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1 Introduction
With the increasing scale of wireless network deployments for the internet of things 
(IoT), an ongoing question is how to ensure that these networks meet reliability and 
latency requirements. A difficulty in network design is that interference from a large 
number of devices, even if they operate at low power levels, can significantly degrade the 
performance of other nearby wireless communication networks.

A key reason for such performance degradation is the uncoordinated nature of 
devices, which typically requires interference to be treated as noise. The lack of coor-
dination arises both in where devices are located and when they transmit. As a con-
sequence, point process models for device locations have played an important role in 
characterizing the interference. A number of different models have been introduced 
in wireless communications, both in the IoT and cellular settings. These include 
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Effective symbol detection, channel estimation and decoding of channel codes require 
an accurate characterization of the noise probability distribution. In many systems, 
notably the internet of things, noise is largely in the form of interference, arising from a 
massive number of simultaneous transmissions from uncoordinated devices. Obtaining 
the probability distribution of the interference is a challenging problem due to the use 
of non‑orthogonal multiple access schemes over several subcarriers (leading to mul‑
tivariate statistical models) and the heavy‑tailed nature of the interference due to the 
random locations of devices. In this paper, we derive a novel tractable characterization 
of the interference probability distribution based on an application of Sklar’s theorem 
to develop a combination of α‑stable and t‑copula dependence models. We demon‑
strate that this formulation produces an accurate statistical modeling framework that 
admits efficient parameter estimation methods. As an illustration of the utility of our 
models, we develop a simple‑to‑implement nonlinear receiver when a binary signal is 
transmitted over all subcarriers by the desired transmitter, which is effective in a range 
of scenarios and can significantly outperform existing approaches.

Keywords: Multivariate interference, Heavy‑tailed distributions, Stochastic geometry

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Zheng et al. J Wireless Com Network         (2022) 2022:27  
https://doi.org/10.1186/s13638-022-02110-w

*Correspondence:   
malcom.egan@inria.fr 
2 CITI Laboratory, Univ Lyon, 
INSA Lyon, Inria, Villeurbanne, 
France
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0003-2534-2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-022-02110-w&domain=pdf


Page 2 of 29Zheng et al. J Wireless Com Network         (2022) 2022:27 

homogeneous Poisson point processes [1–5], cluster [6], hard-core [7], nonhomoge-
neous Poisson [8] and determinantal [9] processes.

However, this existing work has largely focused on network-level criteria such as 
outage and coverage probabilities. On the other hand, another critical issue is the 
design of detection and coding schemes, which rely on a good characterization of the 
noise and interference probability distributions for the amplitude and phase, rather 
than just for the instantaneous received power. This issue of the interference prob-
ability distribution arising from devices located according to point processes has been 
addressed only for narrowband transmissions with a single carrier.

Due to the widespread use of OFDM in IoT systems, such as in NB-IoT [10], an 
important question is how to characterize the interference amplitude and phase 
distribution when multiple subcarriers are utilized. In particular, the interference 
is multivariate, forming a random vector arising from the signals observed on each 
subcarrier. This introduces new questions as devices may access multiple subcarriers 
simultaneously, leading to non-trivial statistical dependence between the interference 
on different subcarriers. As for the case of narrowband transmissions using a single 
carrier, addressing this question is important to improve the design of symbol detec-
tion rules and channel coding schemes.

In this paper, we characterize the interference amplitude and phase statistics aris-
ing from spatial point processes where uncoordinated interferers randomly select the 
subcarriers they utilize. We consider homogeneous Poisson point processes (HPPPs) 
and certain families of Poisson cluster and Matérn hard-core type II processes, which 
are able to model attraction and repulsion useful to account for physical considera-
tions (e.g., the presence of roads or buildings) or protocols such as CSMA [7]. Models 
incorporating random selections of subcarriers are well suited to wireless networks 
for the Internet of Things (IoT) exploiting the NB-IoT protocol [11], where interfer-
ence must be treated as noise by the intended receiver; that is, advanced multiuser 
detection methods are not available due to the absence of pilot symbols. In particular, 
since Release 13 of the 3GPP LTE standard [10], NB-IoT allows each device to trans-
mit on up to 12 subcarriers in the NPUSCH [10]. As these subcarriers are selected 
randomly by each device, the signal observed by a desired receiver exhibits complex 
statistical dependence between each subcarrier. The scenario is also relevant when a 
large-scale network exploiting SCMA with coding in both time and frequency [12].

In realistic models of interfering networks, the location and fading associated with 
each interferer are not known by the desired receiver. As a consequence, there is an 
increase in the uncertainty of the received signal. Theoretical (see, e.g., [13–16]) and 
recent experimental [17–19] evidence strongly suggests that the resulting interfer-
ence should therefore be modeled by heavy-tailed distributions; that is, the probabil-
ity of large interference is much higher than predictions from Gaussian models would 
suggest.

With an accurate interference model in hand, it is then feasible to improve receiver 
design. For example, symbol detection relies on knowledge of the interference statistics 
through tests based on the likelihood ratio of the received signal given each possible 
transmitted symbol [20, 21]. Accurate interference models are also necessary for channel 
estimation and decoding of channel codes [22].
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1.1  Related work

Since the initial work on interference arising from Poisson point process models, it has 
been known that the in-phase or quadrature baseband interference signal on a single 
subcarrier has α-stable statistics, assuming an infinite network and zero guard-zone radii 
[13–16]. For finite networks and non-zero guard-zone radii, the Middleton distribution 
arises [6]. It has also been shown that, again for a single subcarrier, the interference from 
a Poisson-Poisson cluster process also admits Middleton interference statistics [6]. There 
has been further work establishing that Poisson point processes can well approximate a 
range of other point process models (e.g. via Ripley’s K-function [23] or the mean inter-
ference [24, 25]). The dependence over time of the interference has also been studied in 
[26], which characterizes the first and second moments in Matérn point processes with 
Matérn thinning, and in [27], which characterizes the joint distribution of the interfer-
ence over time in HPPPs.

A key property of α-stable or Middleton statistics is their heavy-tailed nature, where 
for instance α-stable models have infinite variance (except when α = 2 ) and may exhibit 
infinite mean depending on the tail index α ∈ (0, 2) . While no real system will admit 
received signals with infinite variance (due to the presence of guard zones or near field 
propagation), α-stable models capture the slow decay of the tails for the interference 
probability density function arising in real measurements [17–19]. Due to the fact that 
α-stable models enjoy well-studied parameterizations and relative tractability, they are 
often preferred to other heavy-tailed models and provide superior modeling capability 
when compared to classical Gaussian models when heavy tails are present. Evidence for 
this tractability is apparent in existing work, which derives useful expressions for the 
probability of error [15], optimal linear combining strategies [20, 21], power control [28], 
channel capacity [29] and optimal input distributions [30].

Nevertheless, the interference statistics for wireless networks exploiting multiple sub-
carriers in the uplink have not been characterized. This contrasts with the large body of 
work focusing on network-level metrics, particularly for cellular systems (see, e.g., [1]). 
The difficulty in analyzing the interference statistics—which are now multivariate due to 
the presence of multiple subcarriers—arises due to the complex statistical dependence 
between the interference on each subcarrier.

On the other hand, multivariate statistical models with α-stable marginals1 (i.e., α-sta-
ble interference on each subcarrier) have been treated in general within the statistics 
literature [31]. A key tool is the notion of a copula, which has also been sparingly used 
in signal processing (see, e.g., [32, 33]); albeit not in the context of interference modeling 
with the exception of [34, 35], which did not consider a specific source of interference 
and focused on the general impact of nonlinear dependence (i.e., beyond correlation) 
via numerical simulation. However, it is not straightforward to directly apply copula 
techniques to interference modeling. Indeed, a specific copula model must be selected 
in order to ensure an adequate tradeoff between accuracy and tractability. In particular, 
sufficiently low-complexity parameter estimation techniques are required.

