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10 ABSTRACT11

12

The human brain develops from a smooth cortical surface in early stages of fetal life to a con-13

voluted one postnatally, creating an organized ensemble of folds. Abnormal folding patterns14

are linked to neurodevelopmental disorders. However, the complex multi-scale interactions in-15

volved in cortical folding are not fully known yet. Computational models of brain development16

have contributed to better understand the process of cortical folding, but still leave several ques-17

tions unanswered. A major limitation of the existing models is that they have basically been18

applied to synthetic examples or simplified brain anatomies. However, the integration of patient-19

specific longitudinal imaging data is key for improving the realism of simulations. In this work20

we present a complete computational pipeline to build and validate patient-specific mechanical21

models of brain development. Starting from the processing of fetal brain magnetic resonance22

images (MRI), personalised finite-element 3D meshes were generated, in which biomechanical23

models were run to simulate brain development. Several metrics were then employed to compare24

simulation results with neonatal images from the same subjects, on a common reference space.25

We applied the computational pipeline to a cohort of 29 subjects where fetal and neonatal MRI26

were available, including controls and ventriculomegaly cases. The neonatal brain simulations27

had several sulcal patterns similar to the ones observed in neonatal MRI data. However, the28

pipeline also revealed some limitations of the evaluated mechanical model and the importance29

of including patient-specific cortical thickness as well as regional and anisotropic growth to ob-30

tain more realistic and personalised brain development models.31

32

Statement of Significance:33

Computational modelling has emerged as a powerful tool to study the complex process of brain34

development during gestation. However, most of the studies performed so far have been car-35

ried out in synthetic or two-dimensional geometries due to the difficulties involved in processing36

real fetal data. Moreover, as there is no correspondence between meshes, comparing them or37

assessing whether they are realistic or not is not a trivial task. In this work we present a com-38

plete computational pipeline to build and validate patient-specific mechanical models of brain39

development, mainly based on open-source tools.40

41

1. Introduction42

During brain development there is a process of folding of the cerebral cortical surface creating outward (or convex43

hills) folds known as gyri and inward (or concave valleys) folds called sulci. The resulting cerebral cortex is highly con-44

voluted in humans and large mammals, attaining a large surface area relative to brain volume, as analysed in [26] for 3445
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Patient-specific mechanical models of brain development

primate species. Brain/cortical folding mostly occurs during gestational ages (GA) 16-40 [57], following a hierarchical1

organisation. Primary folds are the largest, deepest and early formed, being progressively subdivided into secondary2

and tertiary folds [31]. Compared to the huge variations across adult brains, the location and timing of formation of3

the first folds is remarkably stable [15]. Cortical fold wavelength is also similar between different primate species [26],4

as it is directly related to cortical bending stiffness (thus on cortical thickness), which does not substantially change5

across mammalian species [43].6

7

The size and folding of the cerebral cortex have a fundamental impact on brain function [17], with abnormal8

patterns (e.g., reduced or excessive folding that is defined as lyssencephaly and polymicrogyria, respectively) leading9

to severe intellectual disability [25]. Due to its clinical relevance, it is then essential to better understand the relation10

between cortical malformations and neurodevelopmental disorders. Recent studies (e.g., [21, 58]) have exposed that11

mechanical forces play an important role in the generation of characteristic folding patterns. More precisely, several12

works [12, 68, 59] showed that differential tangential growth between different layers of the cortex (i.e., grey and13

white matter) generates a compressive stress that is sufficient to induce buckling. Additionally, several studies have14

demonstrated that axonal tension within fibres in the white matter plays a key role inmodulating folds’ shape [60, 70, 5].15

However, the interactions between the many multi-scale developmental processes involved in the dynamics of cortical16

folding remain to be clarified [66].17

Several computational models of brain development have been proposed in the literature [60, 44, 4, 44, 21, 18, 72],18

contributing to improve our knowledge about the mechanisms underlying cortical folding. They are mainly based on19

different continuum mechanics theories. The interested reader is refereed to [24, 10] for a comprehensive review of20

brain (tissue) mechanics and its modelling. For instance, the theory of finite elasticity was used in [24] to prove that21

growth induces elastic instability with buckling modes of different wavelengths depending on the growth parameters22

and thickness of the shell, which naturally relates to the process of brain folding. The two most explored theories on23

cortical folding are based on axonal tension and differential growth hypothesis. The former one, first proposed in [61],24

is based on the assumption that axons connecting neurons in white matter mechanically pull highly interconnected25

regions of grey matter together to form gyri. The same author recently proposed a revision of the theory that includes26

tangential tension and sulcal zipping forces in the outer cortical margin and tension in the white matter core, together27

competing against radially-biased tension in the cortical grey matter [62]. On the other hand, the differential growth28

theory, proposed in [50], is based on a larger growth rate of cortical tissues compared to white matter, thus leading to29

mechanical buckling shaping the cortex. Tallinen et al. [58, 59] extended experimental studies of differential growth30

to 3D, using hemispheres of layered swelling gel. These authors also performed numerical simulations of growing31

hyperelastic materials starting from an idealised smooth fetal brain 3D mesh, obtaining results reasonably matching32
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experimental observations.1

Models only based on uniform surface growth on an elastic foundation have difficulties to reproduce the location2

and orientation of primary folds, nor the growth of white matter. Toro et al. [60] added stress-induced growth in3

a folding model by including radial and discrete viscoelastic fibres connected to an expanding elastic ring, which4

represented the cortical plate. Bayly et al. [5] derived an analytical formulation of the effects of relative growth rate5

on the folding wavelength, by representing the sub-cortical region as a continuous viscoelastic core. Budday et al.6

[11], modelled the human brain as a morphogenetically growing outer surface and a stretch-driven growing inner core,7

combining both axonal tension and differential growth hypotheses. The authors confirmed that the ratio between inner8

and outer layers’ growth rates influenced folding wavelength. This model was extended by Holland et al. [27] to9

study cortical anisotropic growth, due to the preference of axons to elongate in their axial direction. As an alternative,10

