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Abstract

In this paper, we deal with a Markov chain on a measurable state space (X,X ) which
has a transition kernel P admitting some small-set S ∈ X , that is such that P (x,A) ≥
ν(1A)1S(x) for any x ∈ X, A ∈ X and for some positive measure ν. Under this condition,
we propose a constructive characterisation of the existence of an P -invariant probability
measure π on (X,X ) such that π(1S) > 0. When such an π exists, it is approximated in
weighted or standard total variation norms by a �nite linear combination of non-negative
measures only depending on ν, P and S. Next, using standard drift-type conditions,
we provide geometric/subgeometric convergence bounds of the approximation. Theses
bounds are fully explicit and are as simple as possible. The rates of convergence are
accurate, and they are optimal in the atomic case. Note that the rate of convergence for
approximating the iterates of P by the �nite-rank submarkovian kernels introduced in
[HL20b] is also discussed. This is a new approach for approximating π in the sense that
it is not based on the convergence of the iterates of P to π. Thus we need no aperiodicity
condition. Moreover, the proofs are direct. They use neither the split chain in the non-
atomic case, nor the renewal theory, nor the coupling method, nor the spectral theory.
In some sense, this approach for Markov chains with a small-set is self-contained.

AMS subject classi�cation : 60J05

Keywords : Small set, Invariant probability measure, Finite-rank approximating, Rate of
convergence, Drift conditions

1 Introduction

Throughout the paper P is a Markov kernel on a measurable space (X,X ). Let (Xn)n≥0 be
a Markov chain with state space X and transition kernel P . If (Xn)n≥0 admits an invariant
distribution denoted by π, the following issue is of interest for any A ∈ X :

(Q) How to approximate the value of π(1A) and to control the error?

The standard way is to use, when n is large enough, P(Xn ∈ A) to approximate π(1A). This
approach is supported by all the classical results related to the convergence in distribution
of (Xn)n≥0 to π, or in other words by all the results of convergence of the iterates Pn to
the rank-one operator π(·)1X. Another classical issue is: How to approximate the value of
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P(Xn ∈ A) and to control the error? Of course π(1A) can be used to approximate P(Xn ∈ A)
when n is large enough, but this approximation is e�ective only when π is known. In practice
π is often unknown, in which case (Q) becomes a central issue. Concerning (Q), observe
that π may be approximated by something other than the iterates of P , provided that the
approximation procedure is e�ective and that the error is well controlled.

The main objective of this work is to propose a new approach to address (Q), which is not
directly based on the convergence of Pn to π. Speci�cally, when P has a small-set S and has
an invariant probability measure π such that π(1S) > 0, we present a general and e�ective
procedure for approximating π. The central point here is that all the convergence bounds are
fully explicit and are as simple as possible. The rates of convergence are accurate, and they
are optimal in the atomic case.

Let M+ (resp. M+
∗ ) denote the set of �nite non-negative (resp. positive) measures on

(X,X ). For any µ ∈ M+ and any µ-integrable function f : X→C, µ(f) denotes the integral∫
fdµ. Throughout the paper, the existence of a small-set S for P is assumed, that is

∃S ∈ X , ∃ν ∈ M+
∗ , ∀x ∈ X, ∀A ∈ X , P (x,A) ≥ ν(1A) 1S(x). (S)

Under Assumption (S), we can use the following sequence (βk)k≥1 ∈ (M+)N introduced in
[HL20b] and de�ned by

∀n ≥ 1, βn = ν ◦ (P − T )n−1 with T · := ν(·)1S . (1)

An equivalent de�nition of βn is given in (11) in Section 2. Note that no spectral theory is
used here in contrast to [HL20b]. Under Assumption (S), the following results are obtained.

� In Section 2 (Theorem 2.1), we prove that there exists an P−invariant probability measure
π on (X,X ) such that π(1S) > 0 if, and only if,

+∞∑
k=1

βk(1X) <∞. (2)

Actually, under this condition, set µ :=
∑+∞

k=1 βk ∈ M+
∗ . Then µ(1S) = 1 and

π :=
µ

µ(1X)
(3)

is an P−invariant probability measure on (X,X ) such that π(1S) = 1/µ(1X) > 0.

In the next items Condition (2) is assumed to hold, and for every n ≥ 1 we consider µn ∈ M+
∗

and the probability measure µ̃n on (X,X ) de�ned by:

µn :=

n∑
k=1

βk and µ̃n :=
1

µn(1X)
µn. (4)

The comments below are mainly about the error bounds obtained for the approximation of π
by µ(1X)

−1µn or µ̃n. For the sake of simplicity the following discussion is mainly focused on
the results for the standard total variation norm ∥ · ∥TV (see (21)).
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� In Section 3 (Theorem 3.1), we prove that the invariant distribution π given by Formula (3)
can be approximated in total variation norm by either (µn/µ(1X))n or (µ̃n)n with the
following error estimates

∥π − µ(1X)
−1µn∥TV = µ(1X)

−1 εn ≤ εn and ∥π − µ̃n∥TV ≤ 2µ(1X)
−1 εn ≤ 2 εn (5)

with εn :=
+∞∑

k=n+1

βk(1X).

Note that limn εn = 0 from (2).

� In Section 4, geometric drift conditions are used to obtain geometric rates of convergence
for the above sequence (εn)n≥0. First, under the standard drift condition PV ≤ δ V +L 1S
for some constants δ ∈ (0, 1), L > 0 and some measurable function V : X→[1,+∞)
(e.g. see [MT93, DMPS18]), we establish that θ1 := lim supn[βn(1X)]

1/n < 1 and that:
∀θ ∈ (θ1, 1), εn = O(θn) (see Theorem 4.1 and Remark 4.1). Second, in order to obtain
computable rates of convergence for (εn)n≥1, the following drift condition is introduced

∃δ ∈ (0, 1), PV ≤ δ V + ν(V ) 1S . (6)

Under Condition (6), we prove that εn ≤ (1 − δ)−1ν(V )δn (Theorem 4.2). Condition (6)
holds if S is an atom (Corollary 4.1), but may fail in the non atomic case. In this last
case, assuming that supS PV < ∞ and PV ≤ δ V on Sc := X \ S, it can be shown that
(6) holds with δα0 and V α0 in place of δ and V for some easily computable α0 ∈ (0, 1), so
that the following bound holds (Corollary 4.2)

∀n ≥ 1, εn ≤ ν(V α0)

1− δα0
δα0n. (7)

Note that the assumptions of Corollary 4.2 are general. Indeed, if supS PV <∞, then the
drift condition PV ≤ δ V on Sc := X\S is equivalent to the standard one PV ≤ δ V +L 1S .
Finally some properties involved in the proof of Theorem 4.2 (resp. of Corollary 4.2) are
used in Theorem 4.3 to derive a rate of convergence to 0 for Pn − Tn in V -weighted
operator norm, where Tn is the submarkovian �nite-rank kernel de�ned in (13a). This
rate of convergence enables us to specify the error bound obtained in [HL20b, HL20a] for
the V−geometrical ergodicity of P . Using the triangle inequality, any such error bounds
can be combined with (5)-(7) to approximate Pn(x,A) for any A ∈ X (Theorem 4.4).

� In Section 5 the following subgeometric drift-type conditions using P − T = P − ν(·)1S
are introduced to study the rate of convergence of (εn)n≥1: for m ≥ 1 there exist m + 1
measurable functions Vi : X→[1,+∞), i = 0, . . . ,m, such that

∀i ∈ {0, . . . ,m− 1}, (P − T )Vi ≤ Vi − Vi+1. (8)

Under Condition (8), (εn)n≥1 is proved to satisfy limn n
m−1εn = 0 (Theorem 5.1). The

sequence (βk(Vm))k is investigated in Theorem 5.2 to obtain computable rates of conver-
gence for (εn)n≥1. In particular the following property is stated in Corollary 5.1: if m ≥ 2,
then

∀n ≥ 1, εn ≤ Cm ν(V0)

(m− 1)nm−1
with Cm := 2

m(m+1)
2

−1. (9)
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Next it is shown in Corollary 5.2 that the subgeometric drift conditions (8) are ful�lled
under the more explicit following ones:

∀i ∈ {0, . . . ,m− 1},

{
Vi+1 ≤ Vi

PVi ≤
(
Vi − Vi+1

)
+ ν(Vi) 1S .

(10)

Assumption (10) corresponds to standard subgeometric drift conditions (e.g. see [JR02,
DMPS18]), but using the particular constant ν(Vi) in the second condition. It turns out
that (10) is our target subgeometric drift condition, as is Condition (6) in the geometric
case. Indeed appropriate procedures to return to this condition when starting with more
realistic subgeometric drift conditions can also be provided. Again the atomic case is
simpler since (10) can be applied directly. Indeed, if S is an atom, the �rst condition in
(10) implies the second one. Then, using an iterative procedure based on [JR02, Lem. 3.5],
we prove that, if supS PV <∞ and if P satis�es the condition PV ≤ V − c1 V

α on Sc for
some constants α ∈ [0, 1), c1 > 0, and some measurable function V : X→[1,+∞), then
the bound (9) holds with m := ⌊(1−α)−1⌋, where ⌊·⌋ denotes the integer part function on
R (see Corollary 5.4). In the non atomic case the second condition in (10) may hold with
a constant bi > ν(Vi). However the iterative procedure of the atomic case can be adapted,
provided that PV ≤ V − c1 V

α is replaced by PV̂ ≤ V̂ − ĉ1 V̂
α̂ with V̂ = V η0 for some

explicit η0 ∈ (0, 1]. Then, if η0 ≥ 1 − α and if V , PV are bounded on S, the bound (9)
holds with m := ⌊η0(1− α)−1⌋ (see Corollary 5.5). Hence the conditions of Corollary 5.5
are general, but the initial subgeometric drift condition needs to be adjusted with suitable
powers. Finally in Theorem 5.3 the rate of convergence for Pn−Tn with Tn given in (13a)
is speci�ed under the subgeometric drift conditions (8).

� In Section 6, we illustrate our results on standard examples of Markov chains. The nu-
merical �ndings support the idea that the quality of the bounds in (5) is good, and in
particular that the use of α0 ∈ (0, 1) in the bound (7) is relevant even when α0 is small.

� The above error bounds actually hold in W−weighted total variation norm (see (21)) for
suitable functions W ≥ 1, namely for any W ≥ 1 such that µ(W ) < ∞ in Section 3, for
W = V α0 in Section 4, and �nally for W = Vj in Section 5.

We recall that this work is not directly based on the convergence in distribution of the
Markov chain (Xn)n≥0. In particular no aperiodicity condition is introduced. We use neither
renewal theory, nor coupling method, nor spectral theory. Actually our main statements are
concerned with the rate of convergence in (5), in which the positive measure µn and the
probability measure µ̃n can be written as a linear combination of the non-negative measures
ν, ν ◦ P, . . . , ν ◦ Pn−1 with explicit coe�cients only depending on ν, P and S (see (4) and
(11)). Therefore, precise qualitative or quantitative comparisons with the classical works
recalled below are di�cult to address.

The basic fact is that our assumptions are quite close to usual ones. Indeed, the central
assumption (S) is the existence of a small-set S. But we do not introduce the strong ape-
riodicity condition ν(1S) > 0 in order to get a minorization condition as in [MT09, p 98]
or in [DMPS18, Chap. 11]. Here no use of the split chain is needed for proving our results
in the non-atomic case. Next, Condition (2) is proved to be equivalent to

∑+∞
k=1 βk(1S) = 1

and
∑+∞

k=1 k βk(1S) < ∞ in Theorem 2.1. When S is an atom, this last condition is nothing
else but the usual condition of �nite expectation of the �rst return time in S, see (20). For-
mula (3), which has been obtained in the V -geometric ergodicity context [HL20b], extends a
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well-known formula when P satis�es the Doeblin condition (X is a small-set), see [LC14], or
when P is irreducible and recurrent positive according to [Num84, p 74]. Next, the use of ge-
ometric or subgeometric drift conditions is standard for investigating the rate of convergence
of the iterates Pn of the transition kernel P to π. The error term is usually computed in some
weighted operator norm. Under irreducibility and aperiodicity conditions, if P satis�es As-
sumption (S) and the geometric drift condition PV ≤ δ V +L 1S for some constants δ ∈ (0, 1),
L > 0, and some measurable function V : X→[1,+∞), then P is V -geometrically ergodic,
e.g. see [MT93, RR04, Bax05, MT09, DMPS18] (see also [Hen06, Hen07, HM11, Del17, HL20b]
for alternative approaches). Moreover the previous drift condition has been proved to be use-
ful to derive computable rates of convergence in the V -geometric ergodicity property, e.g. see
[MT94, LT96, RT99, RT00, Ros02, Bax05]. However recall that deriving e�ective and accurate
bounds in the V -geometric ergodicity property is a di�cult issue. Similarly non-geometric (for
instance polynomial) rates of convergence can be derived under subgeometric drift conditions,
see [DMPS18, and the references therein] and [Del17] for an operator-type approach. Various
subgeometric drift conditions can be found in [DFMS04, DMPS18] and quantitative bounds
of polynomial rates for the convergence of Pn to π are obtained in [AF05, AFV15].

The estimates in (5) do not give direct information on the convergence of the iterates of P to
π, but they do provide an approximation of π(1A) for all A ∈ X . The error bounds obtained in
both geometrical case (Section 4) and subgeometrical case (Section 5) are simple and explicit.
Note that µn, thus µ̃n, are computable whenever the iterates of P are available. The proofs in
this paper can be thought of as self-contained. It appears that the initial idea of approximating
π by µn or µ̃n rather than with the iterates of P simpli�es the error computations. Moreover,
introducing from the minorization measure ν the ideal drift conditions (6) or (10), and then
adjusting with a power to get back to them when starting from general drift conditions, seems
to be a new and e�cient idea to �nd explicit error bounds.

