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Computational pipeline for the generation and validation of patient-specific mechanical models of brain development
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The human brain develops from a smooth cortical surface in early stages of fetal life to a convoluted one postnatally, creating an organized ensemble of folds. Abnormal folding patterns are linked to neurodevelopmental disorders. However, the complex multi-scale interactions involved in cortical folding are not fully known yet. Computational models of brain development have contributed to better understand the process of cortical folding, but still leave several questions unanswered. A major limitation of the existing models is that they have basically been applied to synthetic examples or simplified brain anatomies. However, the integration of patientspecific longitudinal imaging data is key for improving the realism of simulations. In this work we present a complete computational pipeline to build and validate patient-specific mechanical models of brain development. Starting from the processing of fetal brain magnetic resonance images (MRI), personalised finite-element 3D meshes were generated, in which biomechanical models were run to simulate brain development. Several metrics were then employed to compare simulation results with neonatal images from the same subjects, on a common reference space.

We applied the computational pipeline to a cohort of 29 subjects where fetal and neonatal MRI were available, including controls and ventriculomegaly cases. The neonatal brain simulations had several sulcal patterns similar to the ones observed in neonatal MRI data. However, the pipeline also revealed some limitations of the evaluated mechanical model and the importance of including patient-specific cortical thickness as well as regional and anisotropic growth to obtain more realistic and personalised brain development models.

Statement of Significance:

Computational modelling has emerged as a powerful tool to study the complex process of brain development during gestation. However, most of the studies performed so far have been carried out in synthetic or two-dimensional geometries due to the difficulties involved in processing real fetal data. Moreover, as there is no correspondence between meshes, comparing them or assessing whether they are realistic or not is not a trivial task. In this work we present a complete computational pipeline to build and validate patient-specific mechanical models of brain development, mainly based on open-source tools.

Introduction

During brain development there is a process of folding of the cerebral cortical surface creating outward (or convex hills) folds known as gyri and inward (or concave valleys) folds called sulci. The resulting cerebral cortex is highly convoluted in humans and large mammals, attaining a large surface area relative to brain volume, as analysed in [START_REF] Heuer | Evolution of neocortical folding: A phylogenetic comparative analysis of MRI from 34 primate species[END_REF] for 34

Patient-specific mechanical models of brain development primate species. Brain/cortical folding mostly occurs during gestational ages (GA) 16-40 [START_REF] Sun | Growth and folding of the mammalian cerebral cortex: from molecules to malformations[END_REF], following a hierarchical organisation. Primary folds are the largest, deepest and early formed, being progressively subdivided into secondary and tertiary folds [START_REF] Kroenke | How forces fold the cerebral cortex[END_REF]. Compared to the huge variations across adult brains, the location and timing of formation of the first folds is remarkably stable [START_REF] Dubois | Mapping the Early Cortical Folding Process in the Preterm Newborn Brain[END_REF]. Cortical fold wavelength is also similar between different primate species [START_REF] Heuer | Evolution of neocortical folding: A phylogenetic comparative analysis of MRI from 34 primate species[END_REF],

as it is directly related to cortical bending stiffness (thus on cortical thickness), which does not substantially change across mammalian species [START_REF] Mota | Cortical folding scales universally with surface area and thickness, not number of neurons[END_REF].

The size and folding of the cerebral cortex have a fundamental impact on brain function [START_REF] Fernández | Cerebral cortex expansion and folding: what have we learned?[END_REF], with abnormal patterns (e.g., reduced or excessive folding that is defined as lyssencephaly and polymicrogyria, respectively) leading to severe intellectual disability [START_REF] Guerrini | Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options[END_REF]. Due to its clinical relevance, it is then essential to better understand the relation between cortical malformations and neurodevelopmental disorders. Recent studies (e.g., [START_REF] Garcia | Dynamic patterns of cortical expansion during folding of the preterm human brain[END_REF][START_REF] Tallinen | Gyrification from constrained cortical expansion[END_REF]) have exposed that mechanical forces play an important role in the generation of characteristic folding patterns. More precisely, several works [START_REF] Clark | Deformation patterns in the cerebral cortex[END_REF][START_REF] Welker | Why does cerebral cortex fissure and fold ? a review of determinants of gyri and sulci[END_REF][START_REF] Tallinen | On the growth and form of cortical convolutions[END_REF] showed that differential tangential growth between different layers of the cortex (i.e., grey and white matter) generates a compressive stress that is sufficient to induce buckling. Additionally, several studies have demonstrated that axonal tension within fibres in the white matter plays a key role in modulating folds' shape [START_REF] Toro | A morphogenetic model for the development of cortical convolutions[END_REF][START_REF] Xu | Axons pull on the brain, but tension does not drive cortical folding[END_REF][START_REF] Bayly | A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain[END_REF].

However, the interactions between the many multi-scale developmental processes involved in the dynamics of cortical folding remain to be clarified [START_REF] Wang | On early brain folding patterns using biomechanical growth modeling[END_REF].

Several computational models of brain development have been proposed in the literature [START_REF] Toro | A morphogenetic model for the development of cortical convolutions[END_REF][START_REF] Nie | A computational model of cerebral cortex folding[END_REF][START_REF] Bayly | Quantitative imaging methods for the development and validation of brain biomechanics models[END_REF][START_REF] Nie | A computational model of cerebral cortex folding[END_REF][START_REF] Garcia | Dynamic patterns of cortical expansion during folding of the preterm human brain[END_REF][START_REF] Foubet | Mechanical morphogenesis and the development of neocortical organisation[END_REF][START_REF] Zarzor | A two-field computational model couples cellular brain development with cortical folding[END_REF], contributing to improve our knowledge about the mechanisms underlying cortical folding. They are mainly based on different continuum mechanics theories. The interested reader is refereed to [START_REF] Goriely | Differential growth and instability in elastic shells[END_REF][START_REF] Budday | Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue[END_REF] for a comprehensive review of brain (tissue) mechanics and its modelling. For instance, the theory of finite elasticity was used in [START_REF] Goriely | Differential growth and instability in elastic shells[END_REF] to prove that growth induces elastic instability with buckling modes of different wavelengths depending on the growth parameters and thickness of the shell, which naturally relates to the process of brain folding. The two most explored theories on cortical folding are based on axonal tension and differential growth hypothesis. The former one, first proposed in [START_REF] Van Essen | A tension-based theory of morphogenesis and compact wiring in the central nervous system[END_REF], is based on the assumption that axons connecting neurons in white matter mechanically pull highly interconnected regions of grey matter together to form gyri. The same author recently proposed a revision of the theory that includes tangential tension and sulcal zipping forces in the outer cortical margin and tension in the white matter core, together competing against radially-biased tension in the cortical grey matter [START_REF] Van Essen | A 2020 view of tension-based cortical morphogenesis[END_REF]. On the other hand, the differential growth theory, proposed in [START_REF] Richman | Mechanical model of brain convolutional development[END_REF], is based on a larger growth rate of cortical tissues compared to white matter, thus leading to mechanical buckling shaping the cortex. Tallinen et al. [START_REF] Tallinen | Gyrification from constrained cortical expansion[END_REF][START_REF] Tallinen | On the growth and form of cortical convolutions[END_REF] extended experimental studies of differential growth to 3D, using hemispheres of layered swelling gel. These authors also performed numerical simulations of growing hyperelastic materials starting from an idealised smooth fetal brain 3D mesh, obtaining results reasonably matching Patient-specific mechanical models of brain development experimental observations. Models only based on uniform surface growth on an elastic foundation have difficulties to reproduce the location and orientation of primary folds, nor the growth of white matter. Toro et al. [START_REF] Toro | A morphogenetic model for the development of cortical convolutions[END_REF] added stress-induced growth in a folding model by including radial and discrete viscoelastic fibres connected to an expanding elastic ring, which represented the cortical plate. Bayly et al. [START_REF] Bayly | A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain[END_REF] derived an analytical formulation of the effects of relative growth rate on the folding wavelength, by representing the sub-cortical region as a continuous viscoelastic core. Budday et al. [START_REF] Budday | The role of mechanics during brain development[END_REF], modelled the human brain as a morphogenetically growing outer surface and a stretch-driven growing inner core, combining both axonal tension and differential growth hypotheses. The authors confirmed that the ratio between inner and outer layers' growth rates influenced folding wavelength. This model was extended by Holland et al. [START_REF] Holland | Emerging Brain Morphologies from Axonal Elongation[END_REF] to study cortical anisotropic growth, due to the preference of axons to elongate in their axial direction. As an alternative, Wang et al. [START_REF] Wang | Numerical investigation of biomechanically coupled growth in cortical folding[END_REF] recently proposed to link cortical growth rate to mean curvature variations, achieving distinct gyral or sulcal growth. Finally, Zarzor et al. [START_REF] Zarzor | A two-field computational model couples cellular brain development with cortical folding[END_REF] are pioneering the development of multi-scale models of brain development, coupling cellular processes with cortical folding, where cell properties (e.g., migration velocity, diffusivity) influence cortical growth.

