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Abstract

In this paper, we deal with a Markov chain on a measurable state space (X,X )
with transition kernel P admitting some small-set S ∈ X , that is such that P (x,A) ≥
ν(1A)1S(x) for any x ∈ X, A ∈ X and for some positive measure ν. Under this condition,
we propose a constructive characterisation of the existence of an P -invariant probability
measure π on (X,X ) such that π(1S) > 0. When such an π exists, it is approximated
in total variation norm by a �nite linear combination of non-negative measures only
depending on ν, P and S. Next, using standard drift-type conditions, we provide geo-
metric/subgeometric convergence bounds of the approximation. Theses bounds are fully
explicit and as simple as possible. Anyway the rates of convergence are accurate, and
they are optimal in the atomic case. Note that the rate of convergence for approximating
the iterates of P by the �nite-rank submarkovian kernels introduced in [HL20b] is also
discussed. This is a new approach for approximating π in the sense that it is not based
on the convergence of the iterates of P to π. Thus we need no aperiodicity condition.
Moreover, the proofs are direct and simple. They use neither the split chain in the non-
atomic case, nor the renewal theory, nor the coupling method, nor the spectral theory.
In some sense, this approach for Markov chains with a small-set is self-contained.

AMS subject classi�cation : 60J05

Keywords : Small set, Invariant probability, Finite-rank approximating, Rate of
convergence, Drift conditions

1 Introduction

Throughout the paper P is a Markov kernel on a measurable space (X,X ). Let (Xn)n≥0 be
a Markov chain with state space X and transition kernel P . If (Xn)n≥0 admits an invariant
distribution denoted by π, the two following issues are of interest for any A ∈ X .

(Q1) How to approximate the value of π(1A) and to control the error?

(Q2) How to approximate the value of P(Xn ∈ A) and to control the error?
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The standard way is to use, when n is large enough, P(Xn ∈ A) to approximate π(1A),
and π(1A) to approximate P(Xn ∈ A). Of course this approach is supported by all the
classical results related to the convergence in distribution of (Xn)n≥0 to π, or in other words
by all the results of convergence of the iterates Pn to the rank-one operator π(·)1X. It is
worth noticing that the approximation of P(Xn ∈ A) by π(1A) is e�ective only when π is
known. Unfortunately, in practice π is often unknown, in which case (Q1) becomes a central
issue. Concerning (Q1), observe that π may be approximated by something other than the
iterates of P , provided that the approximation procedure is e�ective and that the error is
well controlled. Then, once the stationary distribution π is well estimated, then the classical
bounds on |Pn(x,A)− π(1A)| can be used to solve (Q2) thanks to the triangular inequality.

The main objective of this work is to propose a new approach to address (Q1), which is not
directly based on the convergence of Pn to π. Speci�cally, when P has a small-set S and has
an invariant probability distribution π such that π(1S) > 0, we present a general and e�ective
procedure for approximating π. The central point here is that all the convergence bounds are
fully explicit and as simple as possible. Anyway the rates of convergence are accurate, and
they are optimal in the atomic case.

Let M+ (resp. M+
∗ ) denote the set of �nite non-negative (resp. positive) measures on

(X,X ). For any µ ∈ M+ and any µ-integrable function f : X→C, µ(f) denotes the integral∫
fdµ. Throughout the paper, the existence of a small-set S for P is assumed, that is

∃S ∈ X , ∃ν ∈ M+
∗ , ∀x ∈ X, ∀A ∈ X , P (x,A) ≥ ν(1A) 1S(x). (S)

Under Assumption (S), we can use the following sequence (βk)k≥1 ∈ (M+)N introduced in
[HL20b], which is recursively de�ned by

β1(·) := ν(·) and ∀n ≥ 2, βn(·) := ν
(
Pn−1 ·

)
−

n−1∑
k=1

ν
(
Pn−k−11S

)
βk(·). (1)

Note that no spectral theory is used here in contrast to [HL20b]. Under Assumption (S), the
following results are obtained.

� In Section 2 (Theorem 2.1), we prove that there exists a P−invariant probability measure
π on (X,X ) such that π(1S) > 0 if, and only if,

+∞∑
k=1

βk(1X) < ∞. (2)

Actually, under this condition, set µ :=
∑+∞

k=1 βk ∈ M+
∗ . Then µ(1S) = 1 and

π :=
µ

µ(1X)
(3)

is an P−invariant probability measure on (X,X ) such that π(1S) = 1/µ(1X) > 0.

In the next items Condition (2) is assumed, and for every n ≥ 1 we consider µn ∈ M+
∗ and

the probability measure µ̃n on (X,X ) de�ned by:

µn :=
n∑

k=1

βk and µ̃n :=
1

µn(1X)
µn.
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� In Section 3 (Theorem 3.1), we prove that the invariant distribution π given by For-
mula (3) can be approximated in total variation norm by either (µn/µ(1X))n or (µ̃n)n
with the following error estimates

∥π − µ(1X)
−1µn∥TV = µ(1X)

−1 εn and ∥π − µ̃n∥TV ≤
(
µ(1X)

−1 + ν(1X)
−1

)
εn (4)

with εn :=
+∞∑

k=n+1

βk(1X).

Note that limn εn = 0 from (2).

� In Section 4, geometric drift conditions are used to obtain geometric rates of convergence
for the above sequence (εn)n≥0. First, under the usual drift condition PV ≤ δ V +L 1S
for some constants δ ∈ (0, 1), L > 0 and some measurable function V : X→[1,+∞),
we establish that θ0 := lim supn[βn(1X)]

1/n < 1 and that: ∀θ ∈ (θ0, 1), εn = O(θn) (see
Theorem 4.1). Second, in order to obtain computable rates of convergence for εn, the
following condition is introduced

∃δ ∈ (0, 1), PV ≤ δ V + ν(V ) 1S . (5)

Under Condition (5), we prove that (Theorem 4.2)

εn ≤ ν(V )

1− δ
δn. (6)

Condition (5), which always holds when S is an atom (see Corollary 4.1), may fail in the
non atomic case. It is shown in Corollary 4.2 that, if P satis�es PV ≤ δ V on Sc := X\S
and if PV is bounded on S, then the bound (6) still holds, but with δα0 and V α0 in place
of δ and V for some easily computable α0 ∈ (0, 1). Finally some properties involved in
the proof of Theorem 4.2 (resp. of Corollary 4.2) are used in Theorem 4.3 to obtain a rate
of convergence for Pn − Tn, where Tn is the submarkovian �nite-rank kernel de�ned in
(12). This rate of convergence, which is expressed in V−weighted (resp. V α0−weighted)
total variation norm, enable us to specify the error bound obtained in [HL20b, HL20a]
for the V−geometrical ergodicity of P . Using the triangular inequality, any such error
bounds can be combined with (4) to solve (Q2), see Theorem 4.4.

� In Section 5 the following subgeometric drift-type conditions are introduced to study
the rate of convergence of (ε)n≥0: for m ≥ 1 there exists m + 1 measurable functions
Vi : X→[1,+∞), i = 0, . . . ,m, such that

∀i ∈ {0, . . . ,m− 1}, (P − T )Vi ≤ Vi − Vi+1 with T · := ν(·)1S . (7)

Under this assumption, (ε)n≥0 is proved to satisfy limn n
m−1εn = 0 (Theorem 5.1).

Moreover, if m ≥ 2 and if the sequence (βk(Vm))k≥1 with βk(·) de�ned in (1) is decreas-
ing, then (Theorem 5.2)

∀n ≥ 1, εn ≤ Cm ν(V0)

(m− 1)nm−1
with Cm := 2

m(m+1)
2

−1. (8)

If the decrease of (βk(Vm))k≥1 is not (or cannot be) checked and if m ≥ 3, then (8)
holds with m− 1 in place of m. Next it is shown in Corollary 5.1 that the subgeometric
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drift conditions (7) are ful�lled under the more explicit following ones:

∀i ∈ {0, . . . ,m− 1},

{
Vi+1 ≤ Vi

PVi ≤
(
Vi − Vi+1

)
+ ν(Vi) 1S .