Note that this new approach might also be used as an alternative theoretical tool in prob-
lems usually involving the iterates of Markov kernels. For example, if Pθ is a perturbed Markov
kernel of Pθ0 , then the quantities πθ − µ̃n,θ de�ned from Pθ can be used as intermediate error
terms to control πθ − πθ0 , where πθ (resp. πθ0) is the invariant probability measure for Pθ

(resp. Pθ0). Note that only the error bounds for πθ− µ̃n,θ are useful in this perturbation issue:
neither µ̃n,θ nor µ̃n,θ0 need to be computed. The resulting error bounds for πθ − πθ0 will be
more accurate than those obtained with the intermediate term πθ − Pn

θ , simply because the
error bounds for πθ − µ̃n,θ are better.

2 Existence of π under Assumption (S)

We denote by B the space of real-valued bounded measurable functions on (X,X ), equipped
with its usual supremum norm: ∀f ∈ B, ∥f∥ := supx∈X |f(x)|. If Q1 and Q2 are bounded
linear operators on B, we write Q1 ≤ Q2 when the following property holds: ∀f ∈ B, f ≥
0, Q1f ≤ Q2f .

Let P be a Markov kernel satisfying Condition (S). Note that P is a bounded linear
operator on B since P is a Markov kernel, and that f 7→ ν(f) is a continuous linear form on
B, with ν ∈ M+

∗ given in (S). Let us introduce the following continuous linear forms on B

∀f ∈ B : β1(f) := ν(f) and ∀n ≥ 2, βn(f) := ν
(
Pn−1f

)
−

n−1∑
k=1

ν
(
Pn−k−11S

)
βk(f). (11)
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Moreover let T be the rank-one operator on B de�ned by :

∀f ∈ B, T f := ν(f) 1S = β1(f) 1S . (12)

It follows from the positivity of ν and from (S) that 0 ≤ T ≤ P . Some basic facts proved in
[HL20b] are collected in the following proposition. A proof is postponed in Annex A for the
convenience of the reader.

Proposition 2.1 Assume that P satis�es Condition (S). Set T0 := 0 and Tn := Pn−(P−T )n
for any n ≥ 1. Then

∀n ≥ 1, 0 ≤ Tn ≤ Pn and Tn =
n∑

k=1

βk(·)Pn−k1S (13a)

Tn − Tn−1P = (Pn−1 − Tn−1)T. (13b)

Moreover, for every n ≥ 1, βn ∈ M+, that is: there exists a non-negative measure on (X,X )
(still denoted by βn) such that

∫
X dβn <∞ and, such that, for every f ∈ B, we have βn(f) =∫

X f dβn. Finally we have

∀n ≥ 1, βn = ν ◦ (Pn−1 − Tn−1

)
= ν ◦ (P − T )n−1 and βn+1 = βn ◦ (P − T ) (14)

with the convention that P 0 and (P − T )0 stand for the identity map on B.

The de�nition (1) of βn given in Introduction is equivalent to the above de�nition (11)
from (14). Now we can prove the main theorem of this section.

Theorem 2.1 Assume that P satis�es Condition (S). Then the four following assertions are
equivalent.

(i) There exists a P−invariant probability measure π on (X,X ) such that π(1S) > 0.

(ii)
+∞∑
k=1

βk(1X) <∞.

(iii)
+∞∑
k=1

βk(1S) = 1 and
+∞∑
k=1

k βk(1S) <∞.

(iv) lim
n→+∞

βk(1X) = 0 and
+∞∑
k=1

k βk(1S) <∞.

Moreover, under any of these four conditions, we have

+∞∑
k=1

k βk(1S) =
1

ν(1X)

+∞∑
k=1

βk(1X) (15)

and

π :=
1∑+∞

k=1 βk(1X)

+∞∑
k=1

βk (16)

is an P−invariant probability measure on (X,X ) such that

π(1S) =
1∑+∞

k=1 βk(1X)
> 0. (17)

6



Proof. Assume that Assertion (i) holds. We deduce from (13a) that

0 ≤ π
(
(Pn − Tn)1X

)
= 1− π(Tn1X) = 1− π(1S)

n∑
k=1

βk(1X),

from which it follows that
∑+∞

k=1 βk(1X) ≤ 1/π(1S) <∞ since π(1S) > 0 by hypothesis. This
gives Property (ii). Conversely assume that Assertion (ii) holds. Then

µ :=

+∞∑
k=1

βk ∈ M+
∗

since µ(1X) ≥ β1(1X) = ν(1X) > 0. Also note that, for every f ∈ B, the series
∑+∞

k=1 βk(f)
absolutely converges in C since |βk(f)| ≤ ∥f∥βk(1X). We obtain that, for every f ∈ B,

µ(Pf) =

+∞∑
k=1

ν
(
P kf − Tk−1Pf

)
(from (14))

=

+∞∑
k=1

ν
(
P kf − Tkf

)
+

+∞∑
k=1

ν
(
P k−1Tf − Tk−1Tf

)
(from (13b))

= µ(f)− ν(f) + µ(Tf) (from (14) and β1(f) = ν(f))

= µ(f)− ν(f) + µ(1S) ν(f) (from the de�nition of T )

= µ(f)− ν(f)
(
1− µ(1S)

)
.

Note that the second equality holds since both series in the right-hand side are equal to∑+∞
k=1 βk+1(f) and

∑+∞
k=1 βk(Tf)f respectively, which are absolutely convergent. With f :=

1X the previous equality gives µ(1S) = 1 since P1X = 1X and ν(1X) > 0. Thus µ is an
P−invariant non-negative measure such that µ(1X) > 0 and µ(1S) = 1, so that π := µ/µ(1X)
is an P−invariant probability measure on (X,X ) such that π(1S) = 1/µ(1X) > 0. We have
proved that Assertions (i) and (ii) are equivalent, and that Equality (17) is valid under any
of these two assertions.

Next we obtain from (14) and the de�nition of T

∀k ≥ 1, βk+1(1X) = βk ◦ (P − T )(1X) = βk(1X)− ν(1X)βk(1S). (18)

Set bk := βk(1X) and ck := ν(1X)βk(1S) for any k ≥ 1. Note that bk, ck ≥ 0 and that (bk)k≥1

is decreasing. We have ck = bk − bk+1 from (18) so that

n∑
k=1

k ck =

n∑
k=1

(
bk − bn+1

)
=

+∞∑
k=1

ϕ(n)(k) with ϕ(n)(k) :=
(
bk − bn+1

)
1[1,n](k).

Note that 0 ≤ ϕ(n) ≤ ϕ(n+1). Moreover, if limn bn = 0, then we have ∀k ≥ 1, limn ϕ
(n)(k) = bk

and the following equalities hold in [0,+∞]

+∞∑
k=1

k ck = lim
n→+∞

n∑
k=1

k ck = lim
n→+∞

+∞∑
k=1

ϕ(n)(k) =
+∞∑
k=1

bk

7



from the monotone convergence theorem with respect to the counting measure. This proves
the equivalence of Assertions (ii) and (iv), and Equality (15). Equivalence of Assertions (iii)
and (iv) follows from

∀n ≥ 1,
n−1∑
k=1

ck =
n−1∑
k=1

(
bk − bk+1

)
= ν(1X)− bn (19)

due to β1(1X) = ν(1X).

□

Recall that a set S ∈ X is said to be an atom for P if: ∀(a, a′) ∈ S2, P (a, ·) = P (a′, ·).
Then Condition (S) holds for ν(·) := P (a0, ·) with some (any) a0 ∈ S. In the atomic case,
Assertions (ii) or (iii) of Theorem 2.1 correspond to the well-known conditions involving the
�rst return time in an atom. More precisely, let us assume that S is an atom for P and de�ne
RS as the �rst return time in S:

RS := inf{n ≥ 1 : Xn ∈ S}.

Then, we have

∀n ≥ 1, βn(1S) = Pa0

(
RS = n

)
and βn(1X) = Pa0

(
RS ≥ n

)
(20)

with βn(·) de�ned from S and ν(·) := P (a0, ·) with some a0 ∈ S. Hence Assertion (ii) of
Theorem 2.1 rewrites as

∑
k=1 P(RS ≥ k) <∞ and Assertion (iii) as Pa0(RS <∞) = 1, and∑+∞

k=1 k P(RS = k) < ∞. Both assertions read as the usual moment condition of the return
time in S : Ea0 [RS ] <∞.

3 Approximation of π in total variation norms

If W : X→[1,+∞) is a measurable function, then the W -weighted total variation norm
∥λ1 − λ2∥W for any (λ1, λ2) ∈ (M+)2 is de�ned by

∥λ1 − λ2∥W := sup
|f |≤W

∣∣λ1(f)− λ2(f)
∣∣. (21)

If W := 1X, then ∥λ1 − λ2∥1X = ∥λ1 − λ2∥TV is the standard total variation norm. If λ1 and
λ2 are probability measures on (X,X ), then ∥λ1 − λ2∥TV corresponds to their standard total
variation distance.

Under Assumption (S) recall that, if
∑+∞

k=1 βk(1X) < ∞ (equivalently if one of the three
Assertions (i), (iii) or (iv) of Theorem 2.1 holds), then we denote by µ :=

∑+∞
k=1 βk the

P−invariant positive measure given in Theorem 2.1. For every n ≥ 1 let us de�ne on (X,X )
the following �nite positive measure µn and probability measure µ̃n:

∀n ≥ 1, µn :=

n∑
k=1

βk and µ̃n :=
1

µn(1X)
µn.

8



Theorem 3.1 Assume that P satis�es Condition (S) and that for some measurable function
W ≥ 1X we have µ(W ) <∞ (thus µ(1X) <∞). Let π := µ/µ(1X). Then

∀n ≥ 1, ∥π − µ(1X)
−1µn∥W = µ(1X)

−1 εn,W ≤ εn,W (22a)

∀n ≥ 1, ∥π − µ̃n∥W ≤ µ(1X)
−1

(
εn,W + µn(W )µn(1X)

−1 εn
)

(22b)

with ∀n ≥ 1, εn,W :=
+∞∑

k=n+1

βk(W ) and εn := εn,1X =
+∞∑

k=n+1

βk(1X). (23)

Such an estimate on ∥π − µ̃n∥W allows us to quantify the quality of the approximation by
(µ̃n(f))n≥1 of π(f) when f is some unbounded function such that |f | ≤ W . Note that
under the assumptions of Theorem 3.1, since µ(1X) ≤ µ(W ) < ∞, we can always use Esti-
mates (22a)-(22b) for W := 1X to get the following bound for the standard total variation
norm

∀n ≥ 1, ∥π − µ̃n∥TV ≤ 2µ(1X)
−1 εn ≤ 2 εn. (24)

Proof. We have

∥π − µn/µ(1X)∥W = (µ− µn)(W )/µ(1X) = εn,W /µ(1X)

since π = µ/µ(1X) and µ− µn ∈ M+, so that ∥µ− µn∥W = (µ− µn)(W ) = εn,W from (23).
The last inequality in (22a) follows from µ(1X) ≥ µ(1S) = 1 (see Theorem 2.2-(iii)). To prove
(22b) consider any measurable function f : X→R such that |f | ≤W . Then

∣∣π(f)− µ̃n(f)
∣∣ = ∣∣∣∣π(f)− µn(f)

µn(1X)

∣∣∣∣
≤

∣∣∣∣π(f)− µn(f)

µ(1X)

∣∣∣∣+ |µn(f)| ×
∣∣∣∣ 1

µ(1X)
− 1

µn(1X)

∣∣∣∣
≤

εn,W
µ(1X)

+ µn(W )

∣∣∣∣µn(1X)− µ(1X)

µ(1X)µn(1X)

∣∣∣∣
by using the triangle inequality, (22a) and |µn(f)| ≤ µn(W ), and �nally |µn(1X) − µ(1X)| =
(µ− µn)(1X) = εn from (23). □

Remark 3.1 Under the assumptions of Theorem 3.1, alternative bounds to (22a)-(22b) can
be proposed according to the needs.

� From (17) the constant µ(1X)
−1 in (22a)-(22b) is equal to π(1S) which is less than 1. But

this cannot be used here since π is supposed to be unknown.

� We have
∀n ≥ 1, ∥π − µ̃n∥W ≤ ν(1X)

−1
(
εn,W + µ(W ) ν(1X)

−1 εn
)

(25)

which follows from µn(W ) ≤ µ(W ) and from µ(1X) ≥ µn(1X) ≥ β1(1X) = ν(1X). In
atomic case we have ν(1X) = 1, so that

∀n ≥ 1, ∥π − µ̃n∥W ≤ εn,W + µ(W ) εn (atomic case). (26)
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� In the non-atomic case ν(1X) is small in general, in which case Estimate (25) can be
replaced with the following one. Set n∗ := min

{
ℓ ≥ 1 : εℓ ≤ 1/2

}
. Then

∀n ≥ n∗, ∥π − µ̃n∥W ≤ µ(1X)
−1

(
εn,W + 2µ(W )µ(1X)

−1 εn
)
≤ εn,W + 2µ(W ) εn. (27)

Note that the last bound in (27) is that of the atomic case in (26), up to the factor 2 in
the second term, and that a priori (27) only holds for n ≥ n∗ in the non-atomic case. If
n∗ is replaced with n∗η := min

{
ℓ ≥ 1 : εℓ ≤ η

}
for η ∈ (0, 1/2), then the factor 2 in (27) is

replaced with a factor close to one when η→ 0, but it is worth noticing that n∗(η) is larger
and larger when η→ 0. To prove (27), �rst note that n∗ is well-de�ned since limn εn = 0,
and that

∀n ≥ n∗, µn(1X) ≥ µ(1X)− 1/2 ≥ µ(1X)/2

from the de�nition of εn and n∗, and from µ(1X) ≥ µ(1S) = 1 (see Theorem 2.2-(iii)).
Thus the �rst inequality in (27) follows from (22b). The second one follows from µ(1X) ≥ 1.

