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A

. We prove that the notion of a curved pre-Calabi-Yau algebra is equivalent to the notion of a curved homotopy double Poisson gebra, thereby settling the equivalence between the two ways to define derived noncommutative Poisson structures. We actually prove that the respective di erential graded Lie algebras controlling both deformation theories are isomorphic.This allows us to apply the recent developments of the properadic calculus in order to establish the homotopical properties of curved pre-Calabi-Yau algebras: ∞-morphisms,

{-, -} : C ∞ (M) ⊗ C ∞ (M) -→ C ∞ (M)
satisfying the Leibniz rule with respect to the commutative product of the algebra of smooth functions on a manifold M . Then, one can notice that this data is equivalent to a bivector field satisfying the Maurer-Cartan equation with respect to the Schouten-Nijenhuis bracket of polyvector fields. In general, an algebra made up of a compatible pair of a commutative product and a Lie bracket is called a Poisson algebra.

Noncommutative Poisson geometry. How can one develop a noncommutative analogue of a Poisson structure? Let us recall the guiding Kontsevich-Rosenberg principle of noncommutative geometry [START_REF] Kontsevich | Noncommutative smooth spaces[END_REF]: the noncommutative analogue of a type of structures on schemes should be a type of structures on associative algebras A, viewed as noncommutative a ne schemes, which induces the original type of structures on the a ne schemes of representations of A . M. Van den Bergh solved this question in [START_REF] Van Den Bergh | Double Poisson algebras[END_REF]: the noncommutative analogue of a Poisson structure is a double Lie bracket {{-, -}} : A ⊗ A -→ A ⊗ A satisfying a Leibniz relation with respect to the associative product on A . Similarly, one can coin an algebra of noncommutative polyvector fields which induces polyvector fields on representation schemes: it is given by the tensor algebra on derivations from A to A ⊗ A , equipped with a Schouten-Nijenhuis type (double) bracket. A noncommutative bivector eld is a bitensor satisfying the associated Maurer-Cartan equation. In the smooth case, these two types of structures were shown to be equivalent in [START_REF] Van Den Bergh | Double Poisson algebras[END_REF]Section 4].

The aforementioned type of bialgebras is called a double Poisson gebra; it has already found applications in many fields of mathematics like quantum algebra, low-dimensional geometry, symplectic geometry, integrable systems, and mathematical physics. An exhaustive list of references can be found on the web site [START_REF] Fairon | Double brackets in mathematics[END_REF] of M. Fairon. (In this paper, as in our previous works like [START_REF] Ho | Properadic Homotopical Calculus[END_REF], we prefer to use the terminology gebra to refer to algebraic structure with several inputs and several outputs. We reserve the terminology "algebra" for algebraic structure with exactly one output, like associative or Lie algebras.) C G N G commutative algebras associative algebras symplectic structures bisymplectic structures Poisson structures double Poisson structures Derived Poisson geometry. The passage to derived (algebraic) geometry amounts basically to working now with di erential graded (or simplicial) commutative algebras. One can use either definition to extend the classical notion of a Poisson structure on this derived level. In the di erential graded context, the proper generalization of the notion of a Poisson algebra, satisfying the expected homotopical properties, is that of a Poisson algebra up to homotopy. Such an algebraic structure is made up of infinite series of operations with various arities which relax up to homotopy all the relations satisfied by the commutative product and the Lie bracket of a Poisson algebra. Since the combinatorics of these higher operations is quite involved, one enjoys encoding them conceptually using operads: this is rendered possible by the fact that the operad encoding Poisson algebras is Koszul, see [LV12, Section 13.3.7].

In derived geometry, a homotopical version of shifted polyvector elds, equipped with a Schouten-Nijenhuis type bracket, was introduced in [PTVV13, CPT + 17]. A shifted Poisson structure is nothing but a shifted bivector field satisfying the associated Maurer-Cartan equation. V. Melani proved in [START_REF] Valerio | Poisson bivectors and Poisson brackets on a ne derived stacks[END_REF] that these two notions of derived Poisson structures are equivalent for a large class of well-behaved derived stacks.

Derived noncommutative Poisson geometry. Again, how can one develop a noncommutative analogue of a derived Poisson structure? According to the Kontsevich-Rosenberg principle, one should consider some structures on some derived representation schemes of a di erential graded associative algebra. Hopefully this latter notion was developed by Y. Berest, G. Khachatryan, and A. Ramadoss in [START_REF] Berest | Derived representation schemes and cyclic homology[END_REF]. So one can try first to come up with a notion of a double Poisson gebras up to homotopy such that this kind of structure on A induces a homotopy Poisson algebra structure on the derived representation schemes of A . Here again, the guiding algebraic toolbox already exists: the notion of a double Poisson gebra can be encoded by a properad [START_REF] Vallette | A Koszul duality for props[END_REF], which is a generalisation of the notion of an operad allowing several outputs. This properad has recently been proved to be Koszul by the first named author in [START_REF] Leray | Protoperads II: Koszul duality[END_REF]. In the first section of this paper (Section 1), we make explicit the notion of a homotopy double Poisson gebra in this way.

Dually, the derived noncommutative space of polyvector fields is provided by the generalised necklace Lie-admissible algebra made up symmetric and nonsymmetric tensors of A and A * and equipped with a Schouten-Nijenhuis type bracket, see Section 2.3. M. Kontsevich and Y. Vlassopoulos defined what should be a "noncommutative shifted bivector" as a Maurer-Cartan element in it and they dubbed it a pre-Calabi-Yau algebra structure on A, see [START_REF] Kontsevich | Pre-Calabi-Yau algebras and topological quantum field theories[END_REF] and also [START_REF] Tradler | Infinity structure of Poincaré duality spaces. With an appendix by Dennis Sullivan[END_REF][START_REF] Seidel | Fukaya A ∞ -structures associated to Lefschetz fibrations[END_REF] for related structures. [START_REF] Fernández | Double quasi-Poisson algebras are pre-Calabi-Yau[END_REF][START_REF] Fernández | Cyclic A ∞ -algebras and double Poisson algebras[END_REF] to double Poisson-infinity gebras, as defined by T. Schedler in [START_REF] Schedler | Poisson algebras and Yang-Baxter equations[END_REF], and to double quasi-Poisson gebras [START_REF] Van Den Bergh | Double Poisson algebras[END_REF].

Present achievements. The first result of the present paper extends the equivalence between the two de nitions of a Poisson structure in classical geometry to the level of derived noncommutative geometry: curved pre-Calabi-Yau algebras = curved homotopy double Poisson gebras .

Notice that, for both notions to be strictly equivalent, it is mandatory to consider some mild generalisations including curvatures on both sides. Our main theorem actually holds on the level of the di erential graded Lie-admissible algebras encoding both notions.

Theorem (Theorem 2.43). There exists canonical monomorphisms of di erential graded Lie-admissible algebras neck

A cneck A hh A cDPois A ,
pre-Calabi-Yau algebras curved pre-Calabi-Yau algebras curved homotopy double Poisson gebras, where the second one is an isomorphism if and only if A is degree-wise nite dimensional.

The other interesting aspect of this latter isomorphism lies in the fact that it opens the doors to all the properties of the properadic calculus developed recently in [START_REF] Ho | Properadic Homotopical Calculus[END_REF][START_REF] Ho | Simplicial properadic homotopy[END_REF]. This allows us to settle a suitable notion of an ∞-morphism of curved pre-Calabi-Yau/homotopy double Poisson al/gebras, see Section 3. We show that the associated category carries all the required homotopical properties for this type of structures: homotopy transfer theorem (Theorem 3.10), homological invertibility of ∞-quasi-isomorphisms (Theorem 3.9), and equivalence between zig-zags of quasi-isomorphisms and ∞-quasi-isomorphisms (Theorem 3.12). (Another notion of an ∞-morphism for pre-Calabi-Yau algebras is proposed in [KTV21, Definition 25] but whose homotopical properties are still to be established.) In [START_REF] Campos | Graph exponential map[END_REF], we integrate dg Lie-admissible algebras of properadic convolution type into an explicit deformation gauge group. In the present case, its action on Maurer-Cartan elements induces two universal ways to create derived noncommutative Poisson structures. The first one, called the Koszul hierarchy, produces a homotopy double Poisson gebra from the data of a shifted Koszul dual double Poisson gebra and a chain complex (Theorem 3.13). The second one, called the twisting procedure, perturbes curved pre-Calabi-Yau algebras with the data of just one element (Theorem 3.17). Altogether, this forms the second contribution of the present paper.

Since the definition and the composition of ∞-morphisms are given by algebraic arguments (coproperadic decomposition maps), their intricate underlying combinatorics remains to be unfolded; we make it explicit in Appendix A. A particular careful attention has been put on signs: throughout this text, we make all of them explicit. Even if they nearly all come from a direct application of the Koszul sign rule and the Koszul sign convention, computing them is often a tedious exercice. The proof of the main result is an illuminating example. In order to preserve the flow of exposition, we postponed it to Appendix B.

Layout. In the first section, we make explicit the notion of a (curved) homotopy double Poisson gebra prescribed by the Koszul duality for properads. The second section is devoted to (curved) pre-Calabi-Yau algebras using the deformation theory of morphisms of cyclic non-symmetric operads. We conclude it with the main result: the two di erential graded Lie-admissible algebras encoding these two types of structures are isomorphic. We apply it to settle the homotopy theory of homotopy double Poisson algebras and curved pre-Calabi-Yau algebras in the third section. The first appendix contains a description of the properadic decomposition maps. The proof of the main theorem is given in the second appendix.

Conventions. We work over a field k of characteristic 0 and its category dgVect of di erential graded (dg) vector spaces. Since every object will be di erential graded, we will drop the prefix "dg" for simplicity. We use the homological degree convention with the di erential of degree -1. The degree of a homogenous element a will be denoted by |a| . The symmetric monoidal category structure on dg vector spaces carries the Koszul sign rule

(12) • (a ⊗ b) (-1) |a||b| b ⊗ a
and the Koszul sign convention lies in the following definition of the tensor product f ⊗ g of two maps

( f ⊗ g)(a ⊗ b) (-1) |a||g| f (a) ⊗ g(b) .
The linear dual of dg vector space A is defined by

(A * ) n Hom(A -n , k) and by d A * ( f ) -(-1) | f | f •d A .
We denote the homological suspension (resp. desuspension) by s (resp. s -1 ), i.e. the one-dimensional dg vector space concentrated in degree 1 (resp. -1). Notice that s * = s -1 , and thus s -1 s = 1 = -ss -1 .

We denote the symmetric groups by S n and the cyclic groups by C n , which generating cycle τ n (12 . . . n) . We will represent graphically the various cyclic constructions in a planar way, for instance with boxes instead of ringed bands, in order to address the main issue which is to compute signs coming from the Koszul sign rule and convention. We follow the conventions for operads given in [START_REF] Loday | of Grundlehren der Mathematischen Wissenschaften[END_REF]. Acknowledgements. We would like to acknowledge enlightening discussions with Damien Calaque, Estanislao Herscovich, Eric Ho beck, Guillaume Laplante-Anfossi, Geo rey Powell, Salim Rivière, Victor Roca i Lucio, and Vladimir Rubtsov. We express our deep appreciation to all the participants of the Villaroger 2021 workshop on double Poisson structures. The first author thanks Catherine and Victor for the warm welcomes in Nice and Charles De Clercq for introducing him to the great poetry.

D P

In this section, we first recall the notion of a double Poisson gebra before to make explicit its homotopy version as prescribed by the Koszul duality of properads. To ease the reading, we provide the reader with two subsections recalling the basic properties of properads and the deformation theory of their morphisms. One subsection is devoted to the computation of the Koszul dual (co)properad of double Poisson gebras. Finally, we go one step further by settling the even more general notion of a curved homotopy double Poisson gebra. (2) In [START_REF] Odesskii | Double Poisson brackets on free associative algebras[END_REF], the authors classify double Poisson brackets on the free noncommutative associative algebra C x, y . (3) For other significant examples, the interested reader can consult the exhaustive website [START_REF] Fairon | Double brackets in mathematics[END_REF] of M. Fairon, who has listed all the articles about double brackets.

(123) • (u ⊗ v ⊗ w) (-1) |w|(|u|+|v|) w ⊗ u ⊗ v , (132) • (u ⊗ v ⊗ w) (-1) |u|(|v|+|w|) v ⊗ w ⊗ u .
1.2. Properads. In this section, we briefly recall the definitions of a properad and a coproperad, following mainly the presentation of [HLV20, Section 2]. Let Bij be the groupoid of non empty finite sets with bijections.

De nition 1.4 (S-bimodule). A S-bimodule is a module over the groupoid Bij × Bij op . The associated category is denoted by S-bimod.

E 1.5. Let A and B be two dg vector spaces. We define the S-bimodule End A B by

End A B (Y, X) Hom x ∈X A, y ∈Y B ,
for any non-empty finite sets X and Y .

The groupoid Bij admits for skeletal category the one made up of the sets n {1, • • • , n} equipped with the symmetric groups S n for automorphisms. So the data of a S-bimodule M is equivalent to a collection {M(m, n)} m,n∈N * of dg vector spaces equipped with two compatible actions of the symmetric groups, one of S m on the left and one of S n on the right, under the formula

M(Y, X) f ∈Bij×Bij op (m×n, Y×X) M(m, n) / ∼ , where |X | = n, |Y | = m and where ( f , µ) ∼ g, g -1 f • µ .
We consider the set G of connected graphs directed by a global flow and the endofunctor G : S-bimod → S-bimod defined by

G (M)(m, n) g∈G(m,n) g(M)
where g(M) v ∈vert(g) M(m(v), n(v)) , where n(v) stands for the number of inputs of the vertex v and where m(v) stands for the number of outputs of the vertex v . The operation of forgetting the nesting of connected graphs in G (G (M)), produces elements of G (M) and thus induces a monad structure on G . We call this monad the monad of connected graphs.