(9)

When S is an atom, the �rst condition in (9) implies the second one. Then, using an
iterative procedure based on [JR02, Lem. 3.5], we prove that, if PV is bounded on S
and if P satis�es the condition PV ≤ V − c1 V

α on Sc for some constants α ∈ [0, 1),
c1 > 0, and some measurable function V : X→[1,+∞), then the bound (8) holds with
m := ⌊(1− α)−1⌋, where ⌊·⌋ denotes the integer part function on R (see Corollary 5.3).
Of course, in the non atomic case the second condition in (9) does not hold automatically
with V0 = V and V1 = c1 V

α, but the iterative procedure of the atomic case still applies,
provided that PV ≤ V − c1 V

α is replaced by PV̂ ≤ V̂ − ĉ1 V̂
α̂ with V̂ = V η0 for some

explicit η0 ∈ (0, 1], to initialize the procedure. Then, if η0 ≥ 1 − α and V , PV are
bounded on S, the bound (8) holds with m := ⌊η0(1−α)−1⌋ (see Corollary 5.4). Finally
in Theorem 5.3 the rate of convergence for Pn − Tn with Tn given in (12) is speci�ed
under the subgeometric drift conditions (7).

We recall that this work is not directly based on the convergence in distribution of the
Markov chain (Xn)n of transition kernel P . In particular no aperiodicity condition is in-
troduced. We use neither renewal theory, nor coupling method, nor even spectral theory.
Actually our main statements are concerned with the rate of convergence in (4), in which
the positive measure µn and the probability measure µ̃n write as a linear combination of the
non-negative measures ν, ν ◦ P, . . . , ν ◦ Pn−1 with explicit coe�cients only depending on ν,
P and S. Therefore, precise qualitative or quantitative comparisons with the classical works
recalled below are di�cult to address.

The basic fact is that our assumptions are quite close to usual ones. Indeed, the central
assumption (S) is the existence of a small-set S. But we do not introduce the strong aperi-
odicity condition ν(1S) > 0 in order to get a minorization condition as in [MT09, p 98] or
in [DMPS18, Chap. 11]. Thus no use of the split chain is needed for proving our results in
the non-atomic case. Next, Condition (2) is proved to be equivalent to

∑+∞
k=1 βk(1S) = 1 and∑+∞

k=1 k βk(1S) < ∞ in Theorem 2.1. When S is an atom, this last condition is nothing else
but the usual condition of �nite expectation of the �rst return time in S, see (22). Formula (3),
which has been obtained in the V -geometric ergodicity context [HL20b], extends a well-known
formula when P satis�es the Doeblin condition (X is a small-set), see [LC14], or when P is
irreducible and recurrent positive according to [Num84, p 74]. Next, the use of geometric or
subgeometric drift conditions is standard for investigating the rate of convergence of the iter-
ates Pn of the transition kernel P to π. Recall that in these works, the error term is usually
computed in some weighted-type total variation. In property (4), π is approximated by µn or
µ̃n in total variation. Under irreducibility and aperiodicity conditions, if P satis�es Assump-
tion (S) and the geometric drift condition PV ≤ δ V + L 1S for some constants δ ∈ (0, 1),
L > 0, and some measurable function V : X→[1,+∞), then P is V -geometrically ergodic,
e.g. see [RR04, Bax05, MT09, DMPS18] (see also [Hen06, Hen07, HM11, Del17, HL20b] for
alternative approaches). Moreover the previous drift condition bas been proved to be use-
ful to derive computable rates of convergence in the V -geometric ergodicity property, e.g. see
[MT94, LT96, RT99, RT00, Ros02, Bax05]. However recall that deriving e�ective and accurate
bounds in the V -geometric ergodicity property is a di�cult issue. Similarly non-geometric
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(for instance polynomial) rates of convergence can be derived under subgeometric drift con-
ditions, see [DMPS18, and the references therein] and [Del17] for an operator-type approach.
The second condition in (9) is an instance of such drift conditions. More general subgeometric
drift conditions can be found in [DFMS04, DMPS18] and quantitative bounds of polynomial
rates for the convergence of Pn to π are obtained in [AF05, AFV15].

The estimates in (4) do not give directly any information on the convergence of the iterates
of P to π, but they do provide an approximation of π(1A) for all A ∈ X . Anyway the error
bounds obtained in both geometrical case (Section 4) and subgeometrical case (Section 5) are
simple and explicit. The proofs in this paper are quite simple. It appears that the initial
idea of approximating π by µn or µ̃n rather than with the iterates of P simpli�es the error
computations.

2 Existence of π under Assumption (S)

We denote by B the space of real-valued bounded measurable functions on (X,X ), equipped
with its usual supremum norm: ∀f ∈ B, ∥f∥ := supx∈X |f(x)|. If Q1 and Q2 are bounded
linear operators on B, we write Q1 ≤ Q2 when the following property holds: ∀f ∈ B, f ≥
0, Q1f ≤ Q2f .

Let P be a Markov kernel satisfying Condition (S). Note that P is a bounded linear
operator on B since P is a Markov kernel, and that f 7→ ν(f) is a continuous linear form on
B, with ν ∈ M+

∗ given in (S). We set β1(·) := ν(·), and for every n ≥ 2

∀f ∈ B, βn(f) := ν
(
Pn−1f

)
−

n−1∑
k=1

ν
(
Pn−k−11S

)
βk(f). (10)

Moreover let T be the rank-one operator on B de�ned by :

∀f ∈ B, T f := ν(f) 1S = β1(f) 1S . (11)

It follows from the positivity of ν and from (S) that 0 ≤ T ≤ P .

Proposition 2.1 Assume that P satis�es Assumption (S). Then we have for every n ≥ 1

Tn := Pn − (P − T )n =
n∑

k=1

βk(·)Pn−k1S and 0 ≤ Tn ≤ Pn (12)

Tn − Tn−1P = (Pn−1 − Tn−1)T (13)

with the convention T0 = 0. Moreover, for every n ≥ 1, βn ∈ M+, that is: there exists a
non-negative measure on (X,X ) (still denoted by βn) such that

∫
X dβn < ∞ and, such that,

for every f ∈ B, we have βn(f) =
∫
X f dβn. Finally we have

∀n ≥ 1, βn = ν ◦ (Pn−1 − Tn−1

)
= ν ◦ (P − T )n−1 and βn+1 = βn ◦ (P − T ) (14)

with the convention that P 0 and (P − T )0 stand for the identity map on B.
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Proof. The �rst equality in (12) is just the de�nition of Tn. That 0 ≤ Tn ≤ Pn follows from
0 ≤ T ≤ P . The second equality in (12) for n = 1 is obvious from the de�nition of T . Now
assume that this second equality holds true for some n ≥ 1. Then

Pn+1 − Tn+1 := (P − T )n+1 = (P − T )(Pn − Tn) = Pn+1 − PTn − TPn + TTn

from which we deduce that, for every f ∈ B

Tn+1f = PTnf + TPnf − TTnf (15)

=

n∑
k=1

βk(f)P
n−k+11S +

(
β1(P

nf)−
n∑

k=1

βk(f)ν(P
n−k1S)

)
1S

=

n∑
k=1

βk(f)P
n+1−k1S + βn+1(f)1S

with βn+1(·) de�ned in (10). This provides the second equality in (12) by induction. Next we
obtain that for every n ≥ 1

Pn − Tn := (P − T )n = (Pn−1 − Tn−1)(P − T ) = Pn − Pn−1T − Tn−1P + Tn−1T

so that
Tn − Tn−1P = Pn−1T − Tn−1T = (Pn−1 − Tn−1)T.

Formula (13) is proved. Now we deduce from (10) and then from (12) that

βn(f) = ν
(
Pn−1f

)
−

n−1∑
k=1

βk(f) ν
(
Pn−k−11S

)
= ν

(
Pn−1f − Tn−1f

)
.

This gives the �rst equality in (14), from which the second one is easily deduced. Finally
note that β1(·) = ν(·) is a positive measure on (X,X ), so that for every n ≥ 1 βn(·) is a
linear combination of non-negative measures on (X,X ) (by induction). That βn is a �nite
non-negative measure follows from (14) since 0 ≤ Pn−1 − Tn−1 ≤ Pn−1 □

Now we can prove the main theorem of this section.

Theorem 2.1 Assume that P satis�es Assumption (S). Then the four following assertions
are equivalent.

(i) There exists a P−invariant probability measure π on (X,X ) such that π(1S) > 0.

(ii)
+∞∑
k=1

βk(1X) < ∞.

(iii)
+∞∑
k=1

βk(1S) = 1 and
+∞∑
k=1

k βk(1S) < ∞.