Note that the constants associated with εn,W and εn in (25) and (27) do not depend on n.

Remark 3.2 If P satis�es Condition (S) for S := X, then P is uniformly ergodic, and
we have supx∈X ∥Pn(x, ·) − π∥TV ≤ (1 − ν(1X))

n, e.g. see [RR04]. In this case, note that
we have εn = (1 − ν(1X))

n in (24) since an easy induction provides: ∀k ≥ 1, βk(1X) =
ν(1X) (1− ν(1X))

k−1.

It is clear from Estimates (22a)-(22b) or (24) and from De�nition (23) of εn,W and εn
that the rate of convergence to 0 of ∥π − µ̃n∥W can be derived from good estimates of the
convergence of the sequences (βn(W ))n≥1 and (βn(1X))n≥1. This is the main objective of
Sections 4-5 where appropriate drift conditions are introduced in order to obtain geometric
or subgeometric convergence to 0 of (βn(W ))n≥1 and (βn(1X))n≥1 and so of (εn,W )n≥1 and
(εn)n≥1.

4 Explicit bound under geometric drift conditions

Throughout the Sections 4 and 5, any measurable function V : X→[1,+∞) will be called a
Lyapunov function. For the sake of simplicity, any Lyapunov function V in this section is
assumed to satisfy: ∀x ∈ X, (PV )(x) <∞. Hence, under Assumption (S), we have

ν(V ) <∞.

Recall that we have set µ :=
∑+∞

k=1 βk under Assumption (S). The following theoretical
statement is derived from Theorem 3.1 and [HL20b, Th. 3.1].

Theorem 4.1 ([HL20b]) Assume that P satis�es Condition (S). Moreover assume that

∃δ ∈ (0, 1), ∃L > 0, PV ≤ δ V + L 1S (D)

with respect to some Lyapunov function V . Then we have

θV := lim sup
n

[βn(V )]
1
n < 1,
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that is, for every θ ∈ (θV , 1) there exists a positive constant Cθ such that

∀n ≥ 1, βn(1X) ≤ βn(V ) ≤ Cθ θ
n. (28)

Moreover we have

µ(1X) ≤ µ(V ) ≤ max
(
Cθ θ/(1− θ) , L/(1− δ)

)
<∞.

Finally Estimates (22a)-(22b) hold with W := V and

εn ≤ εn,V ≤ Cθ

1− θ
θn+1. (29)

Proof. Under Assumptions (S) and (D), we know from [HL20b, Th. 3.1] that θV < 1. This
gives (28). Then it follows from (28) that µ(V ) ≤ Cθ θ/(1 − θ) < ∞. Moreover we deduce
from (D) and from the P−invariance of µ that µ(V ) ≤ δµ(V ) + L since µ(1S) = 1, hence
µ(V ) ≤ L/(1− δ). Finally (29) follows from (23) and (28).

□

Remark 4.1 From θV < 1 we deduce that

θ1 := lim sup
n

[βn(1X)]
1
n ≤ θV < 1

since 1X ≤ V and βn ∈ M+. If θ1 < θV , then we obtain a more accurate bound for εn, that
is: for every θ ∈ (θ1, 1), εn ≤ Dθθ

n+1/(1− θ) for some positive constant Dθ. Actually we do
not know if the inequality θ1 < θV is true (nor if it holds for some instances).

As mentioned in [HL20b, Rem. 5.4], the real number lim supn[βn(V )]1/n may be strictly
less than the so-called spectral gap related to the V -geometric ergodicity of P . In this case
the rate of convergence in (29) is better than that given by the V -geometric ergodicity, see
Subsection 6.1.1. Recall that �nding explicit rate and bound in the V -geometric ergodicity
property are di�cult issues. Similarly, �nding explicit bounds for θV and for the constant
Cθ in (29) are di�cult a priori, because the inequality lim supn[βn(V )]1/n < 1 is obtained in
[HL20b, Th. 3.1] thanks to spectral arguments.

Below various statements specify the explicit control of the error term εn in (22a)-(22b)
under Assumption (S) and the following drift condition:

∃δ ∈ (0, 1), ∀x ∈ Sc, (PV )(x) ≤ δ V (x). (DSc)

Note that Condition (DSc) is equivalent to (D) when PV is bounded on S.

Theorem 4.2 Assume that P satis�es Condition (S) for some S ∈ X and ν ∈ M+
∗ . More-

over assume that there exists a Lyapunov function V such that P satis�es (DSc) and the
following condition on S

∀x ∈ S, (PV )(x) ≤ δ V (x) + ν(V ). (DS)

Then
∀n ≥ 1, βn(1X) ≤ βn(V ) ≤ ν(V ) δn−1. (30)
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Moreover we have

µ(1X) ≤ µ(V ) ≤ ν(V )

1− δ
<∞. (31)

Finally Estimates (22a)-(22b) hold with W := V and

∀n ≥ 1, εn ≤ εn,V ≤ ν(V )

1− δ
δn. (32)

Note that Conditions (DSc)-(DS) rewrite in a single inequality as

PV ≤ δ V + ν(V )1S .

However, in view of the proof below and of the next Corollary 4.2, it is convenient to separate
the condition on Sc and that on S.

Proof. Recall that T = ν(·)1S . Then

(P − T )V = 1Sc

(
PV − ν(V )1S

)
+ 1S

(
PV − ν(V )1S

)
= 1Sc PV + 1S

(
PV − ν(V )1S

)
≤ δ V 1Sc + 1S

(
PV − ν(V )1S

)
= δ V + 1S

(
PV − δ V − ν(V )1S

)
≤ δ V

from (DSc) and (DS). Using P − T ≥ 0 and iterating the previous inequality gives

0 ≤ (P − T )nV ≤ δn V. (33)

Next, it follows from (14) that

∀n ≥ 1, βn(V ) = ν
(
(P − T )n−1V

)
≤ ν(V ) δn−1.

This gives (30) and (31) due to 1X ≤ V and to the positivity of βn and µ. Finally (32) follows
from the de�nition of εn and εn,V in (23) and from (30). □

Remark 4.2 As in the Theorem 4.1 (see Remark 4.1), it is worth noticing that the computable
geometric bound (32) is the same for (εn)n≥1 and (εn,V )n≥1. However the constants di�er
according that we deal with the error bound (24) in total variation distance or with the error
bound (22b) in V−weighted total variation distance. Anyway note that (31) gives a computable
bound of µ(V ) which is useful in (22b) (applied here to W := V ).

If Condition (S) holds for an atom S and for ν(·) := P (a0, ·) with some (any) a0 ∈ S, then
Condition (DS) is ful�lled since

∀x ∈ S, PV (x)− δ V (x)− ν(V ) = −δ V (x) ≤ 0.

Consequently we obtain the following corollary of Theorem 4.2.

Corollary 4.1 (Atomic case) Assume that P satis�es Condition (S) with an atom S and
with ν(·) de�ned by ν(·) := P (a0, ·) with some (any) a0 ∈ S. Moreover assume that there exists
a Lyapunov function V such that P satis�es the drift condition (DSc). Then Estimates (22a)-
(22b) hold with W := V and with (εn)n≥1 and (εn,V )n≥1 satisfying (32) (recall that (26) is
an alternative bound to (22b) in the atomic case).
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Remark 4.3 In the atomic case, the bound βn(1X) ≤ ν(V ) δn−1 (see (30)) may be derived
from well-known results under Assumption (DSc). Indeed we know from (20) that βn(1X) =
Pa0

(
RS ≥ n

)
, where RS is the �rst return time in S. Moreover (DSc) gives

PV ≤ δ V + (c− δϑ) 1S with c := ν(V ) and ϑ := inf
x∈S

V (x).

Then we deduce from [DMPS18, Prop.4.3.3(ii)] that

∀x ∈ X, Ex

[
δ−RS

]
≤ V (x) + (c− δϑ) δ−1. (34)

hence
Ea0

[
δ−RS

]
≤ ϑ+ (c− δϑ)δ−1 = c δ−1.

The same estimate as in (30) is obtained using Markov's inequality

βn(1X) = Pa0

(
RS ≥ n

)
= Pa0

(
δ−RS ≥ δ−n

)
≤ c δn−1.

According to the previous discussion on the atomic case, the bound βn(1X) ≤ ν(V ) δn−1

obtained in (30), and consequently the resulting bound (32) for εn, are not only simple and
explicit but also optimal. Although Condition (DS) is automatically satis�ed in the atomic
case and may hold in the non atomic case too, this condition is nevertheless restrictive. In the
next corollary, the function V is replaced with V α0 for some suitable α0 ∈ (0, 1] in Condition
(DS) and Condition (DSc) is preserved. The price to be paid is that the geometrical bound
(32) for εn will hold with δα0n in place of the expected rate δn. But the bene�t will be that
the bound for εn is still simple and explicit.

Let V be a Lyapunov function such that PV is bounded on S. Then

∃α0 ∈ (0, 1], ∀x ∈ S, (PV α0)(x) ≤ δα0 V (x)α0 + ν(V α0). (35)

Indeed, set MS := supS PV . Then, for every α ∈ (0, 1], we have 1 ≤ supS PV
α ≤ MS

α from
1X ≤ V α and PV α ≤ (PV )α using Jensen's inequality. Moreover

∀x ∈ S, (PV α)(x)− δα V (x)α − ν(V α) ≤MS
α − δα − ν(1X)

from 1X ≤ V . Passing to the limit when α→ 0 gives (35) since ν(1X) > 0.

Corollary 4.2 Assume that P satis�es Condition (S) and that there exists a Lyapunov func-
tion V such that P satis�es Condition (DSc) and PV is bounded on S (so that the usual drift
condition (D) holds). Let α0 ∈ (0, 1] provided by Property (35). Then

∀n ≥ 1, βn(1X) ≤ βn(V
α0) ≤ ν(V α0) δα0(n−1). (36)

Moreover we have

µ(1X) ≤ µ(V α0) ≤ ν(V α0)

1− δα0
<∞. (37)

Finally Estimates (22a)-(22b) hold with W := V α0 and

∀n ≥ 1, εn ≤ εn,V α0 ≤ ν(V α0)

1− δα0
δα0n. (38)
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Proof. We have
∀x ∈ Sc, (PV α0)(x) ≤ δα0 V (x)α0 (39)

from PV α0 ≤ (PV )α0 (Jensen's inequality) and from (DSc). Moreover (35) holds. Then
Corollary 4.2 follows from Theorem 4.2 applied to V α0 and δα0 in place of V and δ. □

Recall that Inequality (35) holds with α0 = 1 in the atomic case (see Corollary 4.1). In-
equality (35) may be also ful�lled with α0 = 1 in the non atomic case (e.g. see Subsection 6.1.2
and Table 1 in Subsection 6.3). If α0 = 1 does not work, the following statement is useful to
�nd α0 ∈ (0, 1) in (35).

Proposition 4.1 Assume that P satis�es Condition (S) and that S is not an atom. Let
σ := 1− ν(1X). Then we have for any Lyapunov function V :

∀α ∈ (0, 1], ∀x ∈ S, (PV α)(x)− ν(V α) ≤ σ

σα
[
(PV )(x)− ν(V )

]α
. (40)

Proof. Let x ∈ S. Note that σx(·) := P (x, ·) − ν(·) is a non-negative measure on (X,X )
from Assumption (S), and that σx(1X) = 1 − ν(1X) does not depend on x. The case σ = 0
corresponds to the atomic case. Here we assume that σ > 0. De�ne the following probability
measure on (X,X ): σ̃x(·) = σx(·)/σ. Let α ∈ (0, 1]. It follows from Jensen's inequality that

(PV α)(x)− ν(V α)

σ
= σ̃x(V

α) ≤
[
σ̃x(V )

]α
=

[
(PV )(x)− ν(V )

]α
σα

,

from which we deduce (40). □

The previous statements only concern the approximation of the stationary distribution
π. To conclude this section recall that, in [HL20b, Cor. 2.3], the V -weighted operator norm
of Pn − Tn with Tn given in (13a) is proved to converge to zero with a geometric rate of
convergence under Assumptions (S) and (D). Using Inequality (33), we specify this rate of
convergence under the assumptions of Theorem 4.2 or Corollary 4.2.

Theorem 4.3 Assume that P satis�es the assumptions of Theorem 4.2. Then

sup
|f |≤V

sup
x∈X

∣∣(Pnf)(x)− (Tnf)(x)
∣∣

V (x)
≤ δn with Tnf =

n∑
k=1

βk(f)P
n−k1S (41)

where the functions f are assumed to be real-valued and measurable on (X,X ). Similarly, if
P satis�es the assumptions of Corollary 4.2, then Inequality (41) holds with V α0 and δα0 in
place of V and δ.

Proof. If P satis�es the assumptions of Theorem 4.2, then it follows from (33) that for every
measurable function f : X→R such that |f | ≤ V

|Pnf − Tnf | = |(P − T )nf | ≤ (P − T )n|f | ≤ (P − T )nV ≤ δn V, (42)

from which we deduce (41). Under the assumptions of Corollary 4.2, we know that Theo-
rem 4.2 applies with V α0 and δα0 in place of V and δ, so that (42) holds with V α0 and δα0 in
place of V and δ too.