Wang et al. [64] recently proposed to link cortical growth rate to mean curvature variations, achieving distinct gyral or11

sulcal growth. Finally, Zarzor et al. [72] are pioneering the development of multi-scale models of brain development,12

coupling cellular processes with cortical folding, where cell properties (e.g., migration velocity, diffusivity) influence13

cortical growth.14

A major limitation common to all the proposed models is that they have only been applied to synthetic simplified15

geometries (e.g., disks, ellipsoids, spheres) [60, 11, 67] or to simplified brain anatomies [58, 27, 59, 66]. Experiments16

with synthetic data are required as part of the model validation stage to characterize the sources of errors and have bet-17

ter control over their parameters. However, the integration of patient-specific longitudinal data of brain development18

is key for assessing the accuracy of resulting predictions, through model validation and parameter optimisation with19

data assimilation processes. Appropriate accuracy metrics are consequently required to compare simulation results20

and observations. Obtaining imaging data to explore human brain development at different time-points in fetal life is21

nonetheless challenging, unlike for other species such as ferrets, where cortical folding and white matter maturation22

take place during the first month of life [3]. Ultrasound [69] and magnetic resonance images (MRI) [6] of the fetal brain23

are increasingly providing insights on brain development in vivo, but still with insufficient spatial resolution (from ul-24

trasound images) or requiring advanced image processing pipelines (in MRI) to compensate acquisition reconstruction25

problems due to motion.26

Another factor hampering the progress in patient-specific brain development models is the lack of openly shared27

pipelines including all the required steps. The neuroimaging community is steadily promoting Open Science and28

reproducible research, with numerous established tools for brain MRI data harmonization and processing (e.g., Clinica29

[53]), some of them for the description of cortical folding in healthy and pathological human brains, as well as in other30

species (e.g., PRIME-RE [41]). Unfortunately brain mechanical models are not integrated into the existing pipelines31
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yet, despite the availability of solvers used in some successful studies [59, 67]12.1

In this work we present a complete computational pipeline to build and validate patient-specific mechanical mod-2

els of brain development, mainly based on Open Source tools. Starting from the processing of fetal brain MRI, per-3

sonalized finite-element methods 3D meshes are generated, where biomechanical models are run to simulate brain4

development. Several metrics are then used to compare simulation results with neonatal data from the same subjects,5

on a common reference space built to integrate data from different individuals and time-points. The pipeline has6

been applied to a cohort of 29 subjects where fetal and neonatal MRI were available, including controls (n = 16) and7

ventriculomegaly (n = 13) cases.8

2. Materials and methods9

A scheme of the proposed pipeline is illustrated in Figure 1 and described in sections 2.2-2.4. The first step of the10

pipeline is the brain tissue segmentation of fetal and neonatal MRI of the same subject. The grey matter (or cortical11

surface) label is then the basis for building finite element method (FEM) meshes, which are later refined if required12

to ensure model convergence. Cortical thickness maps and brain parcellation are also derived from MRI data. The13

fetal meshes and patient-specific cortical thickness maps are subsequently set as input for the computational model14

that simulates brain growth and folding until the GA at which neonatal real data was available for that subject. Finally,15

neonatal simulations and observations are compared through global and local metrics.16

2.1. Clinical imaging database17

The clinical imaging database was composed of longitudinal brain MRI data from a cohort within a research18

project on isolated non-severe ventriculomegaly (INSVM), carried out at Hospital ClÃŋnic in Barcelona, Spain. Ap-19

proval was obtained for the study protocol from the Ethics Committee of the Hospital ClÃŋnic in Barcelona, Spain20

(HCB/2014/0484) and all patients gave written informed consent.21

Fetal ventriculomegaly (VM) occurs in around 1 out of 10 pregnancies [55]. It is defined as a dilation (≥10 mm)22

of one or both lateral ventricles, measured in 2D in ultrasound images, being 6-8 mm the normal width in fetuses [7].23

In the absence of other anomalies, it is called isolated ventriculomegaly. Studies [56, 33, 7] have confirmed alterations24

in folding in fetuses with ventricular enlargement, therefore underlining the clinical relevance of understanding the25

gyrification process.26

Wefinally included 31 subjects from a larger cohort of 81 subjects (38 controls and 43with INSVM), the oneswhere27

both fetal and neonatal reconstructed MRI were available. Two subjects were excluded due to inaccurate segmentation28

results (see Section 3.1). The demographic information of the 29 subjects included in our study is summarised in Table29

1http://users.jyu.fi/~tutatall/codes.html
2https://github.com/rousseau/BrainGrowth
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Figure 1: Scheme of the computational pipeline for patient-specific brain mechanical model generation and validation. (A)
Example of fetal and neonatal magnetic resonance imaging (MRI) scans of one subject. Background of fetal and neonatal
MRI processing is coloured in blue and yellow, respectively. (B) Image segmentation was performed with the Developing
Human Connectome Project (dHCP) structural pipeline [40]. (C) Mesh processing was performed with Meshmixer, using
Netgen to generate the 3D fetal meshes. (D) With the fetal geometry (gestational age, GA, of 28) as starting point, the
computational model simulated brain development. Predicted meshes of GA 32, 36 and 40 are displayed. (E) Comparison
between the neonatal real and simulated meshes using global and local metrics. DPF: Depth potential function. (F)
Measurement of cortical thickness from images. (G) Parcellation of 3D meshes.

1. In addition, ground-truth segmentations performed by clinicians were provided for 13 out of those 31 fetal images.1

T2-weighted MR imaging was performed on a 1.5-T scanner (Siemens Magnetom Aera syngo MR D13; Munich,2

Germany) with a 8-channel body coil, resulting in images with a 2.5 mm of slice thickness, a 280ÃŮ280 mm field of3

view and a voxel size of 0.5ÃŮ0.5ÃŮ2.5 mm3. Multiple orthogonal acquisitions were performed for each subject: 44

axial, 2 coronal and 2 sagittal stacks. From these 8 stacks of thick 2D slices, final 3D motion-corrected reconstructions5

were obtained; subsequently, brain location and extraction were performed with the methods presented in [28]. A6

high-resolution 3D volume reconstruction was then conducted using the approach proposed in [32].7
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Table 1
Clinical characteristics of the cohort.