(iv) lim
n→+∞

βk(1X) = 0 and
+∞∑
k=1

k βk(1S) < ∞.
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Moreover, under any of these four conditions, we have

+∞∑
k=1

k βk(1S) =
1

ν(1X)

+∞∑
k=1

βk(1X) (16)

and

π :=
1∑+∞

k=1 βk(1X)

+∞∑
k=1

βk

is an P−invariant probability measure on (X,X ) with

π(1S) =
1∑+∞

k=1 βk(1X)
> 0. (17)

Proof. Assume that Property (i) holds. We deduce from (12) that

0 ≤ π
(
(Pn − Tn)1X

)
= 1− π(Tn1X) = 1− π(1S)

n∑
k=1

βk(1X),

from which it follows that
∑+∞

k=1 βk(1X) ≤ 1/π(1S) < ∞ since π(1S) > 0 by hypothesis. This
gives (ii). Conversely assume that Property (ii) holds. Then

µ :=

+∞∑
k=1

βk ∈ M+
∗

since µ(1X) ≥ β1(1X) = ν(1X) > 0. Also note that, for every f ∈ B, the series
∑+∞

k=1 βk(f)
absolutely converges in C since |βk(f)| ≤ ∥f∥βk(1X) (the series

∑+∞
k=1 βk is absolutely con-

vergent in the topological dual space of B). We obtain that for every f ∈ B (by convention
we set T0 := 0)

µ(Pf) =
+∞∑
k=1

ν
(
P kf − Tk−1Pf

)
(from (14)) (18)

=

+∞∑
k=1

ν
(
P kf − Tkf

)
+

+∞∑
k=1

ν
(
P k−1Tf − Tk−1Tf

)
(from (13)) (19)

= µ(f)− ν(f) + µ(Tf) (from (14) and β1(f) = ν(f))

= µ(f)− ν(f) + µ(1S) ν(f) (from the de�nition of T )

= µ(f)− ν(f)
(
1− µ(1S)

)
.

Note that the equality from (18) to (19) holds since both series in the right-hand side of (19) are
absolutely convergent: indeed they equal to

∑+∞
k=1 βk+1(f) and

∑+∞
k=1 βk(Tf)f respectively.

With f = 1X the previous equality gives µ(1S) = 1 since P1X = 1X and ν(1X) > 0. Thus µ is
a P−invariant non-negative measure such that µ(1X) > 0 and µ(1S) = 1, so that π = µ/µ(1X)
is a P−invariant probability measure on (X,X ) such that π(1S) = 1/µ(1X) > 0. We have
proved that (i) ⇔ (ii) and that Equality (17) holds true under any of these two conditions.

Next we have

∀k ≥ 1, βk+1(1X) = βk ◦ (P − T )(1X) = βk(1X)− ν(1X)βk(1S) (20)
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from (14) and the de�nition of T . Set: ∀k ≥ 1, bk := βk(1X) and ck := ν(1X)βk(1S). Note
that bk, ck ≥ 0 and that (bk)k is decreasing. From (20) (i.e. ck = bk − bk+1) we deduce that

n∑
k=1

k ck =

n∑
k=1

(
bk − bn+1

)
=

+∞∑
k=1

ϕ(n)(k) with ϕ(n)(k) :=
(
bk − bn+1

)
1[1,n](k).

Note that 0 ≤ ϕ(n) ≤ ϕ(n+1). Moreover, if limn bn = 0, then we have ∀k ≥ 1, limn ϕ
(n)(k) = bk

and the following equalities hold in [0,+∞]

+∞∑
k=1

k ck = lim
n→+∞

n∑
k=1

k ck = lim
n→+∞

+∞∑
k=1

ϕ(n)(k) =

+∞∑
k=1

bk

from the monotone convergence theorem with respect to the counting measure. This gives
the equivalence (ii) ⇔ (iv) and Equality (16). Equivalence (iii) ⇔ (iv) follows from

∀n ≥ 1,
n−1∑
k=1

ck =
n−1∑
k=1

(
bk − bk+1

)
= ν(1X)− bn (21)

due to (20) and β1(1X) = ν(1X).

□

Recall that a set S ∈ X is said to be an atom for P if: ∀(a, a′) ∈ S2, P (a, ·) = P (a′, ·).
Note that Assumption (S) then holds with ν(·) := P (a0, ·) with some (any) a0 ∈ S. In the
atomic case, Conditions (ii) or (iii) of Theorem 2.1 corresponds to the well-known condition
involving the �rst return time in an atom. More precisely, let us assume that S is an atom
for P and de�ne RS as the �rst return time in S:

RS := inf{n ≥ 1 : Xn ∈ S}.

Then, we have

∀n ≥ 1, βn(1S) = Pa0

(
RS = n

)
and βn(1X) = Pa0

(
RS ≥ n

)
(22)

with βk(·) de�ned from S and ν(·) := P (a0, ·) with some a0 ∈ S. Hence Conditions (ii) of
Theorem 2.1 rewrites as

∑
k=1 P(RS ≥ k) < ∞ and Conditions (iii) as Pa0(RS < ∞) = 1 and∑

k=1 kP(RS = k) < ∞. Both conditions read as the usual moment condition of the return
time in S: Ea0 [RS ] < ∞.

3 Approximation of π in total variation norm

Recall that, if λ1 and λ2 belong to M+, the total variation norm ∥λ1 − λ2∥TV is de�ned by

∥λ1 − λ2∥TV := sup
f∈B,∥f∥≤1

∣∣λ1(f)− λ2(f)
∣∣.

If λ1 and λ2 are probability measures on (X,X ), then ∥λ1 − λ2∥TV corresponds to their
standard total variation distance.
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Under Assumption (S), for every n ≥ 1 let us de�ne on (X,X ) the following �nite positive
measure µn and probability measure µ̃n:

∀n ≥ 1, µn :=
n∑

k=1

βk and µ̃n =
1

µn(1X)
µn.

Theorem 3.1 Assume that P satis�es Assumption (S) and that one of the four conditions
(i), (ii), (iii) or (iv) of Theorem 2.1 holds. De�ne

∀n ≥ 1, εn :=

+∞∑
k=n+1

βk(1X). (23)

Then the P−invariant probability measure π := µ/µ(1X) on (X,X ), with µ :=
∑+∞

k=1 βk,
satis�es the following properties:

∀n ≥ 1,
∥∥π − µ(1X)

−1µn

∥∥
TV

= µ(1X)
−1 εn ≤ ν(1X)

−1 εn (24)

∀n ≥ 1,
∥∥π − µ̃n

∥∥
TV

≤
(
µ(1X)

−1 + ν(1X)
−1

)
εn ≤ 2 ν(1X)

−1 εn. (25)

Proof. We have

∥π − µn/µ(1X)∥TV = (µ− µn)(1X)/µ(1X) = εn/µ(1X)

since π = µ/µ(1X) and µ − µn is a non-negative measure on (X,X ), so that ∥µ − µn∥TV =
(µ−µn)(1X) = εn from (23). The last inequality in (24) follows from µ(1X) ≥ β1(1X) = ν(1X).
To prove (25) consider any f ∈ B such that ∥f∥ ≤ 1. Then

∣∣π(f)− µ̃n(f)
∣∣ =

∣∣∣∣π(f)− µn(f)

µn(1X)

∣∣∣∣
≤

∣∣∣∣π(f)− µn(f)

µ(1X)

∣∣∣∣+ |µn(f)| ×
∣∣∣∣ 1

µ(1X)
− 1

µn(1X)

∣∣∣∣
≤ εn

µ(1X)
+ µ(1X)

∣∣µn(1X)− µ(1X)

µ(1X)µn(1X)

∣∣ = εn
µ(1X)

+
1

µn(1X)

∣∣µn(1X)− µ(1X)
∣∣

≤
(

1

µ(1X)
+

1

ν(1X)

)
εn

by using (24) and the following facts: �rst |µn(f)| ≤ µn(1X) ≤ µ(1X), second (23) to get
|µn(1X)− µ(1X)| = εn and �nally µn(1X) ≥ ν(1X). □

Remark 3.1 If P satis�es Assumption (S) with S = X, then P is uniformly ergodic, and
we have supx∈X ∥Pn(x, ·) − π∥TV ≤ (1 − ν(1X))

n, e.g. see [RR04]. Note that, in this case,
we also have εn = (1 − ν(1X))

n in (24)-(25) since it follows from an easy induction that:
∀k ≥ 1, βk(1X) = ν(1X) (1− ν(1X))

k−1.
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4 Explicit bound under geometric drift conditions

Throughout the Sections 4 and 5, any measurable function V : X→[1,+∞) will be called a
Lyapunov function. For the sake of simplicity, the Lyapunov function V considered in this
section is assumed to satisfy: ∀x ∈ X, (PV )(x) < ∞. Hence, under Assumption (S), we have

ν(V ) < ∞.