1 We note that a multivariate model with α-stable marginals is not necessarily a multivariate α-stable model, as dis-
cussed in the sequel.
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1.2  Main contributions

A full characterization of the interference statistics has two components: (i) an analyti-
cally tractable statistical model; and (ii) low-complexity algorithms in order to perform 
parameter estimation. With such a characterization, detection algorithms with improved 
performance can then be developed.

In this paper, we address these challenges and make the following main contributions2: 

1. When interferers randomly select a subset of subcarriers, motivated by NB-IoT net-
works, we rigorously establish convergence in distribution of interference induced 
by families of Poisson cluster processes and Matérn hard-core type II processes—
defined precisely in Sect. 3—to interference induced by a HPPP. This provides a uni-
fying framework to analyze interference from certain general families of point pro-
cesses via HPPP.

2. For interferer locations governed by HPPP, we derive exact statistics for the multivar-
iate interference arising from multiple subcarriers when all devices transmit on the 
same subcarriers. When devices randomly select the subcarriers that they use, we 
propose a model consisting of α-stable marginals and a t-copula function (a specific 
family of copula models) to capture the heavy-tailed nature of the interference and 
dependence between distinct subcarriers.

3. Exploiting the structure of the interference, we derive a low-complexity estimator for 
the multivariate interference model parameters. We show via simulations that the 
performance of our low-complexity estimator is in good agreement with the stand-
ard maximum likelihood estimator for general multivariate models described by 
t-copula function and α-stable marginals.

4. Via Monte Carlo simulations, we verify that our model is a good approximation in 
terms of the Kullback-Leibler divergence (KL divergence) for the true statistics of the 
interference. This is true even for non-Poisson point processes that arise from realis-
tic network parameters.

5. To verify the utility of our model, we study the probability of error for binary detec-
tion in the presence of multivariate interference arising from a Poisson spatial field of 
interferers. We show that by exploiting our model, the probability of error can be sig-
nificantly reduced compared with existing approaches in the literature, which either 
assume Gaussian models, or independent α-stable interference on each subcarrier 
well as in-phase and quadrature components.

The remainder of this paper is organized as follows: Sect. 2 describes the system model. 
Section  3 characterizes the multivariate impulsive interference when interferers are 
located according to a HPPP, a doubly Poisson cluster process or a Matérn hard-core 
process of type II. Section 4 proposes a low-complexity parameter estimation method 
tailored to the interference model. Section 5 verifies the models and the proposed esti-
mation method. Section 6 studies the impact of multivariate impulsive interference on 
receiver design. Section 7 concludes the paper.

2 The work in this paper was presented in part in the IEEE International Conference on Communications (ICC) 2019 
[36].
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1.3  Notation

Vectors are denoted by bold lowercase letters and random vectors by bold uppercase let-
ters, respectively (e.g., x , X ). We denote the distribution of a random vector X by PX . If 
X,Y are two random vectors equal in distribution, then we write X d= Y.

Let X and Y be continuous random vectors on Rd with distributions PX and PY , 
respectively. The density of X is denoted by pX and the density of Y by pY . Then, the KL 
divergence between X and Y is defined by

Let f : R → R and g : R → R . We use the Landau notation where f (x) = o(g(x)) if 
limx→∞

f (x)
g(x) = 0.

2  System model
2.1  Spatial location

Consider a network of devices located according to a general point process, denoted by 
� . These devices form interferers for a desired receiver located at the origin associated 
with a single desired transmitter. We focus on three models for � (precise definitions can 
be found in [37]): 

1. HPPP with intensity � devices per m 2;
2. Doubly Poisson cluster process: the parent point process is a HPPP with intensity �p 

devices per m 2 , and each daughter process, centered on its parent’s position, is also 
a HPPP with intensity �d devices per m 2 restricted to a disc of radius rc . Points from 
the parent HPPP are included.3 Hence, the average number of points in each cluster 
is c = �dπr

2
c + 1 devices.

3. Matérn hard-core process of type II: the underlying HPPP is with intensity �p devices 
per m 2 , and the hard-core distance is rh.

These three point processes are representative of a large family of processes. In the first 
case, the HPPP exhibits uniform behavior in the sense that conditioned on the num-
ber of points in a region, each point is uniformly and independently distributed in the 
region. On the other hand, the doubly Poisson cluster process exhibits attraction, while 
the Matérn hard-core process of type II exhibits repulsion. We remark that these mod-
els can capture device clustering due to human activity as well as the activity of devices 
under both duty cycle constraints and, in the case of the Matérn hard-core process, 
CSMA-type protocols [7].

In each case, the intensity—e.g., � in the case of the HPPP—corresponds to the inten-
sity of active devices with data to transmit. In 5G, a common target is one device per m 2 ; 
however, the density of active devices with a given protocol, in a given time frame and 

(1)DKL(PX||PY) =
∫

Rd
pX(x) log

pX(x)

pY(x)
dx.

3 We remark that a standard formulation of the doubly Poisson cluster process studied in [6], known as the Neyman-
Scott process, does not include the parent process points. However, doing so enables the development of the rigorous 
approximation theorems in Sect. 3.
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spectrum band, may be significantly lower. We will often set � ∈ [0.001, 0.01] devices per 
m 2.

We assume that the radius of the network, rmax , is finite and that there is a guard zone; 
i.e., a minimum distance between the receiver and the closest interferer, rmin (see Fig. 1). 
This assumption is introduced due to the fact that interferers cannot be arbitrarily close 
to the receiver (e.g., due to the fact a receiver has non-zero area), and interferers cannot 
be arbitrarily far away in realistic models.

Restricting � to this annulus yields a new point process, which is denoted by

2.2  Channel access

Motivated by the NB-IoT protocol, we assume that the desired transmitter and all inter-
ferers utilize OFDM with the same symbol period. In particular, the desired transmit-
ter communicates using NK subcarriers to an already associated desired receiver. On 
the other hand, the interferers randomly access a subset of the NK subcarriers for their 
transmissions.

We assume that the subcarriers that each interferer can access are grouped into K 
distinct blocks of N subcarriers, known as a minimum size block (msB). That is, if an 
interfering device selects a msB, denoted by Bu = {bu,1, . . . , bu,N } where bu,i is the i-th 
subcarrier of the msB Bu , then all of the N subcarriers in Bu are utilized. The complete 
set of all subcarriers is denoted by B = ∪K

u=1Bu.
The decision of an interferer of which subcarriers are utilized is made individually 

without coordination with any other device in the network. In particular, the inter-
ferer randomly selects each msB independently with probability p. The probability p is 
dependent on the needs of the transmitting device; i.e., the higher the required rate, the 

(2)Ŵ(rmin, rmax) = {x ∈ R
2 : rmin ≤ �x� ≤ rmax}.

(3)�Ŵ(rmin,rmax) = � ∩ Ŵ(rmin, rmax).

rmax
rmin

Fig. 1 Illustration of a finite radius network consisting of a receiver with a non‑zero guard zone
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larger the value of p. The effect of p is to introduce sporadic transmissions in the fre-
quency domain, analogous to existing work in the time domain [38]. In this paper, we 
assume that p is constant for all interfering devices.