Gestational / Postmenstrual Age (mean ± SD)
at Birth (week) 39.73 ± 1.12
at MRI 1 (week) 29.25 ± 2.74
at MRI 2 (week) 43.51 ± 1.71

Gender n (%)
Male 22 (75.86%)
Female 7 (24.14%)

Controls / Ventriculomegaly Cases n (%)
Controls 16 (55.17%)

Ventriculomegaly 13 (44.83%)
Fetal MRI Onset n (%)

Early (< 30) 20 (68.97%)
Late (> 30) 9 (31.03%)

Ethnicity n (%)
African 2 (6.90%)
Asian 1 (3.45%)

Caucasian 23 (79.31%)
Latin American 3 (10.34%)

2.2. Medical image processing1

Cortical surface geometries were obtained from neonatal images using the Developing Human Connectome Project2

(dHCP) structural pipeline [40]. For the fetal cases, a modified version of the dHCP pipeline was used, integrating a3

fetal-specific atlas [23] to permit segmentation of images taken in early gestation.4

We used the ground-truth labels from 13 subjects to evaluate the accuracy of the automatic segmentation method,5

as illustrated on Figure 2. The obtained results were compared both visually, by displaying them using Paraview3 and6

3DSlicer4, and quantitatively, by computing the Dice Coefficient, Hausdorff Distance (HD) and Volume Similarity7

(VS) measures, as follows:8

Dice = 2|GT ∩X|
|GT | + |X| , (1)

where GT represented the ground-truth and X the obtained segmentation, so GT ∩X corresponded to their intersec-9

tion; HD = max(ℎ(GT ,X), ℎ(X,GT )), where ℎ(GT ,X) was the directed Hausdorff distance, given by ℎ(GT ,X) =10

maxGT∈X minx∈X ‖gt − x‖, being ‖gt − x‖ the Euclidean distance between points gt and x;11

V S = 1 − ||GT | − |X||
|GT | + |X| . (2)

3https://www.paraview.org/
4https://www.slicer.org/
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As described in [39], the output of the dHCP structural pipeline included 2D meshes and associated feature maps1

for left and right hemispheres. The different meshes corresponded to the external grey matter, the interface between2

grey and white matter and the mid-thickness surface. In addition, an inflated, very inflated and spherical versions of3

the surfaces were provided. These surfaces had the exact number of vertices and faces as the original mesh and were4

used for visualisation and comparison purposes. The feature maps obtained for all subjects were: sulcal depth, cortical5

thickness, mean curvature and brain parcellations.6

Cortical thickness (H) was estimated on fetal MRI using the Pyezzi python library5, computing the thickness of7

tissues between the internal and external borders of the grey matter segmentation (Figure 1.F) [71].8

2.3. Mesh processing9

The FreeSurfer6 and Meshmixer7 softwares were used for the format conversion and manipulation of 2D surface10

meshes resulted from the brain segmentation. Especially to combine both brain hemispheres into one single geometry,11

repair surface imperfections (i.e., topology correction of defects such as handles or holes, artifacts, and fix non-manifold12

edges and self-intersecting faces) and to define an appropriate density of mesh elements (Figure 1.B). The number of13

mesh elements was empirically defined with a minimum of 1 M tetrahedra, since folding configuration (i.e., size and14

number) did not substantially change with more elements, following prior mesh convergence studies in [67]. Netgen815

was used to generate volumetric tetrahedral meshes through the Delaunay triangulationMethod (Figure 1C). The mean16

value and standard deviation of the mesh density was of 1.89 ± 0.25M tetrahedra.17

Defining point-to-point correspondence across meshes is challenging. The anatomical multimodal surface match-18

ing (aMSM) technique [52, 51] was originally proposed as a spherical registration tool to define spatial correspondences19

between two anatomical surfaces, each projected onto a sphere. The alignment can be driven by any feature map ex-20

tracted from the two surfaces to match. In our pipeline, we used the mean curvature and the Depth Potential Function21

(described below in Section 2.5.2) as the guiding feature maps. The registration process involved a resampling of the22

meshes which induced a one-to-one correspondence across the vertices of the matched surfaces, such that each vertex23

corresponded to the same anatomical location across the surfaces.24

The aMSM tool was also used to generate atlases from groups of meshes, as in [21]. Cortical surfaces were re-25

sampled to a standard 158,762-vertex mesh and averaged (with Workbench Command tools9) to create a preliminary26

atlas. Original surfaces were then registered to the preliminary atlas using aMSM (with default parameters) and aver-27

aged to obtain the final atlas. Atlases were also created for separated hemispheres by resampling meshes to a standard28

79212-vertex mesh.29

5https://gitlab.inria.fr/ncedilni/pyezzi
6https://surfer.nmr.mgh.harvard.edu/
7https://www.meshmixer.com/
8https://ngsolve.org/
9https://www.humanconnectome.org/software/workbench-command

M. AlenyÃă et al.: Preprint submitted to Elsevier Page 7 of 29

                  



Patient-specific mechanical models of brain development

2.4. Brain mechanical model1

We evaluated the finite-element model proposed by Tallinen et al. [58, 59], further modified by [66], which sim-2

ulates a realistic brain folding process. The C++ codes were open-source 10. The model was built on the assumption3

that folding appears due to the instability produced by the different growth rates in interfacing materials; if one grew4

faster than the other (grey and white matter, respectively), the system would become unstable and buckle.5

2.4.1. Constitutive equations6

The cortical tissue was modelled as a compressible neo-Hookean material, with strain energy density function:7

W = �
2
[T r(FF T )J

−2
3 − 3] + �

2
(J − 1)2, (3)

� and � being the shear and bulk modulus, respectively, F the deformation gradient and J = detF . As defined in8

[59, 67] we assumed � = 5�, which corresponded to a modestly compressible material. As the model was based9

on differential growth theory, the ratio between grey and white matter shear stresses was the important parameter to10

fix. Based on stiffness micro-indentation measurements performed on ferret brains by Xu et al. [70], we assumed the11

modulus ratio between cortical layer and white matter region to be �∕�wℎite = 0.86. The Cauchy Stress was given by:12

� = 1
J
)W
)F

F T . (4)

Surface traction of each tetrahedral deformed face was given by si = −�ni, with ni being face normals. Normal13

forces were obtained by distributing traction of each face equally for its three vertices.14

Contacts at the brain surface were modelled via penalty-based vertex-triangle contact processing [16]. If a superfi-15

cial face and node were closer than a threshold and the computed elastic force would bring them even closer, a contact16

force would prevent nodes from penetrating element faces.17

In the evaluated model, the deformation gradient equation integrated the relative tangential growth (G), being18

defined as: F = A(GÂ)−1.19

2.4.2. Growth kinetics20

The relative tangential growth tensor G described the tangential expansion perpendicular to the normal vector n̂ of21

the tetrahedron. It was obtained by G = gI + (1 − g)n̂ ⊗ n̂, where g was the relative tangential expansion ratio of the22

cortical layer with respect to the white matter zone. It stepped smoothly from grey (g = 1+�t) to white matter (g = 1)23