The following theoretical statement is derived from Theorem 3.1 and [HL20b, Th. 3.1].

Theorem 4.1 ([HL20b]) Assume that P satis�es Assumption (S). Moreover assume that

∃δ ∈ (0, 1), ∃L > 0, PV ≤ δ V + L 1S , (D)

with respect to some Lyapunov function V . Then we have

θ0 := lim sup
n

[βn(1X)]
1
n < 1.

That is, for every θ ∈ (θ0, 1) there exists a positive constant Cθ such that

∀k ≥ 1, βk(1X) ≤ Cθ θ
k. (26)

Hence Properties (24) and (25) hold with

εn ≤ Cθ

1− θ
θn+1. (27)

Proof. We know from [HL20b, Th. 3.1] that lim supn[βn(V )]
1
n < 1 under Assumptions (S)

and (D). Thus θ0 < 1 since 1X ≤ V . Then (27) follows from (23).

□

As mentioned in [HL20b, Rem. 5.4], the real number lim supn[βn(V )]1/n may be strictly
less than the so-called spectral gap related to the V -geometric ergodicity of P . In this case the
rate of convergence in (27) is better than that given by the V -geometric ergodicity. Moreover
note that (27) concerns the total variation norm rather than the usual V−weighted norm
involved in V -geometric ergodicity. Recall that �nding explicit rate and bound in the V -
geometric ergodicity property are di�cult issues. Similarly, �nding explicit bound for θ0
and for the constant Cθ in (27) is di�cult a priori, because the above mentioned property
lim supn[βn(V )]1/n < 1 is obtained in [HL20b, Th. 3.1] thanks to spectral arguments.

Below various statements specify the explicit control of the error term εn in (24)-(25) under
Assumption (S) and the following drift condition:

∃δ ∈ (0, 1), ∀x ∈ Sc, (PV )(x) ≤ δ V (x). (DSc)

Note that Condition (DSc) is equivalent to (D) when PV is bounded on S.

Theorem 4.2 Assume that P satis�es (S) for some S ∈ X and ν ∈ M+
∗ . Moreover assume

that there exists a Lyapunov function V such that P satis�es (DSc) and the following condition
on S

∀x ∈ S, (PV )(x) ≤ δ V (x) + ν(V ). (DS)

Then the estimates (24)-(25) hold true with

εn ≤ ν(V )

1− δ
δn. (28)
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Note that Conditions (DSc)-(DS) rewrite as

PV ≤ δ V + ν(V )1S .

However, in view of the proof below and of the next Corollary 4.2, it may be convenient to
well separate the condition on Sc and that on S.

Proof. Recall that T = ν(·)1S . Then

(P − T )V = 1Sc

(
PV − ν(V )1S

)
+ 1S

(
PV − ν(V )1S

)
= 1Sc PV + 1S

(
PV − ν(V )1S

)
≤ δ V 1Sc + 1S

(
PV − ν(V )1S

)
= δ V + 1S

(
PV − δ V − ν(V )1S

)
≤ δ V

from (DSc) and (DS). Using P − T ≥ 0 and iterating the previous inequality gives

0 ≤ (P − T )nV ≤ δn V. (29)

Next, it follows from (14) that

∀n ≥ 1, βn(V ) = ν
(
(P − T )n−1V

)
≤ ν(V ) δn−1

from which we deduce that

βn(1X) ≤ βn(V ) ≤ ν(V ) δn−1. (30)

from the positivity of βn. Then Conditions (ii) of Theorem 2.1 is ful�lled, and (28) is due to
the de�nition of εn in (23).

□

When Assumption (S) holds for an atom S and for ν(·) := P (a0, ·) with some (any) a0 ∈ S,
then Condition (DS) is ful�lled since

∀x ∈ S, PV (x)− δ V (x)− ν(V ) = −δ V (x) ≤ 0.

Consequently the next corollary follows from Theorem 4.2.

Corollary 4.1 (Atomic case) Assume that P satis�es Assumption (S) with an atom S and
with ν(·) de�ned by ν(·) := P (a0, ·) with some (any) a0 ∈ S. Moreover assume that there exists
a Lyapunov function V such that P satis�es the drift condition (DSc). Then the geometrical
bound (28) for εn holds true.

Remark 4.1 In the atomic case, the bound βn(1X) ≤ ν(V ) δn−1 (see (30)) may be derived
from well-known results under Assumption (DSc). Indeed we know from (22) that βn(1X) =
Pa0

(
RS ≥ n

)
, where RS is the �rst return time in S. Moreover (DSc) gives

PV ≤ δ V + (c− δϑ) 1S with c := ν(V ) and ϑ := inf
x∈S

V (x).

Then we deduce from [DMPS18, Prop.4.3.3(ii)] that

∀x ∈ X, Ex

[
δ−RS

]
≤ V (x) + (c− δϑ) δ−1. (31)
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hence
Ea0

[
δ−RS

]
≤ ϑ+ (c− δϑ)δ−1 = c δ−1.

Consequently we obtain the same estimate as in (30) since

βn(1X) = Pa0

(
RS ≥ n

)
= Pa0

(
δ−RS ≥ δ−n

)
≤ c δn−1

from Markov's inequality.

According to the previous discussion, the bound βn(1X) ≤ ν(V ) δn−1 obtained in (30),
and consequently the resulting bound (28) for εn, are not only simple and explicit but also
quite optimal. Although Condition (DS) is automatically satis�ed in the atomic case and
may hold in the non atomic case too, this condition is nevertheless restrictive. In the next
statement, Condition (DSc) is preserved, but the function V is replaced with V α0 for some
suitable α0 ∈ (0, 1] in Condition (DS). The price to be paid is that the geometrical bound
(28) for εn will hold with δα0n in place of the expected rate δn. But the bene�t will be that
the bound for εn remains simple and explicit.

Let V be a Lyapunov function such that PV is bounded on S. Then

∃α0 ∈ (0, 1], ∀x ∈ S, (PV α0)(x) ≤ δα0 V (x)α0 + ν(V α0). (32)

Indeed, set MS := supS PV . Then, for every α ∈ (0, 1], we have 1 ≤ supS PV α ≤ MS
α from

1X ≤ V α and PV α ≤ (PV )α (Jensen's inequality). Moreover

∀x ∈ S, (PV α)(x)− δα V (x)α − ν(V α) ≤ MS
α − δα − ν(1X)

from 1X ≤ V . Passing to the limit when α→ 0 gives (32) since ν(1X) > 0.

Corollary 4.2 Assume that P satis�es Assumption (S) and that there exists a Lyapunov
function V such that P satis�es Condition (DSc) and PV is bounded on S (so that the usual
drift condition (D) holds). Let α0 ∈ (0, 1] be such that Condition (32) is ful�lled. Then the
estimates (24)-(25) hold true with

εn ≤ ν(V α0)

1− δα0
δα0n. (33)

Proof. We have
∀x ∈ Sc, (PV α0)(x) ≤ δα0 V (x)α0 (34)

from PV α0 ≤ (PV )α0 (Jensen's inequality) and from (DSc). Moreover (32) holds. Then
Corollary 4.2 follows from Theorem 4.2 applied to V α0 and δα0 in place of V and δ.

□

The previous statements concern the approximation of the stationary distribution π. To
conclude this section recall that the usual V -weighted operator norm of Pn−Tn with Tn given
in (12) is proved in [HL20b, Cor. 2.3] to converge to zero with geometric rate of convergence
under Assumptions (S) and (D). Using Inequality (29), we can here specify this rate of
convergence under the assumptions of Theorem 4.2 or Corollary 4.2.
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Theorem 4.3 Assume that P satis�es the assumptions of Theorem 4.2. Then

sup
|f |≤V

sup
x∈X

∣∣(Pnf)(x)− (Tnf)(x)
∣∣

V (x)
≤ δn with Tnf =

n∑
k=1

βk(f)P
n−k1S (35)

where the functions f are assumed to be real-valued and measurable on (X,X ). Similarly, if
P satis�es the assumptions of Corollary 4.2, then Property (35) holds with V α0 and δα0 in
place of V and δ.