The interference at the desired receiver on a given msB Bu is the sum of all interfer-
ence from each interfering device that accesses Bu . An illustration is provided in Fig. 2 
with K = 5 msBs with N = 2 subcarriers in each msB. We also note that our setup cor-
responds to a wide range of protocols. For example, in many currently implemented 
LPWAN protocols, grouping of subcarriers is not yet available. In this case, each msB 
consists of a single subcarrier; i.e., N = 1 . On the other hand, in the NB-IoT standard for 
uplink transmissions (NPUSCH) [10], each msB can contain up to N = 12 subcarriers 
with a 15 kHz spacing, which can also be captured within our model.

2.3  Interference signal

Consider a subcarrier bu,i associated with the msB Bu . Under a power-law path loss 
model, the interference observed by the receiver at the origin on this subcarrier is given 
by

where rj is the distance from device j to the origin, η > 2 is the path-loss exponent, hj,bu,i 
is the fading coefficient for device j on subcarrier bu,i , and xj,bu,i is the baseband emission. 
Implicit in (4) is the assumption that the desired receiver has a symbol period consistent 
with the interferers in order to guarantee orthogonality of the subcarrier signals. While 
we do not pursue relaxing this assumption in this paper, we note that mismatched sam-
pling in the desired link for single-carrier systems with α-stable noise has been investi-
gated in [39].

After stacking the interference on each subcarrier for each msB, the resulting interfer-
ence random vector is given by

(4)Zbu,i =
∑

j∈�bu,i

r
− η

2
j hj,bu,i xj,bu,i ,

Fig. 2 Illustration of the channel access. The set of 10 subcarriers is considered, with K = 5 msBs of size 
N = 2 . bu,i is the i‑th subcarrier from the u‑th msB, u = 1, . . . , 5 . The contribution of each interferer in msBs is 
shown with gray indicating that the device is active. The resulting interference is a complex vector with NK 
elements. The element Zu,i corresponds to the sum of all contributions falling in the subcarrier bu,i
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The study of the interference random vector Z is the focus of this paper. It is known that 
under the assumptions in this section, each pair (Re(Zbu,i), Im(Zbu,i)) has a log-character-
istic function given in [6, Eq. (13)]. However, this representation is analytically intracta-
ble and not amenable to the study of the random vector Z in (5). As such, we investigate 
alternative approximations of the marginal distributions in the following section.

3  Multivariate interference statistics
In this section, we develop statistical models for the interference amplitude and phase 
statistics when multiple subcarriers are utilized. That is, we introduce approximate prob-
ability distributions for the random vector in (5). Our models are based on the assump-
tion that device locations are governed by a HPPP, which induce α-stable models that we 
overview in Appendix A. We also show that similar approximations can also be applied 
to certain non-Poisson point processes.

3.1  Interference characterization

We now derive a general and tractable approximate characterization for the multivari-
ate interference Z in (5) induced by HPPPs. The main difficulty in obtaining a tractable 
characterization of the interference is the complex statistical dependence structure of Z . 
There are two issues, elaborated on further in the sequel, that must be addressed: 

 (i) The in-phase and quadrature interference for a single subcarrier (i.e., a sin-
gle element of Z ) induced by a HPPP is heavy-tailed; namely symmetric α-stable 
with infinite variance. As a consequence, the dependence cannot be adequately 
described via the correlation, as in Gaussian models.

 (ii) Under the assumptions in this paper, the joint distribution of the interference for a 
single subcarrier induced by a HPPP is isotropic sub-Gaussian α-stable [40]. More-
over, partial overlaps in the subcarriers used by each device induce an even more 
complicated dependence structure. As such, a full characterization of the joint 
probability density function for Z is in general intractable.

To address the issues (i)-(ii), a general technique developed in statistics—albeit only 
sparingly used in signal processing—is to decouple the characterization of the individual 
elements (marginal laws) of the random vector Z from the dependence structure. This 
general approach can be understood by considering the joint distribution function of 
a continuous random vector in Rn , say X = [X1, . . . ,Xn]T . By Sklar’s theorem [31], this 
approach can be rigorously justified as the joint distribution of X can always be uniquely 
written in the form

where C : [0, 1]n → [0, 1] is called a copula function, and Fi, i = 1, . . . , n are the mar-
ginal distribution functions. When both the joint and marginal distributions admit den-
sity functions (as is the case in the interference models considered in this paper), the 
joint probability density function has the form

(5)Z =
[
Re(Zb1,1), Im(Zb1,1), . . . , Re(ZbK ,N

), Im(ZbK ,N
)

]T
.

(6)F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)),
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That is, the joint probability density function decomposes into the product of the mar-
ginal densities and another density function c : [0, 1]n → R+ , which captures depend-
ence between the different components of X and is scale-free.

To apply the copula approach, we first require characterization of the individual ele-
ments of Z . For interference induced by a HPPP defined on R2 , we exploit the following 
result obtained in [6, 13–15] (given in this form in [40]).

Theorem 1 Consider the interference on subcarrier bu,i in msB Bu induced by a HPPP 
with intensity � , denoted by Zbu,i in (4). Suppose that hj,bu,i xj,bu,i in (4) is an isotropic com-
plex random variable and

with η > 2 . Then, Zbu,i in (4) converges almost surely to an isotropic 4/η-stable random 
variable. Moreover, the scale parameters of real and imaginary components are equal, 
given by

where

Remark 1 The parameters of the interference distribution given in Theorem 1 depend 
on physical variables, including the device intensity � , the service rate p, the path-loss 
exponent η.

By Theorems 3 and 4, the result in Theorem 1 also forms a good approximation of the 
marginal distributions for interference induced by doubly Poisson cluster processes and 
Matérn hard-core processes of type II defined on R2 . For a sufficiently small guard zone 
and sufficiently large network radii, rmin and rmax respectively, it is also known for inter-
ference induced by a HPPP restricted to the annulus Ŵ(rmin, rmax) , Theorem 1 is a good 
approximation for the marginal interference distribution [6]. We further investigate the 
impact of the restriction to an annulus in Sect. 5.

The next step is to select an appropriate copula function C. There are two aspects 
of the copula model to consider: accuracy and tractability. As we will show in Sect. 5, 
t-copula models form a good approximation of the dependence structure of Z for a wide 
range of network parameters. Such t-copula models also admit very low-complexity 
parameter estimation algorithms, which will be developed in Sect.  4. Finally, t-copula 
models are simple to simulate exactly via scale mixture decompositions, which provides 
a useful tool in evaluating performance (as carried out in Sect. 6).

(7)
pX(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))

︸ ︷︷ ︸

dependent component

n∏

i=1

pXi(xi)

︸ ︷︷ ︸

independent component

.

(8)E[|Re(hj,bu,i xj,bu,i)|4/η] < ∞,

(9)γZbu,i
=

(

π�pC−1
4/ηE[|Re(hj,bu,i xj,bu,i)|4/η]

)
η/4

,

(10)Cα =
{

1−α

Ŵ(2−α) cos(πα/2) , if α �= 1

2/π , if α = 1.
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To describe the t-copula model, let Fν be the distribution of the univariate t-distribu-
tion, given by

parameterized by the degree of freedom ν ∈ R
+ . Moreover, the joint distribution Fν,� of 

a n-dimensional multivariate t-distribution is given by

parameterized by the degree of freedom ν ∈ R≥0 and the n× n correlation matrix �.
The t-copula is then defined as

That is, the t-copula captures the dependence structure of a multivariate t-distribution 
without necessarily having t-distributed marginals; i.e., a meta-t distribution [41, 42]. 
In particular, (13) can be used in (6) to construct multivariate distributions with the 
symmetric α-stable marginals obtained in Theorem 1. This provides a basis to tractably 
model the interference random vectors arising from the system model in Sect. 2.