10http://users.jyu.fi/~tutatall/codes.html
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as follows:1

g = 1 +
�t

1 + e10(
y
H −1)

, (5)

where y was the distance from the top surface,H the cortical thickness and �t the growth rate. The latter was defined2

as �t = (
√
8 − 1)t and t as the time in the model, which ranged from 0 to 1. It was experimentally parameterised,3

according to gyrification index values measured on real folded brains [1, 65]. The equation that related t of the model4

with gestational age was:5

t = 0.987e−e−0.134(GA−29.433) . (6)

Along simulation time-steps, the evaluated model imposed a linear increase of cortical thickness, H , with the6

following expression: H = Hi + �t. � was empirically defined in [66] to be equal to 0.3 andHi was set to the chosen7

initial global patient-specific cortical thickness. The volumetric mesh was built to include all brain tissue inside the8

grey matter (GM), including the white matter (WM). Each GM andWM element of the mesh was then identified based9

on its distance from the top surface andH , which varies throughout the simulation, to determine the different material10

properties of the different brain tissues.11

2.4.3. Kinematics of finite growth12

As described in [58], the energy of the system was minimized by damped second-order dynamics using an explicit13

solver for quasi-static equilibrium of the system:14

vt+dt = vt +
ft − vtVn

m
dt, (7)

where vtVn was the damping force,  the viscous damping of value  = 0.05, vt the velocity and Vn the nodal volume.15

ft was the combination of the elastic and contact forces, dt the time step, m = 10a3 the nodal mass and a the mesh16

spacing in the initial configuration. Positions of the nodes of the mesh at the next time step were computed by:17

xt+dt = xt + vt+dtdt. (8)

M. AlenyÃă et al.: Preprint submitted to Elsevier Page 9 of 29
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2.5. Validation1

2.5.1. Global metrics2

Several global metrics, computed using the python package Surface anaLysis And Modeling (SLAM) 11, were es-3

timated to analyse and compare fetal, neonatal and simulated grey matter meshes. First, the surface area was computed4

as the sum of the area of all the triangles of the 2D mesh. Second, the volume was computed as the surface integral,5

corresponding to the whole volume enclosed in the 2D mesh of the grey matter. Third, the 3D gyrification index (3D-6

GI) was computed as in [67], by dividing the area of the mesh by the area of its smooth "convex hull" generated with7

SLAM.8

2.5.2. Local metrics9

Curvature10

The curvature of the analysed grey matter meshes was calculated in two different ways. First, we used the python11

library SLAM to obtain the curvature based on the Rusinkiewicz estimation [54], and further compute the non-12

dimensional curvature (K∗), as defined in [29] and [21]. The Rusinkiewicz-based method defined the mean curvature13

of a vertex as the average of the two principal curvatures (directions where the normal curvature reached its minimum14

and maximum), which were the eigenvalues of the vertex normal curvature tensor computed as:15

II = (u′, v′)
⎛⎜⎜⎝
K1 0

0 K2

⎞⎟⎟⎠

⎛⎜⎜⎝
u′

v′

⎞⎟⎟⎠
, (9)

where K1 and K2 were the eigenvalues and (u′, v′) the principal directions [54, 67]. The non-dimensional mean16

curvature was then computed by multiplyingK∗ = KL, where L =
√
SA∕4� being SA the total cortical surface area.17

Second, the Workbench command tools12 were used to compute the curvature based on [38]. This second alternative18

was only applied for surface registration in the aMSM and the computation of the depth potential function (see below)19

due to its low computational cost.20

Depth potential function21

The depth potential function (DPF), based on [8] and computed with SLAM, was also used to characterise grey22

matter meshes. DPF is a measure of the average convexity of the cortical mesh. It was defined as the scalar function23

that had the closest mean curvature to the original surface in a least-square sense, also being spatially regular. The24

DPF computation was obtained solving the time-independent Poisson’s equation. The curvature metric based on [38]25

was used as an input for computing the DPF.26

11https://github.com/brain-slam/slam
12https://www.humanconnectome.org/software/workbench-command
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Spectral analysis of gyrification (SPANGY)1

The SPANGY [22] method performed a spectral decomposition of the mean curvature of the grey matter meshes,2

based on the Laplace-Beltrami operator eigenfunctions. It allowed the parcellation of the cortical surface in 7 ordered3

spatial frequency bands (B0-B6) according to fold-related variations in curvature. As described in [22], the bands4

B1-B3 were related to global brain shape, while bands B4-B6 (folding bands) were associated to primary, secondary5

and tertiary folds. The sum of all the power accumulated in bands B1-B6 was defined as the Analysed Folding Power6

(AFP). For comparison purposes the power spectrum in each band was divided by the AFP to compute the relative7

folding power. The SPANGY code (MATLAB) was provided by the authors.8

Orientation of folds9

As proposed in [67], we calculated the angle between the gradient of Fiedler vectors [35] and the principal directions10

of curvatures [47] to characterise and compare the orientation of the folds on simulated and real meshes. The Fiedler11

vector was defined as the first non-constant eigenfunction of the Laplace-Beltrami operator and allowed to describe the12

longitudinal extension of surfaces. Extrema of Fiedler vectors were the most distant points within a geometry and its13

contour lines were cuts on the elongation axis. The direction of elongation was defined as the gradient of the Fiedler14

vector that was orthogonal to the contour lines. The principal directions of the curvatures were the corresponding15

eigenvectors of the curvature tensor. The folding orientation angles were obtained by the scalar product between the16

gradient of the Fiedler vector and the principal directions of the curvatures [67].17

To quantify the uniformity of the angular distribution of folds the Kullback-Leibler (KL) divergence or also called18

relative entropywas used. It was used tomeasure differences between two probability distributions. TheKL divergence19

from probability distribution P to probability distribution Q was defined as:20

DKL(P ||Q) =
∑
i
P (i)log P (i)

Q(i)
. (10)

In our study, P corresponded to the fold angular distributions on the folded surface while Q represented the theoretically21

uniform distribution of fold angles [67]. The code to compute the orientation of folds (MATLAB) was also provided22

by the authors.23

2.6. Experiments24

Several experiments were carried out to identify the most critical steps and relevant model parameters of the com-25

putational pipeline, as well as the similarity between simulations and observations. First, we assessed the accuracy of26

the fetal brain segmentations provided by the modified dHCP structural pipeline, comparing them with ground-truth27
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Table 2
Comparison between ground-truth and automatic segmentations.