Proof. If P satis�es the assumptions of Theorem 4.2, then it follows from (29) that for every
measurable function f : X→R such that |f | ≤ V

|Pnf − Tnf | = |(P − T )nf | ≤ (P − T )n|f | ≤ (P − T )nV ≤ δn V, (36)

from which we deduce (35). Under the assumptions of Corollary 4.2, we know that P satis�es
the assumptions of Theorem 4.2 with V α0 and δα0 in place of V and δ, so that (36) holds
with V α0 and δα0 in place of V and δ too.

□

If P satis�es the assumptions of Theorem 4.2 and the strong aperiodicity condition ν(1S) >
0, then the bound (35) can be used to obtain a rate of convergence in the V -geometrical
ergodicity property, which simply depends on δ ∈ (0, 1) in (DS) and on the real number

ϱS := lim sup
n→+∞

(
sup
x∈X

∣∣(Pn1S)(x)− π(1S)
∣∣

V (x)

) 1
n

introduced in [HL20b]. More precisely we know from [HL20b] that ϱS < 1. In Theorem 4.4
below we consider any ϱ ∈ (ϱS , 1) and we de�ne

α := max(δ, ϱ) and Dϱ := sup
n≥0

ϱ−n sup
x∈X

∣∣(Pn1S)(x)− π(1S)
∣∣

V (x)
< ∞.

Theorem 4.4 Assume that P satis�es the assumptions of Theorem 4.2 and that ν(1S) > 0.
Then we have

sup
|f |≤V

sup
x∈X

∣∣(Pnf)(x)− π(f)
∣∣

V (x)
≤ ν(V ) + 1− δ

1− δ
δn +

ν(V )Dϱ

δ
nαn. (37)

Moreover, setting c := µ(1X)
−1+ν(1X)

−1 ≤ 2ν(1X)
−1, the following inequality holds for every

n ≥ 1 and for every A ∈ X :∣∣∣∣Pn(x,A)− µn(1A)

µn(1X)

∣∣∣∣ ≤ (
(1 + c)ν(V ) + 1− δ

1− δ
δn +

ν(V )Dϱ

δ
nαn

)
V (x). (38)

Similarly, if P satis�es the assumptions of Corollary 4.2 and if ν(1S) > 0, then the bounds
(37) and (38) hold true with V α0 and δα0 in place of V and δ (the function V must be replaced
by V α0in the de�nitions of ϱS and Dϱ).
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Proof. Property (37) can be easily obtained by using the bound (35) in the proof of [HL20b,
Th. 5.3]. Then Inequality (38) follows from (37), (25) and (28) by using V ≥ 1X and the
triangular inequality.

□

Similar inequality to (38) can be obtained with µn(1A)/µ(1X) from (24). Of course any bound
known for |Pn(x,A)−π(1A)| combined with (24) or (25) can be used to obtain an approximate
value of Pn(x,A).

Remark 4.2 Let r be the spectral radius of the operator P −T on the V−weighted supremum
space (BV , ∥ · ∥V ) composed of the complex-valued measurable functions f : X→C such that
∥f∥V := supX |f |/V < ∞. Then (35) gives r ≤ δ. Consequently the proofs of [HL20b, Th. 5.3]
and [HL20a, Th. A.1] can be easily adapted to obtain the following alternative:

� either ϱS ≤ δ

� or ϱS = θ−1 with θ := min
{
|z| : z ∈ C, 1 < |z| < 1/δ, B1X(z) = 0

}
, where B1X is the

power series de�ned by B1X(z) :=
∑+∞

k=1 βk(1X) z
k.

This alternative is due to the following fact: if λ ∈ C is such that δ < |λ| ≤ 1, then λ is an
eigenvalue of P on BV if, and only if, B1X(λ

−1) = 0 (see [HL20a, Prop. A.2]). We can observe
that the bound (28) in Theorem 4.2 or Corollary 4.1 does not take into account the possible
eigenvalues λ of P such that δ < |λ| < 1, whereas the bound (37), thus (38), depend on the
real number ϱS which equals to θ−1, thus is strictly greater than δ, when such eigenvalues
exist. Recall that atomic instances with such eigenvalues exist, e.g. see [HL14, Prop. 4.1].
Consequently, at least in the geometric and atomic case, the use of the non-negative measures
βn seems to erase the e�ect of intermediate eigenvalues between δ and the eigenvalue 1. By
contrast, the (necessary non-atomic) case when the rate of convergence in (4) is only O(δα0n)
for some α0 ∈ (0, 1) rather than O(δn) (Corollary 4.2) could coincide with the existence of
such intermediate eigenvalues, which therefore would slow down the rate of convergence in (4)
as in (37).

5 Explicit bounds under subgeometric drift conditions

For the sake of simplicity, any Lyapunov function V in this section is assumed to satisfy:
∀x ∈ X, (PV )(x) < ∞.

5.1 Theoretical results

Let P be a Markov kernel on (X,X ) satisfying Assumption (S). Let T (·) := ν(·)1S . For
m ≥ 1 let us introduce the following assumption: there exists a collection {Vi}mi=0 of Lyapunov
functions such that

∀i ∈ {0, . . . ,m− 1}, (P − T )Vi ≤ Vi − Vi+1. (39)

Note that the properties (39) and P − T ≥ 0 from (S) give

Vm ≤ Vm−1 ≤ · · · ≤ V1 ≤ V0.
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Since (PV0)(·) < ∞ by hypothesis, we have under Assumption (S)

ν(V0) < ∞. (40)

In this section we �rst present a theoretical result which shows that the estimates (24)-
(25) hold with a polynomial rate of convergence under Assumptions (39). Second we propose
further statements in which an explicit polynomial rate of convergence is obtained. Denote
by (ϑj)j≥0 the recurrent sequence of positive real numbers de�ned by

ϑ0 = 1 and ∀ℓ ≥ 1, ϑℓ =
ℓ−1∑
j=0

Cj
ℓϑj . (41)

Theorem 5.1 Let P be a Markov kernel on (X,X ) satisfying Assumption (S). Moreover as-
sume that there exists a collection {Vi}mi=0 of Lyapunov functions satisfying Assumptions (39).
Then we have

∀j ∈ {0, . . . ,m− 1},
+∞∑
k=1

kj βk(Vj+1) ≤ ϑj ν(V0). (42)

Moreover the estimates (24)-(25) hold true with (εn)n≥0 satisfying

lim
n→+∞

nm−1εn = 0. (43)

Proof. Assume that (39) holds with m = 1, that is (P − T )V0 ≤ V0 − V1, or equivalently:
V1 ≤ V0 − (P − T )V0. Thus

∀k ≥ 0, (P − T )kV1 ≤ (P − T )kV0 − (P − T )k+1V0

from which we deduce that

∀n ≥ 1,
n∑

k=0

(P − T )kV1 ≤
n∑

k=0

[
(P − T )kV0 − (P − T )k+1V0

]
≤ V0.

It follows from (14) that

∀n ≥ 1,
n+1∑
k=1

βk(V1) ≤ ν(V0).

This proves (42) when m = 1. Now assume that Inequalities (42) hold true for some m ≥ 1.
Assume that (39) holds at order m+ 1. Then using Vm+1 ≤ Vm − (P − T )Vm, we get

∀k ≥ 0, (P − T )kVm+1 ≤ (P − T )kVm − (P − T )k+1Vm
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hence we have for every n ≥ 1

n∑
k=0

(k + 1)m (P − T )kVm+1 ≤
n∑

k=0

(k + 1)m (P − T )kVm −
n+1∑
k=0

km (P − T )kVm

≤
n∑

k=0

[
(k + 1)m − km

]
(P − T )kVm

≤
m−1∑
j=0

Cj
m

n∑
k=0

kj (P − T )kVm

≤
m−1∑
j=0

Cj
m

n∑
k=0

kj (P − T )kVj+1

by using ∀j ∈ {0, . . . ,m− 1}, Vm ≤ Vj+1 for the last inequality. It follows from (14) that

+∞∑
k=1

km βk(Vm+1) ≤
m−1∑
j=0

Cj
m

+∞∑
k=0

kj βk+1(Vj+1) ≤
m−1∑
j=0

Cj
m

+∞∑
k=1

kj βk(Vj+1) ≤
(m−1∑

j=0

Cj
mϑj

)
ν(V0)

from the induction hypothesis. This gives Inequalities (42) at order m+ 1. Finally, to prove
(43), note that

εn =

+∞∑
k=n+1

βk(1X) ≤
+∞∑

k=n+1

βk(Vm) ≤ 1

(n+ 1)m−1

+∞∑
k=n+1

km−1βk(Vm)

since 1X ≤ Vm. This gives (43) since
∑+∞

k=1 k
m−1 βk(Vm) < ∞ from (42) for j = m− 1.