We highlight that the t-copula α-stable model resolves the issues (i)–(ii) at the begin-
ning of this subsection. With respect to (i), the heavy-tailed nature of the interference is 
captured by the use of symmetric α-stable marginals, motivated by Theorem 1. More-
over, the complex dependence structure resulting in issue (ii) is captured through the 
t-copula parameters v,� , which can be efficiently estimated. As such, there is not a sig-
nificant increase in the complexity of the model compared with Gaussian models, as 
instead of covariance there are the parameters of the symmetric α-stable marginals and 
ν,�.

3.2  Multivariate interference characterization with p = 1

Before establishing low-complexity parameter estimation algorithms and verifying the 
approximate t-copula model, we derive the exact multivariate interference distribution 
induced by a HPPP for a single msB or when p = 1 (recall from Sect. 2 that p is the activ-
ity probability) in Rayleigh fading. This result will aid verification of the t-copula model 
in this regime and provide insight into symbol detection rules in Sect. 6.

To this end, let ZBu denote the interference on all subcarriers for a given msB Bu 
induced by a HPPP on R2 ; that is,

The following theorem provides a characterization of the interference random vector 
ZBu . Recall that if a device transmits on a subcarrier within a msB Bu , then it transmits 
on all subcarriers in Bu so that the set of interferers remains unchanged on all subcar-
riers. In this special case, the interference random vector in (14) can be characterized 
exactly as shown in the following theorem.

(11)Fν(x) =
∫ x

−∞

Ŵ(
ν+1
2 )

√
νπŴ(

ν

2 )

(

1+ t2

ν

)− ν+1
2

dt,

(12)Fν,�(x) =
∫ x1

−∞
· · ·

∫ xn

−∞

Ŵ(
ν+d
2 )

Ŵ(
ν

2 )

√

(πν)
d |�|

(

1+ tT�−1t

ν

)− ν+d
2

dt,

(13)Ct
ν,�(u) = Fν,�(F

−1
ν

(u1), . . . , F
−1
ν

(un))).

(14)ZBu = [Re(Zbu,1), Im(Zbu,1), . . . , Re(Zbu,N ), Im(Zbu,N )]T .
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Theorem  2 Let j ∈ �Bu be a point of a HPPP on R2 with intensity � . Suppose that 
hj,bu,i ∼ CN (0, 1) (Rayleigh fading), Re(xj,bu,i) ∼ Unif({+1,−1}) , 
Im(xj,bu,i) ∼ Unif({+1,−1}) , and that the conditions in Theorem 1 hold. Then, the inter-
ference random vector ZBu follows the sub-Gaussian α-stable distribution with an under-
lying Gaussian vector having i.i.d. N (0, σ 2

ZBu
) components, α = 4/η and parameter

where γZBu
= 1√

2
σZBu

 and C4/η is given in (10). Furthermore, suppose p = 1 . Then, the 

interference random vector Z in (5) is also sub-Gaussian α-stable with an underlying 
Gaussian vector having i.i.d. N (0, σ 2

ZB
) components, α = 4/η.

Proof See Appendix B. 

Remark 2 As for Theorem 1, the parameters of the interference distribution given in 
Theorem  2 depend on physical variables, including the device intensity � , the service 
rate p, the path-loss exponent η.

We point out that the sub-Gaussian α-stable random vectors arising in Theorem 2 are 
isotropic, and lie in the family of elliptical distributions [43]. As t-copula models also 
yield elliptical distributions, it follows that the t-copula model should be a good approxi-
mation of the multivariate interference distribution when p ≈ 1 . We validate this obser-
vation in Sect. 5.

3.3  Non‑Poisson models

So far in this section, we have assumed that device locations are governed by a HPPP. A 
natural question is whether similar models are also accurate for non-Poisson point pro-
cesses. To this end, consider the families of doubly Poisson cluster processes (as defined 
in Sect. 2) and Matérn hard-core type II processes. As these processes are constructed 
from HPPP, it would suggest that for sufficiently small values of the intensity of the 
daughter process for doubly Poisson cluster processes or the hard-core distance for the 
Matérn hard-core type II processes, the induced interference may be approximated by 
the interference induced by a HPPP.

We establish that such an approximation indeed holds in the sense of convergence in 
distribution. In other words, the distribution of the interference induced by these more 
general families of point processes and the distribution of the interference induced by 
a HPPP have a small Lévy–Prokhorov metric [44]. This result is given in the following 
theorems.

(15)γZBu
=

(

π�pC−1
4/ηE[|Re(hj,bu,1xj,bu,1)|4/η]

)
η/4

,

�
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Theorem  3 Let ��d ,�p ,rc
Ŵ(rmin,rmax)

 be a doubly Poisson cluster process with parameters 
�d , �p, rc . Suppose that for all subcarriers bu,i the random variables hj,bu,i xj,bu,i defined in 
(4) satisfy the condition that supp(hj,bu,i xj,bu,i) is compact. Then, the induced interference 
random vector in (5) converges in distribution to the interference random vector induced 
by a HPPP restricted to Ŵ(rmin, rmax) as �d → 0.

Proof See Appendix C. 

Theorem 4 Let �rh,�p
Ŵ(rmin,rmax)

 be a Matérn hard-core process of type II with parameters 
rh, �p . Suppose that for all subcarriers bu,i the random variables hj,bu,i xj,bu,i defined in (4) 
satisfy the condition that supp(hj,bu,i xj,bu,i) is compact. Then, the induced interference ran-
dom vector in (5) converges in distribution to the interference random vector induced by a 
HPPP restricted to Ŵ(rmin, rmax) as rh → 0.

Proof See Appendix C. 

Theorems 3 and 4 implies that for sufficiently small �d , rh as well as a wide range of 
fading and baseband emission models, both the doubly Poisson cluster process and the 
Matérn hard-core type II process induce interference that can be well approximated by 
that of a HPPP in the sense that the resulting interference distribution is close in the 
sense of the topology of weak convergence or, equivalently, the Lévy-Prokhorov metric.

This suggests that models developed for interference arising from a HPPP will also be 
useful for doubly Poisson cluster and Matérn hard-core type II processes when �d , rh are 
sufficiently small. Further discussion on the quality of this approximation will be pre-
sented via the numerical study in Sect. 5.

4  Parameter estimation for multivariate interference
The utility of the model proposed in Sect. 3 depends heavily on whether low-complexity 
parameter estimation algorithms are available. In general, particularly in high dimen-
sions, maximum likelihood estimation for t-copula models is computationally demand-
ing [45].

In this section, we propose a new low-complexity algorithm to estimate parameters for 
the t-copula interference model. Our algorithm tailors a general estimation method for 
copula models, known as inference from the margins [46], to the specific model derived 
in Sect. 3. In the remainder of this section, we first overview the inference from the mar-
gins method for general t-copula models. We then detail our proposed low-complexity 
parameter estimation method exploiting the structure of the interference model.

4.1  Copula parameter estimation

A standard approach for parameter estimation in t-copula models, known as infer-
ence from the margins, proceeds as follows [46, 47]. Consider a d-dimensional ran-
dom vector X = [X1, . . . ,Xd]T  on Rd governed by a t-copula with parameters ν,� . 

�

�
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According to [48], the elements of � can be obtained via Kendall’s τ rank correlation, 
denoted as ρτ . Let Xi = [Xi,1, . . . ,Xi,d]T , i = 1, . . . , n be n independent samples of X . 
A natural estimator for � is then given by [45]:

where

In general, there are no guarantees that �̂ is positive definite, nevertheless, it is possible 
to apply adjustment techniques [49] to ensure positive definiteness. Having estimated 
� , the standard approach then obtains the degree of freedom ν via maximum likelihood 
estimation given � [45].

