that Ek
λ(X̃, π

−1V) is a finitely generated Hilbert Γ-module for every λ ≥ 0.
We conclude using:

Lemma 5.2.2. The L2 De Rham and Dolbeault complexes are Γ-Fredholm (resp.
strongly) if and only if there exists ǫ > 0 such that Eǫ is a finite Γ-dimensinal (resp.
finite type) projective module.

Proof: We leave this exercise to the reader. See [35]. �

�

In the most general relevant case, Γ need not act in a cocompact fashion, hence
we have to add the Γ-Fredholm hypothesis to state the following:

Lemma 5.2.3. Assume L2DR•(X̃, π−1V) is Γ-Fredholm. The following inclusions
of complexes:

E•
λ(X̃, π

−1V) ⊂ Eλ′(X̃, π−1V) ⊂ L2DR•
∞(X̃, π−1V) ⊂ L2DR•(X̃, π−1V)

are quasi-isomorphisms of complexes of Hilbert (resp. Fréchet for the third one)
Γ-modules and define the same element of Db(Esep(Γ)) (resp. of the derived cate-
gory of the exact category of N (Γ)-Fréchet modules) all of whose cohomology groups
have finite Γ-dimension.

Lemma 5.2.4. Assume L2DR•(X̃, π−1V) is Γ-Fredholm.
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(1) The decomposition theorem is valid. Namely, we have a direct sum decom-
position of U(Γ) modules

U(Γ)⊗N (Γ) L
2(X̃, Ek(π−1V)) = U(Γ) ⊗N (Γ) Hk(X̃, π−1V)⊕ Im(D)⊕ Im(d).

(2) The decomposition theorem for the corresponding U(Γ)-Dolbeault complexes
is valid.

(3) The decomposition theorem for the U(Γ)-D′ complexes is valid.
(4) U(Γ) ⊗N (Γ) E

•
0 (X̃, π

−1V) ⊂ U(Γ) ⊗N (Γ) E
•
λ(X̃, π

−1V) is a filtered quasi-
isomorphism where λ > 0.

(5) The Hodge to De Rham spectral sequence of U(Γ) ⊗N (Γ) E
•
λ(X̃, π

−1V) de-
generates at E1 and D is F -strict.

(6) The Hodge to De Rham spectral sequence of U(Γ)⊗N (Γ) L
2DR•

∞(X̃, π−1V)
degenerates at E1 and D is F -strict.

(7) Dingoyan’s D′D′′ lemma holds. Namely,

φ ∈ L2DRk(X̃,V) ∩ Im(D′) ∩ Im(D′′)⇒ ∃ψ∃u ∈ U(Γ)× uφ = D′D′′ψ.

Proof: As in [17], (1), (2), (3) follow from [17, Lemme 2.15] and the fact these
complexes are Γ-Fredholm. Observing that the formation of the cohomology of a
complex commutes with U(Γ)⊗N (Γ), since N (Γ) → U(Γ) is flat, (4) follows from
the fact that we have an isomorphism on cohomology after tensoring with U(Γ),
and we also have an isomophism on cohomology after passing to GrF since the L2-
Dolbeault complex is Γ-Fredholm too (Γ-Fredholmness means that Eλ has finite
Γ-dimension for λ > 0 small enough). (5) follows from (4) and the fact that the
statement is trivially true for λ = 0 and invariant by filtered quasi-isomorphism.
(6) follows in the same way from Lemma 5.1.5 and (5). (7) follows by an easy
adaptation of the argument of [17, Lemma 3.13].

�

Theorem 5.2.5. The k-th cohomology group of U(Γ) ⊗N (Γ) L
2DR•

∞(X̃, π−1V)
carries a U(Γ)-Hodge structure of weight k + w which we call the analytic Hodge
filtration.

It gives rise to a weight w + k real Hodge structure on U(Γ)⊗N (Γ) H
k
2 (X̃,M).