Dice Coefficient Hausdorff Distance (mm) Volume Similarity

Grey matter 0.78 ± 0.05 6.49 ± 1.06 0.96 ± 0.03
White matter 0.95 ± 0.01 8.80 ± 1.80 0.99 ± 0.01

manual annotations. Second, a sensitivity analysis on the simulations was performed, running the model with six dif-1

ferent initial global cortical thicknesses (Hi), ranging from 0.74 mm to 5.96 mm in a subset of 8 fetal meshes (4 VM;2

2 of early and 2 of late-onset; 4 controls; 2 of early and 2 of late-onset). Values were chosen as in [66], of which 0.743

mm and 5.96 mm were assumed to be abnormalHi values. An additional simulation was run for each subject with the4

global cortical thickness derived from its corresponding patient-specific MRI (i.e., average over the whole brain). The5

effect of regional growth was then assessed, using a cortical parcellation (using the DrawEM tool [39, 40]) to specify6

a different growth for each region in the biomechanical model.7

3. Results8

3.1. Data preprocessing9

Figure 2 displays a visual comparison between ground-truth and automatic segmentation results provided by the10

modified dHCP pipeline. Beyond the central region in white matter (not relevant in our study) some discrepancies11

were found in regions with larger curvature. Quantitative results are shown in Table 2. An average Dice of 0.78±0.05,12

HD of 6.49±1.06 and VS of 0.96±0.03were obtained for grey matter, and of 0.95±0.01, 8.80±1.80 and 0.99±0.01,13

respectively, for white matter and ventricles. Snapshots of all fetal and neonatal meshes of greymatter used in this study14

are included in Appendix A. Two of the 31 initial cases were discarded for the final cohort because the segmentation15

step did not provide grey matter labels that could be used to build finite-element meshes (i.e., not continuous tissue16

requiring excessive manual intervention).17

Figure 2 also provides a visual example of a cortical thicknessmap obtainedwith the Pyezzi python library. Cortical18

thickness in fetalMRI ranged from 1.20mm to 1.78mm,withmean value and standard deviation of themean 1.53±0.1619

mm and within-subject mean standard deviation of 0.45 mm. The cortical thickness measured in neonatal MRI was20

1.32 ± 0.17 mm.21

Sets of fetal, neonatal and simulated meshes are displayed in Figures 7, 8 and 9, respectively.22
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A. B.
Grey matter White matterGround-truth segmentation Automatic

segmentation

C. Cortical Thickness
(Pyezzi)

Figure 2: Comparison of ground-truth and automatic segmentations. (A) Axial and coronal views of ground-truth segmen-
tations (all labels and only grey and white matter combined with ventricles) and automatic segmentations. (B) Differences
(red) in grey (left) and white (right) matter. (C) Cortical thickness estimated from magnetic resonance images.

3.2. In-silico simulations1

3.2.1. Varying global cortical thickness in brain simulations2

The effect of having distinct initial global cortical thickness in brain simulations can be seen in Figure 3. Mean3

curvatures were plotted versus Hi (Figure 3.A), quantitatively showing the decrease in curvature in all meshes when4

increasing cortical thickness. Both mean curvature and depth potential function mapped onto cortical surfaces and5

spheres (Figure 3.B) clearly displayed how low values ofHi created overly convoluted cortex, while with high values6

gyri became fewer and wider. In terms of folding bands, SPANGY results (Figure 3.D) showed that the power spectrum7

of curvature was mostly of band 6 with the smaller cortical thickness value (i.e., Hi = 0.74 mm), mainly creating8

folding patterns similar to tertiary folds. As cortical thickness increased, the power in bands 5 and 6 also progressively9

rose, while that of band 4 decreased. Power spectrum maps plotted on the cortical surfaces (Figure 3.E) illustrate this10

scenario, with a greater presence of bands 5 (orange) and 6 (red) at higher values ofHi, where the nature of the folding11

was of first and second order.12

3.2.2. Global vs regional growth in brain simulations13

Results of this experiment are shown in Figure 4. With the implemented regional growth, the simulated mesh14

presented slightly increased volume in the parietal and occipital areas, although still far from the global shape of the15

real neonatal cortex (see Figure 4.A). The standard deviation between the coordinates of the vertices of the simulated16

and neonatal meshes was mapped on an inflated surface, as can be observed in Figure 4.B). It depicts how regional17

growth reduced the differences between simulations and observations in the parietal area. Box plots of global metrics18

also showed an increase in volume and surface area of regional simulations compared to baseline (Figure 4.C).19
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Figure 3: Impact of varying initial cortical thickness on simulated meshes. (A) Plot of mean absolute value of curvature of
each mesh and level i of cortical thickness (Hi) ranging from 1 to 6. (B) Simulated cortical morphologies with curvature
maps and (C) spheres coloured by the depth potential function (DPF) obtained with each initial cortical thickness. (D)
Relative power spectrum of curvature in bands B4-B6 displayed as a bar plot and (E) onto cortical surfaces for four of the
implemented Hi.
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Figure 4: Comparison between simulations with global and regional growth. (A) For one subject, neonatal real cortex
and both overlapped global and regional growth simulations. (B) Standard deviation of the vertex coordinates between
neonatal and brain simulations plotted onto an inflated surface. Arrows point to the parietal region. (C) Box plots of
volume and surface area for each group of meshes.