An alternative method for estimating the degree of freedom also exists based on the 
tail dependence. In particular, consider a bivariate random vector (X1,X2) with mar-
ginal distributions F1, F2 , respectively. Then, the (upper) tail dependence �X is defined 
by

In the case that (X1,X2) is governed by a t-copula, [45, Proposition 1] provides a link 
between the tail dependence and the degree of freedom ν . For a random vector X , if the 
tail dependence is known to be constant amongst each pair of elements in X and the 
off-diagonal elements of � are a constant value ρ , then the degree of freedom ν can be 
obtained from the tail dependence �X via [45]

where Fν+1 is defined in (11) with degree of freedom ν + 1.

4.2  A low‑complexity estimation procedure

We now develop a new parameter estimation algorithm for the t-copula interference 
model. Our approach is based on inference from the margins, where we require esti-
mates of the tail dependence �Z to obtain the degree of freedom ν , and the correlation 
matrix � . In particular, we derive the following approximation—detailed in Appen-
dix D—for the tail dependence, �Z̃ , and the correlation matrix �:

where Z1,1 = Re(h1,1x1,1).

(16)�̂jk = sin
(
π

2
ρ̂τ (Xj ,Xk)

)

,

(17)ρ̂τ (Xj ,Xk) =
(
n
2

)
∑

1≤i1≤i2≤n

sign
(
(Xi1,j − Xi2,j)(Xi1,k − Xi2,k)

)
.

(18)�X = lim
u→1

Pr
(

X1 > F−1
1 (u)|X2 > F−1

2 (u)
)

.

(19)�X = 2Fv+1

(√
1+ ν

√
1− ρ√

1+ ρ

)

.

(20)�Z̃ ≈ 2p

E

[

|(Z1,1)|
4
η

]

∫ ∞

0
(1− FZ1,1(z))

2 4

η

z
4
η
−1

dz, � ≈ I2KN .
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Our interference parameter estimation algorithm is given in Algorithm  1. The first 
step is to estimate the exponent and scale parameter of the symmetric α-stable margin-
als motivated by Theorem 1, which can be achieved using standard methods (see, e.g., 
[50] under the assumption of independent observations of the interference random vec-
tor Z . Assuming that the lifetime of device transmissions is not long (as is typical in NB-
IoT networks), these samples can be collected from nearly consecutive frames.

Lines 2-4 in Algorithm  1 are concerned with estimation of the t-copula parameters 
ν and � . Indeed, these steps only require the computation in (20) when the fading sta-
tistics and path-loss exponent are known. This contrasts with the estimation of general 
t-copula models (i.e., without the structure of the interference random vector Z ), where 
a large number of samples are required. A detailed numerical study of the quality of the 
approximation is carried out in the following section.

5  Results and discussion: model verification
In this section, we compare the interference models developed in Sect. 3 with the inter-
ference arising from the scenarios detailed in Sect. 2 based on the KL divergence, which 
can be viewed as a distance between two probability distributions. The KL divergence 
therefore provides additional insights into the statistics of the interference, particularly 
when multiple subcarriers experience large amplitude interference. In each scenario, we 

Fig. 3 Plot of the KL divergence between the simulated data set from HPPP and three statistical models 
(under different guard‑zone radii): theoretical stable model ( α = 4/η ); fitted stable model ( ̂α) ; and fitted 
Gaussian model
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assume that that the baseband emission of each interferer is uniformly distributed on 
{−1,+1} with Rayleigh fading, as in Theorem 2.

5.1  Interference on a single subcarrier

We first verify that an α-stable model is accurate for HPPPs with non-zero guard zones. 
Consider the HPPP �Ŵ(rmin,500) with path-loss exponent η = 5 and intensity � = 0.001 
devices per m 2 . Figure 3 plots the impact of varying rmin on the KL divergence between 
the simulated interference and three different models for a single subcarrier: the α-stable 
model that assumes no guard zone (theoretical stable); an α-stable model with param-
eters estimated from a set of simulated data; and a fitted Gaussian model.

Observe that for a very small rmin , the theoretical model exhibits a good fit while for 
rmin > 15 m, the Gaussian model is a good fit. Moreover, the symmetric α-stable model 
with an estimated exponent α̂ obtained using the method in [50], yields a low KL diver-
gence, while the others do not. As shown in Fig.  4, the parameter α̂ increases from 
approximately 4/η = 0.8 to nearly 2 as rmin ranges from 0.5 m to 50 m. As such, α-stable 
models with estimated exponent α̂ are robust to changes in rmin—implying that the tech-
niques in this paper hold rather generally—with the qualification that the best choice of 
α may be larger than 4/η as predicted by Theorem 1.

5.2  Interference random vector model

We now turn to our model for the interference random vector developed in Sect. 3.2. 
We numerically investigate4 the behavior of our proposed models by evaluating the KL 
divergence between the interference arising from the scenario in Sect. 2 and our models 
in Sect. 3. That is, we estimate DKL(P||Q) where P is the distribution corresponding to 
the system model in Sect. 2 and Q is the distribution arising from our models. The inter-
ference random vector has in general a high dimension (2KN dimensions for K msBs and 

Fig. 4 Fitted stable parameter—α̂ under different guard‑zone radii in HPPP

4 Estimation of the α-stable marginal parameters is carried out using [51].
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N subcarriers in each msB as detailed in Sect. 2). As such, even the numerical evaluation 
is non-trivial, and we use the k-nearest neighbor method implemented in the MATLAB 
package [52] for the computation of the KL divergence.

All figures are generated using a simulated data set with 80,  000 samples. Due to 
the high dimension of the interference random vector, the k-nearest neighbor method 
can output very small negative values [53]. In the figures, these negative values are 
rounded to zero.

In the following numerical results, we compare five models all with α-stable mar-
ginal distributions motivated by Theorem 2 in Figs. 5, 6 and 7: 

1 The t-copula α-stable model detailed in Sect. 3.2 with three different parameter esti-
mation algorithms: a) via maximum likelihood estimation; b) via Algorithm 1 with 
α = 4/η ; c) via the low-complexity estimation procedure for t-copula parameters as 
Algorithm 1 while using the estimated α̂ in (20).

2 The independent sub-Gaussian α-stable model consisting of independent 2N-dimen-
sional sub-Gaussian α-stable random vectors. In this model, the 2KN-dimensional 
random interference vector Z is decomposed into K 2N-dimensional random vectors 
(corresponding to the real and imaginary parts of the N subcarriers on each msB). 
Each 2N-dimensional random vector is sub-Gaussian α-stable (see Definition 2) and 
independent of each of the other K − 1 N-dimensional random vectors. This model 
is exact when interfering devices only transmit on a single subcarrier, the guard-zone 
radius rmin = 0 , and the network radius rmax → ∞.

Fig. 5 Plot of the KL divergence between the simulated data set and five statistical models (under HPPP): 
t‑copula model (maximum likelihood); Algorithm 1 based on α = 4/η ; Algorithm 1 based on estimated α̂ ; 
independent sub‑Gaussian α‑stable model; and 4K sub‑Gaussian α‑stable model. In the figure, K = 4 msBs 
and N = 2 subcarriers in each msB are considered
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3 The 2KN sub-Gaussian α-stable model consisting of a 2KN-dimensional sub-Gauss-
ian α-stable random vector. This model corresponds to the scenario where all devices 
transmit on every msB in B ; i.e., p = 1 (see Theorem 2).