A major limitation common to all the proposed models is that they have only been applied to synthetic simplified geometries (e.g., disks, ellipsoids, spheres) [START_REF] Toro | A morphogenetic model for the development of cortical convolutions[END_REF][START_REF] Budday | The role of mechanics during brain development[END_REF][START_REF] Wang | The influence of biophysical parameters in a biomechanical model of cortical folding patterns[END_REF] or to simplified brain anatomies [START_REF] Tallinen | Gyrification from constrained cortical expansion[END_REF][START_REF] Holland | Emerging Brain Morphologies from Axonal Elongation[END_REF][START_REF] Tallinen | On the growth and form of cortical convolutions[END_REF][START_REF] Wang | On early brain folding patterns using biomechanical growth modeling[END_REF]. Experiments with synthetic data are required as part of the model validation stage to characterize the sources of errors and have better control over their parameters. However, the integration of patient-specific longitudinal data of brain development is key for assessing the accuracy of resulting predictions, through model validation and parameter optimisation with data assimilation processes. Appropriate accuracy metrics are consequently required to compare simulation results and observations. Obtaining imaging data to explore human brain development at different time-points in fetal life is nonetheless challenging, unlike for other species such as ferrets, where cortical folding and white matter maturation take place during the first month of life [START_REF] Barnette | Characterization of Brain Development in the Ferret via MRI[END_REF]. Ultrasound [START_REF] Wyburd | Cortical Plate Segmentation Using CNNs in 3D Fetal Ultrasound[END_REF] and magnetic resonance images (MRI) [START_REF] Benkarim | Toward the automatic quantification of in utero brain development in 3D structural MRI: A review[END_REF] of the fetal brain are increasingly providing insights on brain development in vivo, but still with insufficient spatial resolution (from ultrasound images) or requiring advanced image processing pipelines (in MRI) to compensate acquisition reconstruction problems due to motion.

Another factor hampering the progress in patient-specific brain development models is the lack of openly shared pipelines including all the required steps. The neuroimaging community is steadily promoting Open Science and reproducible research, with numerous established tools for brain MRI data harmonization and processing (e.g., Clinica [START_REF] Routier | Clinica: An Open-Source Software Platform for Reproducible Clinical Neuroscience Studies[END_REF]), some of them for the description of cortical folding in healthy and pathological human brains, as well as in other species (e.g., PRIME-RE [START_REF] Messinger | A collaborative resource platform for non-human primate neuroimaging[END_REF]). Unfortunately brain mechanical models are not integrated into the existing pipelines Patient-specific mechanical models of brain development yet, despite the availability of solvers used in some successful studies [START_REF] Tallinen | On the growth and form of cortical convolutions[END_REF][START_REF] Wang | The influence of biophysical parameters in a biomechanical model of cortical folding patterns[END_REF] 12 .

In this work we present a complete computational pipeline to build and validate patient-specific mechanical models of brain development, mainly based on Open Source tools. Starting from the processing of fetal brain MRI, personalized finite-element methods 3D meshes are generated, where biomechanical models are run to simulate brain development. Several metrics are then used to compare simulation results with neonatal data from the same subjects, on a common reference space built to integrate data from different individuals and time-points. The pipeline has been applied to a cohort of 29 subjects where fetal and neonatal MRI were available, including controls (n = 16) and ventriculomegaly (n = 13) cases.

Materials and methods

A scheme of the proposed pipeline is illustrated in Figure 1 and described in sections 2.2-2.4. The first step of the pipeline is the brain tissue segmentation of fetal and neonatal MRI of the same subject. The grey matter (or cortical surface) label is then the basis for building finite element method (FEM) meshes, which are later refined if required to ensure model convergence. Cortical thickness maps and brain parcellation are also derived from MRI data. The fetal meshes and patient-specific cortical thickness maps are subsequently set as input for the computational model that simulates brain growth and folding until the GA at which neonatal real data was available for that subject. Finally, neonatal simulations and observations are compared through global and local metrics.

Clinical imaging database

The clinical imaging database was composed of longitudinal brain MRI data from a cohort within a research project on isolated non-severe ventriculomegaly (INSVM), carried out at Hospital ClÃŋnic in Barcelona, Spain. Approval was obtained for the study protocol from the Ethics Committee of the Hospital ClÃŋnic in Barcelona, Spain (HCB/2014/0484) and all patients gave written informed consent.

Fetal ventriculomegaly (VM) occurs in around 1 out of 10 pregnancies [START_REF] Salomon | Reference ranges for fetal ventricular width: a non-normal approach[END_REF]. It is defined as a dilation (≥10 mm) of one or both lateral ventricles, measured in 2D in ultrasound images, being 6-8 mm the normal width in fetuses [START_REF] Benkarim | Cortical folding alterations in fetuses with isolated non-severe ventriculomegaly[END_REF].

In the absence of other anomalies, it is called isolated ventriculomegaly. Studies [START_REF] Scott | Volumetric and surface-based 3d mri analyses of fetal isolated mild ventriculomegaly[END_REF][START_REF] Kyriakopoulou | Cortical Overgrowth in Fetuses With Isolated Ventriculomegaly[END_REF][START_REF] Benkarim | Cortical folding alterations in fetuses with isolated non-severe ventriculomegaly[END_REF] have confirmed alterations in folding in fetuses with ventricular enlargement, therefore underlining the clinical relevance of understanding the gyrification process.

We finally included 31 subjects from a larger cohort of 81 subjects (38 controls and 43 with INSVM), the ones where both fetal and neonatal reconstructed MRI were available. Two subjects were excluded due to inaccurate segmentation results (see Section 3.1). The demographic information of the 29 subjects included in our study is summarised in Table 1. In addition, ground-truth segmentations performed by clinicians were provided for 13 out of those 31 fetal images.