3.2.3. Neonatal data vs brain simulations1

A comparison between neonatal real data and simulations is shown in Figure 5. Cortical surfaces and curvature2

maps of fetal, neonatal and simulations are displayed for two subjects (Figure 5.A): 1) a ventriculomegaly condition,3

with fetal MRI acquired at GA 28 (early onset); and 2) a control case, with fetal imaging available at GA 32 (late4

onset). Although the nature of the folding patterns was reproduced by the biomechanical model, there were notable5
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differences when comparing simulated to real neonatal meshes. The sagittal view of the cortices revealed a lack of1

similarity in their overall shape, especially in the parietal region, which more closely resembled that observed in the2

fetal meshes. Regarding the time (onset) at which fetal MRIs were acquired, simulations starting at advanced GA3

were more comparable to their corresponding real neonatal meshes. Conversely, simulations of meshes starting from4

GA 26-28 had a lower match with their corresponding neonatal real data. Fetal brains at early GA, apart from being5

smaller in size than neonatal ones, only presented the central and lateral sulcus (Sylvian fissure); the absence of more6

complete structural information resulted in simulations with higher variability. The identification of sulci was visually7

performed on the DPF maps plotted onto spheres. The Sylvian fissure, central sulcus, post-central sulcus and superior8

temporal sulcus were identified in all six meshes, thus revealing the ability of simulations to reproduce these patterns.9

Figure 5.B shows the atlases of each group of meshes (i.e., fetal, simulation, neonatal), coloured by the depth10

potential function estimation. It can be seen that the average cortical surface of simulations have created several gyri11

(red colours in the figure) from the fetal stage, but not as many as observed in the neonatal atlas. Box plots of global12

metrics are in displayed in Figure5.C to compare fetal, simulation and neonatal brains. The simulations underestimated13

the surface area, volume and 3D-GI observed in neonatal meshes, by a 30.9%, 26.9% and 14.4%, respectively.14

3.2.4. Controls vs ventriculomegaly cases15

Figure 6 displays differences between control and VM cases, for both simulations and real data. Surface area and16

volume were underestimated by simulations when compared to values of neonatal meshes. The increase in fetal surface17

area and volume in the simulations was of 64% and 42%, respectively, whilst real neonatal meshes had an increase of18

75% and 58%. No significant differences were observed in mean surface values between controls and VM, but controls19

presented lower volume (6%) than VM in both simulated and real meshes (p < 0.05). 3D-GI was lower in simulations20

than in real neonatal meshes; values for controls (simulations: 2.68 ± 0.31, neonatal: 3.20 ± 0.32) were higher than21

for VM (2.63 ± 0.27, 2.99 ± 0.37).22

Results in depth potential function and mean curvature were similar for both groups: fetal cases, 12.75 ± 6.6423

(controls) and 11.11 ± 4.53 (VM); neonatal cases 33.29 ± 4.62 (controls) and 33.62 ± 4.37 (VM); and simulations,24

45.12 ± 6.57 (controls) and 42.81 ± 7.65 (VM). Statistically significant differences (p < 0.05) were obtained between25

simulations and neonatal data but not between VM and controls. In addition, fetal meshes showed bigger mean and26

dispersion of the KL divergence, i.e., more isotropy in their surface orientation: controls: 6.34 ± 4.57xE − 03; VM,27

4.96 ± 5.16xE − 03. Simulations presented larger KL divergence values than neonatal meshes (26% in controls and28

35% in VM), which suggested less anisotropy in their fold orientation.29

SPANGY results are shown in Figure 6.B. No significant differences were observed between controls and VM30

in none of the three groups (fetal, neonatal, simulations). Fetal meshes presented higher values of relative folding31
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Figure 5: (A) Cortical morphologies and curvature maps of fetal and neonatal meshes of two subjects (a ventriculomegaly,
VM, fetal brain at early gestation and a control one of late onset), together with the resulting brain simulations. Depth
potential function (DPF) maps are mapped onto spheres with arrows pointing at the following: 1 = Sylvian fissure; 2
= Central sulcus; 3 = Post-Central sulcus; 4 = Superior Temporal sulcus. (B) Atlases of real fetal and neonatal and
simulated meshes. (C) Global metrics of surface area, volume and 3D gyrification index (3D-GI) for the whole cohort.

power in band 4 (0.154 ± 0.057) than neonatal ones (0.048 ± 0.01) and simulations (0.079 ± 0.019). For neonatal1

real data, power spectrum in band 6 (0.628 ± 0.023) roughly doubled the power in band 5 (0.285 ± 0.025), while for2

simulations they were of 0.440± 0.081 in band 5 and 0.431± 0.111 in band 6. Atlases and inflated surfaces with DPF3

(Figure 6.C), qualitatively showed how, although minor discrepancies in folding were present between controls and4

VM, major differences in size, shape and folding were prominent between groups. Overall, results showed that the5

differences between simulations and real data were much larger than those observed between pathological and healthy6

conditions.7

3.2.5. Computational times8

Table 3 shows a breakdown of the tasks performed at each step of the pipeline along with an estimate of the9

computational time required to complete them. Segmentation with the dHCP structural pipeline took 15-20’ for each10
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Figure 6: Comparison of real data and simulations for control and ventriculomegaly (VM) cases. (A) Box plots for global
metrics and mean values of depth potential function (DPF), mean curvature and Kullback-Leibler (KL) divergence. (B)
Bar plots of relative power spectrum of curvature in folding bands. (C) Atlases of cortical surfaces for each group of
meshes (control and VM, simulations (S), real fetal (F) and neonatal (N)), coloured by DPF distribution. Below each
atlas, inflated versions of the surfaces are included.

MRI dataset. Mesh processing took around 20-30’ but it could vary depending on the nature of meshes, since this1

step was highly manual. The computational model was the longest process, in particular when the solver did not2

converge the first time it was run. In that case, in an iterative manner the mesh was re-processed (by repairing the3

problematic area or re-meshing the whole mesh), the volumetric mesh was generated again and the model was re-run.4

The calculation of the evaluation metrics required different times. For instance, SPANGY is time-consuming because5

it requires to solve a generalized eigenvalue problem with thousand of eigenvectors in a very large dimension.6
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Table 3
Computational time required to run the whole pipeline.