De nition 1.6 (Properad). A properad is an algebra over the monad G of connected graphs. This definition of a properad is actually not the original one. In [START_REF] Vallette | A Koszul duality for props[END_REF], the second author defined a monoidal product called the connected composition product on the category S-bimod, which amounts to composing operations along 2-level connected graphs, as it is illustrated in Figure 1. We refer the reader to [HLV20, Definition 1.13] for a formal definition, see also [START_REF] Leray | Protoperads I: Combinatorics and definitions[END_REF]Definition 3.11]. Its unit I is the S-bimodule made up of a one-dimension space in arity (1, 1). Proposition 1.7 ( [START_REF] Vallette | A Koszul duality for props[END_REF]). The category of algebras over the monad G is isomorphic to the category of monoids with respect to the connected composition product: G -alg Mon(S-bimod, , I) . E 1.8. For any dg vector space A, we consider the properad structure on the S-bimodule End A End A A defined by the composite of maps. It is called the endomorphism properad of A. For instance, given two maps f : A ⊗n → A ⊗m and g : A ⊗n → A ⊗m , their partial composite f • j i g along the ith input of f and the jth output of g is organised as follows.

ν 1 ν 2 ν 3 µ 1 µ 2 F 1. An element of M N. i j f g F 2.
The partial composite of two multilinear maps.

The most important examples of properads used in this paper are the following two ones.

De nition 1.9 (DLie and DPois). The properad DLie is defined by the following presentation:

DLie G 1 1 2 2 = - 2 2 1 1 1 1 2 2 3 3 + 2 2 3 3 1 1 + 3 3 1 1 2 2 ,
where the generator has degree 0. The properad DPois is defined by the following presentation:

DPois G 1 2 1 ; 1 1 2 2 = - 2 2 1 1 1 1 2 3 - 1 1 2 3 ; 1 1 2 2 3 - 1 2 1 3 2 - 2 2 3 1 1 ; 1 1 2 2 3 3 + 2 2 3 3 1 1 + 3 3 1 1 2 2 ,
where the generators have degree 0.

De nition 1.10 (P-gebra). Let A be a dg vector space and let P be a properad. A structure of P-gebra on A is a morphism of properads P → End A .

Lemma 1.11. There is a one-to-one correspondence between DLie-gebra (respectively DPois-gebra) structures and double Lie gebra (respectively double Poisson gebra) structures.

Proof. This is straightforward.

The notion and properties of homotopy P-gebra are e ciently encoded by the dual notion of a coproperad.

De nition 1.12 (Coproperad). A coproperad is a comonoid in the monoidal category (S-bimod, , I). E 1.13. The Koszul duality theory for properads [START_REF] Vallette | A Koszul duality for props[END_REF] provides us with Koszul dual coproperads. In this article, we will mainly consider the coproperads DLie Dual to the monad G of connected directed graphs, we consider the comonad G c of reduced connected directed graphs G G\{|}:

G c (M) g∈G g(M) ,
with coproduct given by the sum of all the ways to partition the underlying graph g into connected directed sub-graphs. A coalgebra over this comonad is called a comonadic coproperad in [HLV20, Section 2.2]. Adding a coaugmented counit to comonadic coproperad produces coproperads which are called conilpotent. The linear dual of a coproperad carries a canonical structure of a properad. The reverse statement does not hold true in general; one can however recover in this case some interesting coproperadic structure as follows. Recall that the (reduced) graph (co)monad admits a presentation with generators given by the summand made up of graphs with two vertices:

M (1,1) M G (M) (2) G c (M) (2) .
De nition 1.15 (Partial coproperad). An partial coproperad is an S-bimodule C equipped with a morphism of S-bimodules

∆ (1,1) : C → C (1,1) C , which is coassociative.
By definition, any (comonadic) coproperad carries a canonical partial coproperad structure. The reverse holds true if and only if the iterations of the infinitesimal decomposition map ∆ (1,1) on any element of C produce finite sums of labelled graphs.

Proposition 1.16. The linear dual of any arity-wise nite dimensional properad carries a canonical structure of a partial coproperad.

Proof. This is obtained in a straightforward way by considering the linear dual P * → P * We already refer the reader to Section 1.6 for the main example of partial coproperad considered here and to Section 3.3 for the way its crucial properties are used. R 1.17. For simplicity, this section is written under the assumption that n 1, but everything holds true mutatis mutandis for n 0 . We refer the reader to [HLV20, Section 1] for more details in this latter case. This setting will be mandatory in Section 1.6. 1.3. Deformation theory of morphisms of properads. In this section, the recall the deformation theory of morphisms of properads after [MV09b, Section 2].

De nition 1.18 (Totalisation of S-bimodule). The totalisation of an S-bimodule M is the dg vector space defined by

M m,n∈N * M(m, n) S op m ×S n .
Recall that a binary product is called Lie-admissible when its commutator satisfies the Jacobi relation, i.e. is a Lie bracket. is given by

C ∆ -→ C C ( f 1 ,..., f k ) (g 1 ,...,g l )
---------------→ P P γ -→ P , for f 1 , . . . , f k , g 1 , . . . , g l ∈ Hom(C, P) .

De nition 1.21 (Properadic convolution algebra). The composite of the above two functors produces functorially the properadic convolution Lie-admissible algebra

Hom(C, P) m,n∈N * Hom S op m ×S n (C(m, n), P(m, n)), ∂, ,
where the product f g is equal to

C ∆ (1,1) ----→ C (1,1) C f (1,1) g -----→ P (1,1) P γ -→ P . R 1.22.
(1) When the coproperad C is coaugmented, we rather consider its coaugmentation coideal C, which is the cokernel of its coaugmentation map, in the above definition. (2) Since only the infinitesimal decomposition map ∆ (1,1) of the coproperad is involved in this construction, the same statement holds true when C is only a partial coproperad.

Recall that when P = G (E)/(R) is a quadratic properad, its Koszul dual coproperad P ¡ is the conilpotent coproperad cogenerated by the suspension sE and the double suspension s 2 R, see [START_REF] Vallette | A Koszul duality for props[END_REF] for more details. Proof. Let us just mention that the strategy of this proof relies on the introduction and the development of a new notion dubbed protoperads, see [START_REF] Leray | Protoperads I: Combinatorics and definitions[END_REF].

Thanks to this result, we get a homotopy meaningful notion of DPois ∞ -gebra as a Maurer-Cartan element in the properadic convolution algebra DPois A . It remains to make the former one explicit. Proposition 1.28 ([Ler20, Corollary 5.10]). This rewriting rule induces a distributive law. This implies that the properad of double Poisson gebra is canonically isomorphic to

(2) DPois Ass DLie and that its Koszul dual coproperad is canonically isomorphic to

(3) DPois ¡ DLie ¡ Ass ¡ .
Let P G (E)/(R) be a quadratic properad. Since it is much easier to work with properads than with coproperads, we consider the arity wise linear dual of the Koszul dual coproperad P ! P ¡ * , that we call the Koszul dual properad of P.

Lemma 1.29 ([Val07, Corollary 7.12]). When E is nite dimensional, the Koszul dual properad admits the following presentation

(4) P ! G s -1 E * / s -2 R ⊥ .
Proof. Notice that we slightly changed the definitions from loc. cit.: we do not use any suspension properad here. For more details, we refer to the complete proof of [LV12, Proposition 7.2.1], which applies mutatis mutandis to the present case.

We start by the description of the Koszul dual of the properad DLie = G (E)/(R). The S-bimodule s -1 E * has dimension 2 with basis depicted by "planar boxes"

(5)

1 1 2 2 and 2 1 1 2 ,
where the action of (12) on the left-hand side of the first term gives the second term and where the action of (12) on the right-hand side of the first term gives minus the second term. The S-bimodule s -2 R ⊥ is generated under the action of the symmetric groups by ( 6)

1 1 2 2 3 3 - 2 2 3 3 1 1 and 1 1 2 2 . R
1.30. We depict the elements of properads P and their Koszul dual coproperad P ¡ by white boxes and we depict the elements of the Koszul dual properad P ! by gray boxes. In other words, elements of E are in white and elements of E * are in gray.

Lemma 1.31 ([Ler20, Section 5.1]). The properad DLie ! is concentrated in arities (n, n), for n 1, where DLie ! (n, n) is concentrated in degree 1-n with a basis labelled by (S n ×S n )/C n given by the following stairways, up to cyclic permutations:

j 1 i 1 j 2 i 2 j 3 i n-2 j n-1 i n-1 j n i n = (-1) n-1 j 2 i 2 j 3 i 3 j 4 i n-1 j n i n j 1 i 1 .
From this result, we deduce the following form of the Koszul dual coproperad DLie ¡ . We denote the dual basis of the stairways by

j 1 i 1 j 2 i 2 ••• ••• j n i n = (-1) n-1 j 2 i 2 ••• ••• j n i n j 1 i 1
understood to be of degree n -1. Their image under the infinitesimal decomposition map is equal to

∆ (1,1) : 1 1 2 2 ••• ••• n n -→ 2 k n-1 σ ∈C n (-1) (k-1)(n-k) sgn(σ) σ(1) σ(1) σ(2) σ(2) ••• ••• σ(k) σ(k) ••• ••• σ(n) σ(n) R
1.32. Since the underlying combinatorics of the decomposition map ∆ : DLie ¡ → DLie ¡ DLie ¡ is more involved, we postpone it to Appendix A.

We are now ready to pass to the Koszul dual (co)properad of DPois. Let us denote by Part m (n) the set of ordered partitions

λ 1 + • • • + λ m = n of n into m positive integers.
Lemma 1.33. The properad DPois ! is concentrated in arities (m, n), for n m 1, where DPois ! (m, n) is concentrated in degree 1n with a basis labelled by (S m × S n × Part m (n))/C m given by the following treewise stairways

j 1 Λ 1 j 2 Λ 2 ••• ••• j m Λ m j 1 i 1 i 2 i λ 1 j 2 i λ 1 +1 i λ 1 +λ 2 j 3 i λ 1 +•••+λ m-2 +1 j m i λ 1 +•••+λm , where Λ 1 • • • Λ m = {1, . . . , n} is a partition, with λ l = |Λ l | and Λ l (i λ 1 +•••+λ l-1 +1 , • • • , i λ 1 +•••+λ l ), up to cyclic permutations: j 1 Λ 1 j 2 Λ 2 ••• ••• j m Λ m = (-1) nλ 1 +λ m j 2 Λ 2 j m Λ m ••• ••• j 1 Λ 1 .
By convention, there are only binary trees, i.e. no box, for m = 1 .

Proof. This is a direct corollary of Proposition 1.28 and Lemma 1.31.

For the Koszul dual coproperad DPois ¡ , we represent the linear dual basis elements by (7)

j 1 Λ 1 j 2 Λ 2 ••• ••• j m Λ m = (-1) nλ 1 +λ m j 2 Λ 2 j m Λ m ••• ••• j 1 Λ 1
and we consider the following notation for the most canonical ones:

ν λ 1 ,...,λ m 1 λ 1 2 ••• ••• ••• 1 λ 1 +1 ••• λ 1 +λ 2 ••• m λ 1 +•••+λ m .
Proposition 1.34. For any partition ordered partition λ 1 + • • • + λ m = n of n into m positive integers, the image of the basis element ν λ 1 ,...,λ m under the in nitesimal decomposition map is equal to

∆ (1,1) ν λ 1 ,...,λ m = m k=1 σ ∈C m 0 p <λ σ(m) 0 q <λ σ(k) (-1) θ σ(1) λ σ(1) σ(2) λ σ(2) ••• ••• σ(k) p q q λ σ(k) σ(k+1) λ σ(k+1) ••• ••• σ(m) p λ σ(m)
,

where λ l {λ 1 + • • • + λ l-1 + 1, • • • , λ 1 + • • • + λ l }
, where p is the set made up of the rst p terms of λ σ(m) , where q is the set made up of the last q terms of λ σ(k) , and where

θ =q λ σ(k) -1 + p λ σ(k) + • • • + λ σ(m-1) + λ m + (n + 1) λ 1 + • • • + λ σ(1)-2 + nλ σ(1)-1 + λ σ(1) + • • • + λ σ(k-1) + p + q λ σ(k) + • • • + λ σ(m) -p -q -1 .
The summand k = 1 is understood without a white box on the bottom left side, that is just a corolla with p + 1 + q leaves, with p + 1 + q 2 . The summand k = m is understood without a white box on the top right side, that is just a corolla whose leaves are labelled by λσ(m) \( p ∪ q), which is required to have at least two elements.