□
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Given any A ∈ X , the error bound (24) combined with any bound on |Pn(x,A) − π(1A)|
can be used to approximate Pn(x,A). This is illustrated in the next theorem. If P satis�es the
assumptions of Theorem 4.2 and the strong aperiodicity condition ν(1S) > 0, then the bound
(41) can be used to obtain a rate of convergence in the V -geometrical ergodicity property,
which simply depends on δ ∈ (0, 1) in (DS) and on the real number

ϱS := lim sup
n→+∞

(
sup
x∈X

∣∣(Pn1S)(x)− π(1S)
∣∣

V (x)

) 1
n

introduced in [HL20b]. More precisely we know from [HL20b] that ϱS < 1. In Theorem 4.4
below we consider any ϱ ∈ (ϱS , 1) and we de�ne

α := max(δ, ϱ) and Dϱ := sup
n≥0

ϱ−n sup
x∈X

∣∣(Pn1S)(x)− π(1S)
∣∣

V (x)
<∞.

Theorem 4.4 Assume that P satis�es the assumptions of Theorem 4.2 and that ν(1S) > 0.
Then we have

sup
|f |≤V

sup
x∈X

∣∣(Pnf)(x)− π(f)
∣∣

V (x)
≤ ν(V ) + 1− δ

1− δ
δn +

ν(V )Dϱ

δ
nαn. (43)

Moreover, setting c := 2µ(1X)
−1 ≤ 2, the following inequality holds for every n ≥ 1 and for

every A ∈ X :∣∣∣∣Pn(x,A)− µn(1A)

µn(1X)

∣∣∣∣ ≤ (
(1 + c)ν(V ) + 1− δ

1− δ
δn +

ν(V )Dϱ

δ
nαn

)
V (x). (44)

Similarly, if P satis�es the assumptions of Corollary 4.2 and if ν(1S) > 0, then the bounds
(43) and (44) hold with V α0 and δα0 in place of V and δ (the function V must be replaced by
V α0 in the de�nitions of ϱS and Dϱ).

Proof. Property (43) can be easily obtained by using the bound (41) in the proof of [HL20b,
Th. 5.3]. Then Inequality (44) follows from (43), (24) and (32) using V ≥ 1X and the triangle
inequality. □

Similar inequality to (44) can be obtained with µn(1A)/µ(1X) from (22a) with W := 1X. Of
course any bound known for |Pn(x,A)− π(1A)| combined with (22a) (with W := 1X) or (24)
can be used to obtain an approximate value of Pn(x,A).

Remark 4.4 Let r be the spectral radius of the operator P −T on the V−weighted supremum
space (BV , ∥ · ∥V ) composed of the complex-valued measurable functions f : X→C such that
∥f∥V := supX |f |/V <∞. Then (41) gives r ≤ δ. Consequently the proofs of [HL20b, Th. 5.3]
and [HL20a, Th. A.1] can be easily adapted to obtain the following alternative:

� either ϱS ≤ δ

� or ϱS = θ−1 with θ := min
{
|z| : z ∈ C, 1 < |z| < 1/δ, B1X(z) = 0

}
, where B1X is the

power series de�ned by B1X(z) :=
∑+∞

k=1 βk(1X) z
k.
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This alternative is due to the following fact: if λ ∈ C is such that δ < |λ| ≤ 1, then λ is
an eigenvalue of P on BV if, and only if, B1X(λ

−1) = 0 (see [HL20a, Prop. A.2]). We can
observe that the bound (32) in Theorem 4.2 or Corollary 4.1 does not take into account the
possible eigenvalues λ of P such that δ < |λ| < 1. However note that the bound (43), thus (44),
depends on the real number ϱS. If P admits eigenvalues in the annulus {z ∈ C : δ < |z| < 1},
then we have ϱS = θ−1 which is strictly greater than δ. Such atomic instances occur, see
Subsection 6.1.1.

5 Explicit bounds under subgeometric drift conditions

For the sake of simplicity, any Lyapunov function V in this section is assumed to satisfy:
∀x ∈ X, (PV )(x) <∞.

5.1 Theoretical results

Let P be a Markov kernel on (X,X ) satisfying Condition (S). Let T (·) := ν(·)1S . For any
integer m ≥ 1, let us introduce the following condition: there exists a collection {Vi}mi=0 of
Lyapunov functions such that

∀i ∈ {0, . . . ,m− 1}, (P − T )Vi ≤ Vi − Vi+1. (45)

Note that the properties (45) and P − T ≥ 0 from (S) give

Vm ≤ Vm−1 ≤ · · · ≤ V1 ≤ V0.

Since (PV0)(·) <∞ by hypothesis, we have under Assumption (S)

ν(V0) <∞. (46)

In this section, �rst we present a theoretical result which shows that Estimates (22a)-(22b)
hold with a polynomial rate of convergence under Assumptions (45). Second we propose
further statements in which an explicit polynomial rate of convergence is obtained. Denote
by (ϑj)j≥0 the recurrent sequence of positive real numbers de�ned by

ϑ0 := 1 and ∀ℓ ≥ 1, ϑℓ :=

ℓ−1∑
j=0

Cj
ℓϑj with Cj

ℓ :=
ℓ !

j !(ℓ− j) !
. (47)

Theorem 5.1 Let P be a Markov kernel on (X,X ) satisfying Condition (S). Moreover, as-
sume that there exists a collection {Vi}mi=0 of Lyapunov functions satisfying Conditions (45).
Then we have

∀j ∈ {1, . . . ,m},
+∞∑
k=1

kj−1 βk(Vj) ≤ ϑj−1 ν(V0) <∞. (48)

Moreover for every j = 1, · · · ,m we have π(Vj) ≤ µ(Vj) =
∑+∞

k=1 βk(Vj) < ∞, and Esti-
mates (22a)-(22b) hold with W := Vj and with (εn,Vj )n≥1 and (εn)n≥1 satisfying

∀j = 1, · · · ,m, lim
n→+∞

nj−1εn,Vj = 0 and lim
n→+∞

nm−1εn = 0. (49)
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Proof. Let us prove Inequality (48) by an induction on m. Assume that (45) holds with
m = 1, that is (P − T )V0 ≤ V0 − V1, or equivalently: V1 ≤ V0 − (P − T )V0. Then

∀k ≥ 0, (P − T )kV1 ≤ (P − T )kV0 − (P − T )k+1V0

from which we deduce that

∀n ≥ 1,

n∑
k=0

(P − T )kV1 ≤
n∑

k=0

[
(P − T )kV0 − (P − T )k+1V0

]
≤ V0.

It follows from (14) that

∀n ≥ 1,

n+1∑
k=1

βk(V1) ≤ ν(V0).

This proves (48) when m = 1. Now suppose that Inequalities (48) hold for some m ≥ 1.
Assume that (45) holds at order m+ 1. Then using Vm+1 ≤ Vm − (P − T )Vm, we get

∀k ≥ 0, (P − T )kVm+1 ≤ (P − T )kVm − (P − T )k+1Vm

so that we have for every n ≥ 1

n∑
k=0

(k + 1)m (P − T )kVm+1 ≤
n∑

k=0

(k + 1)m (P − T )kVm −
n+1∑
k=0

km (P − T )kVm

≤
n∑

k=0

[
(k + 1)m − km

]
(P − T )kVm

≤
m−1∑
j=0

Cj
m

n∑
k=0

kj (P − T )kVm

≤
m∑
j=1

Cj−1
m

n∑
k=0

kj−1 (P − T )kVj

using ∀j ∈ {1, . . . ,m}, Vm ≤ Vj for the last inequality. It follows from (14) that

+∞∑
k=1

km βk(Vm+1) ≤
m∑
j=1

Cj−1
m

+∞∑
k=0

kj−1 βk+1(Vj) ≤
m∑
j=1

Cj−1
m

+∞∑
k=1

kj−1 βk(Vj)

≤
( m∑

j=1

Cj−1
m ϑj−1

)
ν(V0) = ϑm ν(V0)

from the induction hypothesis. This gives Inequalities (48) at order m+ 1.

Now let us prove the last assertion of Theorem 5.1. First note that for every j = 1, · · · ,m
we have π(Vj) ≤ µ(Vj) =

∑+∞
k=1 βk(Vj) <∞ from (16) and (48). Next we have

∀j = 1, · · · ,m, εn,Vj =

+∞∑
k=n+1

βk(Vj) ≤
1

(n+ 1)j−1

+∞∑
k=n+1

kj−1βk(Vj).

Then the �rst assertion in (49) follows from (48). In particular we have limn n
m−1εn,Vm = 0,

so that limn→+∞ nm−1εn = 0 since εn ≤ εn,Vm from 1X ≤ Vm.

□
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In the following statement, under the assumptions of Theorem 5.1, we specify the asymp-
totic behaviour of the sequence (βk(Vm))k≥1 which is assumed to be decreasing.

Theorem 5.2 Let P be a Markov kernel on (X,X ) satisfying Condition (S). Moreover assume
that there exists a collection {Vi}mi=0 of Lyapunov functions satisfying Conditions (45). Then
the following assertions hold.

(i) ∀i ∈ {0, . . . ,m}, ∀k ≥ 1, βk(Vi) <∞.

(ii) If the sequence (βk(Vm))k≥1 is decreasing, then

∀n ≥ 1, βn(Vm) ≤ Cm ν(V0)

nm
with Cm := 2

m(m+1)
2

−1. (50)

(iii) If the sequence
(
βk(Vm)

)
k≥1

is decreasing and if µ(V0) :=
∑+∞

k=1 βk(V0) <∞, then

∀n ≥ 1, βn(Vm) ≤ Dm µ(V0)

nm+1
with Dm := 2

(m+1)(m+2)
2

+1. (51)

Lemma 5.1 Assume that P satis�es Condition (S). Let V and W be two Lyapunov functions
such that

(P − T )V ≤ V −W where T (·) := ν(·)1S . (52)

Then the following assertions hold.

(a) ∀k ≥ 1, βk(V ) <∞.

(b) The sequence
(
βk(V )

)
k≥1

is decreasing.

(c) If the sequence
(
βk(W )

)
k≥1

is decreasing, then we have for every k ≥ 1 and ε ∈ {0, 1}

βk(W ) ≤ ν(V )

k
and β2k−ε(W ) ≤ βk(V )

k
.

(d) If µ(V ) :=
∑+∞

k=1 βk(V ) <∞ and if the sequence
(
βk(W )

)
k≥1

is decreasing, then

∀n ≥ 1, βn(W ) ≤ 16µ(V )

n2
.

Proof. Note that W ≤ V from (52) and P − T ≥ 0. Next we deduce from (52) that
∀j ≥ 1, (P − T )jV ≤ (P − T )j−1(V −W ). Then (14) gives

∀j ≥ 1, βj+1(V ) ≤ βj(V )− βj(W ) ≤ βj(V ) in [0,+∞].

Using β1(V ) = ν(V ) < ∞, Assertion (a) is obtained by induction, and Assertion (b) is then
obvious. Next rewrite the previous inequalities as

∀j ≥ 1, 0 ≤ βj(W ) ≤ βj(V )− βj+1(V ) (53)

and suppose that (βj(W ))j≥1 is decreasing. Then it follows from (53) that

∀k ≥ 1, k βk(W ) ≤
k∑

j=1

βj(W ) ≤ β1(V )− βk+1(V ) ≤ ν(V ),
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from which we deduce the �rst inequality in Assertion (c). Moreover (53) also gives

∀k ≥ 1, ∀ε ∈ {0, 1} k β2k−ε(W ) ≤
2k−ε∑
j=k

βj(W ) ≤ βk(V )− β2k−ε+1(V ) ≤ βk(V ), (54)

from which we deduce the second inequality in Assertion (c). Finally, to prove Assertion (d),
note that for every ℓ ≥ 1 and every ε ∈ {0, 1}

ℓ β2ℓ−ε(V ) ≤
2ℓ−ε∑
j=ℓ

βj(V ) ≤ µ(V ) <∞ (55)

since (βj(V ))j≥1 is decreasing (Assertion (b)). Let n ≥ 1 and write n = 2(2ℓ− ε1)− ε2 with
ℓ ≥ 1 and (ε1, ε2) ∈ {0, 1}2. Then it follows from (54) and (55) that

βn(W ) ≤ β2ℓ−ε1(V )

2ℓ− ε1
≤ µ(V )

ℓ(2ℓ− 1)
≤ µ(V )

ℓ2
=

16µ(V )

(n+ 2ε1 + ε2)2
≤ 16µ(V )

n2
.

□

Proof of Theorem 5.2. Assertion (a) of Lemma 5.1 applied with V := V0 and W := V1 proves
that: ∀k ≥ 1, βk(V0) < ∞. Then Assertion (i) of Theorem 5.2 holds since Vi ≤ V0. Now let
us prove by induction on the positive integer m that Property (50) holds. If m = 1, then the
�rst inequality in Assertion (c) of Lemma 5.1 applied with V := V0 and W := V1 provides

∀n ≥ 1, βn(V1) ≤
ν(V0)

n
.

Hence (50) holds with C1 = 1 when m = 1. Now suppose that (50) holds for some m ≥ 1.
Let {Vi}m+1

i=0 be a collection of Lyapounov functions such that

∀i ∈ {0, . . . ,m}, (P − T )Vi ≤ Vi − Vi+1

and �nally such that the sequence (βk(Vm+1))k≥1 is decreasing. Note that Assertion (b) of
Lemma 5.1 applied with V := Vm and W := Vm+1 ensures that the sequence (βk(Vm))k≥1 is
decreasing. Consequently we have

∀k ≥ 1, βk(Vm) ≤ Cm ν(V0)

km
with Cm := 2

m(m+1)
2

−1 (56)

from the induction hypothesis. Next let n ≥ 1 and write n = 2k − ε with k ≥ 1 and
ε ∈ {0, 1}. Then the second inequality in Assertion (c) of Lemma 5.1 applied with V := Vm
and W := Vm+1 gives

βn(Vm+1) ≤
βk(Vm)

k
(57)

so that βn(Vm+1) ≤ Cmν(V0)/k
m+1 from (56). Hence

βn(Vm+1) ≤
2m+1Cm ν(V0)

(n+ ε)m+1
≤ Cm+1 ν(V0)

nm+1
with Cm+1 = 2m+1Cm = 2

(m+1)(m+2)
2

−1.