Every Kähler class on X induces a Hodge-Lefschetz isomorphism

Lk : U(Γ)⊗N (Γ) H
dim(X)−k
2 (X̃,V)→ U(Γ)⊗N (Γ) H

dim(X)+k
2 (X̃,V).

5.3. U(Γ)-Hodge Complex. Now its is time to compare with the previous con-
struction.

We can construct on X a resolution of l2π∗π−1V by the sheafified L2 De Rham
complex. This is a complex of sheaves l2DR•(V) whose value over U ⊂ X is given
in degree k by

l2DR•(V)(U) = {ω ∈ L2
loc(π

−1(U), Ek(π−1V)) ∀K ⋐ U

∫

K

‖ω‖2+‖Dω‖2 < +∞}.

One can construct a polarizable Hodge module M = MX(V) such that MB =
V[dim(X)], with a trivial W -filtration, the underlying filtered DX -module the
V = V ⊗C OX endowed with the filtration F . made increasing, the underlying
perverse sheaf is V[dim(X)] and the comparison morphism α is the usual resolution
V[dim(X)]→ DR(V).
Proposition 5.3.1. There is a natural filtered quasi isomorphism of complexes in
E(Γ)

CD2 : (C(DR(V), F.)→ (L2DR•
∞(X̃, π−1V), F.)

such that the composition with the comparison morphism induced by α:

rh2 : H•
2(X̃, π

−1V)→ C(DR(V)) ≃ H•
DR,2(X̃,V)
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is the Čech-De Rham comparison isomorphism.

Proof. First observe that CD2 indeed maps into L2DR•
∞ and that there is indeed

a morphism of complexes. Then, it is a routine task to check that these maps are
quasi-isomorphisms and that they have the stated compatibility. It is a filtered
quasi-isomorphism thanks to the Čech-Dolbeault isomorphism for GrFV described
in the appendix.

�

Proposition 5.3.2. Consider a locally finite covering U of X by small enough
Oka-Weil domains, we can define a morphism of filtered N (Γ)-Fréchet complexes

(C•(U, l2π∗DR(MDR
X (V))), F )→ (L2DR•

∞(X̃, π−1V), F.)

which is a filtered quasi isomorphism of complexes of N (Γ)-modules.

Proof. The preceding argument gives also this. �

Using the flatness of N (Γ) ⊂ U(Γ), we deduce:

Corollary 5.3.3. Tensoring by U(Γ), we obtain a filtered morphism of complexes
of U(Γ)-modules

U(Γ)⊗N (Γ) (C•(U, l2π∗DR(MDR
X (V))), F )→ U(Γ) ⊗N (Γ) (L

2DR•
∞(X̃, π−1V), F.)

which is a filtered quasi isomorphism.

Before summarizing the outcome of the discussion, we need the following defini-
tion [14]:

Definition 5.3.4. A Hodge complex of U(Γ)-modules with real structure and weight
w is a triple: (A•, (B•, F ), γ) where A• is a complex of U(Γ)-modules with real
structures, γ : A• → B• an isomorphism in the derived category of U(Γ)-modules
such that the F -spectral sequence degenerates at E1 and the pair of filtrations (F, F )
on Hk(B•) is a Hodge structure of weight w + k in the category of U(Γ)-modules.

We say (B•, F ) underlies a Hodge complex of U(Γ)-modules with real structure
and weight w if it can be completed to such a triple.

Theorem 5.3.5. Let X be a compact Kähler manifold and (X,V, F ., S) be a po-
larized complex Variation of Hodge Structure of weight w.

(1) The F -spectral sequence of U(Γ) ⊗N (Γ) (C•(U, l2π∗DR(MDR
X (V))), F ) de-

generates at E1.
(2) The algebraically defined Hodge filtration gives rise to a weight w + k real

Hodge structure on U(Γ)⊗N (Γ) H
k
2 (X̃,V) which coincides with the analyt-

ically defined one.
(3) U(Γ)⊗N (Γ) (C•(U, l2π∗DR(MDR

X (V))), F ) underlies a weight w Hodge com-
plex of U(Γ)-modules with real structure and finite U(Γ)-dimensional coho-
mology objects.