Proof. Lemma 1.29 shows that the Koszul dual properad DPois ! admits the same generators (5) as the Koszul dual properad DLie ! plus the "planar" binary product

1 2 1 .
Its relations are that of DLie ! , depicted above in (6), plus the anti-associativity relation

1 1 2 3 = - 1 1 2 3 , the rewriting rules (8) 2 1 1 2 3 = - 1 1 2 2 3
and

1 1 2 3 2 = - 1 1 2 2 3
, and the genus vanishing relation

1 1 2 .
It was already shown in [Ler20, Lemma 5.4] that the composite of any elements in the properad DLie ! along a graph of positive genus vanishes. Using the aforementioned relations, the same property holds true in the Koszul dual properad DPois ! . Indeed, given any composite along a graph of positive genus, one can pull up the binary product, unless one encounters a box connected to the two inputs of such a product, in which case it vanishes. Once all the binary products stand above, one finds below a composite of boxes along a graph of positive genus, which vanishes.

So the infinitesimal decomposition map of the Koszul dual coproperad DPois ¡ splits any element into two along one edge. In order to understand which ones, we work in the Koszul dual properad DPois ! . Using the rewriting rule (8), one can see that only the partial composite of two basis elements given in Lemma 1.33 along the 2-vertices graphs given on the right-hand side of the above formula can produce a given basis element. Here, we have been using the cyclic symmetric to place the composed output at the first place and the composed input at the last place.

We conclude with the computation of the sign by systematically applying the Koszul sign rule and convention as follows. The partial composite of these two basis elements in the Koszul dual properad DPois ! is given by first permuting the right-most q binary operations of the bottom element above the first binary box of the top element using q iterations of the right-most rewriting rule (8): this produces the sign (-1) q . At the first input of the left bottom binary box of the top element, one has now the composite of a right comb with λ σ(k) -q-1 vertices with a right comb made up of q vertices. Rewriting it a total right comb produces the sign (-1) q(λ σ(k) -q-1) . All together, they form the first term of θ.

Then, one permutes the remaining right-most p binary operations of the bottom element above all the binary boxes of the top element, using p iterations of the left-most rewriting rule (8), and one also permutes them with all the right-combs of the top element except for the last one: this produces the second term of θ. This way, one gets a basis type element of DPois ! , that is a stairway with right-combs on each step, that one has to rotate cyclically in order to have one with first input and output label by 1: this produces the next three terms of θ.

Finally, one has to dualise linearly this partial composition product in the Koszul dual properad DPois ! in order to obtain the infinitesimal decomposition map in the Koszul dual coproperad DPois ¡ . This produces an extra sign given by the product of the degrees of the two elements which is the last term of θ.

Proposition 1.34 shows that the Koszul dual coproperad DPois ¡ is actually a codioperad [START_REF] Liang Gan | Koszul duality for dioperads[END_REF], that is its (infinitesimal) decomposition map produces only genus 0 graphs. This is salient feature of the properad DPois: even if a category of gebras can be encoded by a dioperad, which is the case for double Poisson gebras, nothing ensures a priori that its Koszul dual codioperad is big enough to contain all the higher homotopies (operadic syzygies) to resolve the associated properad, see [MV09a, Section 5.6] for a counterexample. This property is actually equivalent to the vanishing of the homology groups of some involved graph complexes concentrated in positive genera [START_REF] Leray | Protoperads II: Koszul duality[END_REF]. A codioperad of multi-corollas, defined by an infinitesimal decomposition map, and its cobar construction was introduced in [KTV21, Section 6.5.3], see also [START_REF] Yeung | Ribbon dioperads and modular ribbon properads[END_REF]. It is shown in [KTV21, Proposition 47] to encode pre-Calabi-Yau algebras. By carefully checking the signs, Proposition 1.34 would show that this codioperad is isomorphic to DPois :

(9) m λ 2 ,...,λ m ,λ 1 = (-1) nλ 1 +λ m τ -1 m • m λ 1 ,λ 2 ,...,λ m • τ λ 1 ,.
..,λ m , where τ λ 1 ,...,λ m ∈ S n permutes cyclically the blocks of size λ 1 , . . . , λ m . P :

(10) ∂ m λ 1 ,...,λ m = m k=1 σ ∈C m 0 p <λ σ(m) 0 q <λ σ(k) (-1) ξ σ -1 • m λ σ(1) ,...,λ σ(k-1) , p+1+q • 1 i m λ σ(k)-q ,λ σ(k+1) ,...,λ σ(m-1) ,λ σ(m)-p • ω , where i λ σ(1) + • • • + λ σ(k-1) + p + 1, where ξ =q λ σ(k) -1 + p λ σ(k) + • • • + λ σ(m-1) + λ m + (n + 1) λ 1 + • • • + λ σ(1)-2 + nλ σ(1)-1 + λ σ(1) + • • • + λ σ(k-1) + p + q λ σ(k) + • • • + λ σ(m) -p -q + 1 ,
and where ω is the permutation sending (1, . . . , n) to

λ σ(1) + 1, . . . , λ σ(k) , λ σ(m) + 1, • • • , λ σ(m) + p, λ σ(k) + 1, • • • , λ σ(k+1) -q, λ σ(k+1) + 1, . . . , λ σ(m) , λ σ(m) + p + 1, . . . , λ σ(m+1) , λ σ(k+1) -q + 1, • • • , λ σ(k+1) .
under the convention λ l λ 1 + • • • + λ l-1 , for 1 < l m , and λ 1 0 .

Graphically, the partial composite appearing on the right-hand side of the homotopy double Poisson relations is represented in Figure 3. algebra. We will only consider here the case n = -1 and we will refer to this structure as semi homotopy double Poisson gebra. Such a notion is modelled by the properad shDPois given by To settle it, we use a properadic extension of the method presented in loc. cit. which relies on the principle that "curvature is Koszul dual to unit".

σ(k+1) σ(m) λ σ(1) λ σ(k-1) λ σ(k) λ σ(k+1) λ σ(m) ••• ••• ••• ••• σ(1) σ(k-1) σ(k) m λ σ(1) , ..., λ σ(k-1) , p+1+q m λ σ(k)-q , λ σ(k+1) , ..., λ σ(m-1) , λ σ(m)-p F 3. Partial composite
G 1 2 1 , 1 1 2 2 ••• ••• n n , n 2 1 1 2 3 - 1 1 2 3 , 1 1 2 2 n n n+1 - 1 2 2 n-1 n-1 n n+1 n 1 - 1 1 2 2 n n+1 n ,
De nition 1.37 (The properad uDPois ! ). The unital extension of the properad DPois ! is defined by

uDPois ! DPois ! ∨ u (ν • 1 u = -id; ν • 2 u = id) = G 1 2 1 ; 1 1 2 2 = - 2 2 1 1 ; 1 1 1 2 3 + 1 1 2 3 ; 1 1 + 1 1 ; 1 1 - 1 1 ; 1 1 2 ; 1 1 2 2 1 1 2 2 3 + 1 2 1 3 2 ; 1 1 2 3 2 + 2 3 1 1 2 ; 1 1 2 2 3 3 - 2 2 3 3 1 1 , where ν = 1 2 1 has degree -1 , 1 1 2 2
has degree -1 , and where u = 1 has degree 1 . R 1.38. A uDPois ! -algebra structure on the suspension sA of a dg vector space amounts to a unital associative algebra structure on A and a degree -1 skew-symmetric operation χ : A ⊗2 → A ⊗2 satisfying Relation (6), the vanishing of the genus 1 composite of the associative product with χ, and Relations (8) without signs.

Lemma 1.39. The unital extension of the properad DPois ! is given by a distributive law, so it is canonically isomorphic to uDPois ! DLie ! SuAss , where S = End sk is the suspension operad, cf. [LV12, Section 7.2.2].

Proof. This is a direct consequence of Proposition 1.28.

By Proposition 1.16, the arity-wise linear dual cDPois ¡ uDPois ! * of this properad forms a partial coproperad. (It does not form a coproperad neither a comonadic coproperad due to the infinite series that appear in the iterations of the infinitesimal decomposition maps; it carries a counit which fails to be coaugmented.) Lemma 1.39 implies that its underlying S-bimodule is isomorphic to

cDPois ¡ DLie ¡ ku * ⊕ Ass ¡ .
De nition 1.40 (Curved homotopy double Poisson gebra). A curved homotopy double Poisson gebra structure of a graded vector space A is a Maurer-Cartan element in the convolution algebra

cDPois A Hom cDPois ¡ , End A .
Notice that in the definition of this convolution algebra, we use the full partial coproperad cDPois ¡ , and not any coaugmentation coideal, since this this latter one fails to be coaugmented. This explains while one does not start from a dg vector space but just from a graded vector space.

Proposition 1.41. A curved homotopy double Poisson gebra is a graded vector space A equipped with a collection of operations m λ 1 ,...,λ m : A ⊗n -→ A ⊗m of degree n -2, for any ordered partition λ 1 + • • • + λ m = n of n 0 into non-negative integers, satisfying the following relations.

:

m λ 2 ,...,λ m ,λ 1 = (-1) λ 1 (n-m-1)-n τ -1 m • m λ 1 ,λ 2 ,...,λ m • τ λ 1 ,.
..,λ m , where τ λ 1 ,...,λ m ∈ S n permutes cyclically the blocks of size λ 1 , . . . , λ m . P :

m k=1 σ ∈C m 0 p λ σ(m) 0 q λ σ(k) (-1) ε σ -1 • m λ σ(1) ,...,λ σ(k-1) , p+1+q • 1 i m λ σ(k)-p ,λ σ(k+1) ,...,λ σ(m-1) ,λ σ(m)-q • ω = 0 ,
with the same notations as in (10) for homotopy double Poisson gebras.

In the summand k = 1, the left-hand operation is m p+1+q , with p + 1 + q 1 . In the summand k = m, the right-hand operations is m λ σ(m)-p-q , with p + q σ(m) .

This result shows that a homotopy double Poisson gebra is a curved homotopy double Poisson gebra such that the operations m λ 1 ,...,λ m are trivial when at least one of the λ i is trivial. (In this case, the operation m 1 squares to zero and is considered as the di erential of A.) This result is also a direct consequence of the following general arguments. Lemma 1.39 shows that the canonical map DPois ! → uDPois ! is an embedding of properads. So the the linear dual morphism of partial coproperads cDPois ¡ DPois ¡ is surjective. This induces an embedding of (dg Lie-admissible) dg Lie algebras

DPois A = Hom DPois ¡ , End A → Hom cDPois ¡ , End A = cDPois A .
So the deformation theory of the homotopy double Poisson gebras is included inside the deformation theory of curved homotopy double Poisson gebras. R 1.42. The presentation given in this section tries to go straight to the point but it is surely not the most conceptual one. In order to encode faithfully the notion of curved gebras and to settle their properties in general, one should follow the method introduced by V. Roca i Lucio in [START_REF] Roca | Curved properadic calculus[END_REF]: introduce a new notion of a curved properad and develop mutatis mutandis the associated curved properadic calculus.

P -C -Y

In this section, we recall the notion of a pre-Calabi-Yau algebra [START_REF] Kontsevich | Pre-Calabi-Yau algebras and topological quantum field theories[END_REF] via the deformation theory of morphisms of cyclic non-symmetric operads. We provide the literature with a complete treatment of this theory in order to settle carefully all the signs appearing. This leads naturally to the (curved) necklace Lie-admissible algebra which encodes (curved) pre-Calabi-Yau algebra as its Maurer-Cartan elements. The even more general higher Hochschild complex is introduced and stated to be isomorphic to the Lie-admissible algebra encoding curved homotopy double Poisson gebras.

2.1. Cyclic non-symmetric operads. Let Cyc be the groupoid of finite cyclic sets x 1 , . . . , x n of cardinality n 1, i.e. sets equipped with an identification with the edges of an oriented n-gon, modulo rotations. The morphisms are the bijections which respect the respective cyclic orders. We will often represent cyclically ordered sets like gears.

x 1

x 2

x 3 x 4

x 5

x 6 x 7 x 8

De nition 2.1 (Cyclic module). A cyclic module is a module M: Cyc op → dgVect over the groupoid Cyc . The associated category is denoted by CycMod.

The groupoid Cyc admits for skeletal category the one made up of one cyclically ordered set n 1, . . . , n , for any n 1, equipped with the cyclic groups C n ⊂ S n for automorphisms. So the data of a cyclic module M is equivalent to a collection {M( n )} n 1 of dg vector spaces equipped with actions of the cyclic groups C n under the formula

M(X) f ∈Cyc( n , X) M( n ) / ∼ ,
where |X | = n and where ( f , µ) ∼ g, g -1 f • µ . From now on, we will identify both notions, coordinatefree and skeletal, and use the more appropriate description each time.

For any cyclic set X, we consider the set PT(X) of (non-necessarily rooted) planar trees with leaves labeled bijectively and clockwise cyclically by the elements of X . They induce the endofunctor PT : CycMod → CycMod defined by

PT(M)(X) t∈PT(X) t(M) , where t(M) v ∈vert(t) M(in(v))
, where in(v) stands for cyclic set of leaves of the vertex v. The operation of forgetting the nesting of planar trees in PT (PT(M)), produces elements of PT(M) and thus induces a monad structure on PT. We call this monad the monad of planar trees. We refer the reader to [DV17, Section 1].

De nition 2.2 (Cyclic non-symmetric operad [Mar99]

). A cyclic non-symmetric (ns) operad is an algebra over the monad PT of planar trees.

The monad of planar trees admits a homogenous quadratic presentation, with 2-vertices planar trees for generators, which simplifies the definition of a cyclic non-symmetric operad. There is a one-to-one correspondence between 2-vertices planar trees

t = n + i -1 i -1 1 2 n i n + i -2 i + 1
and triples (n, n , i), with n 2, n 1, and 2 i n .