□

Theorem 5.2 Let P be a Markov kernel on (X,X ) satisfying Assumption (S). Moreover
assume that there exists there exist a collection {Vi}mi=0 of Lyapunov functions satisfying As-
sumptions (39). Then the following assertions hold true.

(i) ∀i ∈ {0, . . . ,m}, ∀k ≥ 1, βk(Vi) < ∞.

(ii) If the sequence (βk(Vm))k≥1 is decreasing, then

∀n ≥ 1, βn(Vm) ≤ Cm ν(V0)

nm
with Cm := 2

m(m+1)
2

−1. (44)

Moreover, if m ≥ 2, then the estimates (24)-(25) hold true with

∀n ≥ 1, εn ≤ Cm ν(V0)

(m− 1)

1

nm−1
. (45)

(iii) If the sequence
(
βk(Vm)

)
k≥1

is decreasing and if µ(V0) :=
∑+∞

k=1 βk(V0) < ∞, then

∀n ≥ 1, βn(Vm) ≤ Dm µ(V0)

nm+1
with Dm := 2

(m+1)(m+2)
2

+1. (46)

Moreover the estimates (24)-(25) hold true with

∀n ≥ 1, εn ≤ Dm µ(V0)

m

1

nm
. (47)
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Note that, using the triangular inequality, any quantitative error bounds on |Pn(x,A)−π(1A)|
as in [AF05, AFV15] can be combined with (45) or (47) to solve (Q2).

Remark 5.1 A su�cient condition for the sequence (βk(Vm))k≥1 to be decreasing is that
there exists an additional Lyapunov function Vm+1 satisfying PVm ≤ Vm − Vm+1 on Sc and
Vm+1 ≤ Vm. This fact follows from Assertion (b) of Lemma 5.1 applied with V = Vm and
W = Vm+1. Consequently, in practice, if the decrease of the sequence (βk(Vm))k≥1 cannot be
directly checked, then this last condition can be dropped in the assumptions of Theorem 5.2
provided that (39) is assumed at order m + 1. But it is worth noticing that, in this case,
the conclusions (44)-(45) and (46)-(47) are only guaranteed at the order m (as stated in
Theorem 5.2). Indeed the conditions PVm ≤ Vm − Vm+1 on Sc and Vm+1 ≤ Vm are then
only used to prove that the sequence (βk(Vm))k≥1 is decreasing (the decrease of the sequence
(βk(Vm+1))k≥1 is not guaranteed).

Lemma 5.1 Assume that P satis�es Assumption (S). Let V and W be two Lyapunov func-
tions such that

(P − T )V ≤ V −W where T (·) := ν(·)1S . (48)

Then the following statements hold true.

(a) ∀k ≥ 1, βk(V ) < ∞

(b) The sequence
(
βk(V )

)
k≥1

is decreasing.

(c) If the sequence
(
βk(W )

)
k≥1

is decreasing, then we have for every k ≥ 1 and ε ∈ {0, 1}

βk(W ) ≤ ν(V )

k
and β2k−ε(W ) ≤ βk(V )

k
.

(d) If µ(V ) :=
∑+∞

k=1 βk(V ) < ∞ and if the sequence
(
βk(W )

)
k≥1

is decreasing, then

∀n ≥ 1, βn(W ) ≤ 16µ(V )

n2
.

Proof. Note that W ≤ V from (48) and P − T ≥ 0. Next we deduce from (48) that
∀j ≥ 1, (P − T )jV ≤ (P − T )j−1(V −W ). Then (14) gives

∀j ≥ 1, βj+1(V ) ≤ βj(V )− βj(W ) ≤ βj(V ) in [0,+∞].

Using β1(V ) = ν(V ) < ∞, Assertion (a) is obtained by induction, and Assertion (b) is then
obvious. Next rewrite the previous inequalities as

∀j ≥ 1, 0 ≤ βj(W ) ≤ βj(V )− βj+1(V ) (49)

and assume that (βj(W ))j≥1 is decreasing. Then it follows from (49) that

∀k ≥ 1, k βk(W ) ≤
k∑

j=1

βj(W ) ≤ β1(V )− βk+1(V ) ≤ ν(V ),
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from which we deduce the �rst inequality in Assertion (c). Moreover (49) also gives

∀k ≥ 1, ∀ε ∈ {0, 1} k β2k−ε(W ) ≤
2k−ε∑
j=k

βj(W ) ≤ βk(V )− β2k−ε+1(V ) ≤ βk(V ), (50)

from which we deduce the second inequality in Assertion (c). Finally, to prove Assertion (d),
note that for every ℓ ≥ 1 and every ε ∈ {0, 1}

ℓ β2ℓ−ε(V ) ≤
2ℓ−ε∑
j=ℓ

βj(V ) ≤ µ(V ) < ∞ (51)

since (βj(V ))j≥1 is decreasing (Assertion (b)). Let n ≥ 1 and write n = 2(2ℓ− ε1)− ε2 with
ℓ ≥ 1 and (ε1, ε2) ∈ {0, 1}2. Then it follows from (50) and (51) that

βn(W ) ≤ β2ℓ−ε1(V )

2ℓ− ε1
≤ µ(V )

ℓ(2ℓ− 1)
≤ µ(V )

ℓ2
≤ 16µ(V )

(n+ 2ε1 + ε2)2
≤ 16µ(V )

n2
.

□

Proof of Theorem 5.2. Assertion (a) of Lemma 5.1 applied with V = V0 and W = V1 proves
that: ∀k ≥ 1, βk(V0) < ∞. Then statement (i) of Theorem 5.2 holds since Vi ≤ V0. Now let
us prove by induction on the positive integer m that Property (44) holds. If m = 1, then the
�rst inequality in Assertion (c) of Lemma 5.1 applied with V = V0 and W = V1 provides

∀n ≥ 1, βn(V1) ≤
ν(V0)

n
.

Hence (44) holds with C1 = 1 when m = 1. Now assume that (44) holds for some m ≥ 1. Let
{Vi}m+1

i=0 be a collection of Lyapounov functions such that

∀i ∈ {0, . . . ,m}, (P − T )Vi ≤ Vi − Vi+1

and �nally such that the sequence (βk(V
m+1))k≥1 is decreasing. Note that Assertion (b) of

Lemma 5.1 applied with V = Vm and W = Vm+1 ensures that the sequence (βk(Vm))k≥1 is
decreasing. Consequently we have

∀k ≥ 1, βk(Vm) ≤ Cm ν(V0)

km
with Cm := 2

m(m+1)
2

−1 (52)

from the induction hypothesis. Next let n ≥ 1 and write n = 2k − ε with k ≥ 1 and
ε ∈ {0, 1}. Then the second inequality in Assertion (c) of Lemma 5.1 applied with V = Vm

and W = Vm+1 gives

βn(Vm+1) ≤
βk(Vm)

k
(53)

so that βn(Vm+1) ≤ Cmν(V0)/k
m+1 from (52). Hence

βn(Vm+1) ≤
2m+1Cm ν(V0)

(n+ ε)m+1
≤ Cm+1 ν(V0)

nm+1
with Cm+1 = 2m+1Cm = 2

(m+1)(m+2)
2

−1.

We have proved (44) by induction.
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Now, if m ≥ 2, then Conditions (ii) of Theorem 2.1 is ful�lled due to (44) and 1X ≤ Vm.
Moreover Property (45) is deduced from

∀n ≥ 1, εn ≤
+∞∑

k=n+1

βk(Vm) ≤ Cmν(V0)
+∞∑

k=n+1

1

km
≤ Cmν(V0)

∫ +∞

n

dt

tm
=

Cm ν(V0)

(m− 1)nm−1

since βk(1X) ≤ βk(Vm). Statement (ii) of Theorem 5.2 is established.

The proof of Statement (iii) of Theorem 5.2 follows the same induction procedure. Indeed,
if m = 1, then Assertion (d) of Lemma 5.1 applied with V = V0 and W = V1 provides

∀n ≥ 1, βn(V1) ≤
16µ(V0)

n2
.