(4) Every Kähler class on X induces a Hodge-Lefschetz isomorphism

Lk : U(Γ)⊗N (Γ) H
dim(X)−k
2 (X̃,V)→ U(Γ)⊗N (Γ) H

dim(X)+k
2 (X̃,V).

Proof. Immediate. We use the natural quasi-isomorphism U(Γ) ⊗N (Γ) rh2 to con-
stuct the Hodge complex in the third statement. Actually, the cohomology objects
are in the abelian category of finitely presented U(Γ)-modules.

�
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5.4. Using analytic realisations of Hodge Modules. Assume now that U ⊂ X
is a Kähler snc compactification and let X̃ → X be a Galois covering space. Endow
U with a Poincaré Kähler metric ωU [54, 9, 31]. The lift ω

Ũ
of ωU to Ũ := U ×X X̃

is a complete Kähler metric which is Poincaré with respect to the partial Kähler
snc compactification Ũ ⊂ X̃. Consider (U,V, F ., S) a (say real) polarized VHS on
U with quasi unipotent monodromy. Recall the fundamental result of [9, 31] that
the sheafified L2 De Rham complex DR•

2(U,V) with respect to the Poincaré metric
on U is a fine model of the perverse sheaf ICX(V).

A trivial modification of the definition in [31] replacing U → X with Ũ →
X yields sheaves on X we shall denote by l2π∗DRk

2(Ũ , π
−1V) and the operators

D′, D′′, D betwwen these sheaves on X and we have:

Proposition 5.4.1. l2π∗DR•
2(Ũ , π

−1V) is a fine model of l2π∗π−1ICX(V).

Proof: Same method as in the proof of Proposition 2.4.2. Left to the reader. �

Corollary 5.4.2. Under the current assumptions, the k-th cohomology of the L2 De
Rham complex of Ũ with values in π−1V in the Poincaré metric ω

Ũ
is isomorphic

as a N (Γ)-module to the N (Γ)-module underlying Hk
2(X̃, π

−1ICX(V)).

Corollary 5.4.3. If the L2 De Rham complex is strongly Γ-Fredholm, the reduced
k-th cohomology group twisted by U(Γ),

U(Γ)⊗N (Γ) H
k
2(X̃, π

−1ICX(V)) = Hk(X,U(Γ)⊗N (Γ) l
2π∗π

−1ICX(V))

carries a natural real U(Γ)-Hodge structure of weight k + w.

Proof: Immediate. �

We do not have a proof of the Γ-Fredholmness in this case. It is not clear
whether the filtrations of this analytically defined Hodge Structure coincide with
the algebraic ones we have constructed in this article.

Remark 5.4.4. It has been announced in [51] that one can construct for every
indecomposable Hodge module M a distinguished complete metric on the regular
part U of its strict support. Distinguished means that the sheafified L2 De Rham
complex DR•

2(U,V) with respect to the distinguished metric on U is a fine model of
the perverse sheaf MBetti. The above considerations apply to distinguished metrics.

6. Proof of Theorem 4

Let X be a compact Kähler manifold and U be a finite covering of X by suffi-
ciently small Oka-Weil domains.

6.1. Direct image by a closed immersion. Let i : Z → X be a closed immersion
of a smooth compact complex manifold and (Z,V, F ., S) be a polarized complex
Variation of Hodge Structure of weight w. The case when Z = X follows from
Theorem 5.3.5.

Then iMHM
∗ MZ(V) = Mi(V). The filtered DX -module (MDR

i (V), F ) can be
computed as i+(MDR

Z (V), F ). DR(MDR
i (V)) is not equal to i∗DR(MDR

Z (V)) except
if Z = X where i∗ = Ri∗ is the ordinary sheaf theoretic direct image. Nevertheless,
we can prove:

Lemma 6.1.1. U(Γ)⊗N (Γ)(RΓ(X, l
2π∗MB), (C•(U, l2π∗MDR

i (V), F ), rh2) is a U(Γ)
Hodge Complex.