So the action of the planar tree monad on a cyclic non-symmetric operad P corresponding to 2-vertices planar trees is equivalent to partial composition maps:

• i : P( n ) ⊗ P( n ) → P( n + n -2 ) , for n 2 , n
1 , and 2 i n .

Proposition 2.3. A cyclic non-symmetric operad structure on a cyclic module is equivalent to the data of partial composition maps satisfying the parallel-sequential relation

(11) µ • i ν • j ω =            (-1) |ν||ω| µ • j ω • i+n -2 ν , for 2 j i -1 , µ • i ν • j-i+2 ω , for i j i + n -2 , (-1) |ν||ω| µ • j-n +2 ω • i ν , for i + n -1 j n + n -2 ,
and the equivariance property

(12) (µ • i ν) τ n+n -2 = (µ τ n ) • i-1 ν , for i 3 , (µ • 2 ν) τ n+n -2 = (-1) |µ||ν| (ν τ n ) • n (µ τ n ) , for any µ ∈ P( n ), ν ∈ P( n ), ω ∈ P( n ) .
Proof. This is a non-symmetric version of [GK95, Theorem 2.2]. In one direction, any cyclic nonsymmetric operad structure carries partial composition maps satisfying the parallel-sequential axioms and the equivariance property. In the other way round, the data of such partial composition maps allows one to define the action of any planar tree as it can be written as iterating graftings with 2-vertices planar trees. (2) Let (V, d V , , ) be a di erential graded vector space equipped with a symmetric bilinear form of degree 0 . For instance, this can be given by V A ⊕ A * equipped with the usual linearity paring f , x = f (x) . Its endomorphism cyclic non-symmetric operad End V is defined on the underlying cyclic module End V ( n ) V ⊗n by the partial composition map

• i (a 1 ⊗ • • • ⊗ a n , b 1 ⊗ • • • ⊗ b n ) (-1) (|b 1 |+•••+|b n |)(|a i+1 |+•••+|a n |) a i , b 1 a 1 ⊗ • • • ⊗ a i-1 ⊗ b 2 ⊗ • • • ⊗ b n ⊗ a i+1 ⊗ • • • ⊗ a n .
(3) The genus 0 part of any di erential graded modular operad carries a canonical cyclic nonsymmetric operad structure, where one retains only the actions of the cyclic groups and the partial composition maps. For instance, the homology H • M 0, n n 3 of the genus 0 part of the the Deligne-Mumford-Knudsen moduli spaces of stable curves with marked points form a cyclic non-symmetric operad, with trivial summand in arities 1 and 2, where the structure maps are given by gluing curves at marked points, see [GK98, Section 6]. Similarly, the homology

H • M δ 0, n n 3
of the Brown's partial compactification [Bro09, DV17] also forms a cyclic non-symmetric operad. R 2.6. In order to avoid any confusion, we use the Roman font for properads (Section 1.2) and the calligraphic font for cyclic non-symmetric operads. For instance, the endomorphism properad of a dg vector space A is denoted by End A and the endomorphism cyclic non-symmetric operad of a dg vector space V equipped with a scalar product is denoted by End V .

A morphism of cyclic non-symmetric operads is a map of cyclic modules which commutes with the respective partial composition maps. We denote the associated category by cyclic ns operads.

De nition 2.7 (Algebra over a cyclic non-symmetric operad). An algebra structure over a cyclic nonsymmetric operad P on a di erential graded vector space (V, d V , , ) equipped with a symmetric bilinear form is given by the data of morphism of cyclic non-symmetric operads P → End V . E 2.8. The category of algebras over the cyclic non-symmetric operad A s is the category of cyclic associative algebras, which are di erential graded associative algebras (V, d V , •) equipped with a symmetric bilinear form , satisfying a • b, c = a, b • c , for any a, b, c ∈ V . R 2.9. One can also consider the notion of a unital cyclic non-symmetric operad defined with the extra data of an arity 2 element which is a unit for the partial composition maps. The cyclic module uA s( n )

kµ n with trivial C n action, for n 1, equipped with the partial composition maps µ n • i µ n µ n+n -2 forms such a unital cyclic non-symmetric operad. The endomorphism cyclic non-symmetric operad End V associated to a vector space (V, , ) equipped with a non-degenerate symmetric bilinear form, admits a unital structure given by k i=1 v i ⊗ v * i , where {v 1 , . . . , v k } is a basis of V and where {v * 1 , . . . , v * k } is the induced dual basis. A morphism of unital cyclic non-symmetric operads is required to preserve the respective units. In the present case, an algebra over the unital cyclic non-symmetric operad uA s is a unital associative algebra satisfying a • b, c = a, b • c . We will need the following variations of the notion of a cyclic non-symmetric operad. One can first consider the monad PT -of signed planar trees, which is given by the monad of planar trees equipped with an extra sign coming from the permutation of vertices.

De nition 2.10 (Anti-cyclic non-symmetric operad). An anti-cyclic non-symmetric operad is an algebra over the monad PT -of signed planar trees. Such a structure is equivalent to a cyclic module P endowed with partial composition maps satisfying the parallel-sequential relation (11) and the equivariance property up to the following sign

(13) (µ • 2 ν) τ n+n -2 = -(-1) |µ||ν| (ν τ n ) • n (µ τ n ) ,
for any µ ∈ P( n ), ν ∈ P( n ), with n 2 and n 1 . E 2.11. (1) The toy model of anti-cyclic non-symmetric operads is the endomorphism operad End V of a vector space V equipped with a skew-symmetric bilinear form a, b = -(-1) |a||b| b, a . (2) A conceptually important anti-cyclic non-symmetric operad is the suspension operad s 2 End ks -1 .

The endofunctor of signed planar trees can also be equipped with a comonad structure, denoted by PT c -→ PT c -(PT c -), which amounts to sending a planar tree into the sum of all its partitions into planar sub-trees.

De nition 2.12 (Anti-cyclic non-symmetric cooperad). A anti-cyclic non-symmetric cooperad is a coalgebra over the comonad PT c -of signed planar trees.

Similarly to the monad case, the comonad PT c -is cogenerated by planar trees with two vertices.

Proposition 2.13. An anti-cyclic non-symmetric cooperad structure on a cyclic module C is equivalent to the data of partial decomposition maps 

δ i : C( n + n -2 ) → C( n ) ⊗ C( n ) , for n 2 , n 1 
(δ i ⊗ id)δ j =            (23) • (δ j ⊗ id)δ i+n -2 , for 2 j i -1 , (id ⊗δ j-i+2 )δ i , for i j i + n -2 , (23) • (δ j-n +2 ⊗ id)δ i , for i + n -1 j n + n -2 ,
and the equivariance property

(15)      δ i τ -1 n+n -2 = τ -1 n ⊗ id δ i , for i 3 , δ 2 τ -1 n+n -2 = -τ -1 n ⊗ τ -1 n (23) δ n .
where τ -1 n (µ) µ τ n , for any µ ∈ C( n )) . E 2.14. We consider the arity-wise linear dual of the suspension anti-cyclic non-symmetric operad:

A s ¡ ( n ) s 2 End ks -1 ∨ ( n ) k s n-2 , for n 3 , A s ¡ ( 
1 ) = 0, and A s ¡ ( 2 ) = 0 . Since End ks -1 forms an arity-wise finite dimensional anti-cyclic non-symmetric operad, its linear dual is a well defined anti-cyclic non-symmetric cooperad. It is onedimensional A s ¡ ( n ) kυ n in each arity n 3, with the signature action of C n and the degree |υ n | = n -2 . Its partial decomposition map is equal to

δ i (υ n+n -2 ) (-1) in υ n ⊗ υ n . E 2.
15. In a similar way, we consider the following anti-cyclic non-symmetric cooperad

cA s ¡ ( n ) s 2 End ks -1 ∨ ( n ) k s n-2 , for n 1 . R 2.
16. Like the case of modular operads [War19, DSVV20], the category of cyclic nonsymmetric operads can be encoded by a groupoid-colored operad which is Koszul and whose Koszul dual (co)operad encodes anti-cyclic non-symmetric (co)operads.

Another range of generalisations can be obtained by shifting the underlying cyclic module.

De nition 2.17 (Shifted cyclic non-symmetric operad). A shifted cyclic non-symmetric operad structure on a cyclic module P is a cyclic non-symmetric operad structure on the desuspended cyclic module s -1 P. Such a data is equivalent to degree -1 partial composition maps satisfying the parallelsequential relation up to the following sign

(16) µ • i ν • j ω =            -(-1) |ν||ω| µ • j ω • i+n -2 ν , for 2 j i -1 , -µ • i ν • j-i+2 ω , for i j i + n -2 , -(-1) |ν||ω| µ • j-n +2 ω • i ν , for i + n -1 j n + n -2 ,
and the equivariance property up to the following sign

(17) (µ • i ν) τ n+n -2 = (µ τ n ) • i-1 ν , for i 3 , (µ • 2 ν) τ n+n -2 = -(-1) |µ||ν| (ν τ n ) • n (µ τ n ) ,
for every µ ∈ P(X), ν ∈ P(Y ), and ω ∈ P(Z) . E 2.18. The paradigm of shifted cyclic non-symmetric operad is the endormorphism operad End sA⊕ A * associated to the dg vector space equipped with the degree -1 graded-symmetric paring f , sx

(-1) | f | f (x) and sx, f (-1) | f ||x| f (x) .
In the same straightforward way, one can define notions of shifted (anti)-cyclic non-symmetric (co)operads. The details are left to the reader.

Deformation theory of morphisms of cyclic non-symmetric operads.

In this section, we develop the deformation theory of morphisms of cyclic non-symmetric operads following a presentation similar to that of Section 1.3. Let us first recall the shifted version of the classical notion of a Lie algebra.

De nition 2.19 (Shifted Lie algebra). A (di erential graded) shifted Lie algebra is a triple (g, d, { , }) made up of a di erential graded vector spaces (g, d) and a degree -1 symmetric product { , } : g 2 → g for which d is a derivation and satisfying the Jacobi relation {{x, y}, z} + (-1) (|x|-1)(|y|+|z|) {{y, z}, x} + (-1) (|z|-1)(|x|+|y|) {{z, x}, y} = 0 . R 2.20. A shifted Lie algebra structure on g is equivalent to a Lie algebra structure on the desuspension s -1 g .

De nition 2.21 (Maurer-Cartan equation). The Maurer-Cartan equation of a (shifted) Lie algebra is the equation (18)

dα + 1 2 {α, α} = 0 .

We only consider solutions of degree |α| = -1 (respectively degree |α| = 0); their set is denoted by MC(g) .

Let us now introduce our main example.

De nition 2.22 (Totalisation). The totalisation of a cyclic module P is the graded vector space defined by P

n 1 P( n ) C n .
R 2.23. Since we are working here in characteristic 0, we could have equivalently considered coinvariants instead of invariants in the definition of the totalisation. Lemma 2.24 ([KWZ15, Proposition 2.18]). The following assignment de nes a functor from (shifted) anticyclic non-symmetric operads to complete (shifted) Lie algebras (shifted) anti-cyclic ns operads → complete (shifted) Lie algebras

(P, d P , • i ) → P, d, { , }, F ,
where the di erential d is induced by the di erential d P and where the Lie bracket is given by

{ µ, ν} n i=2 µ • i ν -(-1) |µ||ν| n j=2 ν • j µ ,
(with the sign +(-1) |µ||ν| in front of the second term in the shifted case), for any µ ∈ P( n ) C n and ν ∈ P( n ) C n , and the decreasing ltration

P = F -1 ⊃ F 0 ⊃ F 1 ⊃ • • • ⊃ F N ⊃ F N +1 ⊃ • • • ,
where F N is made up of series such that the terms of arity n < N + 2 vanish.

Proof. The proof amounts to straightforward computations from the axioms (11), (12), and (13). R 2.25. The above Lie bracket is made up of the skew-symmetrisation of the product which is the usual pre-Lie product n i=2 µ • i ν on the totalisation n 1 P( n ) of the underlying non-symmetric operad [START_REF] Kapranov | Modules and Morita theorem for operads[END_REF]. Notice that this pre-Lie product is not stable on the sub-space of invariants with respect to the cyclic groups actions and so the skew-symmetrisation is mandatory here. 

∂( f ) d P • f -(-1) | f | f • d C ,
and where the partial compositions maps are given by

i ( f ⊗ g) • i ( f ⊗ g)δ i .
Proof. This follows in a straightforward way from the defining relations.

De nition 2.27 (Convolution algebra). The composite of the above two functors produces functorially the convolution dg Lie algebra:

Hom( C, P) n 1 Hom C n ( C( n ), P( n )) , ∂, {-, -} .
De nition 2.28 (Twisting morphism). The solutions to the Maurer-Cartan equation ( 18) in the convolution algebra Hom( C, P) are called twisting morphisms from C to P; their set is denoted by Tw( C, P) .

As first example, we consider the convolution dg Lie algebra associated to the anti-cyclic nonsymmetric cooperad A s ¡ of Example 2.14 and the cyclic non-symmetric endomorphism operad End V of Example 2.5.