Pipeline Stage Task (software) Computational time (min)
Segmentation Segmentation (dHCP structural pipeline) 15-20’

Mesh Processing
Mesh Processing (Meshmixer)

Volumetric mesh generation (Netgen)
20-30’
3-5’

Computational Model C++ Solver (HPC Cluster) 25-35 h

Evaluation metrics

Global metrics (Slam, Python)
Mean curvature (Slam, Python)

SPANGY (Matlab)
Depth potential function (Slam, Python)

Folds orientation (Matlab)
aMSM

<1’
5-8’

15-30h
3-5’

20-30’
10-15’

M. AlenyÃă et al.: Preprint submitted to Elsevier Page 18 of 29

                  



Patient-specific mechanical models of brain development

4. Discussion1

Personalised computational models are progressively being more used in medical fields such as cardiology [45], to2

support diagnosis [14], therapy optimisation and risk prediction [42]. Together with statistical (e.g., machine learning)3

models, they are the foundations of digital twins for improved patient-specific clinical decisions and precision medicine4

[13]. However, mechanical models of brain development are not that mature yet, basically been tested on synthetic5

or idealised geometries due to the difficulties of obtaining longitudinal imaging data. However, recent advances in6

imaging acquisition and processing techniques are leading to better quality images of the fetal and neonatal brain.7

In this work, we present a computational pipeline, based on open-source tools, that allowed to successfully process8

fetal MR images of 29 subjects, building patient-specific meshes to simulate brain growth/folding, and comparing the9

resulting simulations with neonatal data from the same subjects with several global and local metrics in a common10

reference space. The different steps in the pipeline for geometrical model building and the brain mechanical modelling11

influenced the final simulation results and its comparison with neonatal data, as described in the following.12

4.1. Geometrical model building13

4.1.1. Brain segmentation14

Brain segmentation was the initial step of the pipeline since fetal MRI 3D reconstruction was already performed in15

the standard imaging protocol in the hospital. Inaccuracies to reconstruct fetal MR images would obviously affect the16

whole modelling pipeline; it is then necessary to apply motion correction algorithms (see [6] for options) to provide17

high-resolution 3D data to process.18

Patient-specific brain modelling of several cases requires the automatisation of 3D fetal brain MR data segmenta-19

tion. In our work, we were able to compare brain tissue segmentations provided by the modified dHCP pipeline with20

manual labels in 13 fetal MR images. Overall, automatically obtained grey matter labels were similar to the ground-21

truth after visual inspection of the results (see Figure 2, with more differences in the area between the hemispheres and22

systematically over-estimating sulcal depth. The estimated quantitative metrics (e.g., Dice) were good enough (0.78,23

above inter-rater variability recently measured in [46]), considering the complexity of cortical morphology. How-24

ever, two cases (out of 31) were discarded due to inaccurate GM segmentation that would require almost fully manual25

labelling. Improved fetal brain segmentation techniques, using deep learning techniques, are already appearing (e.g.,26

[36]) thanks to the availability of Open Access data in initiatives such as the Fetal Tissue Annotation (FETA) challenge27

[46]13. Regarding neonatal brain segmentation, we made use of the standard dHCP pipeline [40] (Dice of around 0.8028

for cortical GM, reported in [39]) but its accuracy in our data could not be quantified due to the lack of ground-truth29

data at this stage.30

13https://feta-2021.grand-challenge.org/
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4.1.2. Cortical thickness estimation1

In the implemented brain mechanical model, the initial cortical thickness (width of grey matter layer) is a key2

parameter for the simulated folding [66]. Cortical thickness estimation directly depends on the brain segmentation3

accuracy. Using a well-known tissue thickness method [71], the cortical thickness values for fetal MRI (average of4

1.53 ± 0.16 mm) were larger than the ones reported in [9] (average of 1.05 mm) but within the range of the ones5

published in Vasung et al. [63] (1-2 mm from GA 26 until 42). On the other hand, we found cortical thickness6

estimated in neonatal data less reliable. In a counter-intuitive way, the average value of cortical thickness was lower in7

neonatal than in fetal data. Neonatal cortical thickness was estimated from the dHCP-based segmentations, fromwhich8

values of 1.04 mm at 36 weeks to 1.10 mm at 44 weeks have been reported [40], in concordance with our results. The9

main reason for this discrepancy was the topological differences in GM segmentations in the two stages, with neonatal10

segmentations being too thin and discontinuous comparing to fetal ones, having a large influence on cortical thickness11

values.12

4.1.3. Meshing13

Building patient-specific meshes of human organs with complex morphologies is one of the main bottlenecks that14

has prevented a more widespread clinical translation of computational models, due to the difficulties on automatis-15

ing the process. Tetrahedral meshes were chosen to build patient-specific brain meshes since they usually can better16

discretise complex geometries than hexahedral representations. Still, the building of 29 patient-specific brain meshes17

was a labour-intensive process that should be better streamlined in the future. Mechanically evolving a fetal, relatively18

smooth, brain into the highly convoluted cortical surface post-natally is a numerical problem pushing FEM techniques19

to the limit. For instance, large deformations may be needed but they may lead to negative Jacobian or overlapping ele-20

ments impeding finding correct solutions. Sophisticated meshing and solver methodologies are required, often asking21

for manual intervention in an iterative framework. In our experiments, 10 cases out of 29 needed several re-meshing22

iterations (i.e., removing or smoothing elements, correcting topological defects such as handles or holes) to ensure23

convergence of the solutions. The contact penalty force implemented in [59] was key to avoid non-negative Jacobian24

mesh elements through simulation time-steps. Meshless techniques such as the ones based on smooth particle hydro-25

dynamics, already successfully applied for electromechanical simulations of the heart [37], or based on the material26

point method to study live human brain dynamics [19], should be explored for brain development modelling since they27

are suitable when meshing is challenging.28

4.2. Brain mechanical modelling29

Initially, the available open-source brain mechanics solver was adapted to have as input any fetal brain geometrical30

mesh, at any initial GA and delivery week, since several routines were hard-coded to only work on particular idealised31
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geometries. Starting from patient-specific fetal brain geometries, the model was able to reproduce the convoluted1

nature of brain folding patterns in neonatal stages described in [59, 20]. Spherical representations of metrics (e.g.,2

DPF in Figure 5) were effective to identify the resemblance of certain sulcal patterns (e.g., central and post-central3

sulcus, 2 and 3 in Figure 5, respectively) between neonatal simulations and observations, even in cases starting from4

an early GA fetal mesh. It is remarkable the stability of the central and temporal sulci through the simulation process,5

as it was earlier demonstrated in spheres [34], likely due to their presence in fetal meshes (range between 26 to 34 GA).6