Proof. For q ≫ 1, there is a filtered quasi isomorphism

Fq(DR(MDR
i (V)), F )→ (DR(MDR

i (V)), F )
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and there is a (differential) filtered quasi-isomorphism of bounded differential com-
plexes cohenrent sheaves of

i∗DR(MDR
Z (V))→ Fq(DR(MDR

i (V)), F ).

On the other hand, one does have i∗V[dim(Z)] = MB
i (V) and the comparison

isomorphism satisfies αMi(V) = i∗α ◦ η.
Consider a locally finite covering U of X by small enough Oka-Weil domains. We

have a canonical identification of filtered N (Γ)-Fréchet complexes

(C•(U, l2π∗i∗DR(MDR
Z (V)), F ) = (C•(i−1

U, l2π∗DR(MDR
Z (V))), F )

in particular it is a filtered quasi isomorphism.
It follows that there is a filtered quasi isomorphism

U(Γ)⊗N (Γ)(C•(i−1
U, l2π∗DR(MDR

Z (V))), F )→ U(Γ)⊗N (Γ)(C•(U, l2π∗MDR
i (V), F ).

which is compatible with the comparison isomorphism. Hence, the lemma is a
consequence of Theorem 5.3.5. �

It follows from the construction that the real Hodge structure on U(Γ) ⊗N (Γ)

Hq(X̃, L2dR(MDR
i (V)) is the same as the one on U(Γ)⊗N (Γ)H

q(Z̃, L2dR(MDR
Z (V)).

The first part of Theorem 4 is proved.

6.2. Comparison with Dingoyan’s work. In this subsection, we finish the proof
of the second case of Theorem 4.

Definition 6.2.1 ([14]). A Mixed Hodge complex of U(Γ)-modules with real struc-
ture is a triple ((A•,W ), (B•,W, F ), γ) where A• is a biregular increasingly filtered
complex of U(Γ)-modules with real structure, γ : (A•,W ) → (B•,W ) an isomor-
phism in the filtered derived category of U(Γ)-modules such that, for all k ∈ Z,

(GrkWA•, (GrkWB•, GrkWF ), GrkW γ)

is Hodge complexes of weight k with real structure.

Lemma 6.2.2 ([14]). If ((A,W ), (B,W,F ), γ) is a Mixed Hodge complex of U(Γ)-
modules with real structure, for all n ∈ Z

(Hn(A), Im(Hn(W )→ Hn(A)), Hn(γ)−1(FHn(B)), (H
n(γ)−1(FHn(B)))

†)

where FHn(B) = Im(Hn(F )→ Hn(B)) is a real U(Γ) mixed Hodge structure.

Lemma 6.2.3. Let X be a compact Kähler manifold and M such that the GrkW
satisfy Conjecture 3. Then M satisfies Conjecture 3.

Proof. Under these hypotheses, we see immediately that:

U(Γ)⊗N (Γ) (RΓ(X, l
2π∗MB ,W ), (C•(U, l2π∗MDR

i (V),W, F ), rh2)

is a U(Γ)-Mixed Hodge Complex. �

Thanks to [43] -see [48, Example 5.4] for one smooth divisor- the second case of
Theorem 1 follows from the first case and Lemma 6.2.3.

The third one also follows using some of the properties of of Verdier duality
on Mixed Modules, see [43]. Indeed Rj!j

−1MX(V) = DRj∗j−1MX(V∨) hence
Rj!j

−1MX(V) is a Mixed Hodge Module. Furthermore D(GrkWM) = Gr−k
W (D(M))

and D(Mi(V)) = Mi(V∨).
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Appendix: Fréchet Sheaves and the functor C
Čech model.