De nition 2.29 (Cyclic A ∞ -algebra). The algebraic structure defined by a twisting morphism in

Tw A s ¡ , End V is called a cyclic A ∞ -algebra structure on V . Proposition 2.30. A cyclic A ∞ -algebra structure on a dg module V induces products m n : V ⊗n → V of degree n -2, for n 2, satisfying (19) ∂(m n ) = p+q+r=n (-1) pq+r+1 m p+1+r • id ⊗p ⊗m q ⊗ id ⊗r ,
for any n 2 , and equipped with a symmetric bilinear form , satisfying

(20) v 1 , m n (v 2 , . . . , v n+1 ) = (-1) |v 1 |(|v 2 |+•••+|v n+1 |)+n v n+1 , m n (v 1 , . . . , v n ) ,
for any n 2 . Both structures are equivalent when the pairing , is non-degenerate.

Proof. We consider the morphism of chain complexes Θ : V ⊗(n+1) → Hom(V ⊗n , V ) defined by 

Θ(v 1 , . . . , v n+1 ) v 1 v 2 , -• • • v n+1 , -. Let α ∈ Tw A s ¡ , End V be
, End V is called a cyclic curved A ∞ -algebra structure on V .
Proposition 2.32. A cyclic curved A ∞ -algebra structure on a graded module V is made up of products

m n : V n → V of degree n -2, for n 0, satisfying (21) 
p+q+r=n (-1) pq+r+1 m p+1+r • id ⊗p ⊗m q ⊗ id ⊗r = 0 , for any n 0 , and equipped with a symmetric bilinear form , satisfying

(22) v 1 , m n (v 2 , . . . , v n+1 ) = (-1) |v 1 |(|v 2 |+•••+|v n+1 |)+n v n+1 , m n (v 1 , . . . , v n ) ,
for any n 2 . Both structures are equivalent when the pairing , is non-degenerate.

Proof. This proof is similar to the one given above and uses the same identifications.

Therefore a cyclic A ∞ -algebra is a cyclic curved A ∞ -algebra such that the curvature operation m 0 is trivial. (In this case, the operation m 1 squares to zero and is considered as the di erential of V .) The above-mentioned embedding of dg Lie algebras shows that the deformation theory of the former is included inside the deformation theory of the latter. 2.3. Generalised necklace algebra. In this section, we consider the special case V = sA ⊕ A * equipped with its canonical degree -1 skew-symmetric pairing: f , sx

(-1) | f | f (x) .
Proposition 2.33. The convolution algebra Hom A s ¡ , End sA⊕ A * is a shifted Lie algebra with underlying graded vector space isomorphic to

s 2 N 3 1 m<N λ 1 +•••+λ m =n A ⊗ ((sA) * ) ⊗λ 1 ⊗ A ⊗ ((sA) * ) ⊗λ 2 • • • ⊗ A ⊗ ((sA) * ) ⊗λ m C m ⊕ ((sA) * ) ⊗ N C N , ( 23 
)
where the sum runs over ordered partitions λ 1 + • • • + λ m = n of n = Nm into non-negative integers, and with the bracket given by

s 2 a 1 ⊗ • • • ⊗ a N , s 2 b 1 ⊗ • • • ⊗ b N = s 2 N i=2 (-1) |a 1 |+•••+|a i-1 |+|b|(|a i+1 |+•••|a N |) a i , b 1 a 1 ⊗ • • • ⊗ a i-1 ⊗ b 2 ⊗ • • • ⊗ b N ⊗ a i+1 ⊗ • • • ⊗ a N + s 2 N j=2 (-1) |b 1 |+•••+|b j-1 |+|a|(|b 1 |+•••|b j |) b j , a 1 b 1 ⊗ • • • ⊗ b j-1 ⊗ a 2 ⊗ • • • ⊗ a N ⊗ b j+1 ⊗ • • • ⊗ b N , with a k , b l ∈ A ⊕ (sA) * , a a 1 ⊗ • • • ⊗ a N , and b b 1 ⊗ • • • ⊗ b N .
Proof. Since the cooperad A s ¡ is anti-cyclic non-symmetric and since the operad End sA⊕ A * is shifted cyclic non-symmetric, the convolution algebra Hom A s ¡ , End sA⊕ A * is a shifted Lie algebra by Lemmata 2.24 and 2.26. Using now capital N for the arity in the cyclic operad context, the cyclic module A s ¡ ( N ) is isomorphic to s N -2 , for any N 3. So the underlying graded space of the convolution algebra is isomorphic to

N 3 Hom C N s N -2 , (sA ⊕ A * ) ⊗ N s 2 N 3 s -N ⊗ (sA ⊕ A * ) ⊗ N C N s 2 N 3 (A ⊕ (sA) * ) ⊗ N C N .
Spitting according to which part of the direct sum comes from either A or sA * , one obtains the graded space displayed above in (23). The abovementioned isomorphism is given explicitly by

Φ s N -2 → sa 1 ⊗ • • • ⊗ sa N (-1) N ( N +1) 2 +N |a N |+•••+|a 1 | s 2 a 1 ⊗ • • • ⊗ a N ,
where a 1 , . . . , a N ∈ A ⊕ (sA) * . Transporting the shifted Lie bracket of the convolution algebra (Definition 2.27) under this isomorphism gives the shifted Lie bracket of the above statement.

De nition 2.34 (Generalised necklace Lie algebra). The generalised necklace Lie algebra associated to the dg vector space A is the desuspension of the above shifted Lie sub-algebra:

neck A s N 3 1 m<N λ 1 +•••+λ m =n A ⊗ ((sA) * ) ⊗λ 1 ⊗ • • • ⊗ A ⊗ ((sA) * ) ⊗λ m C m , d, {-, -} .
There is a crucial point for us in the present case: when V = sA ⊕ A * , the Lie bracket on the generalised necklace Lie algebra splits into two, depending on whether one applies the linearity pairing to f ⊗ sx or to sx ⊗ f , where f ∈ A * and x ∈ A. More precisely, we denote by X * Y the summand of {X, Y } made up of the terms where one applies the linear pairing f , sx , where f ∈ A * comes from X and x ∈ A comes from Y . So the Lie bracket is equal to the skew-symmetrisation of the product * :

{X, Y } = X * Y -(-1) |X||Y | Y * X .
Lemma 2.35. The binary product * satis es the relation of a Lie-admissible algebra:

σ ∈S 3 sgn(σ)assoc(-, -, -) σ = 0 ,
where assoc stands for the associator: assoc(x, y, z) (x * y) * zx * (y * z) , for every x, y, z .

Proof. This is actually the definition of a Lie-admissible bracket: its skew-symmetrised bracket satisfies the Jacobi relation. De nition 2.37 (Pre-Calabi-Yau algebra). A structure of a pre-Calabi-Yau algebra on a dg vector space A is a Maurer-Cartan element in the generalised necklace Lie(-admissible) algebra neck A , that is a degree -1 element α satisfying:

∂α + 1 2 {α, α} = ∂α + α * α = 0 .
Working mutatis mutandis with the anti-cyclic non-symmetric cooperad cA s ¡ encoding cyclic curved A ∞ -algebras, one gets the following more general context.

De nition 2.38 (Curvature necklace Lie-admissible algebra). The curvature necklace Lie-admissible algebra associated to the dg vector space A is defined by

cneck A s N 1 1 m<N λ 1 +•••+λ m =n A ⊗ ((sA) * ) ⊗λ 1 ⊗ • • • ⊗ A ⊗ ((sA) * ) ⊗λ m C m , d, * .
The skew-symmetrisation of the Lie-admissible product * produces a Lie bracket and thus the curvature necklace Lie algebra.

De nition 2.39 (Curved pre-Calabi-Yau algebra). A structure of a curved pre-Calabi-Yau algebra on a graded vector space A is a Maurer-Cartan element in the curved necklace Lie-admissible algebra.

There is a canonical embedding of dg Lie-admissible algebras

neck A → cneck A .
A pre-Calabi-Yau algebra is a curved pre-Calabi-Yau algebra with trivial components on A, A ⊗ A, and

(A ⊗ (sA) * ⊕ (sA) * ⊗ A) C 2 . R
2.40. A (curved) pre-Calabi-Yau structure on a dg vector space A corresponds to a shifted cyclic (curved) A ∞ -algebra structure on sA⊕ A * , i.e. a cyclic (curved) A ∞ -algebra structure on A⊕(sA) * , with trivial terms on ((sA) * ) ⊗ N . In particular, it carries an (curved) A ∞ -algebra structure on A, which is a (curved) A ∞ -sub-algebra of A ⊕ (sA) * by this latter condition.

2.4. Higher Hochschild complex and the main theorem. Recall that there is a canonical inclusion

(24) W ⊗ V * → Hom (V, W ) x ⊗ f → v → x f (v) ,
which is an isomorphism if and only if V is finite dimensional in each degree. It leads to considering

Hom (sA) ⊗λ 1 ⊗ • • • ⊗ (sA) ⊗λ m , A ⊗m instead of A ⊗ ((sA) * ) ⊗λ m ⊗ • • • ⊗ A ⊗ ((sA) * ) ⊗λ 1 . Given two maps F ∈ Hom C m λ 1 +•••+λ m =n m j=1 (sA) ⊗λ j , A ⊗m and G ∈ Hom C m λ 1 +•••+λ m =n m j=1 (sA) ⊗λ j , A ⊗m ,
we identify the suspension sF with the induced map m j=1 (sA) ⊗λ j → sA ⊗ A ⊗m-1 , and similarly for sG . For any 1 i n, we denote by sF 1 i sG:

(sA) ⊗λ 1 ⊗ • • • ⊗ (sA) ⊗λ k-1 ⊗ (sA) ⊗λ 1 +λ k -l ⊗ (sA) ⊗λ 2 ⊗ • • • ⊗ (sA) ⊗k-1+λ m ⊗ (sA) ⊗λ k+1 ⊗ • • • ⊗ (sA) ⊗λ m → sA ⊗m+m -1 , with i = λ 1 + • • • + λ k-1
+ l and 1 l λ k , the partial composite of the two multilinear operations sF and sG including the permutations of inputs and outputs depicted in Figure 4, for it to leave in the space of cyclically invariant maps.

k + 1 k + m -1 λ 1 λ k-1 λ 1 + λ k -l λ 2 l -1 + λ m λ k+1 λ m 1 k -1 k • • • • • • • • • • • • • • • • • • k + m m + m -1 sF sG F 4. Illustration of the partial composite sF 1 i sG .
De nition 2.41 (Higher Hochschild complex). The higher Hochschild complex associated to a dg vector space A is the Lie-admissible algebra

hh A s N 1 1 m<N Hom C m λ 1 +•••+λ m =n m j=1 (sA) ⊗λ j , A ⊗m , ∂ , ,
where

sF sG n i=1 sF 1 i sG .
Proposition 2.42. The inclusion (24) induces a monomorphism of dg Lie-admissible algebras

cneck A → hh A ,
which is an isomorphism if and only if A is nite dimensional in each degree.

Proof. It is straightforward to check that the product is well-defined, that is it lands in cyclically invariant maps, and that it is Lie-admissible. (This is also a direct corollary of the proof of Theorem 2.43 below.) The map Ψ : cneck A → hh A is explicitly given by

Ψ (s a 1 ⊗ f 1 ⊗ • • • ⊗ a m ⊗ f m ) (-1) ζ s a 1 ⊗ • • • ⊗ a m ⊗ f m ⊗ • • • ⊗ f 1 ,
with a j ∈ A and f j ∈ ((sA) * ) ⊗λ j , for 1 j m, where

ζ = | f 1 |(|a 2 | + | f 2 | + • • • + |a m | + | f m |) + | f 2 |(|a 3 | + | f 3 | + • • • + |a m | + | f m |) + • • • + | f m-1 |(|a m | + | f m |) .
and where the right-hand term is interpreted as a map in s Hom (sA) ⊗λ 1 ⊗ • • • ⊗ (sA) ⊗λ m , A ⊗m under the inclusion (24). Using the Koszul sign rule and the Koszul sign convention, it is straightforward to check that

Ψ (s a 1 ⊗ f 1 ⊗ • • • ⊗ a m ⊗ f m ) Ψ (s b 1 ⊗ g 1 ⊗ • • • ⊗ b m ⊗ g m ) = Ψ (s a 1 ⊗ f 1 ⊗ • • • ⊗ a m ⊗ f m ) * (s b 1 ⊗ g 1 ⊗ • • • ⊗ b m ⊗ g m ) .
The main result of this paper is the following theorem.

Theorem 2.43. For any dg vector space A, there is a canonical and functorial isomorphism of dg Lie-admissible algebras cDPois A hh A .

Proof. Since the proof is a straightforward, long, and not really enligthening computation, we postpone it to Appendix B.

In the end, we get the following monomorphism of dg Lie-admissible algebras

cneck A → hh A cDPois A ,
which is an isomorphism if and only if A is degree-wise finite dimensional.

Corollary 2.44.

(1) Any curved pre-Calabi-Yau algebra carries a canonical curved homotopy double Poisson gebra structure.

(2) When A is degree-wise nite dimensional, both notions are equivalent. In this case, any curved homotopy double Poisson gebra carries a canonical curved pre-Calabi-Yau algebra structure.