T2-weighted MR imaging was performed on a 1.5-T scanner (Siemens Magnetom Aera syngo MR D13; Munich, Germany) with a 8-channel body coil, resulting in images with a 2.5 mm of slice thickness, a 280ÃŮ280 mm field of view and a voxel size of 0.5ÃŮ0.5ÃŮ2.5 3 . Multiple orthogonal acquisitions were performed for each subject: 4 axial, 2 coronal and 2 sagittal stacks. From these 8 stacks of thick 2D slices, final 3D motion-corrected reconstructions were obtained; subsequently, brain location and extraction were performed with the methods presented in [START_REF] Keraudren | Automated fetal brain segmentation from 2d mri slices for motion correction[END_REF]. A high-resolution 3D volume reconstruction was then conducted using the approach proposed in [START_REF] Kuklisova-Murgasova | Reconstruction of fetal brain mri with intensity matching and complete outlier removal[END_REF].
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Medical image processing

Cortical surface geometries were obtained from neonatal images using the Developing Human Connectome Project (dHCP) structural pipeline [START_REF] Makropoulos | The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction[END_REF]. For the fetal cases, a modified version of the dHCP pipeline was used, integrating a fetal-specific atlas [START_REF] Gholipour | A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth[END_REF] to permit segmentation of images taken in early gestation.

We used the ground-truth labels from 13 subjects to evaluate the accuracy of the automatic segmentation method, as illustrated on Figure 2. The obtained results were compared both visually, by displaying them using Paraview3 and 3DSlicer 4 , and quantitatively, by computing the Dice Coefficient, Hausdorff Distance (HD) and Volume Similarity (VS) measures, as follows:

= 2| ∩ | | | + | | , (1) 
where represented the ground-truth and the obtained segmentation, so ∩ corresponded to their intersection; = (ℎ( , ), ℎ( , )), where ℎ( , ) was the directed Hausdorff distance, given by ℎ( , ) = max ∈ min ∈ ‖ -‖, being ‖ -‖ the Euclidean distance between points and ;

= 1 - || | -| || | | + | | . ( 2 
)
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As described in [START_REF] Makropoulos | Automatic whole brain mri segmentation of the developing neonatal brain. ieee transactions on medical imaging[END_REF], the output of the dHCP structural pipeline included 2D meshes and associated feature maps for left and right hemispheres. The different meshes corresponded to the external grey matter, the interface between grey and white matter and the mid-thickness surface. In addition, an inflated, very inflated and spherical versions of the surfaces were provided. These surfaces had the exact number of vertices and faces as the original mesh and were used for visualisation and comparison purposes. The feature maps obtained for all subjects were: sulcal depth, cortical thickness, mean curvature and brain parcellations.

Cortical thickness ( ) was estimated on fetal MRI using the Pyezzi python library 5 , computing the thickness of tissues between the internal and external borders of the grey matter segmentation (Figure 1.F) [START_REF] Yezzi | An eulerian pde approach for computing tissue thickness[END_REF].

Mesh processing

The FreeSurfer6 and Meshmixer7 softwares were used for the format conversion and manipulation of 2D surface meshes resulted from the brain segmentation. Especially to combine both brain hemispheres into one single geometry, repair surface imperfections (i.e., topology correction of defects such as handles or holes, artifacts, and fix non-manifold edges and self-intersecting faces) and to define an appropriate density of mesh elements (Figure 1.B). The number of mesh elements was empirically defined with a minimum of 1 M tetrahedra, since folding configuration (i.e., size and number) did not substantially change with more elements, following prior mesh convergence studies in [START_REF] Wang | The influence of biophysical parameters in a biomechanical model of cortical folding patterns[END_REF]. Netgen8 was used to generate volumetric tetrahedral meshes through the Delaunay triangulation Method (Figure 1C). The mean value and standard deviation of the mesh density was of 1.89 ± 0.25M tetrahedra.

Defining point-to-point correspondence across meshes is challenging. The anatomical multimodal surface matching (aMSM) technique [START_REF] Robinson | MSM: A new flexible framework for multimodal surface matching[END_REF][START_REF] Robinson | Multimodal surface matching with higher-order smoothness constraints[END_REF] was originally proposed as a spherical registration tool to define spatial correspondences between two anatomical surfaces, each projected onto a sphere. The alignment can be driven by any feature map extracted from the two surfaces to match. In our pipeline, we used the mean curvature and the Depth Potential Function (described below in Section 2.5.2) as the guiding feature maps. The registration process involved a resampling of the meshes which induced a one-to-one correspondence across the vertices of the matched surfaces, such that each vertex corresponded to the same anatomical location across the surfaces.

The aMSM tool was also used to generate atlases from groups of meshes, as in [START_REF] Garcia | Dynamic patterns of cortical expansion during folding of the preterm human brain[END_REF]. Cortical surfaces were resampled to a standard 158,762-vertex mesh and averaged (with Workbench Command tools 9 ) to create a preliminary atlas. Original surfaces were then registered to the preliminary atlas using aMSM (with default parameters) and averaged to obtain the final atlas. Atlases were also created for separated hemispheres by resampling meshes to a standard 79212-vertex mesh.
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Brain mechanical model

We evaluated the finite-element model proposed by Tallinen et al. [START_REF] Tallinen | Gyrification from constrained cortical expansion[END_REF][START_REF] Tallinen | On the growth and form of cortical convolutions[END_REF], further modified by [START_REF] Wang | On early brain folding patterns using biomechanical growth modeling[END_REF], which simulates a realistic brain folding process. The C++ codes were open-source 10 . The model was built on the assumption that folding appears due to the instability produced by the different growth rates in interfacing materials; if one grew faster than the other (grey and white matter, respectively), the system would become unstable and buckle.

Constitutive equations

The cortical tissue was modelled as a compressible neo-Hookean material, with strain energy density function:

= 2 [ ( ) -2 3 -3] + 2 ( -1) 2 , ( 3 
)
and being the shear and bulk modulus, respectively, F the deformation gradient and = . As defined in [START_REF] Tallinen | On the growth and form of cortical convolutions[END_REF][START_REF] Wang | The influence of biophysical parameters in a biomechanical model of cortical folding patterns[END_REF] we assumed = 5 , which corresponded to a modestly compressible material. As the model was based on differential growth theory, the ratio between grey and white matter shear stresses was the important parameter to fix. Based on stiffness micro-indentation measurements performed on ferret brains by Xu et al. [START_REF] Xu | Axons pull on the brain, but tension does not drive cortical folding[END_REF], we assumed the modulus ratio between cortical layer and white matter region to be ∕ ℎ = 0.86. The Cauchy Stress was given by:

= 1 . ( 4 
)
Surface traction of each tetrahedral deformed face was given by = -, with being face normals. Normal forces were obtained by distributing traction of each face equally for its three vertices.

Contacts at the brain surface were modelled via penalty-based vertex-triangle contact processing [START_REF] Ericson | Real-Time Collision Detection[END_REF]. If a superficial face and node were closer than a threshold and the computed elastic force would bring them even closer, a contact force would prevent nodes from penetrating element faces.

In the evaluated model, the deformation gradient equation integrated the relative tangential growth (G), being defined as: = ( ̂ ) -1 .