Hence (46) holds with D1 = 16 when m = 1. Now, assume that (46) is true at order m
for some m ≥ 1, and consider a collection {Vi}m+1

i=0 of Lyapunov functions as in the above
induction proof. Then, writing n ≥ 1 as n = 2k − ε with k ≥ 1 and ε ∈ {0, 1}, we deduce
from (53) and from the induction hypothesis that

βn(Vm+1) ≤
βk(Vm)

k
≤ Dm µ(V0)

km+2
with Dm := 2

(m+1)(m+2)
2

+1.

Hence

βn(Vm+1) ≤
2m+2Dm µ(V0)

(n+ ε)m+2
≤ Dm+1 µ(V0)

nm+2
with Dm+1 = 2m+2Dm.

This proves (46). Then Condition (ii) of Theorem 2.1 is ful�lled, and Property (47) can be
derived as above.

□

5.2 Applications

Let P be a Markov kernel on (X,X ) satisfying Assumption (S) for some S ∈ X and ν ∈ M+
∗ .

For m ≥ 1 let us introduce the following conditions: there exists a collection {Vi}mi=0 of
Lyapunov functions such that

∀i ∈ {0, . . . ,m− 1},


∀x ∈ X, Vi+1(x) ≤ Vi(x)

∀x ∈ Sc, (PVi)(x) ≤ Vi(x)− Vi+1(x)

∀x ∈ S, PVi(x) ≤
(
Vi(x)− Vi+1(x)

)
+ ν(Vi).

(54)

Note that the second condition in (54) implies that Vi+1 ≤ Vi on Sc, so that the �rst condition
in (54) may be replaced with Vi+1 ≤ Vi on S. Also note that the term (Vi(x) − Vi+1(x)) in
the third condition of (54) is non-negative. Finally observe that Assumption (54) rewrites in
a more concise form as follows

∀i ∈ {0, . . . ,m− 1},

{
Vi+1 ≤ Vi

PVi ≤
(
Vi − Vi+1

)
+ ν(Vi) 1S .

However, as in the previous section, it could be convenient to well separate the conditions on
Sc and S respectively.
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Corollary 5.1 Assume that P satis�es Assumption (S) and that there exists a collection
{Vi}mi=0 of Lyapunov functions satisfying Assumptions (54). Then the statements (i)-(ii)-(iii)
of Theorem 5.2 hold true.

Proof. Prove that (54) imply (39). For i = 0, . . . ,m− 1 we have

(P − T )Vi = 1Sc

(
PVi − ν(Vi)1S) + 1S

(
PVi − ν(Vi)1S)

= 1Sc PVi + 1S
(
PVi − ν(Vi)1S)

≤ 1Sc

(
Vi − Vi+1

)
+ 1S

(
PVi − ν(Vi)1S)

= Vi − Vi+1 + 1S
(
PVi − Vi + Vi+1 − ν(Vi)1S)

≤ Vi − Vi+1.

This gives (39). □

Corollary 5.2 (Atomic case) Let P be a Markov kernel on (X,X ) satisfying Assump-
tion (S) with an atom S and with ν(·) de�ned by ν(·) := P (a0, ·) for a0 ∈ S. Moreover
assume that there exists a collection {Vi}mi=0 of Lyapunov functions such that

∀i ∈ {0, . . . ,m− 1},

{
∀x ∈ S, Vi+1(x) ≤ Vi(x)

∀x ∈ Sc, (PVi)(x) ≤ Vi(x)− Vi+1(x).
(55)

Then the statements (i)-(ii)-(iii) of Theorem 5.2 hold true.

Proof. Prove that (55) implies (54). First note that the second condition of (55) ensures that
Vi+1 ≤ Vi on Sc, so that the �rst condition in (54) holds. The second condition in (55) is the
same as in (54). Finally, for every i = 0, . . . ,m− 1 and every x ∈ S we have PVi(x) = ν(Vi)
since S in an atom, so that

∀x ∈ S, PVi(x)−
(
Vi(x)− Vi+1(x)

)
− ν(Vi) = Vi+1(x)− Vi(x) ≤ 0.

This proves the third condition of (54).

□

Now we apply the two previous corollaries under the following subgeometric drift condition

∃α ∈ [0, 1), ∃c1 > 0, ∀x ∈ Sc, (PV )(x) ≤ V (x)− c1 V (x)α (Subα,Sc)

where V is some Lyapunov function. We begin with the atomic case. For any α ∈ [0, 1) de�ne
the integer m ≡ mα ≥ 1 by

m :=
⌊
(1− α)−1

⌋
(56)

where ⌊·⌋ denotes the integer part function on R.

Corollary 5.3 (Atomic case) Let P be a Markov kernel on (X,X ) satisfying Assump-
tions (S) and (Subα,Sc) with an atom S and with ν(·) de�ned by ν(·) := P (a0, ·) for a0 ∈ S.
Assume that PV is bounded on S. Let m ≡ mα given in (56). Then the estimates (24)-(25)
hold true with

∀n ≥ 1, εn ≤ dCm ν(V )

(m− 1)

1

nm−1
with Cm = 2

m(m+1)
2

−1 (57)
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where d is a positive constant (speci�ed in the proof). If moreover µ(V ) :=
∑+∞

k=1 βk(V ) < ∞,
then the estimates (24)-(25) hold true with

∀n ≥ 1, εn ≤ dDm µ(V )

m

1

nm
with Dm = 2

(m+1)(m+2)
2

+1. (58)

To prove Corollary 5.3 we use the following lemma which is based on [JR02, Lem. 3.5].

Lemma 5.2 Let S ∈ X , and let W be a Lyapunov function such that PW is bounded on S.
Let 0 < θ2 < θ1 < 1 be such that

∃c > 0, ∀x ∈ Sc, (PW θ1)(x) ≤ W (x)θ1 − cW (x)θ2 .

Then

∃c′ > 0, ∀x ∈ Sc, (PW θ2)(x) ≤ W (x)θ2 − c′W (x)θ3 with θ3 = 2θ2 − θ1.

Proof. The hypothesis of Lemma 5.2 writes as PW θ1 ≤ W θ1 − c
(
W θ1

)θ2/θ1 on Sc. It follows
from [JR02, Lem. 3.5] that

∀η ∈ (0, 1], ∃c′ > 0, PW ηθ1 ≤ W ηθ1 − c′
(
W θ1

) θ2
θ1

+η−1
on Sc.

With η := θ2/θ1 this gives

PW θ2 ≤ W θ2 − c′W 2θ2−θ1 on Sc.

□

Proof of Corollary 5.3. Note that the implication in Lemma 5.2 does not apply when θ2 = 0
since P1X = 1X (this would give c′ = 0). Let α1 := 1 − 1/m ∈ [0, 1) with m given in (56).
Note that α1 ≤ α. It then follows from (Subα,Sc) that

PV ≤ V − c1 V
α1 on Sc. (59)

Note that we can choose c1 < 1 in (59).

� If α1 = 0 (i.e. α ∈ [0, 1/2)), then Assumptions (55) of Corollary 5.2 hold with m = 1
and with V0 = c−1

1 V and V1 = 1X (note that 1X = V1 ≤ V0).

� If α1 = 1/2 (i.e. α ∈ [1/2, 2/3)), then we deduce from (59) and Lemma 5.2 that

∃c2 > 0, PV α1 ≤ V α1 − c2 V
α2 on Sc (60)

with α2 := 2α1 − 1 = 0. Again note that we can choose c2 < 1. Then the procedure
stops, and Assumptions (55) of Corollary 5.2 hold with m = 2 and with V0 = c−1

1 c−1
2 V ,

V1 = c−1
2 V α1 , and V2 = 1X (note that 1X = V2 ≤ V1 ≤ V0).

� More generally, if α1 > 1/2, then Lemma 5.2 can be repeated recursively: this provides
inequalities of the form PV αi−1 ≤ V αi−1 − ci V

αi on Sc with ci < 1 and with

αi = 2αi−1 − αi−2 = (α1 − 1) i+ 1.

Actually Lemma 5.2 can only be repeated until the value i = m since αm = 0 and αi < 0
for i > m. Then Assumptions (55) of Corollary 5.2 hold with

V0 = (c1c2 · · · cm)−1V, V1 = (c2 · · · cm)−1 V α1 , . . . , Vm−1 = c−1
m V αm−1 , Vm = 1X

(note that 1X = Vm ≤ · · · ≤ V0).
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Finally, since Vm = 1X, the sequence (βk(Vm))k≥1 is decreasing from (20). Then the conclu-
sions of Corollary 5.3 follows from Corollary 5.2.