Proof. It is a direct corollary of Theorem 2.43.
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The abovementioned theorem shows that the moduli spaces of curved homotopy double Poisson gebra structures and curved pre-Calabi-Yau algebra structures are equivalent. It is also opens the doors to the properadic calculus developed in [START_REF] Ho | Properadic Homotopical Calculus[END_REF][START_REF] Ho | Simplicial properadic homotopy[END_REF] and in [START_REF] Campos | Graph exponential map[END_REF]. As a direct application, we get a notion of an ∞-morphism satisfying all the expected homotopical properties for these algebraic structures: homotopy transfer theorem, invertibility of ∞-quasi-isomorphisms, formality, Koszul hierarchy, and twisting procedure. De nition 3.1 (Space of curved pre-Calabi-Yau structures). The space of curved pre-Calabi-Yau structures on a dg vector space A is the Kan complex cpCY{ A} defined by

cpCY{ A} MC(cneck A ⊗ Ω • ) ,
where Ω • is the Sullivan simplicial commutative algebra of polynomial di erential forms of the standard simplicies ∆ • .

Similarly, the space of homotopy gebras, introduced by S. Yalin in [Yal16, Section 3.1], takes the following form here. We denote by cDPois ∞ the cobar construction of the partial coproperad cDPois ¡ , which is given by the quasi-free properad on the desuspension of cDPois ¡ . (We do not consider any coaugmentation ideal here as the partial coproperad cDPois ¡ fails to be coaugmented.) Since cDPois ¡ is non-negatively graded, the dg properad cDPois ∞ is cofibrant.

De nition 3.2 (Space of curved homotopy double Poisson gebra structures). The space of curved homotopy double Poisson gebra structures on a dg vector space A is the Kan complex cDPois ∞ { A} defined by cDPois ∞ { A} Hom dg properads (cDPois ∞ ,

End A ⊗ Ω • ) ,
where the properad End A ⊗ Ω • is defined by

(End A ⊗ Ω • )(m, n) End A (m, n) ⊗ Ω • .
Proposition 3.3. The embedding cneck A → cDPois A of dg Lie-admissible algebras induces an embedding of Kan complexes

cpCY{ A} → cDPois ∞ { A} ,
which is an isomorphism when A is degree-wise nite dimensional.

Proof. This is a direct corollary of the isomorphism of Kan complexes

cDPois ∞ { A} MC Hom cDPois ¡ , End A ⊗ Ω • ,
see [Yal16, Theorem 3.12], and Theorem 2.43.

3.2.

In nity-morphisms of homotopy double Poisson gebras. The advantage of homotopy double Poisson gebras over pre-Calabi-Yau algebras is that the properadic calculus recently developed in [START_REF] Ho | Properadic Homotopical Calculus[END_REF] automatically equips them with a higher notion of ∞-morphism which behaves well with respect the homotopical properties: homological invertibility of ∞-quasi-isomorphisms, homotopy transfer theorem and Deligne groupoid, for instance.

Here are a few recollections in order to make the present text as self-contained as possible. Let us recall from [HLV20, Definition 3.12] that the left and right in nitesimal composition products Recall that the Deligne groupoid Del(g) of a complete Lie algebra g is made up of the Maurer-Cartan elements for objects and the gauges for isomorphisms. We refer the reader to [DSV22, Chapter 1] for more details.

Proposition 3.8. The Deligne groupoid associated to the convolution algebra of homotopy double Poisson gebras on A is isomorphic to the groupoid of homotopy double Poisson gebra structures on A with their ∞-isotopies:

Del Hom DPois ¡ , End A (DPois ∞ -gebras, ∞-isotopies) .
Proof. This is a special case of [CV22, Theorem 2.22] applied to the Koszul dual coproperad DPois Recall that a contraction of a dg vector space (A, d A ) is another dg vector space (H, d H ) equipped with chain maps i and p and a homotopy h of degree 1 Proof. This is a special case of [HLV20, Theorem 4.14] applied to the Koszul dual coproperad DPois ¡ .

(A, d A ) (H, d H ) p h i , satisfying pi = id H , ip -id A = d A h + hd A , hi = 0 , ph = 0 ,
Notice that loc. cit. provides us with explicit formulas for the transferred structure and the extensions of the two maps. For instance, the homotopy transferred structure is given by

DPois ¡ G c DPois ¡ B End A End H , ∆ G c (sα) ϕ
where ∆ is the comonadic decomposition map of the coproperad DPois ¡ made up of all the ways to decompose its elements, where α is the initial homotopy double Poisson algebra structure on A, and where ϕ is the Van der Laan twisting morphism which amonts to labelling the edges of the graphs by the maps i, p, and h of the contraction is a levelled way, see [HLV20, Theorem 4.7] for more details.

In a forthcoming paper [START_REF] Ho | Simplicial properadic homotopy[END_REF], we go further and establish even more structural properties for ∞morphisms associated to Koszul properads like the following formality properties that automatically apply to the case of homotopy double Poisson gebras. Proposition 3.11. Two homotopy double Poisson gebra structures α and α on the same underlying chain complex A are ∞-isotopic if and only if they are related by a zig-zag of (strict) quasi-isomorphisms of homotopy double Poisson gebras:

∃ ∞-isotopy (A, α) (A, α ) = ⇐⇒ ∃ zig-zag of quasi-isomorphisms (A, α) • • • • (A, α ) ∼ ∼ ∼ ∼
.

Proof. This is a special case of [HLV22, Proposition 1.10] applied to the Koszul dual coproperad DPois ¡ .

Theorem 3.12. Two homotopy double Poisson gebra structures (A, α) and (B, β) are ∞-quasi-isomorphic if and only if they are related by a zig-zag of (strict) quasi-isomorphisms of homotopy double Poisson gebras:

∃ ∞-quasi-isomorphism (A, α) (B, β) ∼ ⇐⇒ ∃ zig-zag of quasi-isomorphisms (A, α) • • • • (B, β) ∼ ∼ ∼ ∼
.

Proof. This is a special case of [HLV22, Theorem 1.11] applied to the Koszul dual coproperad DPois ¡ .

The results of [START_REF] Ho | Simplicial properadic homotopy[END_REF] will also provide us with a simplicial enrichment of the category of homotopy double Poisson gebras and ∞-morphisms such that the associated homotopy category coincides with the localisation with respect to ∞-quasi-isomorphisms.

We finish this section with an application of the general theory of Koszul hierarchy given in [CV22, Section 3.3] which provides us here with a way to construct homotopy double Poisson gebras from shifted DPois ! -gebra structures via universal formulas. The notion of a shifted DPois ! -gebra is defined as a DPois ! -gebra (Section 1.4) except that we require the generating binary product and "dual" double bracket to be of homological degree +1 instead of -1. Recall that the original construction, given by J.-L. Koszul in [START_REF] Koszul | Crochet de Schouten-Nijenhuis et cohomologie[END_REF], produces a (shifted) homotopy Lie algebra from a commutative product on a dg vector space. This gauge action, producing a homotopy double Poisson gebra structure by definition, is given by the explicit formula

(1 + θ) d I (1 + θ) -1 , see loc. cit. for more details.
Notice that we do not require the shifted DPois ! -gebra structure to be compatible with the di erential. This construction applied to a shifted associative algebra viewed as a shifted DPois ! , with trivial dual double bracket, provides us with the A ∞ -algebra of K. Borjeson [START_REF] Borjeson | A ∞ -algebras derived from associative algebras with a non-derivation di erential[END_REF].

3.3.

In nity-morphisms of curved homotopy double Poisson gebras. In this section, we extend the operadic calculus of [START_REF] Ho | Properadic Homotopical Calculus[END_REF][START_REF] Campos | Graph exponential map[END_REF] along the lines of [START_REF] Dotsenko | Maurer-Cartan methods in deformation theory: the twisting procedure[END_REF] to handle the case of curved gebras. The first mandatory move is to work over the category of complete graded vector spaces in order to handle the infinite sums that will appear in the this case.

inputs forms a complete curved homotopy double Poisson gebra:

m a λ 1 ,...,λ m r 1 0 ,...,r 1 λ 1 0 ... r m 0 ,...,r m λm 0 (-1) η m λ 1 +r 1 ,...,λ m +r m a r 1 0 , -, a r 1 1 , -, • • • , -, a r 1 λ 1 , • • • , a r m 0 , -, a r m 1 , -, • • • , -, a r m λm ,
where r j r j 0 + • • • + r j λ j , for 1 j m, and where

η = rn + r(r -1) 2 + m-1 j=1 r j 1 + m k=j+1 λ k + r k + m j=1 λ j i=0 r j i + 1 r j 0 + • • • + r j i-1 + r j i r j i -1 2 , with r r 1 + • • • + r m .
Proof. This is a direct corollary of [CV22, Section 3.2]. Let us denote by α ∈ cDPois A the Maurer-Cartan element corresponding to the original complete curved homotopy double Poisson gebra. Its image under the action of the element 1a of the gauge group integrating the convolution dg Lie algebra cDPois A is given by

(1 -a) • α = (1 -a) α I (1 + a) = α (1 + a) ,
with the notations of loc. cit.. The right-hand side produces the formula for the twisted structure claimed in the statement. The sign is computed as in the proof of Proposition 1.34.

Notice that the original and the twisted complete curved homotopy double Poisson gebras are gauge equivalent by (conceptual) definition.

A

A. C

In order to the make explicit the definition and the composition of ∞-morphisms of (curved) homotopy double Poisson gebras (Section 3), we need to describe the decomposition map ∆ : DPois ¡ → DPois ¡ DPois ¡ of the Koszul dual coproperad. Since its is given by a distributive law (Proposition 1.28), let us start with the decomposition map of the coproperad DLie ¡ . The cyclic symmetry of its basis elements (Lemma 1.31) suggests to consider bangles with n beads, for any n 2 . De nition A.1 (Elementary coloured cutting). An elementary coloured cutting of a bangle is defined by the following two-steps construction. C : choose a bead of the bangle and cut the bangle into two parts, that is draw a line starting from the bead, splitting it into two, to an edge between two beads, such that each half-bangle contains at least one bead.

C

: colour the beads on the clockwise side of the half-bean in white and the other ones, as well as the entire sector, in black, see Figure 7. Proof. The images of the basis elements ν 1,...,1 under the infinitesimal decomposition map

∆ (1,1) : DLie ¡ → DLie ¡ (1,1)
DLie ¡ are given by 2-steps cyclic stairways, see Proposition 1.34. Given an elementary coloured cutting of a bangle, we read it clockwise from the first full black bead: the black beads are inputs of a bottom basis element, the white beads are the inputs of the a top basis element, and the black-and-white bead corresponds to the attaching edge, see Figure 7. After an elementary coloured cutting, one can interpret the white part and the black part has proper bangles. This way, one can iterate elementary coloured cuttings such that half-beads cannot be further cut and such that the end of the new cut does not land on the same arc as a previous one.

De nition A.4 (Partitioned bangle).

A bangle is partitioned when it is equipped with a non-negative number of iterations of elementary coloured cuttings. When there is no cutting, one can either paint all the vertices in white or in black. In other words, such a data amounts to a bangle partitioned into alternating black and white sections delimited by lines which start from a bead and lead to an arc such that each arc can receive at most one lines and such that the clockwise side of each half-bean is coloured in white, see Figure 8. clockwise order; we connect bottom and top boxes along the edges corresponding to black-and-white beads, see Figure 8 for an example. The bangle trivially partitioned with all of the beads coloured in black (respectively in white) gives the biggest bottom (respectively top) box with no top (respectively bottom) boxes. Under this map, the number of elementary coloured cuttings corresponds to internal edges.

Let us recall that the images ∆ ν 1,...,1 of the basis elements of DLie ¡ under the decomposition map are made up of the 2-level connected graphs whose (dual) composite in the properad DLie ! gives ν * 1,...,1 up to a sign, that is stairways with cyclically ordered labels. By a straightforward induction on the number n 0 of elementary coloured cuttings, one can see that they are all obtained as images of partitioned bangles under the above-mentioned assignment. This is trivial for n = 0 and obvious for n = 1, by Lemma A.2. Suppose that this property holds true up to n and consider a bangle partitioned with n + 1 elementary coloured cuttings, that is into n + 2 sectors. We choose an external sector, that is a sector with consecutive beads, and we remove it from the bangle. By the induction hypothesis, the image of the remaining partitioned bangle under the above assignment produces a 2-level connected graph whose composite in the Koszul dual properad DLie ! gives a stairway with leaves labeled cyclically in the same way. Then, Lemma A.2 shows that the image of the full bangle gives an element appearing in the image of the decomposition map. In the other way round, given a 2-level connected graph with n + 1 internal edge present in the image of the decomposition map, we consider similarly an extremal bottom or top box, that is one attached to the rest of the graph with just one edge. The 2-level connected graph obtained by removing it can be produced by a partitioned bangle labeled cyclically with the remaining indices of the leaves, thanks to the induction hypothesis. Finally Lemma A.2 shows that pruning the extremal box on the 2-level graph amounts to adding an external sector to this bangle. This concludes the proof.

De nition A.6 (Hairy partitioned bangle). A hairy partitioned bangle is a partitioned bangle equipped with the following treewise decorations.

: at least one corolla situated outside the the bangle. : corollas outside and at least one leaf inside the bangle. --: corollas outside the bangle, corollas inside the black sector, and at least one leaf inside the white sector.

Black sectors are now allowed to have no full black bead provided that the number of their leaves (from the black-and-white bead) plus the number of outside leaves attached to the bead before in the cyclic order is greater or equal to one. The leaves receive indices which are altogether clockwise cyclically ordered: we read the leaves of white and black-and-white beads starting from the outer ones and pursing with the inner ones, see Figure 9 for an example. Proof. We extend the above assignment to hairy partitioned bangles. The underlying partitioned bangle produces a 2-level connected graph. The corollas of the black beads are put on the top level. The leaves of the white sectors are the inputs of the corresponding top boxes. The corollas of the black-and-white beads situated in the black sector form the inputs of the bottom boxes situated at the right-hand side of the corresponding vertical edge but they are put on the top level. The outer leaves of a bead form the bottom box inputs situated on the left-hand side of the vertical edge corresponding to the next bead of this white sector; again they extend to the top level. The rest of the proof is a straightforward corollary of Proposition A.5 and the distributive law Proposition 1.28.