Growth kinetics

The relative tangential growth tensor described the tangential expansion perpendicular to the normal vector ̂ of the tetrahedron. It was obtained by = + (1 -)̂ ⊗ ̂ , where g was the relative tangential expansion ratio of the cortical layer with respect to the white matter zone. It stepped smoothly from grey ( = 1 + ) to white matter ( = 1)

10 http://users.jyu.fi/~tutatall/codes.html
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= 1 + 1 + 10( -1 ) , ( 5 
)
where was the distance from the top surface, the cortical thickness and the growth rate. The latter was defined as = ( √ 8 -1) and as the time in the model, which ranged from 0 to 1. It was experimentally parameterised, according to gyrification index values measured on real folded brains [START_REF] Armstrong | The Ontogeny of Human Gyrification[END_REF][START_REF] Wang | Modélisation et caractérisation du plissement cortical[END_REF]. The equation that related of the model with gestational age was:

= 0.987 --0.134 ( -29.433) . (

Along simulation time-steps, the evaluated model imposed a linear increase of cortical thickness, , with the following expression: = + . was empirically defined in [START_REF] Wang | On early brain folding patterns using biomechanical growth modeling[END_REF] to be equal to 0.3 and was set to the chosen initial global patient-specific cortical thickness. The volumetric mesh was built to include all brain tissue inside the grey matter (GM), including the white matter (WM). Each GM and WM element of the mesh was then identified based on its distance from the top surface and , which varies throughout the simulation, to determine the different material properties of the different brain tissues.

Kinematics of finite growth

As described in [START_REF] Tallinen | Gyrification from constrained cortical expansion[END_REF], the energy of the system was minimized by damped second-order dynamics using an explicit solver for quasi-static equilibrium of the system:

+ = + - , (7) 
where was the damping force, the viscous damping of value = 0.05, the velocity and the nodal volume.

was the combination of the elastic and contact forces, the time step, = 10 3 the nodal mass and the mesh spacing in the initial configuration. Positions of the nodes of the mesh at the next time step were computed by:

+ = + + . ( 8 
)
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Validation

Global metrics

Several global metrics, computed using the python package Surface anaLysis And Modeling (SLAM) 11 , were estimated to analyse and compare fetal, neonatal and simulated grey matter meshes. First, the surface area was computed as the sum of the area of all the triangles of the 2D mesh. Second, the volume was computed as the surface integral, corresponding to the whole volume enclosed in the 2D mesh of the grey matter. Third, the 3D gyrification index (3D-GI) was computed as in [START_REF] Wang | The influence of biophysical parameters in a biomechanical model of cortical folding patterns[END_REF], by dividing the area of the mesh by the area of its smooth "convex hull" generated with SLAM.

Local metrics

Curvature

The curvature of the analysed grey matter meshes was calculated in two different ways. First, we used the python library SLAM to obtain the curvature based on the Rusinkiewicz estimation [START_REF] Rusinkiewicz | Estimating curvatures and their derivatives on triangle meshes[END_REF], and further compute the nondimensional curvature ( * ), as defined in [START_REF] Knutsen | Spatial and temporal variations of cortical growth during gyrogenesis in the developing ferret brain[END_REF] and [START_REF] Garcia | Dynamic patterns of cortical expansion during folding of the preterm human brain[END_REF]. The Rusinkiewicz-based method defined the mean curvature of a vertex as the average of the two principal curvatures (directions where the normal curvature reached its minimum and maximum), which were the eigenvalues of the vertex normal curvature tensor computed as:

= ( ′ , ′ ) ⎛ ⎜ ⎜ ⎝ 1 0 0 2 ⎞ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎝ ′ ′ ⎞ ⎟ ⎟ ⎠ , ( 9 
)
where 1 and 2 were the eigenvalues and ( ′ , ′ ) the principal directions [START_REF] Rusinkiewicz | Estimating curvatures and their derivatives on triangle meshes[END_REF][START_REF] Wang | The influence of biophysical parameters in a biomechanical model of cortical folding patterns[END_REF]. The non-dimensional mean curvature was then computed by multiplying * = , where = √ ∕4 being SA the total cortical surface area.

Second, the Workbench command tools 12 were used to compute the curvature based on [START_REF] Maillot | Interactive texture mapping[END_REF]. This second alternative was only applied for surface registration in the aMSM and the computation of the depth potential function (see below) due to its low computational cost.

Depth potential function

The depth potential function (DPF), based on [START_REF] Boucher | Depth potential function for folding pattern representation, registration and analysis[END_REF] and computed with SLAM, was also used to characterise grey matter meshes. DPF is a measure of the average convexity of the cortical mesh. It was defined as the scalar function that had the closest mean curvature to the original surface in a least-square sense, also being spatially regular. The DPF computation was obtained solving the time-independent Poisson's equation. The curvature metric based on [START_REF] Maillot | Interactive texture mapping[END_REF] was used as an input for computing the DPF.
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Spectral analysis of gyrification (SPANGY)

The SPANGY [START_REF] Germanaud | Larger is twistier: Spectral analysis of gyrification (SPANGY) applied to adult brain size polymorphism[END_REF] method performed a spectral decomposition of the mean curvature of the grey matter meshes, based on the Laplace-Beltrami operator eigenfunctions. It allowed the parcellation of the cortical surface in 7 ordered spatial frequency bands (B0-B6) according to fold-related variations in curvature. As described in [START_REF] Germanaud | Larger is twistier: Spectral analysis of gyrification (SPANGY) applied to adult brain size polymorphism[END_REF], the bands B1-B3 were related to global brain shape, while bands B4-B6 (folding bands) were associated to primary, secondary and tertiary folds. The sum of all the power accumulated in bands B1-B6 was defined as the Analysed Folding Power (AFP). For comparison purposes the power spectrum in each band was divided by the AFP to compute the relative folding power. The SPANGY code (MATLAB) was provided by the authors.

Orientation of folds

As proposed in [START_REF] Wang | The influence of biophysical parameters in a biomechanical model of cortical folding patterns[END_REF], we calculated the angle between the gradient of Fiedler vectors [START_REF] Lefãĺvre | Fast surface-based measurements using first eigenfunction of the laplace-beltrami operator: Interest for sulcal description[END_REF] and the principal directions of curvatures [START_REF] Petitjean | A survey of methods for recovering quadrics in triangle meshes[END_REF] to characterise and compare the orientation of the folds on simulated and real meshes. The Fiedler vector was defined as the first non-constant eigenfunction of the Laplace-Beltrami operator and allowed to describe the longitudinal extension of surfaces. Extrema of Fiedler vectors were the most distant points within a geometry and its contour lines were cuts on the elongation axis. The direction of elongation was defined as the gradient of the Fiedler vector that was orthogonal to the contour lines. The principal directions of the curvatures were the corresponding eigenvectors of the curvature tensor. The folding orientation angles were obtained by the scalar product between the gradient of the Fiedler vector and the principal directions of the curvatures [START_REF] Wang | The influence of biophysical parameters in a biomechanical model of cortical folding patterns[END_REF].