We have proved Assertion (ii) of Theorem 5.2.
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The proof of Assertion (iii) of Theorem 5.2 follows the same induction procedure. Indeed,
if m = 1, then Assertion (d) of Lemma 5.1 applied with V := V0 and W := V1 provides

∀n ≥ 1, βn(V1) ≤
16µ(V0)

n2
.

Hence (51) holds with D1 = 16 when m = 1. Now, assume that (51) is true at order m
for some m ≥ 1, and consider a collection {Vi}m+1

i=0 of Lyapunov functions as in the above
induction proof. Then, writing n ≥ 1 as n = 2k − ε with k ≥ 1 and ε ∈ {0, 1}, we deduce
from (57) and from the induction hypothesis that

βn(Vm+1) ≤
βk(Vm)

k
≤ Dm µ(V0)

km+2
with Dm := 2

(m+1)(m+2)
2

+1.

Hence

βn(Vm+1) ≤
2m+2Dm µ(V0)

(n+ ε)m+2
≤ Dm+1 µ(V0)

nm+2
with Dm+1 = 2m+2Dm.

This proves (51).

□

Under Conditions (45) the smallest function Vm can be replaced by 1X. Moreover for every
j = 1, . . . ,m − 1 the sequence

(
βk(Vj)

)
k≥1

is decreasing from Assertion (b) of Lemma 5.1.

This allows us to deduce computable bounds for the error terms εn and εn,Vj in (22a)-(22b)
when applied to W := Vj .

Corollary 5.1 Let P be a Markov kernel on (X,X ) satisfying Condition (S) and Condi-
tions (45) with respect to some collection {Vi}mi=0 of Lyapunov functions. Then the following
assertions hold with the positive constants Cj and Dj de�ned in Theorem 5.2.

(a) If m ≥ 2, then µ(1X) <∞, and Estimate (24) holds with

∀n ≥ 1, εn ≤ Cm ν(V0)

m− 1

1

nm−1
. (58)

Moreover, if m ≥ 3, then for every j = 2, . . . ,m − 1 we have π(Vj) ≤ µ(Vj) < ∞, and
Estimates (22a)-(22b) hold with W := Vj and

∀n ≥ 1, εn,Vj ≤
Cj ν(V0)

j − 1

1

nj−1
. (59)

(b) If m ≥ 1 and µ(V0) <∞, then Estimate (24) holds with

∀n ≥ 1, εn ≤ Dm µ(V0)

m

1

nm
. (60)

Moreover, if m ≥ 2, then for every j = 1, . . . ,m − 1 Estimates (22a)-(22b) hold with
W := Vj and

∀n ≥ 1, εn,Vj ≤
Dj µ(V0)

j

1

nj
. (61)
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Note that, using the triangle inequality, any quantitative error bounds on |Pn(x,A)− π(1A)|
as in [AF05, AFV15] can be combined with (58) or (60) to approximate the value of Pn(x,A)
for any A ∈ X and to control the error.

Proof. As previously mentioned, the function Vm in (45) can be replaced by 1X. Moreover
recall that the sequence (βk(1X))k≥1 is decreasing from (18). Hence it follows from (50) that

∀n ≥ 1, βn(1X) ≤
Cm ν(V0)

nm
. (62)

If m ≥ 2, then Condition (ii) of Theorem 2.1 is ful�lled thanks to (62). Then Inequality (58)
is deduced from

∀n ≥ 1, εn =

+∞∑
k=n+1

βk(1X) ≤ Cmν(V0)

+∞∑
k=n+1

1

km
≤ Cmν(V0)

∫ +∞

n

dt

tm
=

Cm ν(V0)

(m− 1)nm−1
.

Now assume that {Vi}mi=0 satis�es Conditions (45) with m ≥ 3. Let j ∈ {2, . . . ,m− 1}. The
sequence (βk(Vj))k≥1 is decreasing from Assertion (b) of Lemma 5.1, and obviously {Vi}ji=0

also satis�es Conditions (45). Then it follows from (50) that

∀n ≥ 1, βn(Vj) ≤
Cj ν(V0)

nj
with Cj := 2

j(j+1)
2

−1.

Thus π(Vj) ≤ µ(Vj) < ∞ since j ≥ 2, and (59) follows from comparison sums/integrals as
above. Finally assume that µ(V0) <∞ and m ≥ 1. We deduce from (51) that

∀n ≥ 1, βn(1X) ≤
Dm µ(V0)

nm+1
. (63)

Then (60) can be derived from comparison sums/integrals. Next assume that m ≥ 2, and
let j ∈ {1, . . . ,m − 1}. Then Property (61) can be established by using as above the family
{Vi}ji=0 and the fact that the sequence (βk(Vj))k≥1 is decreasing, then by applying (51) to Vj
(in place of Vm), and �nally by using again comparison sums/integrals. □

5.2 Applications

Let P be a Markov kernel on (X,X ) satisfying Condition (S) for some S ∈ X and ν ∈ M+
∗ . For

m ≥ 1 let us introduce the following condition: there exists a collection {Vi}mi=0 of Lyapunov
functions such that

∀i ∈ {0, . . . ,m− 1},


∀x ∈ X, Vi+1(x) ≤ Vi(x)

∀x ∈ Sc, (PVi)(x) ≤ Vi(x)− Vi+1(x)

∀x ∈ S, (PVi)(x) ≤
(
Vi(x)− Vi+1(x)

)
+ ν(Vi).

(64)

Note that the second condition in (64) implies that Vi+1 ≤ Vi on S
c, so that the �rst condition

may be replaced with Vi+1 ≤ Vi on S. Also note that the term (Vi(x)− Vi+1(x)) in the third
condition of (64) is non-negative. Finally observe that Condition (64) rewrites in a more
concise form as follows

∀i ∈ {0, . . . ,m− 1},

{
Vi+1 ≤ Vi

PVi ≤
(
Vi − Vi+1

)
+ ν(Vi) 1S .

However, as in the previous section, it is convenient to separate the conditions on Sc and S
respectively.
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Corollary 5.2 Assume that P satis�es Condition (S) and that there exists a collection {Vi}mi=0

of Lyapunov functions satisfying Conditions (64). Then all the assertions of Theorem 5.2 and
Corollary 5.1 hold.

Proof. Prove that (64) implies (45), so that Theorem 5.2 and Corollary 5.1 apply. We have

∀i ∈ {0, . . . ,m− 1}, (P − T )Vi = 1Sc

(
PVi − ν(Vi)1S) + 1S

(
PVi − ν(Vi)1S)

= 1Sc PVi + 1S
(
PVi − ν(Vi)1S)

≤ 1Sc

(
Vi − Vi+1

)
+ 1S

(
PVi − ν(Vi)1S)

= Vi − Vi+1 + 1S
(
PVi − Vi + Vi+1 − ν(Vi)1S)

≤ Vi − Vi+1.

This gives (45). □

Corollary 5.3 (Atomic case) Let P be a Markov kernel on (X,X ) satisfying Condition (S)
with an atom S and with ν(·) de�ned by ν(·) := P (a0, ·) for a0 ∈ S. Moreover assume that
there exists a collection {Vi}mi=0 of Lyapunov functions such that

∀i ∈ {0, . . . ,m− 1},

{
∀x ∈ S, Vi+1(x) ≤ Vi(x)

∀x ∈ Sc, (PVi)(x) ≤ Vi(x)− Vi+1(x).
(65)

Then all the assertions of Theorem 5.2 and Corollary 5.1 hold (recall that (26) is an alternative
bound to (22b) in the atomic case).

Proof. Prove that (65) implies (64) so that Corollary 5.2 applies. First note that the second
condition of (65) ensures that Vi+1 ≤ Vi on S

c, thus the �rst condition in (64) is satis�ed.
The second condition in (65) and (64) are the same. Finally, for every i = 0, . . . ,m − 1 and
every x ∈ S we have PVi(x) = ν(Vi) since S in an atom, so that

∀x ∈ S, PVi(x)−
(
Vi(x)− Vi+1(x)

)
− ν(Vi) = Vi+1(x)− Vi(x) ≤ 0.

This proves the third condition of (64).

□

Now we apply the two previous corollaries under the following subgeometric drift condition

∃α ∈ [0, 1),∃c1 > 0, ∀x ∈ Sc, (PV )(x) ≤ V (x)− c1 V (x)α (Subα,Sc)

where V is some Lyapunov function. We begin with the atomic case. For any α ∈ [0, 1) de�ne
the integer m ≡ mα ≥ 1 by

m :=
⌊
(1− α)−1

⌋
. (66)

Corollary 5.4 (Atomic case) Let P be a Markov kernel on (X,X ) satisfying Conditions (S)
and (Subα,Sc) with an atom S and with ν(·) de�ned by ν(·) := P (a0, ·) for a0 ∈ S. Assume
that PV is bounded on S. Then all the assertions of Theorem 5.2 and Corollary 5.1 hold with
the positive integer m ≡ m(ε, α, η0) de�ned in (66) and with functions V0, V1, . . . , Vm speci�ed
in the proof.
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To prove Corollary 5.4 we use the following lemma which is based on [JR02, Lem. 3.5].

Lemma 5.2 Let S ∈ X , and let W be a Lyapunov function such that PW is bounded on S.
Let 0 < θ2 < θ1 < 1 be such that

∃c > 0, ∀x ∈ Sc, (PW θ1)(x) ≤W (x)θ1 − cW (x)θ2 .

Then

∃c′ > 0, ∀x ∈ Sc, (PW θ2)(x) ≤W (x)θ2 − c′W (x)θ3 with θ3 = 2θ2 − θ1.

Proof. The hypothesis of Lemma 5.2 writes as PW θ1 ≤W θ1 − c
(
W θ1

)θ2/θ1 on Sc. It follows
from [JR02, Lem. 3.5] that

∀η ∈ (0, 1], ∃c′ > 0, PW ηθ1 ≤W ηθ1 − c′
(
W θ1

) θ2
θ1

+η−1
on Sc.

Setting η := θ2/θ1 this gives

PW θ2 ≤W θ2 − c′W 2θ2−θ1 on Sc.

□

Proof of Corollary 5.4. Note that if θ2 = 0 then Lemma 5.2 does not apply since P1X = 1X
and this would give c′ = 0. Let α1 := 1 − 1/m ∈ [0, 1) with m given in (66). Note that
α1 ≤ α. Then it follows from (Subα,Sc) that

PV ≤ V − c1 V
α1 on Sc. (67)

Note that we can choose c1 < 1 in (67).

� If α1 = 0 (i.e. α ∈ [0, 1/2)), then Conditions (65) of Corollary 5.3 hold with m = 1, V0 =
c−1
1 V and V1 = 1X. Note that 1X = V1 ≤ V0.

� If α1 = 1/2 (i.e. α ∈ [1/2, 2/3)), then we deduce from (67) and Lemma 5.2 that

∃c2 > 0, PV α1 ≤ V α1 − c2 V
α2 on Sc (68)

with α2 := 2α1 − 1 = 0. Again note that we can choose c2 < 1. Then the procedure stops,
and Conditions (65) of Corollary 5.3 hold with m = 2, V0 = c−1

1 c−1
2 V , V1 = c−1

2 V α1 and
V2 = 1X. Note that 1X = V2 ≤ V1 ≤ V0.

� If α1 > 1/2, then Lemma 5.2 can be repeated recursively to provide inequalities of the
form PV αi−1 ≤ V αi−1 − ci V

αi on Sc with ci < 1 and

αi = 2αi−1 − αi−2 = (α1 − 1) i+ 1.

Actually Lemma 5.2 can only be repeated until the value i = m since αm = 0 and αi < 0
for i > m. Then Assumptions (65) of Corollary 5.3 hold with

V0 =
[ m∏
k=1

ck
]−1

V, ∀1 ≤ i ≤ m− 1 : Vi =
[ m∏
k=i+1

ck
]−1

V αi , Vm = 1X.

Note that 1X = Vm ≤ · · · ≤ V0.
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Then the conclusions of Corollary 5.4 follows from Corollary 5.3.

□

Now we consider the general case where P satis�es Conditions (S) and (Subα,Sc). Using
Corollary 5.2, we prove that the procedure in the atomic case (Corollary 5.4) extends to the
non atomic case provided that Condition (Subα,Sc) can be modi�ed thanks to Lemma 5.2 in
order to ful�l the third condition in (64). To that e�ect, assume that PV is bounded on S.
Then

∀ε ∈ (0, ν(1X)), ∃η0 ≡ η0(ε) ∈ (0, 1], ∀η ∈ (0, η0], ∀x ∈ S, (PV η)(x) ≤ V (x)η + ν(V η)− ε.
(69)

Indeed we have

∀x ∈ S, (PV η)(x)− V (x)η − ν(V η) ≤ (sup
S
PV )η − 1− ν(1X)

from Jensen's inequality and 1X ≤ V η. Then (69) follows from the following property

∃η0 ∈ (0, 1], ∀η ∈ (0, η0], (sup
S
PV )η − 1 ≤ ν(1X)− ε

which holds since (supS PV )η → 1 when η→ 0. Next, if η0 ≥ 1−α, de�ne the positive integer
m ≡ m(ε, α, η0) as follows

m :=
⌊ η0
1− α

⌋
. (70)

Corollary 5.5 Assume that P satis�es Conditions (S) and (Subα,Sc) for some S ∈ X ,
ν ∈ M+

∗ , α ∈ [0, 1) and for some Lyapunov function V . Moreover assume that V and PV
are bounded on S. Let ε ∈ (0, ν(1X)), and assume that the real number η0 given in (69) is
such that η0 ≥ 1− α. Then all the assertions of Theorem 5.2 and Corollary 5.1 hold with the
positive integer m ≡ m(ε, α, η0) de�ned in (70) and with functions V0, V1, . . . , Vm speci�ed in
the proof.