The composite g f of ∞-morphisms is given by the sum over all the hairy partitioned bangles of the composite of the associated 2-level connected directed graphs with upper maps labeled by f and the lower maps labeled by g. The operator ¡ appearing in the relation (25) of an ∞-morphism is given by hairy partitioned bangles with one black sector. The operator £ is given by hairy partitioned bangles with either one white sector and no corolla of arity greater or equal to two on black beads or no white sector and a total number of one corolla of arity greater or equal to two on black beads.

A B. P

This appendix contains the proof of the main result (Theorem 2.43) of the present paper, that is the existence of a canonical and functorial isomorphism of dg Lie-admissible algebras cDPois A hh A .

Proof of Theorem 2.43. The isomorphism Υ : cDPois A → hh A from left to right is given by the following assignment: First, we check that this map is equivariant with respect to the actions of the cyclic groups; so it will induce a well-defined map on the level of invariant elements. Under the notation, (sA) ⊗λ j , A ⊗m is indeed an isomorphism. It remains to check that it preserves the respective Lie-admissible products, that is

Υ F λ 1 ,.
F ν λ 1 ,...,λ m (a 1 ⊗ • • • ⊗ a n ) = b 1 ⊗ • • • ⊗ b m , we get τ -1 m • Υ F λ 1 ,...,λ m • τ λ 1 , ••• ,λ m (sa λ 1 +1 ⊗ • • • ⊗ sa n ⊗ sa 1 ⊗ • • • ⊗ sa λ 1 ) = (-1) A s b 2 ⊗ • • • ⊗ b m ⊗ b 1 ,
Υ F Ḡ = Υ F Υ Ḡ .
Comparing the formulas given in Proposition 1.34 and in Definition 2.41, one can see that both Υ F Ḡ and Υ F Υ Ḡ will be made up of the same terms, involving the same composites, possibly up to a sign.

For one of these terms, we will compute the signs appearing in the two formulas. Let λ 1 +• • •+λ m = n and λ 1 + • • • + λ m = n be two ordered partitions and let p + 1 + q = λ m , with p, q 0 . For any elements a 1 , . . . , a λ m +p , a λ m +p+2 , . . . , a n , a 1 , . . . , a n ∈ A, we consider the following notations

Ḡ ν λ 1 ,...,λ m a 1 ⊗ • • • ⊗ a n = b 1 ⊗ • • • ⊗ b m and F ν λ 1 ,...,λ m a 1 ⊗ • • • ⊗ a λ m +p ⊗ b 1 ⊗ a λ m +p+2 ⊗ • • • ⊗ a n = b 1 ⊗ • • • ⊗ b m .
On the one hand, we have Υ F λ 1 ,...,λ m -1

1 i Υ Ḡ λ 1 ,...,λ m sa 1 ⊗ • • • ⊗ sa λ m ⊗ sa 1 ⊗ • • • ⊗ sa λ 1 ⊗ sa λ m +p+2 ⊗ • • • ⊗ sa n ⊗ sa λ 1 +1 ⊗ • • • ⊗ a λ m ⊗ sa λ m +1 ⊗ • • • ⊗ sa λ m +p ⊗ sa λ m +1 ⊗ • • • ⊗ sa n = (-1) C s b 1 ⊗ • • • ⊗ b m ⊗ b 2 ⊗ • • • ⊗ b m ,
where i = λ m + p + 1 and where with the elements sa j and one applies it to the elements sa k (third line of C). Finally, one permutes the output element sb 1 with the last q elements sa j (forth line of C) and one applies Υ F λ 1 ,...,λ m -1 to the elements sa j and b 1 (fifth line of C).

C = a λ m +p+2 + • • • + |a n | + q a 1 + • • • + a λ 1 + λ 1 + a λ m +1 + • • • + a λ m +p + p a λ m +p+2 + • • • + |a n | + a 1 + • • • + a λ m + q + λ m + Ḡ(
On the other hand, we have Υ F Ḡ λ 1 ,...,λ m-1 ,λ 1 +q,λ 2 ,...,λ m -1 , p+λ m

sa 1 ⊗ • • • ⊗ sa λ m ⊗ sa 1 ⊗ • • • ⊗ sa λ 1 ⊗ sa λ m +p+2 ⊗ • • • ⊗ sa n ⊗ sa λ 1 +1 ⊗ • • • ⊗ a λ m ⊗ sa λ m +1 ⊗ • • • ⊗ sa λ m +p ⊗ sa λ m +1 ⊗ • • • ⊗ sa n is equal to (-1) D s b 1 ⊗ • • • ⊗ b m ⊗ b 2 ⊗ • • • ⊗ b m ,
in C and p + qλ 1 + p q + λ m + 1 in D, where the final term 1 comes from (27). Since λ m = p + q + 1, we get C ≡ D mod 2, which concludes the proof. R

Introduction 1 .

 1 Double Poisson gebras up to homotopy 1.1. Double Poisson gebra 1.2. Properads 1.3. Deformation theory of morphisms of properads 1.4. Explicit description of the Koszul dual coproperad DPois I Poisson geometry. In commutative geometry, there are two equivalent ways to define the notion of a Poisson structure. One can first consider a Lie bracket

  W.-K. Yeung proved that this definition of a derived noncommutative Poisson structure satisfies the Kontsevich-Rosenberg principle: any pre-Calabi-Yau algebra structure on A induces a shifted Poisson structure on its derived moduli stack of representations [Yeu19, Corollary 4.78]. structures shifted Poisson structures homotopy double Poisson gebras/pre-Calabi-Yau algebras In the literature, several authors have already compared pre-Calabi-Yau algebras to some homotopical variations of double Poisson gebras. First, N. Iyudu, M. Kontsevich, and Y. Vlassopoulos have shown that any double Poisson algebra structure induces canonically a pre-Calabi-Yau algebra structure, see [IK18, IK19, IKV21]. Another proof of this result was given by W.-K.Yeung in [Yeu19, Example 1.35]. D. Fernández and E. Herscovich have extended this result in

1. 1 .

 1 Double Poisson gebra. De nition 1.1 (Double Lie gebra). A double Lie gebra amounts to a data (A, {{-, -}}) made up of a dg vector space A and a morphism {{-, -}} : A ⊗ A -→ A ⊗ A , called the double bracket, satisfying the following two relations, where we use the Sweedler notation {{a, b}} = {{a, b}} ⊗ {{a, b}} for any a, b ∈ A . S -: {{a, b}} = -(-1) |a||b|+|{{a,b}} ||{{a,b}} | {{b, a}} ⊗ {{b, a}} D J : {{a, {{b, c}}}} L + (-1) |a|(|b|+|c|) (123) • {{b, {{c, a}}}} L + (-1) |c|(|a|+|b|) (132) • {{c, {{a, b}}}} L = 0 , where {{a, {{b, c}}}} L {{a, {{b, c}} }} ⊗ {{b, c}} and where

De nition 1. 2 (

 2 Double Poisson gebra [VdB08]). A double Poisson gebra is a triple (A, µ, {{-, -}}) made up of a dg associative product µ : A ⊗ A → A and a double Lie gebra structure (A, {{-, -}}) satisfying the following compatibility relation. D : {{a, µ(b, c)}} = (-1) |a||b| µ(b, {{a, c}} ) ⊗ {{a, c}} + {{a, b}} ⊗ µ({{a, b}} , c) E 1.3. (1) In [VdB08, Section 6], the author shows that for every finite quiver Q, one can define a double Poisson bracket on the path algebra of the double of Q.

  Koszul dual to the abovementioned properads, see Section 1.4.

P

  → P of the properad.

  Lemma 1.19 ([MV09a, Proposition 6]). The following assignment de nes a functor from the category of properads to the category of Lie-admissible algebras properads -→ Lie-admissible algebras P, d P , γ -→ P, d, , where the di erential d is induced by the di erential d P and where the binary product is de ned by µ ν g∈G (2) γ(g(µ, ν)) , for any µ, ν ∈ P . Lemma 1.20 ([MV09a, Lemma 2]). The following assignment de nes a functor coproperads op × properads -→ properads (C, d C , ∆), (P, d P , γ) -→ Hom(C, P), ∂, γ Hom , where the symmetric groups act by conjugaison, and where the composition γ Hom : Hom(C, P) Hom(C, P) -→ Hom(C, P)

E 1 .

 1 23. One important example of properadic convolution algebra in the present paper is the one associated to the conilpotent coproperad DPois ¡ , which is Koszul dual to the properad encoding double Poisson gebras, and the endomorphism properad End A . We denote it by DPois A Hom DPois ¡ , End A . De nition 1.24 (Properadic twisting morphism). The solutions to the Maurer-Cartan equation (1) ∂α + α α = 0 in the properadic convolution algebra Hom(C, P) are called the twisting morphisms from C to P; their set is denoted by Tw(C, P) . De nition 1.25 (P ∞ -gebra). When P is a Koszul properad, a gebra over the cobar resolution ΩP ¡ ∼ -→ P is called a homotopy P-gebra or P ∞ -gebra. Proposition 1.26 ([MV09a, Proposition 17]). Homotopy P-gebra structures on a dg vector space A are in canonical one-to-one correspondence with twisting morphisms Tw(P ¡ , End A ) . Let us apply this to the case of double Poisson gebras; the most important result of the Ph.D. Thesis of the first author lies in the following statement. Theorem 1.27 ([Ler20, Theorem 5.11]). The properads DLie and DPois are Koszul.

1. 4 .

 4 Explicit description of the Koszul dual coproperad DPois ¡ . The derivation relation between the double Lie bracket and the associative product in the definition of a double Poisson gebra induces a rewriting rule in the properad DPois between the sub-properad DLie and the sub-operad Ass, viewed as a sub-properad concentrated in output arity one.

¡

  ; this is somehow what we perform in the proof of Theorem 2.43, see Appendix B. However, to procedure further with the homotopical properties of homotopy double Poisson gebras, like the ∞-morphisms of Section 3, we need the description of the full decomposition map map ∆ : DPois ¡ → DPois ¡ DPois ¡ , that we develop this in Appendix A. 1.5. Homotopy double Poisson gebras. Now we have everything at hand to make explicit the notion of a homotopy double Poisson gebra. Theorem 1.35. A homotopy double Poisson gebra is a dg vector space A equipped with a collection of operations m λ 1 ,...,λ m : A ⊗n -→ A ⊗m of degree n -2, for any ordered partition λ 1 + • • • + λ m = n of n 1 into positive integers, without the trivial partition of 1 , satisfying the following relations.

¡

  induces the cyclic skew symmetry (9) of the structural operations m λ 1 ,...,λ m . The Maurer-Cartan equation (1) satisfied by α , once evaluated on the basis elements ν λ 1 ,...,λ m , produces the homotopy double Poisson relations, after the form of the infinitesimal decomposition map of the Koszul dual coproperad DPois ¡ given in Proposition 1.34. The only extra sign created here comes from the Koszul convention: one has to permute α with the bottom basis element in order to apply it to the top basis element. R 1.36. (1) Since the Koszul dual cooperad Ass ¡ of the operad encoding associative algebras, embeds into the coproperad DPois ¡ , any homotopy double Poisson gebra contains an A ∞ -algebra structure made up of the operations m n , for n 2 . (2) In [Sch09, Definition 4.1], T. Schedler defined the notion of a double Poisson-in nity (al)gebra, which is a dg associative algebra made up of a collection of brackets {-, . . . , -} n : A ⊗n -→ A ⊗n of degree n -2, for all n ∈ N * , satisfying some identities. Such a structure is a special case of homotopy double Poisson gebra, where the operations m λ 1 ,...,λ m = 0 vanish, for every partition with at least one λ i > 1, and under the identification m 1,...,1 {-, . . . , -} n adding extra symmetries. (3) In [Yeu19, Pri20], W. Yeung and J.P. Pridham define the notion of an n-shifted double Poisson

R 2. 4 .

 4 Any cyclic non-symmetric operad induces a structure of a non-symmetric operad on P n P( n+1 ) by forgetting the cyclic group actions. In the other way round, a cyclic non-symmetric operad structure amounts to a non-symmetric operad structure on a cyclic module satisfying the equivariant property (12), see [MSS02, Page 257]. E 2.5. (1) We consider the one-dimensional cyclic module A s( n ) kµ n with trivial C n action and where | µ n | = 0 , for n 3 , and A s( 2 ) = A s( 1 ) = 0 . It forms a cyclic non-symmetric operad once equipped with the following partial composition maps µ n • i µ n µ n+n -2 .

, and 2 i n ,

  

  Lemma 2.26. The assignment (anti-cyclic ns cooperads) op × (shifted) cyclic ns operads → (shifted) anti-cyclic ns operads C, d C , δ i , , P, d P , • i → Hom ( C, P) Hom C( n ), P( n ) n∈N * , ∂, i de nes a functor, where the cyclic groups act by conjugaison, where the di erential is given by

R 2 .

 2 36. On the opposite to what is claimed in [IKV19, Section 2], the operation * does not satisfy any stronger relation, like the pre-Lie relation, in general.