Given B a Banach algebra and X a secound countable locally compact topo-
logical space, a B-Fréchet sheaf is just a sheaf taking its values in the category
of Fréchet spaces with a continuous action of B. A coherent analytic sheaf on a
complex analytic space is a C-Fréchet sheaf [27, Chapter VIII], in fact a sheaf of
Fréchet modules over the structure sheaf which is a C-Fréchet sheaf of algebras, see
[29, 49].

Given F a Γ-equivariant coherent analytic sheaf on a proper Γ-complex man-
ifold X̃, the sheaf l2π∗F is a Fréchet sheaf of N (Γ)-modules as follows from the
construction in [8, 22] but it is not Montel in the sense of [27].

The sheaf l2π∗F is not Montel when Γ is infinite. There must be a good concept
of Γ-Montel sheaves (see [22] for the corresponding notion of Γ-compactness and
cp. [27, p. 235]) but we don’t want to try and develop it. It will be enough for our
present purposes to use the ad hoc theory given in [22].

For a locally finite covering U of Γ\X̃ by small enough Oka-Weil domains [27, p.
211] we can define C•(U, l2π∗F) the Čech complex of l2π∗F . Here, an open subset
Ω is small enough if and only if the preimage in X̃ is a disjoint union of open subsets
finite over Ω.

By a standard application of Leray’s theorem, C•(U, l2π∗F) computes the coho-
mology of l2π∗F .

The complex C•(U, l2π∗F) does not depend on U in the derived category D
of the exact category of N (Γ)-Fréchet modules (cf. Remark 3.1.6) hence in the
derived category of the abelian category of N (Γ)-modules. In [22] it is proved that
the functor defined DbCoh(OX) → DMod(N (Γ)) defined by F 7→ C•(U, l2π∗F)
at the level of complexes lifts uniquely and functorially to Db(Ef (Γ)) under the
natural functor Db(Ef (Γ)) → DMod(N (Γ)) if Γ\X̃ is compact. More generally,
this holds if Γ\Supp(F) is compact. We denote by C : DbCoh(OX)→ Db(Ef (Γ)))
the resulting functor.

The main ingredient is a construction of a quasi-isomorphism

K• → C•(U, l2π∗F)

from a bounded complex of projective finite-type Hilbert Γ-modules K• represent-
ing C(F).

To this end, one uses that the Γ-Fréchet space l2π∗F(Ω) of an open subset Ω ⊂ X
is the inverse limit of a sequence of Hilbert Γ-modules with Γ-compact transition
maps and the fact that Hilbert Γ-modules are projective in E(Γ).

Actually one has to do something slightly more complicated, one has a germ at
t = 0 of an increasing family of coverings Ut defined for t ≥ 0 such that U = U0

and:

C∗(t) = C•(Ut, l
2π∗F)→ C•(Ut′ , l

2π∗F)

is a quasi-isomorphism for t′ ≤ t and there there is a germ at t = 0 of a decreasing
family of Hilbert Γ-modules (C(t)t>0) such that C(t)→ C(t′) is Γ-compact for t > t′

and C∗(t) = lim←−t′<t
C(t′) if t > 0. The family (C(t))t>0 is an inessential auxiliary

datum but it is instrumental to the construction of K•, its essential uniqueness and
its functorial properties. At least when F is locally free, C(t) is the subspace of L2

Čech cochains in C∗(t), L2 being measured with respect to a smooth volume form.