Proof. Note that the third condition in (64) associated with Condition (Subα,Sc) may fail,
that is the inequality PV ≤ V − c1 V

α + ν(V ) on S may be false. To initialize the procedure,
apply [JR02, Lem. 3.5] from (Subα,Sc) with the exponent η0 given in (69), that is:

∃cη0 > 0, ∀x ∈ Sc, (PV η0)(x) ≤ V (x)η0 − cη0 V (x)α+η0−1. (71)

If α + η0 − 1 < 0, then Inequality (71) cannot be used to apply Corollary 5.2 since the
function V1 in Conditions (64) must take its values in [a,+∞) for some a > 0. Now assume
that α+η0−1 ≥ 0 and prove that the third condition in (64) associated with (71) is satis�ed.
Let M1 := supS V and M2 := supS PV . Recall that ε ∈ (0, ν(1X)) and note that cη0 in (71)

can be chosen such that cη0M
α+η0−1
1 ≤ ε (up to reduce the value of cη0). Then we have

from (69)
∀x ∈ S, (PV η0)(x)− V (x)η0 + cη0 V (x)α+η0−1 − ν(V η0) ≤ 0 (72)

Now, starting from (71)-(72), iterate Lemma 5.2 as many times as possible. Namely, let

V̂ := V η0 and α̂1 := 1− 1

m
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with m de�ned in (70). Note that m =
⌊
(1− α̂)−1

⌋
with α̂ = 1− (1−α)/η0, and that α̂1 ≤ α̂.

Also set ĉ1 = cη0 . Then{
∀x ∈ Sc, (PV̂ )(x) ≤ V̂ (x)− ĉ1 V̂ (x)α̂1

∀x ∈ S, (PV̂ )(x) ≤ V̂ (x)− ĉ1 V̂ (x)α̂1 + ν(V̂ )
(73)

from (71)-(72) and α̂1 ≤ α̂. Then, starting from (73) and iterating Lemma 5.2, we can proceed
exactly as in the proof of Corollary 5.4, provided that the third condition in (64) holds at
each step (this was automatically ful�lled in the atomic case). More precisely, at each step,
Lemma 5.2 provides an inequality of the form

PV̂ α̂i−1 ≤ V̂ α̂i−1 − ĉi V̂
α̂i on Sc (74)

with some ĉi > 0 and with

α̂i = 2α̂i−1 − α̂i−2 = (α̂1 − 1) i+ 1.

This procedure can be repeated only until the value i = m since α̂m = 0 and α̂i < 0 for
i > m, but we have moreover to check that the third condition in (64) associated with (74)
holds. To verify this last point, note that α̂i−1 ≤ 1 and that

PV̂ α̂i−1 − V̂ α̂i−1 − ν(V̂ α̂i−1) = PV ηi − V ηi − ν(V ηi) with ηi := η0α̂i−1 ∈ (0, η0]

from V̂ := V η0 . It then follows from (69) and V̂ α̂i−1 ≥ 1X that

∀x ∈ S, (PV̂ α̂i−1)(x)− V̂ α̂i−1(x) + ĉi V̂
α̂i(x)− ν(V̂ α̂i−1) ≤ ĉi V

η0(x)− ε ≤ 0 (75)

since ĉi in (74) can be chosen such that ĉiM
η0
1 ≤ ε (recall that M1 := supS V ). Then

Conditions (64) of Corollary 5.2 hold with

V0 = (ĉ1ĉ2 · · · ĉm)−1V̂ , V1 = (ĉ2 · · · ĉm)−1 V̂ α1 , . . . , Vm−1 = ĉ −1
m V̂ αm−1 , Vm = 1X

(note that 1X = Vm ≤ · · · ≤ V0). Then the conclusions of Corollary 5.5 follow from Corol-
lary 5.2 □

Remark 5.1 In practice, for the choice of ε ∈ (0, ν(1X)) in Corollary 5.5, a trade-o� must
be made with respect to Condition (69) versus the resulting positive constant ν(V0) and µ(V0)
in (58) and (60). Indeed, the smaller ε is, the larger η0 in (69) will be, so the larger m in
(70) will be. However, the smaller ε is, the larger [

∏m
i=1 ĉi]

−1 will be in the above de�nition
of V0, so that the larger constants ν(V0) and µ(V0) in (58) and (60) will be.

The following proposition shows that Condition (69) can be simpli�ed under general con-
ditions on X, S, P and V .

Proposition 5.3 Assume that any one of the two following conditions holds:

(a) X is discrete and S is �nite.

(b) X is a metric space, S is compact and the functions V and PV η (∀η ∈ (0, 1]) are contin-
uous on S.
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Then Corollary 5.5 applies with Condition (69) replaced by the following simpler one

∃η0 ∈ (0, 1], ∀x ∈ S, (PV η0)(x) < V (x)η0 + ν(V η0). (76)

Proof. First observe that the proof of Corollary 5.5 is still valid when Condition (75) holds
with some εi > 0 for i = 1, . . . ,m (in place of ε > 0): then ĉi in (74) has to be chosen
such that ĉiM

η0
1 ≤ εi, and the function V0 is de�ned as in the previous proof from such ĉi.

Consequently, under the conditions (a) or (b), we have to prove that (76) implies that

∀η ∈ (0, η0], ∀x ∈ S, (PV η)(x) < V (x)η + ν(V η). (77)

We use the notations introduced in the proof of Proposition 4.1. Recall that, for any x ∈ S,
σx(·) = P (x, ·) − ν(·) is a non-negative measure on (X,X ) from Assumption (S), and that
σx(1X) = 1 − ν(1X) does not depend on x. We set σ := 1 − ν(1X). If σ = 0 (atomic case),
then σx is null, thus for every η ∈ (0, 1] we have (PV η)(x) = ν(V η), so that (77) is obvious.
Now assume that σ > 0, and note that (77) is equivalent to

∀η ∈ (0, η0], ∀x ∈ S, σx(V
η) < V (x)η.

De�ne the following probability measure on (X,X ): σ̃x(·) = σx(·)/σ. Let us prove that

∀η ∈ (0, η0), ∀x ∈ S, σx(V
η0) < V (x)η0 =⇒ σx(V

η) < V (x)η. (78)

Assume that σx(V
η0) < V (x)η0 . It follows from Jensen's inequality that

σ̃x(V
η) = σ̃x

(
(V η0)η/η0

)
≤

[
σ̃x

(
V η0

)]η/η0 .
Then we deduce from the de�nition of σ̃x and from σx(V

η0) < V (x)η0 that

σx(V
η)

σ
≤

(
σx(V

η0)
)η/η0

ση/η0
<
V (x)η

ση/η0

hence
σx(V

η) <
σ

ση/η0
V (x)η < V (x)η

since 0 < σ < 1 and 0 < η/η0 < 1. This proves (78). Therefore (76) implies (77).

□

We conclude this section by presenting a result on the approximation of Pn by the sub-
marovian kernel Tn given in (13a) under the subgeometric drift conditions (45).

Theorem 5.3 Assume that P satis�es the assumptions of Theorem 5.1 with some m ≥ 1.
Then we have for every measurable function f : X→R such that |f | ≤ Vm:

∀x ∈ X,
+∞∑
k=0

(k + 1)m−1
∣∣(P kf)(x)− (Tkf)(x)

∣∣ ≤ ϑm−1V0(x) (79)

with ϑm−1 de�ned in (47).
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Proof. If m = 1, then (13a) and the positivity of P − T give for every measurable function
f : X→R such that |f | ≤ V1 (see the proof of Theorem 5.1)

+∞∑
k=0

∣∣(P kf)(x)− (Tkf)(x)
∣∣ ≤ +∞∑

k=0

(
(P − T )k|f |

)
(x) ≤

+∞∑
k=0

(
(P − T )kV1

)
(x) ≤ V0(x).

This proves (79) for m = 1. Inequality (79) for m ≥ 1 easily follows by induction from the
following fact: if (P − T )Vm ≤ Vm − Vm+1, then we have

∀k ≥ 0, (P − T )kVm+1 ≤ (P − T )kVm − (P − T )k+1Vm,

from which we deduce that for every measurable function f : X→R such that |f | ≤ Vm+1

(see the proof of Theorem 5.1)

+∞∑
k=0

(k + 1)m
∣∣P kf − Tkf

∣∣ ≤
+∞∑
k=0

(k + 1)m (P − T )kVm+1

≤
m−1∑
j=0

Cj
m

+∞∑
k=0

kj (P − T )kVm

≤
m−1∑
j=0

Cj
m

+∞∑
k=0

(k + 1)j (P − T )kVj+1

≤
(m−1∑

j=0

Cj
mϑj

)
V0 (from induction hypothesis)

≤ ϑmV0.

□

6 Examples

Excepted in Subsection 6.1.1, the focus is on standard non-atomic examples from the literature
on the rate of convergence of Markov chains. Moreover, in Subsections 6.3-6.4, we only deal
with the error bound in total variation distance (24) to make comparison easier with previous
works.

6.1 Birth-and-Death Markov chains (geometric case)

6.1.1 Atomic case

Let us introduce the following example with X = N and a transition kernel P speci�ed by

a := P (0, 0) ∈ (0, 1), P (0, 1) = 1− a

∀n ≥ 1, P (n, n− 1) := p, P (n, n) := r, P (n, n+ 1) := q (80)

with p, q, r ∈ [0, 1] such that p+ r + q = 1 and 0 < q < p.

Set

δ := r + 2
√
pq = 1− (

√
p−√

q)2 ∈ (0, 1), γ :=
√
p/q ∈ (1,+∞) and V ≡ Vγ := {γn}n∈N.
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Then P satis�es Conditions (S) and (DSc) with the atom S = {0} and with ν := P (0, ·) (see
[HL14, Prop. 4.1]). We deduce from Corollary 4.1 that Estimates (22a)-(22b) (also see (26))
hold with W := V and

µ(V ) ≤ a+ (1− a)γ

1− δ
and ∀n ≥ 1, εn ≤ εn,V ≤ a+ (1− a)γ

1− δ
δn. (81)

If r := 0, a := p, the rate δ = 2
√
pq is well-known for the V -weighted operator norm of

Pn − π(·)1X, which is related to the V -geometrical ergodicity of P , see [MT94, LT96, Bax05,
8.1 and 8.4]. The simple and explicit error bound (81) holds for any Birth-and-Death Markov
chain satisfying (80). If r > 0, then (81) provides a rate of convergence in Estimates (22a)-
(22b) with W := V , which may be better than the rate of convergence of the V -weighted
operator norm of Pn − π(·)1X, see [HL14, Prop. 4.1, (4.9a)]. This is due to the existence
of eigenvalues λ of P such that δ < |λ| < 1 (see Remark 4.4). Note that this fact is not
inconsistent since the stationary distribution π is approximated in two di�erent ways.

It turns out that, in the geometric and atomic case, the approximation of π in (22a)-(22b)
and in (26) erases the e�ect of possible eigenvalues λ of P such that δ < |λ| < 1, where δ is
the real number in (DSc). By contrast, the next non-atomic instances show that the rate of
convergence in (22a)-(22b) may be only O(δα0n) for some α0 ∈ (0, 1) rather than O(δn) (see
Corollary 4.2): this could correspond to the case when P admits some eigenvalues λ in the
annulus {z ∈ C : δ < |z| < 1} (e.g. see the end of Subsection 6.1.2).

6.1.2 Non atomic case

Now, assume that P is speci�ed by

a := P (0, 0) = P (1, 0) ∈ (0, 1) and P (0, 1) = P (1, 2) = 1− a,

∀n ≥ 2, P (n, n− 1) := p, P (n, n) := r, P (n, n+ 1) := q with 0 < q < p and p+ q ≤ 1.

Set S := {0, 1} which is not an atom. Condition (S) is satis�ed with ν := aδ0, and P satis�es
(DSc) with δ := r+2

√
pq ∈ (0, 1) and with V := {γn}n∈N (e.g. see [HL14, Sect. 4.1]). Let us

illustrate Corollary 4.2 in this case. Note that: ∀α ∈ (0, 1], ∀n ∈ N, V (n)α = γαn.

1. Condition (35) holds with α0 = 1 if and only if 1 − a ≤ δγ−1. Consequently, under this
last condition, Corollary 4.2 applies with α0 = 1 (that is Theorem 4.2).

2. When p, q, r are chosen such that 1 − a > δγ−1, (35) is ful�lled with α0 < 1. Indeed, we
have

sup
i=0,1

[
(PV α)(i)− δα V (i)α

]
− ν(V α) ≤ 0 ⇐⇒ α ≤ ln(1− a)

ln(δγ−1)
.

Thus Corollary 4.2 applies with α0 = ln(1 − a)/ ln(δγ−1). When 1 − a = P (1, 2)→ 1, we
obtain that α0→ 0, so that the rate δα0 of Corollary 4.2 converges to 1. This comment
should be compared with that of [HL14, Sect. 4.2]) on a very similar model (the two models
only di�er on the fact that a−2 := P (n, n−2) > 0 for n ≥ 2) for which the so-called second
eigenvalue related to the V -geometrical ergodicity of P tends to one when P (1, 2)→ 1, i.e.
the spectral gap tends to zero, see [HL14, Table 1] for details.
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6.2 Random walk on a half line (subgeometric case)

Let (Xn)n≥0 be the so-called N-valued random walk on a half line, de�ned as follow:

∀n ≥ 1, Xn = max
(
0, Xn−1 +Wn

)
(82)

where X0 is an N-valued random variable (r.v.) and where (Wn)n≥0 is an independent and
identically distributed sequence of Z-valued r.v., assumed to be independent of X0. The
common probability distribution of (Wn)n≥0 is denoted by: ∀j ∈ Z, pj := P(W1 = j). Thus,
(Xn)n≥0 is a Markov chain with transition kernel P on X = N given by

∀f ∈ B, ∀i ∈ N, (Pf)(i) =
∑
j∈Z

f
(
max(0, i+ j)

)
pj = f(0)P(W < −i) +

∑
j≥−i

f(i+ j) pj

= f(0)P(W < −i) +
∑
j≥0

f(j) pj−i.