In the following, we set K = 4 msBs and N = 2 subcarriers in each msB, rmin = 0 , 
rmax = ∞ , η = 3 , hj,bi ∼ CN (0, 1) , and xj,bu,i is uniformly drawn from {−1, 1} , ∀j, bu,i.

Fig. 6 Plot of the KL divergence between the simulated data set and five statistical models (under doubly 
Poisson cluster process): t‑copula model (maximum likelihood); Algorithm 1 based on α = 4/η ; Algorithm 1 
based on estimated α̂ ; independent sub‑Gaussian α‑stable model; and 4K sub‑Gaussian α‑stable model. In 
the figure, K = 4 msBs and N = 2 subcarriers in each msB are considered

Fig. 7 Plot of the KL divergence between the simulated data set and five statistical models (under Matérn 
hard‑core process of type II): t‑copula model (maximum likelihood); Algorithm 1 based on α = 4/η ; 
Algorithm 1 based on estimated α̂ ; independent sub‑Gaussian α‑stable model; and 4K sub‑Gaussian α‑stable 
model. In the figure, K = 4 msBs and N = 2 subcarriers in each msB are considered
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5.2.1  HPPP

Figure 5 plots the KL divergence between the simulated data set based on the setup in 
Sect. 2 and the five proposed interference models. We also set � = 0.001 devices per m 2 . 
Observe that the 2KN sub-Gaussian α-stable model is in good agreement with the sim-
ulated data set as p → 1 . This is consistent with the characterization in Theorem 2 as 
when p → 1 all devices transmit on all subcarriers with high probability. On the other 
hand as p decreases, the 2KN sub-Gaussian α-stable model is a poor fit since it cannot 
capture dependence between interference on different blocks of subcarriers.

Figure 5 also shows that the t-copula model is a good fit for a much larger range of p than 
the 2KN sub-Gaussian α-stable model. As such, it is a good choice for moderately to heavily 
loaded IoT networks. However, for small p the t-copula model is not satisfactory.

In the lightly loaded scenario where p → 0 , each device transmits on more than one 
msB with a very low probability. By the independent thinning theorem for HPPP, it then 
follows that the interference on each msB is approximately independent. As a conse-
quence, the independent sub-Gaussian α-stable model is a good choice in the lightly 
loaded scenario. This observation is verified in Fig. 5, where the KL divergence for this 
model is nearly zero for small values of p.

5.2.2  Doubly Poisson cluster process

Figure 6 plots the KL divergence for each of the proposed models for locations governed 
by a doubly Poisson cluster process. The parameters are given in Table 1.

Observe that the t-copula model has a very similar behavior qualitatively consistent 
with the HPPP case in Fig. 5. This is again consistent with Theorem 3 and also shows 
that �d = 10/(πr2c ) is sufficiently small. However, the low-complexity estimation algo-
rithm in Algorithm 1 has reduced performance. This is due to the implicit assumption in 
the estimation procedure that the void probability is that of a HPPP (see Appendix D for 
details of the approximation).

5.2.3  Matérn hard‑core process of type II

Figure 7 plots the KL divergence for each of the proposed models for locations governed 
by a Matérn hard-core process of type II. The parameters are given in Table 1.

Observe that the five models have the same performance in terms of KL divergence 
as under the HPPP. This is consistent with Theorem 3. Moreover, rh = 20 m in Fig. 7 is 
clearly sufficiently small.

We also note that unlike the doubly Poisson cluster process, the distribution of the 
closest interferer can also be approximated by (45) [54, Lemma 1]. This provides an 
explanation for why the low-complexity estimation procedure in Algorithm 1 yields an 
estimate that well approximates the maximum likelihood estimate.

Table 1 Parameters for doubly Poisson point process and Matérn hard‑core process point process

Doubly Poisson Matérn Hard‑core

�p (devices per m 2) rc ( m) �d (devices per m2) � (devices per m 2) rh ( m)

2× 10
−4 30 10/(π r2c ) = 0.0035 2× 10

−4 20
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6  Receiver design
In this section, we study the impact of the dependence structure on receiver perfor-
mance using our tractable interference models. We assume that a transmitter seeks to 
send a binary symbol x ∈ {+1,−1} in the presence of interference arising from one of 
the scenarios detailed in Sect. 2, with N = 2 . Given a symbol x, the receiver observes an 
output y ∈ R

2NK  defined by

where A =
√
Pr−η/2 is the combination of path loss and transmitted signal, P is the 

transmitted signal power, g ∈ R
2NK  corresponds to channel fading after stacking the 

real and imaginary components of the NK subcarriers and z ∈ R
2NK  is the interfer-

ence obtained again by stacking the real and imaginary components of the NK sub-
carriers, as detailed in Sect.  2. Each subcarrier experiences i.i.d Rayleigh fading; i.e., 
g = [g1, · · · , g2NK ] , where gi ∼ N (0, 1) is i.i.d. We also assume that g for the desired link 
is known to the receiver, which is the common scenario where channel estimation is 
performed.

Given the observation y and equally likely symbols x, the probability of error is mini-
mized by the likelihood ratio test

where f (·|x, g) is the probability density function of the received signal given that the 
symbol x is transmitted and the fading is g . As such, different receivers are obtained 
under the different models introduced in Sect. 3. We therefore consider the following 
receivers: 

1 Based on the t-copula α-stable model detailed in Sect. 3.2.
2 Maximum Ratio Combining (MRC) receiver, which is optimal for Gaussian and sub-

Gaussian α-stable models [55].

(21)y = gAx + z,

(22)�(y) = f (y|x = 1, g)

f (y|x = −1, g)

x=1
≷

x=−1
1,

Fig. 8 Probability of error under different service rates, η = 3 , A = 0.01 and � = 0.001 devices per m 2
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3 Based on the independent α-stable model [20, 21], where all components of Z in (5) 
are assumed to be independent.

To evaluate the different models in terms of the probability of error, we study the 
impact of the service rate (or access probability) p. Recall that the service rate is the 
key parameter which controls the dependence between interference on different sub-
carriers. In our study, we considered the following parameters: η = 3 ; hj,bu,i ∼ CN (0, 1) ; 
� = 0.001 devices/m2 ; xj,bu,i is uniformly drawn from {−1, 1} ∀i, j ; K = 4 ; and N = 2;

In Fig. 8, the probability of error under each of the different receivers is shown with 
A = 0.01 , that is, P = 10(−4 + η log r) ( dB) , e.g., r = 30 m , P = 4.3 dB , based on 
200, 000 Monte Carlo iterations. We first observe that when p → 1 , the MRC receiver 
outperforms other receivers due to the fact that it is optimal [55]. However, there is a 
negligible performance improvement over the t-copula α-stable receiver.

As p decreases, the MRC receiver has poor performance. On the other hand, the 
t-copula α-stable receiver outperforms receivers tailored to independent α-stable noise 
[20, 21]. This suggests that the t-copula α-stable receiver is a tractable means of obtain-
ing improved performance for a wide range of network parameters.

7  Conclusions
Motivated by the challenge of multivariate interference in large-scale IoT networks 
exploiting NB-IoT, we have developed statistical models based on device locations mod-
eled by HPPPs, and copula theory. By evaluating the models in terms of the KL diver-
gence and the probability of error when a desired link exploits a non-linear receiver, 
we have obtained significant improvements compared to standard approaches which 
assume independent observations on each subcarrier. Due to the tractability of the mod-
els, it is also feasible to rapidly simulate and estimate parameters in order to improve 
system design.