To quantify the uniformity of the angular distribution of folds the Kullback-Leibler (KL) divergence or also called relative entropy was used. It was used to measure differences between two probability distributions. The KL divergence from probability distribution P to probability distribution Q was defined as:

( || ) = ∑ ( ) ( ) ( ) . ( 10 
)
In our study, corresponded to the fold angular distributions on the folded surface while Q represented the theoretically uniform distribution of fold angles [START_REF] Wang | The influence of biophysical parameters in a biomechanical model of cortical folding patterns[END_REF]. The code to compute the orientation of folds (MATLAB) was also provided by the authors.

Experiments

Several experiments were carried out to identify the most critical steps and relevant model parameters of the computational pipeline, as well as the similarity between simulations and observations. First, we assessed the accuracy of the fetal brain segmentations provided by the modified dHCP structural pipeline, comparing them with ground-truth

Patient-specific mechanical models of brain development Values were chosen as in [START_REF] Wang | On early brain folding patterns using biomechanical growth modeling[END_REF], of which 0.74 mm and 5.96 mm were assumed to be abnormal values. An additional simulation was run for each subject with the global cortical thickness derived from its corresponding patient-specific MRI (i.e., average over the whole brain). The effect of regional growth was then assessed, using a cortical parcellation (using the DrawEM tool [START_REF] Makropoulos | Automatic whole brain mri segmentation of the developing neonatal brain. ieee transactions on medical imaging[END_REF][START_REF] Makropoulos | The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction[END_REF]) to specify a different growth for each region in the biomechanical model. 

Results

Data preprocessing

In-silico simulations

Varying global cortical thickness in brain simulations

The effect of having distinct initial global cortical thickness in brain simulations can be seen in Figure 3. Mean folding patterns similar to tertiary folds. As cortical thickness increased, the power in bands 5 and 6 also progressively rose, while that of band 4 decreased. Power spectrum maps plotted on the cortical surfaces (Figure 3.E) illustrate this scenario, with a greater presence of bands 5 (orange) and 6 (red) at higher values of , where the nature of the folding was of first and second order.

Global vs regional growth in brain simulations

Results of this experiment are shown in Figure 4. With the implemented regional growth, the simulated mesh presented slightly increased volume in the parietal and occipital areas, although still far from the global shape of the real neonatal cortex (see Figure 4.A). The standard deviation between the coordinates of the vertices of the simulated and neonatal meshes was mapped on an inflated surface, as can be observed in Figure 4.B). It depicts how regional growth reduced the differences between simulations and observations in the parietal area. Box plots of global metrics also showed an increase in volume and surface area of regional simulations compared to baseline (Figure 4.C). Baseline Simulation Real Neonatal Regional Simulation std of vertex coordinates 30 0
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Neonatal data vs brain simulations

A comparison between neonatal real data and simulations is shown in Figure 5. Cortical surfaces and curvature maps of fetal, neonatal and simulations are displayed for two subjects (Figure 5.A): 1) a ventriculomegaly condition, with fetal MRI acquired at GA 28 (early onset); and 2) a control case, with fetal imaging available at GA 32 (late onset). Although the nature of the folding patterns was reproduced by the biomechanical model, there were notable

Patient-specific mechanical models of brain development differences when comparing simulated to real neonatal meshes. The sagittal view of the cortices revealed a lack of similarity in their overall shape, especially in the parietal region, which more closely resembled that observed in the fetal meshes. Regarding the time (onset) at which fetal MRIs were acquired, simulations starting at advanced GA were more comparable to their corresponding real neonatal meshes. Conversely, simulations of meshes starting from GA 26-28 had a lower match with their corresponding neonatal real data. Fetal brains at early GA, apart from being smaller in size than neonatal ones, only presented the central and lateral sulcus (Sylvian fissure); the absence of more complete structural information resulted in simulations with higher variability. The identification of sulci was visually performed on the DPF maps plotted onto spheres. The Sylvian fissure, central sulcus, post-central sulcus and superior temporal sulcus were identified in all six meshes, thus revealing the ability of simulations to reproduce these patterns. 

Controls vs ventriculomegaly cases

Figure 6 displays differences between control and VM cases, for both simulations and real data. Surface area and volume were underestimated by simulations when compared to values of neonatal meshes. The increase in fetal surface area and volume in the simulations was of 64% and 42%, respectively, whilst real neonatal meshes had an increase of 75% and 58%. No significant differences were observed in mean surface values between controls and VM, but controls presented lower volume (6%) than VM in both simulated and real meshes ( < 0.05 

B. C.
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Mean Curvature K* power in band 4 (0.154 ± 0.057) than neonatal ones (0.048 ± 0.01) and simulations (0.079 ± 0.019). For neonatal real data, power spectrum in band 6 (0.628 ± 0.023) roughly doubled the power in band 5 (0.285 ± 0.025), while for simulations they were of 0.440 ± 0.081 in band 5 and 0.431 ± 0.111 in band 6. Atlases and inflated surfaces with DPF (Figure 6.C), qualitatively showed how, although minor discrepancies in folding were present between controls and VM, major differences in size, shape and folding were prominent between groups. Overall, results showed that the differences between simulations and real data were much larger than those observed between pathological and healthy conditions.

Computational times

Table 3 shows a breakdown of the tasks performed at each step of the pipeline along with an estimate of the computational time required to complete them. Segmentation with the dHCP structural pipeline took 15-20' for each MRI dataset. Mesh processing took around 20-30' but it could vary depending on the nature of meshes, since this step was highly manual. The computational model was the longest process, in particular when the solver did not converge the first time it was run. In that case, in an iterative manner the mesh was re-processed (by repairing the problematic area or re-meshing the whole mesh), the volumetric mesh was generated again and the model was re-run.

The calculation of the evaluation metrics required different times. For instance, SPANGY is time-consuming because it requires to solve a generalized eigenvalue problem with thousand of eigenvectors in a very large dimension.

Patient-specific mechanical models of brain development 

Discussion

Personalised computational models are progressively being more used in medical fields such as cardiology [START_REF] Niederer | Computational models in cardiology[END_REF], to support diagnosis [START_REF] Doste | In silico pacemapping: prediction of left vs. right outflow tract origin in idiopathic ventricular arrhythmias with patient-specific electrophysiological simulations[END_REF], therapy optimisation and risk prediction [START_REF] Mill | Patient-specific flow simulation analysis to predict device-related thrombosis in left atrial appendage occluders[END_REF]. Together with statistical (e.g., machine learning) models, they are the foundations of digital twins for improved patient-specific clinical decisions and precision medicine [START_REF] Corral-Acero | The âĂŸDigital Twin' to enable the vision of precision cardiology[END_REF]. However, mechanical models of brain development are not that mature yet, basically been tested on synthetic or idealised geometries due to the difficulties of obtaining longitudinal imaging data. However, recent advances in imaging acquisition and processing techniques are leading to better quality images of the fetal and neonatal brain.

In this work, we present a computational pipeline, based on open-source tools, that allowed to successfully process fetal MR images of 29 subjects, building patient-specific meshes to simulate brain growth/folding, and comparing the resulting simulations with neonatal data from the same subjects with several global and local metrics in a common reference space. The different steps in the pipeline for geometrical model building and the brain mechanical modelling influenced the final simulation results and its comparison with neonatal data, as described in the following.

Geometrical model building

Brain segmentation

Brain segmentation was the initial step of the pipeline since fetal MRI 3D reconstruction was already performed in the standard imaging protocol in the hospital. Inaccuracies to reconstruct fetal MR images would obviously affect the whole modelling pipeline; it is then necessary to apply motion correction algorithms (see [START_REF] Benkarim | Toward the automatic quantification of in utero brain development in 3D structural MRI: A review[END_REF] for options) to provide high-resolution 3D data to process.