□

Now we consider the general case when P satis�es Assumptions (S) and (Subα,Sc). Using
Corollary 5.1, we prove below that the procedure in the atomic case (Corollary 5.3) based on
the iteration of Lemma 5.2, extends to the non atomic case provided that Condition (Subα,Sc)
can be modi�ed thanks to Lemma 5.2 in order to ful�l the third condition in (54). To that
e�ect, assume that PV is bounded on S. Then for every ε ∈ (0, ν(1X))

∃η0 ≡ η0(ε) ∈ (0, 1], ∀η ∈ (0, η0], ∀x ∈ S, (PV η)(x) ≤ V (x)η + ν(V η)− ε. (61)

Indeed we have

∀x ∈ S, (PV η)(x)− V (x)η − ν(V η) ≤ (sup
S

PV )η − 1− ν(1X)

from Jensen's inequality and 1X ≤ V η. Then (61) follows from the following property

∃η0 ∈ (0, 1], ∀η ∈ (0, η0], (sup
S

PV )η − 1 ≤ ν(1X)− ε

which holds since (supS PV )η → 1 when η→ 0. Next, if η0 ≥ 1−α, de�ne the positive integer
m ≡ m(ε, α, η0) as follows

m :=
⌊ η0
1− α

⌋
. (62)

Corollary 5.4 Assume that P satis�es Assumptions (S) and (Subα,Sc) for some S ∈ X ,
ν ∈ M+

∗ , α ∈ [0, 1) and for some Lyapunov function V . Moreover assume that V and PV
are bounded on S. Let ε ∈ (0, ν(1X)), and assume that the real number η0 given in (61) is
such that η0 ≥ 1−α. Finally let m be the positive integer de�ned in (62). Then the estimates
(24)-(25) hold true with

∀n ≥ 1, εn ≤ dCm ν(V )

(m− 1)

1

nm−1
with Cm = 2

m(m+1)
2

−1 (63)

where d is a positive constant (speci�ed in the proof). If moreover µ(V ) :=
∑+∞

k=1 βk(V ) < ∞,
then the estimates (24)-(25) hold true with

∀n ≥ 1, εn ≤ dDm µ(V )

m

1

nm
with Dm = 2

(m+1)(m+2)
2

+1. (64)

Proof. Note that the third condition in (54) associated with Assumption (Subα,Sc) may fail,
that is the inequality PV ≤ V − c1 V

α + ν(V ) on S may be false. To initialize the procedure,
we apply [JR02, Lem. 3.5] from (Subα,Sc) with the exponent η0 given in (61), that is:

∃cη0 > 0, ∀x ∈ Sc, (PV η0)(x) ≤ V (x)η0 − cη0 V (x)α+η0−1. (65)

If α+ η0− 1 < 0, then Property (65) cannot be used to apply Corollary 5.1 since the function
V1 in Assumptions (54) must take its value in [a,+∞) for some a > 0. Now assume that
α+ η0− 1 ≥ 0 and prove that the third condition in (54) associated with (65) is satis�ed. Let

22



M1 := supS V and M2 := supS PV . Recall that ε ∈ (0, ν(1X)) and note that cη0 in (65) can

be chosen such that cη0M
α+η0−1
1 ≤ ε (up to reduce the value of cη0). Then we have

∀x ∈ S, (PV η0)(x)− V (x)η0 + cη0 V (x)α+η0−1 − ν(V η0) ≤ 0 (66)

from (61). Now, starting from (65)-(66), we iterate Lemma 5.2 as many times as possible.
Namely, let

V̂ := V η0 and α̂1 := 1− 1

m

with m de�ned in (62). Note that m =
⌊
(1− α̂)−1

⌋
with α̂ = 1− (1−α)/η0, and that α̂1 ≤ α̂.

Also set ĉ1 = cη0 . Then{
∀x ∈ Sc, (PV̂ )(x) ≤ V̂ (x)− ĉ1 V̂ (x)α̂1

∀x ∈ S, (PV̂ )(x) ≤ V̂ (x)− ĉ1 V̂ (x)α̂1 + ν(V̂ )
(67)

from (65)-(66) and α̂1 ≤ α̂. Then, starting from (67) and iterating Lemma 5.2, we can proceed
exactly as in the proof of Corollary 5.3, provided that the third condition in (54) holds at
each step (this was automatically ful�lled in the atomic case). More precisely, at each step,
Lemma 5.2 provides an inequality of the form

PV̂ α̂i−1 ≤ V̂ α̂i−1 − ĉi V̂
α̂i on Sc (68)

with some ĉi > 0 and with

α̂i = 2α̂i−1 − α̂i−2 = (α̂1 − 1) i+ 1.

This procedure can be repeated only until the value i = m since α̂m = 0 and α̂i < 0 for
i > m, but we have moreover to check that the third condition in (54) associated with (68)
holds. To verify this last point, note that α̂i−1 ≤ 1 and that

PV̂ α̂i−1 − V̂ α̂i−1 − ν(V̂ α̂i−1) = PV ηi − V ηi − ν(V ηi) with ηi := η0α̂i−1 ∈ (0, η0]

from V̂ := V η0 . It then follows from (61) and V̂ α̂i−1 ≥ 1X that

∀x ∈ S, (PV̂ α̂i−1)(x)− V̂ α̂i−1(x) + ĉi V̂
α̂i(x)− ν(V̂ α̂i−1) ≤ ĉi V

η0(x)− ε ≤ 0

since ĉi in (68) can be chosen such that ĉiM
η0
1 ≤ ε (recall that M1 := supS V ). Then

Assumptions (54) of Corollary 5.1 hold with

V0 = (ĉ1ĉ2 · · · ĉm)−1V̂ , V1 = (ĉ2 · · · ĉm)−1 V̂ α1 , . . . , Vm−1 = ĉ −1
m V̂ αm−1 , Vm = 1X

(note that 1X = Vm ≤ · · · ≤ V0). Finally, since Vm = 1X, the sequence (βk(Vm))k≥1 is
decreasing from (20), so that (63) and (64) follows from Corollary 5.1. □

Remark 5.2 In practice, for the choice of ε ∈ (0, ν(1X)) in Corollary 5.4, a trade-o� must be
made with respect to Condition (61) versus the resulting positive constant cν(V ) and dµ(V )
in (63)-(64). Indeed, the smaller ε is, the larger η0 in (61) will be, so the larger m in (62)
will be. However, the smaller ε is, the larger (ĉ1ĉ2 · · · ĉm)−1 will be in the above de�nition of
V0, so that the larger constants cν(V ) = ν(V0) and dµ(V ) = µ(V0) in (63)-(64) will be.
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We conclude this section by presenting a result on the approximation of Pn by the sub-
marovian kernel Tn given in (12) under the subgeometric drift conditions (39).

Theorem 5.3 Assume that P satis�es the assumptions of Theorem 5.1 with some m ≥ 1.
Then

∀x ∈ X,
+∞∑
k=0

(k + 1)m−1
∣∣(P kf)(x)− (Tkf)(x)

∣∣ ≤ ϑm−1V0(x) (69)

with ϑm−1 de�ned in (41).

Proof. If m = 1, then (12) and the positivity of P − T give (see the proof of Theorem 5.1)

+∞∑
k=0

∣∣(P kf)(x)− (Tkf)(x)
∣∣ ≤ +∞∑

k=0

(
(P − T )k|f |

)
(x) ≤

+∞∑
k=0

(
(P − T )kV1

)
(x) ≤ V0(x).

This proves (69) for m = 1. Inequality (69) for m ≥ 1 easily follows by induction from the
following fact: if (P − T )Vm ≤ Vm − Vm+1, then we have

∀k ≥ 0, (P − T )kVm+1 ≤ (P − T )kVm − (P − T )k+1Vm,

from which we deduce that for every measurable function f : X→R such that |f | ≤ Vm+1

(see the proof of Theorem 5.1)

+∞∑
k=0

(k + 1)m
∣∣P kf − Tkf

∣∣ ≤
+∞∑
k=0

(k + 1)m (P − T )kVm+1

≤
m−1∑
j=0

Cj
m

+∞∑
k=0

kj (P − T )kVm

≤
m−1∑
j=0

Cj
m

+∞∑
k=0

(k + 1)j (P − T )kVj+1

≤
(m−1∑

j=0

Cj
mϑj

)
V0 (from induction hypothesis)

≤ ϑmV0.

□
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