We assume that pj > 0 for at least one j ≥ 1, so that P(W > 0) > 0. For every �nite set
S ⊂ N, P satis�es Condition (S) with

ν :=
+∞∑
j=0

νj δj with νj := min
i∈S

pj−i (83)

provided that ν(1N) > 0. Let m0 ≥ 2 be any integer. For every q ∈ {1, . . . ,m0} we de�ne

∀i ∈ N, Vq(i) = (1 + i)q (84)

and we simply write V for Vm0 . Let us assume that W has a moment of order m0 and has a
negative expectation, that is:

E[ |Wm0 | ] =
∑
j∈Z

|j|m0 pj <∞ and E[W ] =
∑
j∈Z

j pj < 0. (85)

Under these moment conditions (85), P satis�es Condition (Subα,Sc) with V := Vm0 , α =
1− 1/m0 for some �nite set S ⊂ N, e.g. see [DMPS18]. Therefore, to apply Corollary 5.5, we
have to �nd η0 ∈ (0, 1] such that (see Proposition 5.3)

∀i ∈ S, (PV η0)(i) < V (i)η0 + ν(V η0) = (1 + i)m0η0 +

+∞∑
j=0

νj (1 + j)m0η0 . (86)

For a given probability distribution {pj}j∈Z, the study of the numeric function ψ de�ned by

∀η ∈ [0, 1], ψ(η) := max
i∈S

[
(PV η)(i)− V (i)η

]
− ν(V η)

gives η0 satisfying (86). If η0 ≥ 1/m0, then the assertions of Theorem 5.2 and Corollary 5.1
apply with m = ⌊η0m0⌋ due to Corollary 5.5.

In the next proposition we present additional assumptions under which the assumptions
of Corollary 5.5 are ful�lled.
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Proposition 6.1 Assume that moment conditions (85) holds with m0 = 3. Let τ ∈ (0, 1)
and let s ≡ s(τ) ≥ 2 be an integer such that

∀i > s,
∑
j≥−i

jpj ≤ τ E[W ] and
P(W < −i)
(1 + i)m0−1

+
∑
j≥−i

m0∑
k=2

Ck
m0
jkpj

(1 + i)k−1
≤ − τ m0 E[W ]

2
. (87)

Moreover assume that

{pj}+∞
j=0 is non-increasing and: ∀j ∈ {−s, . . . ,−1}, pj ≥ p0. (88)

Then the following assertions hold with S := {0, . . . , s} and ν(·) given by

ν :=
∑
j≥0

pj δj . (89)

(i) If E[W 2] ≤ mini∈S\{0}
[
− (2 + i)E[W ] + P(W≥0)

3i

]
, then the assertions of Theorem 5.2

and Corollary 5.1 apply with m = 3.

(ii) If ∀i ∈ i ∈ S \ {0}, C2(i)− P(W ≥ 0) < −2 iE[W ], where

∀i ∈ S \ {0}, C2(i) := −P
(
− i ≤W < 0

)
+

−2∑
j=−∞

pj (1 + j)2 −
−i−2∑
j=−∞

pj
(
1 + i+ j

)2
,

then the assertions of Theorem 5.2 and Corollary 5.1 apply with m = 2.

For every τ ∈ (0, 1), the inequalities in (87) hold for i large enough since
∑

j≥−i jpj →E[W ]
when i→+∞ and the other term in (87) converges to 0 when i→+∞ (note that−τ m0 E[W ] >
0). Assumption (88) is introduced in order to rewrite the positive measure ν in (83) as in
(89), so that

∀q = 1, . . . ,m0, (PVq)(0)− ν(Vq) = P(W < 0). (90)

Also note that, although Condition (88) is restrictive, it is not inconsistent with the condition
E[W ] < 0. The condition in (i) is satis�ed when E[W 2] ≤ − 3E[W ].

The proof of Proposition 6.1 is based on the two following lemmas proved in Annex B.
Note that these two lemmas may be relevant under alternative assumptions on {pj}j∈Z since
Condition (88) is not assumed.

Lemma 6.2 Assume that moment conditions (85) hold for some m0 ≥ 2. Let τ ∈ (0, 1) and
let s ≥ 2 the integer in (87). Set S := {0, . . . , s}. Then we have (with V := Vm0)

∀i ∈ Sc, (PV )(i) ≤ V (i)− c V (i)
1− 1

m0 with c := − τ m0 E[W ]

2
> 0.

Lemma 6.3 Assume that moment Conditions (85) hold for some m0 ≥ 2. Then we have for
every q ∈ {1, . . . ,m0}

∀i ∈ N, (PVq)(i) = (PVq)(0) + E
[
(1 + i+W )q

]
− E

[
(1 +W )q

]
+ Cq(i) (91)

with Vq de�ned in (84), with ν(·) given in (83), and with Cq(i) de�ned by Cq(0) := 0 and

∀i ∈ N \ {0}, Cq(i) := − P
(
− i ≤W < 0

)
+

−2∑
j=−∞

pj (1 + j)q −
−i−2∑
j=−∞

pj
(
1 + i+ j

)q
.
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Proof of Proposition 6.1. Recall that, in the present context, we just have to �nd η0 ∈ (0, 1]
such that Condition (86) holds with S := {0, . . . , s} and ν(·) given in (89).

Under the assumption of Assertion (i), we prove that Inequality (86) holds with η0 = 1.
Indeed, apply (91) with q = m0 = 3. First note that for every i ∈ S \ {0} we have C3(i) < 0
since

∀j ≤ −i− 2, 1 + j ≤ 1 + i+ j and ∀j ∈ (−i− 2,−2], 1 + j ≤ 0.

Recall that C3(0) = 0. Moreover we have

E
[
(1 + i+W )3

]
− E

[
(1 +W )3

]
− (1 + i)3 = −1 + 3 i (2 + i)E[W ] + 3 iE[W 2].

Hence it follows from (91) and from (90) that for every i ∈ S \ {0}

(PV3)(i)− V3(i)− ν(V3) = P(W < 0)− 1 + 3 i (2 + i)E[W ] + 3 iE[W 2] + C3(i)

< P(W < 0)− 1 + 3 i (2 + i)E[W ] + 3 iE[W 2] (92)

since C3(i) < 0. Finally (PV3)(0) − V3(0) − ν(V3) = P(W < 0) − 1 < 0, and for every
i ∈ S \ {0} we have (PV3)(i)− V3(i)− ν(V3) < 0 under the condition of Assertion (i). Thus,
Inequality (86) holds with V := V3 and η0 = 1. Thus the assumptions of Corollary 5.5 hold
with m = 3.

Now prove Assertion (ii). Apply (91) with q = 2. We have

E
[
(1 + i+W )2

]
− E

[
(1 +W )2

]
− (1 + i)2 = −1 + 2iE[W ].

It follows from (91) with q = 2 that

∀i ∈ S, (PV2)(i)− V2(i)− ν(V2) = P(W < 0)− 1 + 2iE[W ] + C2(i). (93)

Thus (PV2)(0) − V2(0) − ν(V2) = P(W < 0) − 1 < 0. Moreover for every i ∈ S \ {0} we
have (PV2)(i)− V2(i)− ν(V2) < 0 under the condition of Assertion (ii). Thus, Property (86)
holds with η0 = 2/3 since V3

2/3 = V2. Thus the assumptions of Corollary 5.5 hold with
m = ⌊η0m0⌋ = 2. □

Remark 6.1 Under the assumptions of Proposition 6.1, alternatives to Assertions (i) or (ii)
can be obtained thanks to (78). For instance assume that E[W 2] ≤ −4E[W ]. Then we easily
deduce from (92) that (PV3)(i) − V3(i) − ν(V3) < 0 for i ∈ S \ {1}. The last condition
is not guaranteed for i = 1, but we know from (93) that (PV2)(1) − V2(1) − ν(V2) < 0
provided that C2(1) − P(W ≥ 0) < −2E[W ]. Finally it follows from (78) applied with V :=
V3, η0 = 1 and η = 2/3 and from the above inequality concerning V3 that we also have
(PV2)(i) − V2(i) − ν(V2) < 0 for i ∈ S \ {1}. Consequently, if E[W 2] ≤ −4E[W ] and if
C2(1)− P(W ≥ 0) < −2E[W ], then the assumptions of Corollary 5.5 hold with m = 2.

6.3 Metropolis-Hastings algorithm for the standard Gaussian distribution
(geometric case)

We are interested in the R-valued Markov chain used in the Metropolis-Hastings algorithm
to simulate the standard Gaussian distribution π := N (0, 1) (the target distribution) with
the Gaussian distribution N (x, 1) as the proposal distribution. The iterates of the transition

31



kernel are used in [MT94, MT96, RT99, RT00],[Bax05, Sect. 8.2] to approximate π, while
the ergodic averages are used in [RR97, RT99]. In this part, the focus is on geometric rate
of convergence, so that we do not discuss the results in [RR97, RT99] with ergodic averages.
The transition kernel P of the Metropolis-Hastings Markov chain is reversible and positive in
the sense given in [Bax05, Th. 1.3]. But, here these additional properties are not used. We
simply apply Theorem 4.2 or Corollary 4.2 according to whether α0 = 1 or α0 < 1 in (35).

Let X := R and r, d > 0 be two positive scalars. Set Vr(x) := er|x| for any x ∈ X and
Sd := [−d, d]. Let us denote the function PVr/Vr by λ(·, r). We know from the computation
in [Bax05, Sect. 8.2] that P satis�es (DSc) with

δd,r := λ(d, r) = max
|x|≥d

λ(x, r)

λ(x, r) = er
2/2

[
Φ(−r)− Φ(−r − x)

]
+

1√
2
e(x−r)2/4Φ

(
(r − x)/

√
2
)
+

er
2/2−2rx

[
Φ(−x+ r)− Φ(−2x+ r)

]
+

1√
2
e(x

2−6rx+r2)/4Φ
(
(r − 3x)/

√
2
)

+Φ(0) + Φ(−2x)− 1√
2
ex

2/4
[
Φ(−x/

√
2) + Φ

(
− 3x/

√
2
) ]

where Φ denotes the standard Gaussian distribution function. Moreover P satis�es (S) with
the minorization measure νd(dx) =

(
e−d2/

√
2π

)
e−x2

1[−d,d](x) dx (see [Bax05, p. 727]). Note
that

νd(1X) =
√
2 e−d2

[
Φ(

√
2d)− Φ(0)

]
.

An easy computation gives

νd(Vr) =

√
2 e−d2

√
π

∫ d

0
erx−x2

dx =
√
2 e−d2+r2/4

[
Φ
(√

2(d− r/2)
)
− Φ

(
− r/

√
2
) ]
.

Finally we deduce from [Bax05, p. 726] that Condition (DS) involves the following term

max
|x|≤d

[
(PVr)(x)− δd,r Vr(x)

]
− νd(Vr) = PVr(0)− δd,rVr(0)− νd(Vr) = λ(0, r)− δd,r − νd(Vr).

The best rate of convergence in [Bax05, 5th line in Tab. 2] is obtained when d := 1.1
and r := 0.16. Thus, we get δ1.1,0.16 = 0.9744 and ν1.1(V0.16) ≈ 0.1997. It follows that
Condition (DS) holds since

λ(0, 0.16)− δ1.1,0.16 − ν1.1(V0.16) ≈ 0.0942− 0.1997 < 0.

Therefore, Theorem 4.2 applies and provides the following estimate from (24) and (32)

∀n ≥ 1, ∥π − µ̃n∥TV ≤ 2
ν1.1(V0.16)

1− δ1.1,0.16
× δ1.1,0.16

n ≈ 15.61× 0.9744n.

Note that the above rate 0.9744n for the total variation norm is slightly better than 0.9747n

obtained in [Bax05, 5th line of Tab. 2] for the V0.16-weighted operator norm of Pn − π(·)1X,
which is related to the V0.16-geometrical ergodicity of P . Moreover the speci�c properties of
the transition kernel P involved in [Bax05, Th. 1.3] are not used here. Anyway observe that
the multiplicative constant 15.61 is not too large.
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The rate of convergence reported in [RT99, Section 5] for ∥π−Pn(x, ·)∥TV is obtained for
d := 1.15 and r := 0.48. We get from these parameters

δ1.15,0.48 ≈ 0.9353, ν1.15(1X) ≈ 0.1688 and ν1.15(V0.48) ≈ 0.2131

so that Condition (DS) does not hold since λ(0, 0.48)− δ1.15,0.48 − ν1.15(V0.48) ≈ 0.0925 > 0.
In such as case, we can apply Corollary 4.2. Indeed, we deduce from [Bax05, p. 726] that
PV0.48 is bounded on [−1.15, 1.15]

K1.15,0.48 := sup
|x|≤1.15

(PV0.48)(x) = PV0.48(1.15) = e1.15×0.48 λ(1.15, 0.48) ≈ 1.6244.

Let σ := 1− ν1.15(1X) = 0.8312. It follows from Proposition 4.1 that for every α ∈ (0, 1] and
for every x ∈ [−1.15, 1.15]

(PV0.48
α)(x)− ν1.15(V0.48

α) ≤ σ

σα
[
(PV0.48)(x)− ν1.15(V0.48)

]α
≤ σ

σα
[
K1.15,0.48 − ν1.15(V0.48)

]α
.

Hence we have with α0 = 0.31

(PV0.48
α0)(x)− ν1.15(V0.48

α0)− δ1.15,0.48
α0 V0.48(x)

α0 ≤ σ

σα0
1.6244α0 − 0.9353α0 ≤ 0.