Patient-specific brain modelling of several cases requires the automatisation of 3D fetal brain MR data segmentation. In our work, we were able to compare brain tissue segmentations provided by the modified dHCP pipeline with manual labels in 13 fetal MR images. Overall, automatically obtained grey matter labels were similar to the groundtruth after visual inspection of the results (see Figure 2, with more differences in the area between the hemispheres and systematically over-estimating sulcal depth. The estimated quantitative metrics (e.g., Dice) were good enough (0.78, above inter-rater variability recently measured in [START_REF] Payette | An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset[END_REF]), considering the complexity of cortical morphology. However, two cases (out of 31) were discarded due to inaccurate GM segmentation that would require almost fully manual labelling. Improved fetal brain segmentation techniques, using deep learning techniques, are already appearing (e.g., [START_REF] Li | CAS-Net: Conditional Atlas Generation and Brain Segmentation for Fetal MRI[END_REF]) thanks to the availability of Open Access data in initiatives such as the Fetal Tissue Annotation (FETA) challenge [START_REF] Payette | An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset[END_REF] 13 . Regarding neonatal brain segmentation, we made use of the standard dHCP pipeline [START_REF] Makropoulos | The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction[END_REF] (Dice of around 0.80 for cortical GM, reported in [START_REF] Makropoulos | Automatic whole brain mri segmentation of the developing neonatal brain. ieee transactions on medical imaging[END_REF]) but its accuracy in our data could not be quantified due to the lack of ground-truth data at this stage. 13 https://feta-2021.grand-challenge.org/ Patient-specific mechanical models of brain development

Cortical thickness estimation

In the implemented brain mechanical model, the initial cortical thickness (width of grey matter layer) is a key parameter for the simulated folding [START_REF] Wang | On early brain folding patterns using biomechanical growth modeling[END_REF]. Cortical thickness estimation directly depends on the brain segmentation accuracy. Using a well-known tissue thickness method [START_REF] Yezzi | An eulerian pde approach for computing tissue thickness[END_REF], the cortical thickness values for fetal MRI (average of 1.53 ± 0.16 mm) were larger than the ones reported in [START_REF] Bozek | Construction of a neonatal cortical surface atlas using multimodal surface matching in the developing human connectome project[END_REF] (average of 1.05 mm) but within the range of the ones published in Vasung et al. [START_REF] Vasung | Quantitative and qualitative analysis of transient fetal compartments during prenatal human brain development. Patient-specific mechanical models of brain development[END_REF] (1-2 mm from GA 26 until 42). On the other hand, we found cortical thickness estimated in neonatal data less reliable. In a counter-intuitive way, the average value of cortical thickness was lower in neonatal than in fetal data. Neonatal cortical thickness was estimated from the dHCP-based segmentations, from which values of 1.04 mm at 36 weeks to 1.10 mm at 44 weeks have been reported [START_REF] Makropoulos | The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction[END_REF], in concordance with our results. The main reason for this discrepancy was the topological differences in GM segmentations in the two stages, with neonatal segmentations being too thin and discontinuous comparing to fetal ones, having a large influence on cortical thickness values.

Meshing

Building patient-specific meshes of human organs with complex morphologies is one of the main bottlenecks that has prevented a more widespread clinical translation of computational models, due to the difficulties on automatising the process. Tetrahedral meshes were chosen to build patient-specific brain meshes since they usually can better discretise complex geometries than hexahedral representations. Still, the building of 29 patient-specific brain meshes was a labour-intensive process that should be better streamlined in the future. Mechanically evolving a fetal, relatively smooth, brain into the highly convoluted cortical surface post-natally is a numerical problem pushing FEM techniques to the limit. For instance, large deformations may be needed but they may lead to negative Jacobian or overlapping elements impeding finding correct solutions. Sophisticated meshing and solver methodologies are required, often asking for manual intervention in an iterative framework. In our experiments, 10 cases out of 29 needed several re-meshing iterations (i.e., removing or smoothing elements, correcting topological defects such as handles or holes) to ensure convergence of the solutions. The contact penalty force implemented in [START_REF] Tallinen | On the growth and form of cortical convolutions[END_REF] was key to avoid non-negative Jacobian mesh elements through simulation time-steps. Meshless techniques such as the ones based on smooth particle hydrodynamics, already successfully applied for electromechanical simulations of the heart [START_REF] Lluch | Breaking the state of the heart: meshless model for cardiac mechanics[END_REF], or based on the material point method to study live human brain dynamics [START_REF] Ganpule | A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics[END_REF], should be explored for brain development modelling since they are suitable when meshing is challenging.

Brain mechanical modelling

Initially, the available open-source brain mechanics solver was adapted to have as input any fetal brain geometrical mesh, at any initial GA and delivery week, since several routines were hard-coded to only work on particular idealised Patient-specific mechanical models of brain development geometries. Starting from patient-specific fetal brain geometries, the model was able to reproduce the convoluted nature of brain folding patterns in neonatal stages described in [START_REF] Tallinen | On the growth and form of cortical convolutions[END_REF][START_REF] Garcia | Mechanics of cortical folding: Stress, growth and stability[END_REF]. Spherical representations of metrics (e.g., DPF in Figure 5) were effective to identify the resemblance of certain sulcal patterns (e.g., central and post-central sulcus, 2 and 3 in Figure 5, respectively) between neonatal simulations and observations, even in cases starting from an early GA fetal mesh. It is remarkable the stability of the central and temporal sulci through the simulation process, as it was earlier demonstrated in spheres [START_REF] Lefèvre | A Reaction-Diffusion Model of Human Brain Development[END_REF], likely due to their presence in fetal meshes (range between 26 to 34 GA).

Nevertheless, it is evident that the simulated meshes still present large differences with real neonatal data in terms of global shape and folding patterns (see results in Figure 5 and Figure 6). Mechanical simulations consistently generated smaller (as seen by the surface area and volume metrics) and less convoluted (from 3D-GI and curvature metrics) brains that neonatal real ones. The detailed characterisation of folds with SPANGY, DPF and orientation-based metrics showed that simulations created, compared to neonatal real patterns: 1) less convex folds in average and with a smaller range of different values (from DPF); 2) less uniform (i.e., isotropic) fold orientation (from KL divergence); and 3) an insufficient percentage of secondary folds (see orange bars in Figure 6 corresponding to B5), slightly overestimating primary folds. The more isotropic orientation of the folds in the simulations was due to the model assumption of uniform and isotropic growth across the entire grey matter geometry, which is an over-simplification of brain growth dynamics during fetal brain development. Comparing simulated neonatal brains of controls and ventriculomegaly cases, we observed the same subtle differences than in real data in all metrics: slightly less convoluted brain (from 3D-GI) and reduced volumes in ventriculomegaly cases, in agreement with literature [START_REF] Scott | Volumetric and surface-based 3d mri analyses of fetal isolated mild ventriculomegaly[END_REF][START_REF] Kyriakopoulou | Cortical Overgrowth in Fetuses With Isolated Ventriculomegaly[END_REF][START_REF] Benkarim | Cortical folding alterations in fetuses with isolated non-severe ventriculomegaly[END_REF]. To complement the evaluation of the simulations, future studies will also include the computation and analysis of the sulcal depth, sulci identification and number of folds.