Appendix A: α‑stable model preliminaries
Univariate α‑stable models

The α-stable random variables have heavy-tailed probability density functions, which 
have been widely used to model impulsive signals [56, 57]. The probability density func-
tion of an α-stable random variable is described by four parameters: the characteristic 
exponent 0 < α ≤ 2 ; the scale parameter γ ∈ R+ ; the skew parameter β ∈ [−1, 1] ; and 
the shift parameter δ ∈ R . As such, a common notation for an α-stable random variable 
X is X ∼ Sα(γ ,β , δ) . In the case β = δ = 0 , X is said to be a symmetric α-stable (Sα S) 
random variable.

In general, α-stable random variables do not have closed-form probability density 
functions. Instead, they are usually represented by their characteristic function, given by 
[57, Eq. 1.1.6]
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Let X ∼ Sα(γ ,β , δ) be an α-stable random variable. A fundamental property of X is the 
behavior of its probability density function pX (x) as x → ∞ [57, Theorem 1.2.15]

Theorem 5 Let X ∼ Sα(σ ,β , δ) with 0 < α < 2 , then

where Cα is defined in (10).

In the case that X is symmetric α-stable, then β = δ = 0 and

An alternative characterization of symmetric α-stable random variables is the LePage 
series [57, Theorem 1.4.2]. In particular, let (Ŵi) denote the arrival times of a Poisson pro-
cess with intensity 1. Let (Wi) be a sequence of symmetric, independent and identically dis-
tributed random variables satisfying

Then,

A key property of the series in (27) following from [57, Page 26], is given as follows.

Property 1 Let X ∼ Sα(γ ,β , δ) and Ŵ− 1
α

1 W1 be the first term of the Lepage series in (27). 
Then,

Sub‑Gaussian α‑stable random vectors

The notion of an α-stable random vector is defined as follows.

Definition 1 A random vector X in Rd is symmetric α-stable if for every A,B > 0 , there 
exists a C > 0 such that

(23)E

[

eiθX
]

=
{

exp
{
−γ

α|θ |α(1− iβ(signθ) tan πα

2 )+ iδθ
}
,α �= 1

exp
{

−γ |θ |(1+ iβ 2
π
(signθ) log |θ |)+ iδθ

}

,α = 1

(24)lim
x→∞

xαPr(X > x) = Cα

1+ β

2
γ
α ,

(25)Pr(X > x) = Cα

2
γ
αx−α + o(x−α

).

(26)γ =
(

C−1
α

E[|Wi|α]
) 1

α

, i = 1, 2, . . .

(27)X
d=

∞∑

i=1

Ŵ

− 1
α

i Wi.

(28)lim
x→∞

xαPr(X > x) = lim
x→∞

xαPr(Ŵ
− 1

α

1 W1 > x).

(29)AX(1) + BX(2) d= CX,
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where X(1),X(2) are independent copies of X.

We note that each element in X is an α-stable random variable if X is an α-stable vec-
tor, but not all random vectors with symmetric α-stable marginals form symmetric α
-stable random vectors.

A particular class of α-stable random vectors is an instance of the sub-Gaussian α-sta-
ble random vectors5, defined as follows.

Definition 2 Any vector X distributed as X = (A1/2G1, . . . ,A
1/2Gd) , where

and G = [G1, . . . ,Gd]T ∼ N (0, σ 2I) is called an isotropic sub-Gaussian α-stable random 
vector in Rd with underlying Gaussian vector G . Note that the marginals are symmetric 
α-stable with scale parameter γ = 1√

2
σ.

Sub-Gaussian α-stable random vectors also play an important role in studying complex 
α-stable random variables; that is, a random variable with α-stable distributed real and 
imaginary components. In particular, the generalization of symmetric α-stable random 
variables to the complex case is known as the class of isotropic α-stable random vari-
ables, defined as follows.

Definition 3 Let Z1 , Z2 be two symmetric α-stable random variables. The complex α
-stable random variable Z = Z1 + iZ2 is isotropic if it satisfies the condition

The following proposition [57, Corollary 2.6.4] highlights the link between isotropic α
-stable random variables and sub-Gaussian α-stable random vectors.

Proposition 1 Let 0 < α < 2 . A complex α-stable random variable Z = Z1 + iZ2 
is isotropic if and only if there are two independent and identically distrib-
uted zero-mean Gaussian random variables G1,G2 with variance σ 2 and a ran-
dom variable A ∼ Sα/2((cos(πα/4))

2/α , 1, 0) independent of (G1,G2)
T such that 

(Z1,Z2)
T = A1/2

(G1,G2)
T . That is, (Z1,Z2)

T is a sub-Gaussian α-stable random vector.

(30)A ∼ Sα/2((cosπα/4)
2/α , 1, 0),

(31)eiφZ
(d)= Z for any φ ∈ [0, 2π).

5 There exist also sub-Gaussian α-stable random variables that allow for more general dependence structure [57], but 
they are not necessary for the purposes of this paper.



Page 23 of 29Zheng et al. J Wireless Com Network         (2022) 2022:27  

Appendix B: Proof of Theorem 2
By Theorem 1, the elements of ZBu are 4/η-stable random variables with parameter σZBu

 . 
Consider the first and second components of ZBu , corresponding to the real and imagi-
nary parts of the interference on the first subcarrier associated to msB Bu . These ele-
ments can be written as

Assume that hj,bu,1 ∼ CN (0, 1) , Re(xj,bu,1) ∼ Unif({+1,−1}) , and 
Im(xj,bu,1) ∼ Unif({+1,−1}) . Consider the random vector Zl

Bu
 , corresponding to the con-

tribution of device l ∈ �Bu on each subcarrier associated to msB Bu . This can be written 
as

where ⊙ is the Hadamard (element-wise) product. Since hi,bu,j ∼ CN (0, 1) , it follows that 
f ⊙ Re(xl) and g ⊙ Im(xl) are Gaussian random vectors with independent components 
with the same variance. It then follows that for any orthogonal matrix U in the set of real 
orthogonal matrices O(2N ) of dimension 2N × 2N ,

This in turn implies that UZl
Bu

d= Zl
Bu

 and hence UZBu
d= ZBu , where U ∈ O(2N ).

To complete the proof, we apply the following lemma which is a straightforward generali-
zation of [57, Theorem 2.6.3].

Lemma 1 Let O(d) be the set of d × d real orthogonal matrices and U ∈ O(d) . Let Z be 
an α-stable random vector on Rd . Then, Z d= UZ if and only if Z is a sub-Gaussian α-stable 
random vector with an underlying Gaussian vector having i.i.d. N (0, σ 2

) components.

Appendix C: Proof of Theorems 3 and 4
In this appendix, we prove Theorems 3 and 4. Both proofs follow a similar argument based 
on the following preliminaries.

Preliminaries

Let N1,N2, . . . be point processes with parameters κ1, κ2, . . . on R2 (for background 
point processes used in this appendix, see [58]). Then, the sequence (Nn)

∞
n=1 converges 

in distribution to a point process N with parameter κ∞ on R2 ; i.e., Nn
d→ N  if and only 

(32)

zbu,1,1 =
∑

j∈�Bu

r
− η

2
j

(
Re(hj,bu,1)Re(xj,bu,1)− Im(hj,bu,1)Im(xj,bu,1)

)

zbu,1,2 =
∑

j∈�Bu

r
− η

2
j

(
Re(hj,bu,1)Im(xj,bu,1)+ Im(hj,bu,1)Re(xj,bu,1)

)
.

(33)Zl
Bu

= r
−η/2
l

(
f ⊙ Re(xl)+ g ⊙ Im(xl)

)
,

(34)
U(f ⊙ Re(xl))

d= f ⊙ Re(xl),

U(g ⊙ Im(xl))
d= g ⊙ Im(xl).