Nevertheless, it is evident that the simulated meshes still present large differences with real neonatal data in terms of7

global shape and folding patterns (see results in Figure 5 and Figure 6). Mechanical simulations consistently generated8

smaller (as seen by the surface area and volume metrics) and less convoluted (from 3D-GI and curvature metrics)9

brains that neonatal real ones. The detailed characterisation of folds with SPANGY, DPF and orientation-based metrics10

showed that simulations created, compared to neonatal real patterns: 1) less convex folds in average and with a smaller11

range of different values (from DPF); 2) less uniform (i.e., isotropic) fold orientation (from KL divergence); and 3) an12

insufficient percentage of secondary folds (see orange bars in Figure 6 corresponding to B5), slightly overestimating13

primary folds. The more isotropic orientation of the folds in the simulations was due to the model assumption of14

uniform and isotropic growth across the entire grey matter geometry, which is an over-simplification of brain growth15

dynamics during fetal brain development. Comparing simulated neonatal brains of controls and ventriculomegaly16

cases, we observed the same subtle differences than in real data in all metrics: slightly less convoluted brain (from17

3D-GI) and reduced volumes in ventriculomegaly cases, in agreement with literature [56, 33, 7]. To complement the18

evaluation of the simulations, future studies will also include the computation and analysis of the sulcal depth, sulci19

identification and number of folds.20

It is important to point out the relevance of the initial fetal brain gestational age, as can be seen in Figure 5:21

with initial smoother meshes (i.e., earlier GA such as in Figure 5.A), the brain mechanical model generates simulated22

neonatal brains further from data than with initial meshes where more folds are present (i.e., later fetal GA, such as in23

Figure 5.B). This is in agreement with conclusions found in the literature [30, 49, 17], stating that first order folds are24

thought to be regulated by genetic and cellular pre-patterning processes. These were not included in our experiments25

since initial fetal brain meshes in our study were from 26 weeks on, with primary folds already formed. Recent26

pioneering work on multi-scale modelling of brain development [72], including cellular dynamics, has the potential to27

better simulate the generation of folds that have not appeared yet. Additionally, it would be interesting to incorporate28

axonal tension forces to the current model of Tallinen et al. [58, 59] since it is only based on the differential growth29

between cortical and white matter regions. As seen in [20], although it has been demonstrated that axonal tension does30

not drive gyrification, it does have a relevant role in the modulation of folding patterns.31

Two additional parameters were important to obtain different brain simulation patterns: cortical thickness and32
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brain growth characteristics. When modifying the initial global cortical thickness, the resulting simulations were1

in agreement with literature [17, 66], with a thinner cortex leading to more folded brains and vice versa (such as2

in polymicrogyria and lissencephalic brains, respectively). In our sensitivity analysis, imposing an initial cortical3

thickness of 1.48 mm or 1.98 mm (H2 andH3 in Figure 3) provided the closer simulations to neonatal data. However,4

we finally tailored the initial global cortical thickness for each simulation to the one extracted from the MRI of each5

individual, further personalising the model. In this context, it is also worth mentioning that differences in the order6

of the resolution of the acquired magnetic resonance images (0.5 mm) should not be relevant. In the future, different7

cortical thickness values will be imposed locally to different regions based on MRI estimations, which should lead to8

less homogeneous and more realistic behaviour of the simulated folding patterns.9

For simplicity, cortical growthwas initially assumed uniform and isotropic in the initial experiments. However, pre-10

vious studies have demonstrated inter-hemisphere gyrification differences [48] and non-homogeneous shape changes11

between fetal and neonatal cortical surfaces [21]. A simple implementation of regional growth was then implemented,12

showing qualitative and quantitative improvements in certain areas such as the parietal region. Refined spatio-temporal13

local growth patterns based on prior observations (e.g., from Garcia et al. [21]), already partially tested on atlas fe-14

tal brains [65], will improve the realism of the presented brain simulations. In parallel, anisotropic growth could be15

incorporated, as in [64], dependent on the mean curvature of the cortex to achieve preferential growth in either gyri16

or sulci. Local constraints based on the particular characteristics of individual sulci and related cytoarchitecture, in17

particular the primary folds (e.g., central sulcus), would help to better control the folding pattern evolution in the18

simulations. Additionally, the equations of the biomechanical model accounted for a stress-independent growth, with19

values being imposed throughout the simulation. For more realistic simulations, the model must be modified to allow20

for biomechanical feedback, so that growth is readjusted according to the stress fields generated at each point in the21

process.22

Material properties of both grey and white matter were defined globally by the bulk and shear modulus. However,23

there is evidence that they vary significantly not only across regions of the brain [11], but also throughout the fetal24

development, when the brain constantly adapts to new functional demands. A better characterization of brain tissue25

mechanical properties is becoming possible with recent advanced experimental set-ups [10] and should definitively be26

integrated into the existing brain development models. Sensitivity analysis studies should then be carried out to assess27

the influence of material properties on the simulation results.28

5. Conclusions29

Computational models of brain development are arguably in its infancy, comparing to the ones in other human or-30

gans such as the heart. One of the main causes is the absence of validation studies confronting simulation results with31
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observations, due to the difficulty of having longitudinal brain data from the same subject. More multi-disciplinary1

efforts between data scientists, modellers and clinicians would also be beneficial for improving the realism of existing2

simulations. In this work we have presented a complete pipeline for creating and validating patient-specific mechani-3

cal models of brain development, which has been applied to 29 fetal brain MRI data. Simulations of neonatal brains4

remarkably mimicked folding patterns observed in MR images. However, the developed pipeline allowed to quantify5

important differences between model results and observations at different time-points or subjects, both globally and6

locally, with the employed metrics and the building of a common reference system. In consequence, some of these7

metrics could be used for model parameter optimisation within data assimilation processes such as for determining8

the optimal cortical growth in each region to better match neonatal data. The different open-source tools used in the9

presented pipeline also facilitate joint multi-institutional efforts, necessary to bring the field of brain mechanical mod-10

elling forward. Initiatives such as the dHCP14, releasing tools and data for fetal and neonatal imaging research, will11

soon allow the creation of benchmark studies to compare models based on different hypothesis (i.e., axonal tension,12

differential growth, stress-dependent growth) and integrate them, together with other statistical or phenomenologi-13

cal approaches such as disease progression models [2]. Brain mechanical model researchers should then follow the14

example of neuroimaging researchers, pioneers in Open Science, and jointly work in multi-disciplinary teams with15

neurologists to better understand the wonders of brain development.16
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Figure 7: Fetal grey matter geometries of the entire cohort. The 29 meshes were extracted from the magnetic resonance
images and set as starting point of the biomechanical model. Gestational age ranged from 26.3 to 34.7 weeks. More
information on the dataset can be found in Table 1.
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