It is important to point out the relevance of the initial fetal brain gestational age, as can be seen in Figure 5: with initial smoother meshes (i.e., earlier GA such as in Figure 5.A), the brain mechanical model generates simulated neonatal brains further from data than with initial meshes where more folds are present (i.e., later fetal GA, such as in Figure 5.B). This is in agreement with conclusions found in the literature [START_REF] Kriegstein | Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion[END_REF][START_REF] Reillo | A Role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex[END_REF][START_REF] Fernández | Cerebral cortex expansion and folding: what have we learned?[END_REF], stating that first order folds are thought to be regulated by genetic and cellular pre-patterning processes. These were not included in our experiments since initial fetal brain meshes in our study were from 26 weeks on, with primary folds already formed. Recent pioneering work on multi-scale modelling of brain development [START_REF] Zarzor | A two-field computational model couples cellular brain development with cortical folding[END_REF], including cellular dynamics, has the potential to better simulate the generation of folds that have not appeared yet. Additionally, it would be interesting to incorporate axonal tension forces to the current model of Tallinen et al. [START_REF] Tallinen | Gyrification from constrained cortical expansion[END_REF][START_REF] Tallinen | On the growth and form of cortical convolutions[END_REF] since it is only based on the differential growth between cortical and white matter regions. As seen in [START_REF] Garcia | Mechanics of cortical folding: Stress, growth and stability[END_REF], although it has been demonstrated that axonal tension does not drive gyrification, it does have a relevant role in the modulation of folding patterns.

Two additional parameters were important to obtain different brain simulation patterns: cortical thickness and Patient-specific mechanical models of brain development brain growth characteristics. When modifying the initial global cortical thickness, the resulting simulations were in agreement with literature [START_REF] Fernández | Cerebral cortex expansion and folding: what have we learned?[END_REF][START_REF] Wang | On early brain folding patterns using biomechanical growth modeling[END_REF], with a thinner cortex leading to more folded brains and vice versa (such as in polymicrogyria and lissencephalic brains, respectively). In our sensitivity analysis, imposing an initial cortical thickness of 1.48 mm or 1.98 mm ( 2 and 3 in Figure 3) provided the closer simulations to neonatal data. However, we finally tailored the initial global cortical thickness for each simulation to the one extracted from the MRI of each individual, further personalising the model. In this context, it is also worth mentioning that differences in the order of the resolution of the acquired magnetic resonance images (0.5 mm) should not be relevant. In the future, different cortical thickness values will be imposed locally to different regions based on MRI estimations, which should lead to less homogeneous and more realistic behaviour of the simulated folding patterns.

For simplicity, cortical growth was initially assumed uniform and isotropic in the initial experiments. However, previous studies have demonstrated inter-hemisphere gyrification differences [START_REF] Raybaud | The premature brain: Developmental and lesional anatomy[END_REF] and non-homogeneous shape changes between fetal and neonatal cortical surfaces [START_REF] Garcia | Dynamic patterns of cortical expansion during folding of the preterm human brain[END_REF]. A simple implementation of regional growth was then implemented, showing qualitative and quantitative improvements in certain areas such as the parietal region. Refined spatio-temporal local growth patterns based on prior observations (e.g., from Garcia et al. [START_REF] Garcia | Dynamic patterns of cortical expansion during folding of the preterm human brain[END_REF]), already partially tested on atlas fetal brains [START_REF] Wang | Modélisation et caractérisation du plissement cortical[END_REF], will improve the realism of the presented brain simulations. In parallel, anisotropic growth could be incorporated, as in [START_REF] Wang | Numerical investigation of biomechanically coupled growth in cortical folding[END_REF], dependent on the mean curvature of the cortex to achieve preferential growth in either gyri or sulci. Local constraints based on the particular characteristics of individual sulci and related cytoarchitecture, in particular the primary folds (e.g., central sulcus), would help to better control the folding pattern evolution in the simulations. Additionally, the equations of the biomechanical model accounted for a stress-independent growth, with values being imposed throughout the simulation. For more realistic simulations, the model must be modified to allow for biomechanical feedback, so that growth is readjusted according to the stress fields generated at each point in the process.

Material properties of both grey and white matter were defined globally by the bulk and shear modulus. However, there is evidence that they vary significantly not only across regions of the brain [START_REF] Budday | The role of mechanics during brain development[END_REF], but also throughout the fetal development, when the brain constantly adapts to new functional demands. A better characterization of brain tissue mechanical properties is becoming possible with recent advanced experimental set-ups [START_REF] Budday | Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue[END_REF] and should definitively be integrated into the existing brain development models. Sensitivity analysis studies should then be carried out to assess the influence of material properties on the simulation results.

Conclusions

Computational models of brain development are arguably in its infancy, comparing to the ones in other human organs such as the heart. One of the main causes is the absence of validation studies confronting simulation results with Patient-specific mechanical models of brain development observations, due to the difficulty of having longitudinal brain data from the same subject. More multi-disciplinary efforts between data scientists, modellers and clinicians would also be beneficial for improving the realism of existing simulations. In this work we have presented a complete pipeline for creating and validating patient-specific mechanical models of brain development, which has been applied to 29 fetal brain MRI data. Simulations of neonatal brains remarkably mimicked folding patterns observed in MR images. However, the developed pipeline allowed to quantify important differences between model results and observations at different time-points or subjects, both globally and locally, with the employed metrics and the building of a common reference system. In consequence, some of these metrics could be used for model parameter optimisation within data assimilation processes such as for determining the optimal cortical growth in each region to better match neonatal data. The different open-source tools used in the presented pipeline also facilitate joint multi-institutional efforts, necessary to bring the field of brain mechanical modelling forward. Initiatives such as the dHCP 14 , releasing tools and data for fetal and neonatal imaging research, will soon allow the creation of benchmark studies to compare models based on different hypothesis (i.e., axonal tension, differential growth, stress-dependent growth) and integrate them, together with other statistical or phenomenological approaches such as disease progression models [START_REF] Banus | Biophysics-based statistical learning: Application to heart and brain interactions[END_REF]. Brain mechanical model researchers should then follow the example of neuroimaging researchers, pioneers in Open Science, and jointly work in multi-disciplinary teams with neurologists to better understand the wonders of brain development. A. Meshes of the whole cohort 14 http://www.developingconnectome.org/project/ Patient-specific mechanical models of brain development Figure 8: Neonatal grey matter geometries of the whole cohort. The 29 meshes were extracted from magnetic resonance images and used to assess simulation results. Gestational age ranged from 39.9 to 47.6 weeks. More information on the dataset can be found in Table 1.
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Figure 1 :

 1 Figure 1: Scheme of the computational pipeline for patient-specific brain mechanical model generation and validation. (A) Example of fetal and neonatal magnetic resonance imaging (MRI) scans of one subject. Background of fetal and neonatal MRI processing is coloured in blue and yellow, respectively. (B) Image segmentation was performed with the Developing Human Connectome Project (dHCP) structural pipeline [40]. (C) Mesh processing was performed with Meshmixer, using Netgen to generate the 3D fetal meshes. (D) With the fetal geometry (gestational age, GA, of 28) as starting point, the computational model simulated brain development. Predicted meshes of GA 32, 36 and 40 are displayed. (E) Comparison between the neonatal real and simulated meshes using global and local metrics. DPF: Depth potential function. (F) Measurement of cortical thickness from images. (G) Parcellation of 3D meshes.