3. 1 .

 1 Moduli spaces. Theorem 2.43 allows us to compare the moduli spaces of curved pre-Calabi-Yau algebras and the moduli spaces of curved homotopy double Poisson gebras. First, the moduli space of pre-Calabi-Yau algebras was introduced by W.-K. Yeung in [Yeu19, Section 3.1].

M

  ¡ ( * ) N and M ( * ) £ N , are the sub-S-bimodules of (I ⊕ M) N and M (I ⊕ N) made up of the linear parts in M and N respectively. For n 1, we consider their following summands M ¡ (n) N and M (n) £ N , made up of one element of M on the bottom (resp. of N at the top) and n elements of N on the top (resp. of M at the bottom). Notice that the top (resp. bottom) level is saturated by elements of N (resp. M) and that the bottom (resp. top) level contains one element of M (resp. N) and possibly many copies of the identity element from I , see Figure 5.

F 5 .

 5 An element of M ¡ (3) N .

¡.

  Theorem 3.9 (Homological invertibility of ∞-quasi-isomorphisms). For any ∞-quasi-isomorphism f : A ∼ B of homotopy double Poisson gebras, there exists an ∞-quasi-isomorphism g : B ∼ A whose rst component induces the homology inverse of the rst component of f .Proof. This is a special case of [HLV20, Theorem 4.18] applied to the Koszul dual coproperad DPois ¡ .

and h 2 = 0 .

 0 Theorem 3.10 (Homotopy Transfer Theorem for homotopy double Poisson gebras). For any contraction of dg vector space A and any homotopy double Poisson gebra structure on A, there exists a homotopy double Poisson gebra structure on H and extensions of the chain maps i and p into ∞-quasi-isomorphisms.

  Theorem 3.13 (Koszul hierarchy). Given a shifted DPois ! -algebra structure on graded vector space A and a di erential d on A, the action of the associated canonical element of the gauge group on the trivial double Poisson gebra structure on (A, d) produces a homotopy double Poisson gebra.Proof. This is a special case of [CV22, Section 3.3] applied to the Koszul dual coproperad DPois ¡ , but let us give it more details. Under the notation sDPois ! for the properad encoding shifted DPois !gebras, a structure of a gebra over it amounts to a morphism of properads Θ : sDPois ! → End A . Identifying the dual treewise stairways basis given in Section 1.4, we get a canonical isomorphism of graded S-bimodules DPois ¡ sDPois ! and thus a canonical element 1 + θ of the gauge group integrating the dg Lie algebra DPois A , where θ : DPois ¡ sDPois ! Θ -→ End A .

F 6 .

 6 Bangle with 7 beads and the corresponding basis element of DLie ¡ .

F 7 .

 7 Elementary coloured cutting and the infinitesimal decomposition of DLie ¡ . Lemma A.2. The terms appearing in the in nitesimal decomposition map of the coproperad DLie ¡ are in one-to-one correspondance with the elementary coloured cuttings of bangles.

  example of the 3-bangle gives the double Jacobi relation.

Proposition A. 5 .

 5 The various terms appearing in the decomposition map of the coproperad DLie ¡ are in one-to-one correspondance with partitioned bangles.Proof. Let us pursue the identification initiated in the above proof of Lemma A.2. To any partitioned bangle, we associate a 2-level connected graph as follows. Any black (respectively white) sector gives a cyclic bottom (respectively top) box with inputs and outputs labeled from left to right according to the bangle and the decomposition of DLie ¡ .

F 9 .

 9 Hairy partitioned bangle and 2-level decomposition of DPois ¡ . Proposition A.7. The various terms appearing in the decomposition map of the coproperad DPois ¡ are in one-to-one correspondance with hairy partitioned bangles.

withA=,,

  (|a 1 |+• • •+|a λ 1 |+λ 1 )(|a λ 1 +1 |+• • •+|a n |+n-λ 1 )+ F +∇(a 1 , . . . , a n )+λ m + n(n + 1) 2 +|b 1 |(|b 2 |+• • •+|b m |) .On the other hand, since the action of the cyclic groups on Hom cDPois ¡ End A is given by conjugation, we haveΥ F • τ m λ 2 ,...,λ m ,λ 1 (sa λ 1 +1 ⊗ • • • ⊗ sa n ⊗ sa 1 ⊗ • • • ⊗ sa λ 1 ) = (-1) B s b 2 ⊗ • • • ⊗ b m ⊗ b 1 , with B = F + ∇(a λ 1 +1 , . . . , a n , a 1 , . . . , a λ 1 ) + λ 1 + n(n + 1) 2 + nλ 1 + λ m + (|a 1 | + • • • + |a λ 1 |)(|a λ 1 +1 | + • • • + |a n |) + |b 1 |(|b 2 | + • • • + |b m |) ,after the symmetry relation (7). Since A ≡ B mod 2, this concludes that part of the proof.Lemmata 1.33 and 1.39 show that Υ : Hom cDPois¡ End A -→ N 1 1 m<N Hom C m λ 1 +•••+λ m =n m j=1

  |a| + n -1) + Ḡ + ∇ a 1 , . . . , a n + λ m + n (n + 1) 2 + b 1 + 1 a λ m +p+2 + • • • + |a n | + q + F + ∇ a 1 , . . . , a λ m +p , b 1 , a λ m +p+2 , . . . , a n + λ m + n(n + 1) 2 , under the convention a a 1 ⊗ • • • ⊗ a λ m +p ⊗ a λ m +p+2 ⊗ • • • ⊗ a n .In plain words, one starts by permuting the elements sa j and sa k in order to have the first ones on the left-hand side of the second ones (first two lines of C). Then, one permutes Υ Ḡ λ 1 ,...,λ m

  Recall from Proposition 1.26 that a structure of a homotopy double Poisson gebra on A corresponds to a twisting morphism α : DPois ¡ → End A , that is a Maurer-Cartan element of the properadic convolution Lie-admissible algebra Let us denote by m λ 1 ,...,λ m α ν λ 1 ,...,λ m the image of the basis elements. Since these later ones have degree n-1 and since a twisting morphism α has degree -1, the operations m λ 1 ,...,λ m have degree n-2 . The cyclic skew symmetry (7) of the basis elements of DPois

	Hom DPois	¡ , End A	Hom S op m ×S n DPois
		n,m 1	

involved in the homotopy double Poisson relations.

Proof.

¡ (m, n), Hom A ⊗n , A ⊗m , ∂, .

  equipped with the di erential of DLie ∞ . Sending the generators of DPois ∞ , which are not present here, to zero, defines a canonical surjection of properads DPois ∞ shDP . It would be interesting to compare this latter one with the deformation Lie algebras studied here. 1.6. Curved homotopy double Poisson gebras. The notion a homotopy double Poisson gebra admits a curved generalisation in a way similar to homotopy associative algebras[START_REF] Fukaya | Lagrangian intersection Floer theory: anomaly and obstruction[END_REF] (that it contains) and homotopy Lie algebras, cf. [DSV22, Chapter 4].

This induces a canonical functor from semi homotopy double Poisson gebras to homotopy double Poisson gebras. Notice that the definition given in loc. cit. of a semi homotopy double Poisson gebra is in terms of a Maurer-Cartan element in a Lie algebra of noncommutative vector fields.

  a twisting morphism. Under the notation m n Θ(α(υ n+1 )), the image of the Maurer-Cartan equation satisfied by α under Θ gives the abovementioned equation (19) of A ∞algebras. The equation (20) comes from the signature representation on A s ¡ ( n ) and the equivariance of the map α. The map Θ is an isomorphism if and only if the symmetric bilinear form , is nondegenerate. In this case, the two algebraic structures are equivalent. More generally, one can consider the anti-cyclic non-symmetric cooperad cA s

	The canonical surjection cA s ¡	A s ¡	¡ of anti-cyclic non-symmetric cooperads induces an embedding of Example 2.15.
	of dg Lie algebras		
	Hom A s

¡ , End V → Hom cA s ¡ , End V .

De nition 2.31 (Cyclic curved A ∞ -algebra). The algebraic structure defined by a twisting morphism in Tw cA s ¡

  ..,λ m : sa 1 ⊗ • • • ⊗ sa n → (-1) | F|+∇(a1,...,an)+λm+ n(n+1) 2 s F ν λ 1 ,...,λ m (a 1 ⊗ • • • ⊗ a n ) ,for F : cDPois ¡ → End A , where ν λ 1 ,...,λ m denotes the basis elements of the coproperad cDPois , . . . ,a n ) (n -1)|a 1 | + (n -2)|a 2 | + • • • + 2|a n-2 | + |a n-1 | .

	¡	, and
	where	
	∇(a 1	
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where the rightmost arrows are given by the usual composition of functions. 

The composite of ∞-morphisms is defined by

Proposition 3.5. Homotopy double Poisson gebras equipped with their ∞-morphisms and the composite form a category.

Proof. This is a direct corollary of the general theory settled in [HLV20, Section 3].

By definition, an ∞-morphism of homotopy double Poisson gebras is a collection of maps

, satisfying the relations given by (25). In order to make these relations and the composite of ∞-morphisms fully explicit, one needs a neat description of the decomposition map of the coproperad DPois ¡ . We refer the reader to Appendix A for all the details.

Proposition 3.7. The invertible ∞-morphisms are the ∞-isomorphisms.

Proof. This is a special case of [HLV20, Theorem 3.22] applied to the Koszul dual coproperad DPois ¡ . R 3.14. We write this section on the level of the convolution algebra cDPois A hh A , but everything holds mutatis mutandis on the level of the curvature necklace Lie-admissible algebra cneck A , when A is not necessarily degree-wise finite dimensional. As a consequence, all the results given here hold on for curved pre-Calabi-Yau algebras.

Let us recall that a graded vector space A is complete when it is equipped with a degree-wise decreasing filtration

of sub-vector spaces such that the associated topology is complete, i.e. A n lim k→∞ A n /F k V n . The category of complete graded vector space is made up of maps which preserve the respective filtrations. Equipped with the complete tensor product ⊗, it forms a symmetric monoidal category, where one can perform properadic calculus, see [DSV22, Chapter 2] for more details. For instance, its complete endomorphism properad is denoted by end A .

On the opposite to the Koszul dual coproperad DPois ¡ which encodes homotopy double Poisson gebras, the partial coproperad cDPois ¡ which encodes curved homotopy double Poisson gebras fails to form a coproperad: one can iterate its infinitesimal decomposition map in order to form two-levels graphs, but the upshot will be made up of infinite series and not finite sums. As a consequence the operations ∆ and ∆ ( * ) are not well-defined on the level of cDPois ¡ . However, the global operations , ¡ and £, defined by the same overall formulas, make sense as soon as one works with complete graded modules A, B, and with elements f satisfying f 0 (1) ∈ F 1 A . 

De nition 3.15 (∞-morphism of complete curved homotopy double Poisson gebras). Let

The composite of ∞-morphisms is defined by g f . Proposition 3.16. Complete curved homotopy double Poisson gebras equipped with their ∞-morphisms and the composite form a category.

Proof. This proof is similar to that of Proposition 3.5 once one checks that all the terms make sense thanks to the completion assumption.

By definition, an ∞-morphism of complete curved homotopy double Poisson gebras is a collection of filtration preserving maps f λ 1 ,...,λ m : A ⊗n -→ B ⊗m of degree n -1, for any ordered partition λ 1 + • • • + λ m = n of any n 0 into non-negative integers, satisfying the relations given by (26). The combinatorics given in Appendix A, considered under the weaker assumption λ 1 , . . . , λ m 0, provide us with explicit descriptions of theses relations and the composite of ∞-morphisms.

We conclude the present study with the twisting procedure, which is a universal way to produce new curved homotopy double Poisson gebras from the data of one element.

Theorem 3.17 (Twisting procedure). Given any complete curved homotopy double Poisson algebra structure m λ 1 ,...,λ m λ 1 ,...,λ m 0 on A and any element a ∈ F 1 A -1 , the sum of all the insertions of a at any possible with

In plain words, the first signs (first three lines of D) come from the application of

, which implies to unshifting all the elements sa j and sa k for instance. As above, one permutes the elements a j and a k in order to have the first ones on the left-hand side of the second ones (forth and fifth lines of D). Then, one computes the corresponding term in F Ḡ : first one decomposes the element ν λ 1 ,...,λ m-1 ,λ 1 +q,λ 2 ,...,λ m -1 , p+λ m in the partial coproperad cDPois ¡ according to Proposition 1.34 (first three terms of the sixth line of D) and then one applies Ḡ to the above element ν λ 1 ,...,λ m , thereby permuting Ḡ with the bottom element ν λ 1 ,...,λ m (last term of the sixth line of D). It remains to permute the map Ḡ ν λ 1 ,...,λ m with the elements a j and to apply it to the elements a k (first term of the seventh line of D). Finally, one permutes the output element b 1 with the last q elements a j (last term of the seventh line of D) and one applies F ν λ 1 ,...,λ m to the elements a j and b 1 , which produces no extra sign.

Notice first that ( 27)

Then we compute the di erence between the ∇ terms appearing in C and in D:

So the di erence, computed modulo 2, of all the terms in C and D of the form a j is equal to (n -1)|a|, which matches with the one present in D . It remains to check the combinatorial terms which do not depend on the degrees of the elements a j and a k : after removing the same terms which obviously appear both in C and in D, we get , F E-mail address: vallette@math.univ-paris13.fr