Page 24 of 29Zheng et al. J Wireless Com Network         (2022) 2022:27 

if E[h(Nn)] → E[h(N )] for every bounded continuous function h on the space N  of all 
counting measures on R2 . Let BN = {B ∈ B : N (∂B) = 0 a.s.} and C+c  be the set of all 
continuous functions f : R2 → R+ with compact support. Convergence in distribution is 
characterized in the following theorem, which will provide the link between convergence 
in distribution of a point process and the convergence of the interference distribution it 
induces.

Theorem 6 (Theorem 6.1, [58]) The following statements are equivalent: 

 (i) Nn
d→ N .

 (ii) 
∫

R2 f (x)Nn(dx)
d→

∫

R2 f (x)N (dx) for all f ∈ C+c .

In particular, consider the interference random vector in (5). The real or imaginary compo-
nent of the interference on a single subcarrier can be written in the form

where �κn
Ŵ(rmin,rmax)

 is the point process inducing the interference and wj represents the real 
or imaginary part of a term hj,bu,i xj,bu,i in (4). Under the hypotheses of Theorem  3, each 
wj has compact support. Let f (x,w) = w�x�−η/2 which is bounded and continuous since 
�

κn
Ŵ(rmin,rmax)

 and each wj lie in compact sets. As such, we immediately obtain convergence of 
distribution for Zκn as n → ∞ if (i) in Theorem 6 holds.

To establish (i) in Theorem 6 holds, we require the following result.

Theorem 7 ([58, Theorem 6.2]) Suppose N is simple and

Then, Nn
d→ N  if and only if

A sufficient condition for (37) to hold is given by

where IN is the set of all intervals in BN.

In order to apply Theorem 7, we note that the point process inducing the interference 
in (5) can be viewed as an independently marked point process with points in R2 and 
marks in CKN  , where KN is the total number of subcarriers. As �κn

Ŵ(rmin,rmax)
 is simple, the 

resulting marked process is simple as well.

(35)
Zκn =

∑

j∈�κn
Ŵ(rmin,rmax )

wj�xj�−η/2,

(36)lim
m→∞

lim sup
n→∞

P(Nn(B) > m) = 0, ∀ B ∈ B.

(37)lim
n→∞

P(Nn(B) = 0) = P(N (B) = 0), ∀ B ∈ BN .

(38)lim sup
n→∞

E[Nn(I)] ≤ E[N (I)] < ∞, ∀ I ∈ IN ,
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Proof of Theorem 3

We now establish that (38) holds, which will complete the proof. For the doubly Pois-
son cluster process, we have for all I ∈ B

�
κn
Ŵ(rmin,rmax )

,

where κn denotes the density of daughter point process �d , where limn→∞ κn = κ∞ = 0 , 
and �κn

d,j is the daughter point process corresponding to the j-th point in �κ∞
Ŵ(rmin,rmax)

 
which is the parent HPPP. Therefore by (38), we only need to show that

Since each �κn

d,j is a HPPP restricted to a particular region, it follows that the number of 
points in each I does not exceed that of the unrestricted HPPP. Since the expected num-
ber of points for a HPPP tends to zero as the intensity tends to zero, it follows that (40) 
holds.

Proof of Theorem 4

For the Matérn hard-core process of type II, (38) holds immediately since �κn
Ŵ(rmin,rmax)

 
is a thinned version of �κ∞

Ŵ(rmin,rmax)
 , where κn denotes the hard-core distance rh and 

limn→∞ κn = κ∞ = 0.

Appendix D: Derivation of (20)
In this appendix, we derive the approximation for the tail dependence and the correla-
tion matrix in (20). To proceed, we first note that the tail dependence is not the same for 
each pair of elements in Z . This is due to the fact that for a given msB Bu , the random 
vector is sub-Gaussian α-stable. This implies that for any pair of elements in ZBu , the tail 
dependence is given by [45]

On the other hand, the tail dependence between pairs from different msBs in Z depends 
on the service rate p. For example, as p → 0 , elements of Z from different msBs are 
approximately independent. This means that the tail dependence for these pairs, denoted 
by �Z̃ , is approximately zero.

For K > 1 , there are significantly more pairs of subcarriers with tail dependence �Z̃ 
than �ZBu

 . For this reason, we will base our estimate of the degree of freedom ν on �Z̃ and 
verify that this approximation is accurate for sufficiently large p in Sect. 5.

The first step is then to obtain an approximation of the tail dependence �Z̃ . By 
definition,

(39)E

�

�
κn
Ŵ(rmin,rmax)

(I)
�

= E

�

�
κ∞
Ŵ(rmin,rmax)

(I)
�

+ E






�

j∈�κ∞
Ŵ(rmin,rmax )

�
κn

d,j(I)




,

(40)lim sup
n→∞

E






�

j∈�κ∞
Ŵ(rmin,rmax )

�
κn

d,j(I)




 = 0.

(41)�ZBu
=

∫
1√
2

0
uα√
1−u2

du
∫ 1
0

uα√
1−u2

du
.



Page 26 of 29Zheng et al. J Wireless Com Network         (2022) 2022:27 

where Zj,l = Re(hj,lxj,l) , l = 1, · · · ,K  . By Property  1 in Appendix  A and (10) in Theo-
rem 1, for l ∈ {1, 2} , as x → ∞

Moreover, the dependence is also strongest between elements of Z that have the 
same closest interferer distance, implied by Property  1. For p ≈ 1 , this suggests the 
approximation6,

Since r1 is the closest point in a HPPP, we have

This yields,

Applying the change of variables, z = F−1
(u)r

η

2 and combining with (42) and (43), then 
yields (20).

To derive an estimate of � , we recall that for p = 1 , the interference random vector 
Z approximately forms an isotropic sub-Gaussian α-stable random vector (by Theo-
rem 2). In this case, � is the identity matrix as the underlying Gaussian random vector is 

(42)

�Z̃ = lim
u→1

Pr




�

j∈�1

r
− η

2
j Zj,1 > F−1

(u)

�
�
�
�

�

j∈�2

r
− η

2
j Zj,2 > F−1

(u)



,

= lim
u→1

Pr

�
�

j∈�1
r
− η

2
j Zj,1 > F−1

(u)

�
�
�
�

�

j∈�2
r
− η

2
j Zj,2 > F−1

(u)

�

Pr

�
�

j∈�l
r
− η

2
j Zj,l > x

�

(43)
Pr




�

j∈�l

r
− η

2
j Zj,l > x



 = 1

2
Cαγ

αx
− 4

η + o
�

x
− 4

η

�

= 1

2
p�πE[|Z1,1||α]x−

4
η + o

�

x
− 4

η

�

.

(44)

Pr




�

j∈�1

r
− η

2
j Zj,1 > F−1

(u),
�

j∈�2

r
− η

2
j Zj,2 > F−1

(u)





≈pPr

�

r
− η

2
1 Z1,1 > F−1

(u), r
− η

2
1 Z1,2 > F−1

(u)

�

≈p

� ∞

0
Pr
�

Z1,1 > F−1
(u)r

η

2 ,Z1,2 > F−1
(u)r

η

2 |r
�

fr1(r)dr.

(45)fr1(r) = 2p�πre−p�πr2 .

(46)
Pr




�

j∈�1

r
− η

2
j Zj,1 > F−1

(u),
�

j∈�2

r
− η

2
j Zj,2 > F−1

(u)





≈p

� ∞

0

�

1− FZ1,1

�

F−1
(u)r

η

2

��2
2p�πre−p�πr2dr.

6 When the interference forms a real vector, this argument can be made rigorous [59].
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isotropic. To obtain an approximation of � for p ≈ 1 , we therefore base our estimate on 
the case p = 1.
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