Figure 2

 2 Figure2displays a visual comparison between ground-truth and automatic segmentation results provided by the modified dHCP pipeline. Beyond the central region in white matter (not relevant in our study) some discrepancies were found in regions with larger curvature. Quantitative results are shown in Table2. An average Dice of 0.78 ± 0.05, HD of 6.49 ± 1.06 and VS of 0.96 ± 0.03 were obtained for grey matter, and of 0.95 ± 0.01, 8.80 ± 1.80 and 0.99 ± 0.01, respectively, for white matter and ventricles. Snapshots of all fetal and neonatal meshes of grey matter used in this study are included in Appendix A. Two of the 31 initial cases were discarded for the final cohort because the segmentation step did not provide grey matter labels that could be used to build finite-element meshes (i.e., not continuous tissue requiring excessive manual intervention).

Figure 2 Figure 2 :

 22 Figure 2 also provides a visual example of a cortical thickness map obtained with the Pyezzi python library. Cortical thickness in fetal MRI ranged from 1.20 mm to 1.78 mm, with mean value and standard deviation of the mean 1.53±0.16 mm and within-subject mean standard deviation of 0.45 mm. The cortical thickness measured in neonatal MRI was 1.32 ± 0.17 mm. Sets of fetal, neonatal and simulated meshes are displayed in Figures 7, 8 and 9, respectively.

curvatures were plotted versus (Figure 3 .

 3 A), quantitatively showing the decrease in curvature in all meshes when increasing cortical thickness. Both mean curvature and depth potential function mapped onto cortical surfaces and spheres (Figure 3.B) clearly displayed how low values of created overly convoluted cortex, while with high values gyri became fewer and wider. In terms of folding bands, SPANGY results (Figure 3.D) showed that the power spectrum of curvature was mostly of band 6 with the smaller cortical thickness value (i.e., = 0.74 mm), mainly creating

Figure 3 :

 3 Figure 3: Impact of varying initial cortical thickness on simulated meshes. (A) Plot of mean absolute value of curvature of each mesh and level of cortical thickness ( ) ranging from 1 to 6. (B) Simulated cortical morphologies with curvature maps and (C) spheres coloured by the depth potential function (DPF) obtained with each initial cortical thickness. (D) Relative power spectrum of curvature in bands B4-B6 displayed as a bar plot and (E) onto cortical surfaces for four of the implemented .

Figure 4 :

 4 Figure 4: Comparison between simulations with global and regional growth. (A) For one subject, neonatal real cortex and both overlapped global and regional growth simulations. (B) Standard deviation of the vertex coordinates between neonatal and brain simulations plotted onto an inflated surface. Arrows point to the parietal region. (C) Box plots of volume and surface area for each group of meshes.

Figure 5 .

 5 Figure 5.B shows the atlases of each group of meshes (i.e., fetal, simulation, neonatal), coloured by the depth potential function estimation. It can be seen that the average cortical surface of simulations have created several gyri (red colours in the figure) from the fetal stage, but not as many as observed in the neonatal atlas. Box plots of global metrics are in displayed in Figure5.C to compare fetal, simulation and neonatal brains. The simulations underestimated the surface area, volume and 3D-GI observed in neonatal meshes, by a 30.9%, 26.9% and 14.4%, respectively.

Figure 5 :

 5 Figure 5: (A) Cortical morphologies and curvature maps of fetal and neonatal meshes of two subjects (a ventriculomegaly, VM, fetal brain at early gestation and a control one of late onset), together with the resulting brain simulations. Depth potential function (DPF) maps are mapped onto spheres with arrows pointing at the following: 1 = Sylvian fissure; 2 = Central sulcus; 3 = Post-Central sulcus; 4 = Superior Temporal sulcus. (B) Atlases of real fetal and neonatal and simulated meshes. (C) Global metrics of surface area, volume and 3D gyrification index (3D-GI) for the whole cohort.

Figure 6 :

 6 Figure 6: Comparison of real data and simulations for control and ventriculomegaly (VM) cases. (A) Box plots for global metrics and mean values of depth potential function (DPF), mean curvature and Kullback-Leibler (KL) divergence. (B) Bar plots of relative power spectrum of curvature in folding bands. (C) Atlases of cortical surfaces for each group of meshes (control and VM, simulations (S), real fetal (F) and neonatal (N)), coloured by DPF distribution. Below each atlas, inflated versions of the surfaces are included.
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Figure 9 :

 9 Figure 9: Simulated grey matter geometries at corresponding neonatal gestational age. The 29 meshes were obtained using the biomechanical brain growth model with the fetal geometries of Figure 7 as a starting point.
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	Fetal Stage	Birth	Neonatal Stage
	MRI #1		MRI #2
	Segmentation		
	Mesh Processing		
	2D	3D	
	Computational Model		

Table 1

 1 Clinical characteristics of the cohort.

	Gestational / Postmenstrual Age ( at Birth (week) 39.73 ± 1.12 at MRI 1 (week) 29.25 ± 2.74 at MRI 2 (week) 43.51 ± 1.71	±	)
	Gender n (%)	
	Male Female	22 (75.86%) 7 (24.14%)	
	Controls / Ventriculomegaly Cases n (%)
	Controls Ventriculomegaly	16 (55.17%) 13 (44.83%)	
	Fetal MRI Onset n (%) Early (< 30) 20 (68.97%) Late (> 30) 9 (31.03%)	
	Ethnicity n (%)	
	African Asian Caucasian Latin American	2 (6.90%) 1 (3.45%) 23 (79.31%) 3 (10.34%)	

Table 2

 2 Comparison between ground-truth and automatic segmentations. Second, a sensitivity analysis on the simulations was performed, running the model with six different initial global cortical thicknesses ( ), ranging from 0.74 mm to 5.96 mm in a subset of 8 fetal meshes (4 VM; 2 of early and 2 of late-onset; 4 controls; 2 of early and 2 of late-onset).

		Dice Coefficient Hausdorff Distance (mm) Volume Similarity
	Grey matter White matter	0.78 ± 0.05 0.95 ± 0.01	6.49 ± 1.06 8.80 ± 1.80	0.96 ± 0.03 0.99 ± 0.01
	manual annotations.			

Table 3

 3 Computational time required to run the whole pipeline.

	Pipeline Stage	Task (software)	Computational time (min)
	Segmentation	Segmentation (dHCP structural pipeline)	15-20'
	Mesh Processing	Mesh Processing (Meshmixer) Volumetric mesh generation (Netgen)	20-30' 3-5'
	Computational Model	C++ Solver (HPC Cluster)	25-35 h
	Evaluation metrics	Global metrics (Slam, Python) Mean curvature (Slam, Python) SPANGY (Matlab) Depth potential function (Slam, Python) Folds orientation (Matlab) aMSM	<1' 5-8' 15-30h 3-5' 20-30' 10-15'
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Patient-specific mechanical models of brain development Figure 7: Fetal grey matter geometries of the entire cohort. The 29 meshes were extracted from the magnetic resonance images and set as starting point of the biomechanical model. Gestational age ranged from 26.3 to 34.7 weeks. More information on the dataset can be found in Table 1.
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