Therefore it follows from Corollary 4.2 that the estimate (24) is

∀n ≥ 1, ∥π − µ̃n∥TV ≤ 2
ν1.15(V0.48

α0)

1− δ1.15,0.48
α0
δ1.15,0.48

α0n ≈ 17.65× 0.9795n.

In this case, we get better bounds in total variation norm than that provided in [RT99,
Table 4]. Our conclusions are summarized in Table 1. Note that, in Table 1, a factor 2 is
applied to the estimates in [Ros95, RT99] since our de�nition of total variation norm is twice
that used in these papers. For each r ∈ {0.16, 0.48}, the best value of d using the bound (24)
is provided in the last row. Finally, we also report in the last row of the table, the best bound
derived from (24) tuning the parameters (r, d).

r d Method rate α0 Bound Bound
n = 500 n = 650

0.16 1.10 [Bax05, Tab. 2, Th. 1.3] 0.9747n

(24) in Th 3.1 0.9744n 1 15.61× 0.9744n 3.68e-05 7.54e-07
1.39 (24) in Th 3.1 0.9634n 1 5.78× 0.9634n 4.60e-08 1.71e-10

0.48 1.15 [Ros95] in [RT99, Table 4] 0.991n 0.092 0.024
[RT99, Table 4] 0.983n 0.02 0.002
(24) in Th 3.1 0.9795n 0.31 17.65× 0.9795n 0.0005 2.48e-05

1.06 (24) in Th 3.1 0.9784n 0.397 20.13× 0.9784n 0.0004 1.43e-05

0.36 1.10 (24) in Th 3.1 0.951n 1 8.96× 0.9510n 1.12e-10 6.02e-14

Table 1: The results of [RT99, Bax05] and the estimates from (24)

33



The following more accurate minorization measure is used in [Bax05, Section 8.4]

νd(dx) =

{
1√
2π
e−(|x|+d)2/2dx if |x| ≤ d

1√
2π
e−d|x|−x2

dx if |x| ≥ d.

Choose d := 1.1 and r := 0.22 as in [Bax05, Section 8.4]. We get

νd(Vr) = 2 e((r−d)2−d2)/2
[
Φ(2d− r)− Φ(d− r)

]
+
√
2e(d−r)2/4

[
1− Φ

(
(3d− r)/

√
2
) ]

≈ 0.2916.

Given that P satis�es (DSc) with δd,r = λ(d, r) ≈ 0.9664, Condition (DS) holds since

max
|x|≤1.1

[
(PVr)(x)− δd,r Vr(x)

]
− νd(Vr) = λ(0, r)− δd,r − νd(Vr) ≈ 0.1307− 0.2916 < 0.

We deduce from Theorem 4.2 and (24) that

∀n ≥ 1, ∥π − µ̃n∥TV ≤ 2
ν1.1(V0.22)

1− δ1.1,0.22
× δ1.1,0.22

n ≈ 17.37× 0.9367n. (94)

The rate of convergence 0.93664n is slightly better than 0.93667n obtained in [Bax05, 4th line
of Table 3]. Anyway observe that the above multiplicative constant 17.37 is not too large. If
we tune the values of the parameters (d, r) to derive the best rate of convergence from (24)
in Th 3.1, then we obtain for (d, r) = (1.2, 0.43)

∀n ≥ 1, ∥π − µ̃n∥TV ≤ 2
ν1.2(V0.43)

1− δ1.2,0.43
× δ1.2,0.43

n ≈ 8.46× 0.9344n.

The earlier bound (94) is improved by this last approximation of π.

6.4 Gaussian autoregressive Markov chain (geometric case)

We consider an autoregressive Gaussian Markov chain on X = R associated with Gaussian
transition kernel P (x, ·) = N (θx, 1− θ2) with θ ∈ (−1, 1), that is

∀x ∈ R, P (x, dy) =
1√

2π(1− θ2)
exp

(
−(y − θx)2

2(1− θ2)

)
.

The P -invariant distribution is π = N (0, 1) for any θ ∈ (−1, 1). This Markov model is
also known as contracting normals if introduced as a component of a two-component Gibbs
sampler. The convergence of the ergodic averages to π is studied in [RR97, RT99]. The
convergence of the iterates is investigated in [Ros95, RT99, QH21], [Bax05, Sect. 8.3]. Set
V (x) := 1 + x2 and S := [−d, d] as in these works. Then, if d > 1, we know from the
computations in [Bax05, Sect. 8.3] that P satis�es (DSc) with

δd,θ = θ2 + 2
1− θ2

1 + d2
< 1.

Moreover P satis�es (S) with

νd,θ(dy) = min
x∈[−d,d]

1√
2π(1− θ2)

exp

(
− (y − θ x)2

2(1− θ2)

)
1[−d,d](y) dy.
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We know from the formula given in [Bax05, p. 728] that

νd,θ(1X) = 2

(
Φ

(
(1 + |θ|) d√

1− θ2

)
− Φ

(
|θ| d√
1− θ2

))
.

Moreover, setting c := (2π(1− θ2))−1/2 and W (y) := y2, we obtain that

νd,θ(W ) = c

(∫ 0

−d
y2 exp

(
− (y − |θ| d)2

2(1− θ2)

)
dy +

∫ d

0
y2 exp

(
− (y + |θ| d)2

2(1− θ2)

)
dy

)
,

from which we deduce that

νd,θ(V ) = νd,θ(1X) + νd,θ(W ).

Finally, we know from [Bax05, p. 728] that

sup
x∈[−d,d]

(PV )(x)− δd,θV (x) =
2(1− θ2) d2

1 + d2
.

Then, it is easily checked that for θ ∈ {0.5, 0.75, 0.9}, Theorem 4.2 does not apply. Let us use
Corollary 4.2. We deduce from the formula given in [Bax05, p. 728] that

Kd,θ := sup
x∈[−d,d]

(PV )(x) = 2 + θ2(d2 − 1).

so that we must �nd α0 ∈ (0, 1] so that Inequality (35) is satis�ed. Since the procedure is as
in the Metropolis-Hastings example, the details are omitted. In Table 2, we report the error
term (24) of Corollary 4.2 as well as the rates of convergence in [Bax05, Table 4, Th 1.3]
which provides the best estimation in the V -weighted operator norm of Pn − π(·)1X among
all the methods compared in [Bax05, Sect. 8.3]. The results of [RT99] which are expressed in
total variation norm are also reported. Recall that a factor 2 is applied to the estimates in
[Ros95, RT99]. Our rates for the convergence in total variation norm of µ̃n − π are slightly
better except when θ = 1/2. If θ = 1/2, the rate of convergence is known to be (1/2)n. Thus
all these upper bounds are not sharp. Such a gap supports the idea that minorization-drift
conditions may be not well suited for obtaining sharp upper bounds for the approximation of
π (see [QH21, and references therein] for such a discussion for the convergence of P (x, ·)− π
to 0 when X = Rq with large q).
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θ d Method Rate α0 Bound Bound Bound
n = 45 n = 60 n = 1000

0.5 1.5 [Bax05, Table 4, Th 1.3] 0.897n

(24) in Th 3.1 0.892n 0.336 7.59× 0.892n 0.044 0.008√
3 [RT99, Table 4] 0.846n 0.020 0.001

[Ros95] in [RT99, Table 4] 0.881n 0.022 0.0017
(24) in Th 3.1 0.894n 0.239 6.28× 0.894n 0.04 0.0074

1.6 (24) in Th 3.1 0.891n 0.290 6.89× 0.891n 0.038 0.0067
0.75 1.2 [Bax05, Table 4, Th 1.3] 0.9847n

(24) in Th 3.1 0.9844n 0.191 22.64× 0.9844n√
3 [RT99, Table 4] 0.992n 0.014

[Ros95] in [RT99, Table 4] 0.993n 0.004
(24) in Th 3.1 0.991n 0.036 11.30× 0.991n 0.0016

1.3 (24) in Th 3.1 0.9834n 0.141 17.13× 0.9834n 9.1e-07
0.9 1.1 [Bax05, Table 4, Th 1.3] 0.99948n

(24) in Th 3.1 0.99947n 0.029 87.49× 0.99947n

1.14 (24) in Th 3.1 0.99944n 0.022 66.70× 0.99944n

Table 2: The results of [Bax05] and [Ros95, RT99] and the estimates from (24)
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A Proof of Proposition 2.1

Recall that 0 ≤ T ≤ P is deduced from the positivity of ν and from (S). That 0 ≤ Tn ≤ Pn

follows from 0 ≤ T ≤ P . The equality in (13a) for n = 1 is obvious from the de�nition of T .
Now assume that this equality holds for some n ≥ 1. Then

Pn+1 − Tn+1 := (P − T )n+1 = (P − T )(Pn − Tn) = Pn+1 − PTn − TPn + TTn

from which we deduce that, for every f ∈ B

Tn+1f = PTnf + TPnf − TTnf

=
n∑

k=1

βk(f)P
n−k+11S +

(
β1(P

nf)−
n∑

k=1

βk(f)ν(P
n−k1S)

)
1S

=
n∑

k=1

βk(f)P
n+1−k1S + βn+1(f)1S

with βn+1(·) de�ned in (11). This provides the equality in (13a) by induction. Next we obtain
that for every n ≥ 1

Pn − Tn := (P − T )n = (Pn−1 − Tn−1)(P − T ) = Pn − Pn−1T − Tn−1P + Tn−1T

so that
Tn − Tn−1P = Pn−1T − Tn−1T = (Pn−1 − Tn−1)T.

Formula (13b) is proved. Now it follows from (11) and (13a) that

βn(f) = ν
(
Pn−1f

)
−

n−1∑
k=1

βk(f) ν
(
Pn−k−11S

)
= ν

(
Pn−1f − Tn−1f

)
.

This gives the two �rst equalities in (14), from which the last one is easily deduced. Finally
note that β1(·) = ν(·) is a positive measure on (X,X ), so that for every n ≥ 1 βn(·) is a
linear combination of non-negative measures on (X,X ) (by induction). That βn is a �nite
non-negative measure follows from (14) since 0 ≤ Pn−1 − Tn−1 ≤ Pn−1

B Proofs of Lemmas 6.2 and 6.3

Proof of Lemma 6.2. Using the de�nition of P and (87) we have for every i > s

(PV )(i) = P(W < −i) +
∑
j≥−i

(1 + i+ j)m0 pj

= P(W < −i) +
∑
j≥−i

m0∑
k=0

Ck
m0

(1 + i)m0−k jkpj

≤ V (i) + τm0E[W ](1 + i)m0−1 +

(
P(W < −i)
(1 + i)m0−1

+
∑
j≥−i

m0∑
k=2

Ck
m0
jkpj

(1 + i)k−1

)
(1 + i)m0−1

≤ V (i) + τm0E[W ] (1 + i)m0−1 − τ m0 E[W ]

2
(1 + i)m0−1

≤ V (i) +
τ m0 E[W ]

2
(1 + i)m0−1.
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□

Proof of Lemma 6.3. Let q ∈ {1, . . . ,m0} and ℓ ∈ S \ {0}. Then

(PVq)(ℓ) = P(W < −ℓ) +
∑
j≥−ℓ

(1 + ℓ+ j)q pj

= P(W < −ℓ) +
q∑

k=0

Ck
q

∑
j≥−ℓ

(ℓ+ j)k pj

= P(W < −ℓ) +
∑

j≥−ℓ+1

(ℓ+ j)q pj +

q−1∑
k=0

Ck
q

∑
j≥−ℓ

(ℓ+ j)k pj

= P(W < −ℓ)− P(W < −ℓ+ 1) + (PVq)(ℓ− 1) +

q−1∑
k=0

Ck
q

∑
j≥−ℓ

(ℓ+ j)k pj . (95)

Next
q−1∑
k=0

Ck
q

∑
j≥−ℓ

(ℓ+ j)k pj =

q−1∑
k=0

Ck
q E

[
(ℓ+W )k

]
−

q−1∑
k=0

Ck
q

−ℓ−1∑
j=−∞

(ℓ+ j)k pj . (96)

Now let i ∈ N \ {0}. We have

i∑
ℓ=1

q−1∑
k=0

Ck
q E

[
(ℓ+W )k

]
=

i∑
ℓ=1

(
E
[
(1 + ℓ+W )q

]
− E

[
(ℓ+W )q

])
= E

[
(1 + i+W )q

]
− E

[
(1 +W )q

]
. (97)

Moreover we have for any i ∈ N \ {0}.

Dq(i) := −
i∑

ℓ=1

q−1∑
k=0

Ck
q

−ℓ−1∑
j=−∞

(ℓ+ j)k pj = −
−2∑

j=−∞
pj

min(i,−j−1)∑
ℓ=1

q−1∑
k=0

Ck
q (ℓ+ j)k

= −
−2∑

j=−∞
pj

min(i,−j−1)∑
ℓ=1

[
(1 + ℓ+ j)q − (ℓ+ j)q

]
=

−2∑
j=−∞

pj
[
(1 + j)q −

(
1 + min(i,−j − 1) + j

)q]
=

−2∑
j=−∞

pj (1 + j)q −
−i−2∑
j=−∞

pj
(
1 + i+ j

)q
. (98)

Then it follows from (95) and from (96)-(97)-(98) that

∀i ∈ S \ {0}, (PVq)(i)− (PVq)(0) =

i∑
ℓ=1

[
(PVq)(ℓ)− (PVq)(ℓ− 1)

]
= E

[
(1 + i+W )q

]
− E

[
(1 +W )q

]
+ Cq(i)

with Cq(i) de�ned in Lemma 6.3. This gives (91) for every i ∈ N \ {0}. Equality (91) is
obvious for i = 0 since Cq(0) = 0 by de�nition. □
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