Dolbeault model.
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In the case where F is locally free and X̃ is smooth there is a much better way
to proceed. Define

Dolbk2(X̃,F) = {s ∈ L2
loc(X̃, E0,q(F)),

∫

X̃

‖s‖2 + ‖∂̄s‖2 < +∞}

where the norms and volume form are computed with respect to a Γ-equivariant
hermitian metric on F and a Γ-equivariant hermitian metric on X̃

Indeed it is very natural to use the natural map of complexes of N (Γ)-Fréchet
modules which will be refered to as CD2, the Čech-Dolbeault comparison map :

C•(U, l2π∗F)→ Dolb•2(X̃,F)) = (. . .→ Dolbk2(X̃,F))
∂̄−→ Dolbk+1

2 (X̃,F)→ . . .)

attached to a smooth partition of unity (φα) subordinate to U sending the q-
cochain (sα0α(1)...α(q))|α|=q to the twisted (0, q form:

∑

|α|=q

sα0α(1)...α(q)∂̄φα(0) ∧ . . . ∂̄φα(q−1).φα(q).

The complex Dolb•2(X̃,F)) is complex of separable Γ-Hilbert modules and the
resulting map K• → Dolb•2(X̃,F)) is an algebraic isomorphism induced by a con-
tinuous maps at level of the representatives hence Dolb•2(X̃,F)) ∈ Db

Ef (Γ)
Esep(Γ)

and is quasi-isomorphic to C(F) ∈ DbEf (Γ).

Čech-De Rham comparison map
In a similar fashion, if V is a local system on X , and the intersections of elements

of U are contractible, we can construct, as in [15], a quasi-isomorphism of separable
projective Hilbert Γ-modules in the essential image of DbEf (Γ)

CDR2 : C•(U, l2π∗V)→ L2DR•(X̃,V).
Given a smooth partition of unity (φα) subordinate to U, it is defined by sending

the Čech q-cochain (sα0α(1)...α(q))|α|=q to the twisted q form:
∑

|α|=q

sα0α(1)...α(q)dφα(0) ∧ . . . dφα(q−1).φα(q).

Concluding remarks

Assume nowX be a complex analytic space that need not be smooth nor reduced.
Once one knows that dimN (Γ)H

q
2 (X̃, l

2π∗F) < +∞, e.g. that it lies in the essential
image of Ef (Γ), for all F ∈ Coh(OX), two purely algebraic properties, the special
model of the Leray spectral sequence used in [22, section 6.1], whose main feature is
that it comes from a Ef (Γ)-spectral sequence, can be replaced with the usual Leray
spectral sequence and Lück’s theory of dimN (Γ) to prove the version of Atiyah’s L2-
index theorem given in [22, Theorem 6.2.1]. The abstract nonsense in [22] needed
to establish the functoriality of the lift to Ef (Γ) can also be eliminated.

We conclude by stating a weaker form Theorem 1 in terms of finite dimensional
N (Γ)-modules, thus losing the information contained in Novikov-Shubin invariants.
It follows from the part of the proof of Theorem 1 where global good filtrations are
used (subsections 4.2, 4.4):

Theorem 5. Let X be a complex manifold and X̃ → X be a Galois covering with
Galois group Γ. Let MD′(X) be the abelian category whose objects are triples

M = (M = MDR, P = MBetti, α)
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whereM is a holonomic DX-module supported on a Γ-cocompact analytic subspace,
P is a perverse sheaf of R-vector spaces and α : P ⊗R C → DR(M) is an isomor-
phism in the derived category of sheaves and whose morphisms are the obvious ones.

There is a ∂-functor which, on the Betti side, is compatible with proper direct
images, satisfies Atiyah’s L2 index theorem:

L2dR : DbMD′(X)→ EssentialImage(Db(Ef (Γ))
Φ→ DbMod(N (Γ)))

and for each M ∈MD(X) and q ∈ Z functorial isomorphisms in Ef (Γ)

Hq(L2dR(M)) ∼= Hq

(2)(X̃,M
Betti) ∼= Hq

DR,(2)(X̃,M
DR).

The functor U(Γ)⊗N (Γ)L2dR : DbMD′(X)→ DbMod(U(Γ)) takes its values in
the essential image of the the category of complexes of finite type projective U(Γ)-
modules, is compatible with proper direct images, satisfies Atiyah’s L2 index theorem
and Poincaré-Verdier duality.
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