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Abstract: Flow-mediated dilation (FMD) of resistance arteries is essential for tissue perfusion but
it decreases with ageing. As estrogen receptor alpha (Erα encoded by Esr1), and more precisely
membrane ERα, plays an important role in FMD in young mice in a ligand-independent fashion,
we evaluated its influence on this arteriolar function in ageing. We first confirmed that in young
(6-month-old) mice, FMD of mesenteric resistance arteries was reduced in Esr1−/− (lacking ERα) and
C451A-ERα (lacking membrane ERα). In old (24-month-old) mice, FMD was reduced in WT mice
compared to young mice, whereas it was not further decreased in Esr1−/− and C451A-ERα mice.
Markers of oxidative stress were similarly increased in old WT and C451A-ERα mice. Reduction in
oxidative stress with superoxide dismutase plus catalase or Mito-tempo, which reduces mitochondrial
superoxide restored FMD to a normal control level in young C451A-ERα mice as well as in old WT
mice and old C451A-ERα mice. Estradiol-mediated dilation was absent in old WT mice. We conclude
that oxidative stress is a key event in the decline of FMD, and that an early defect in membrane ERα
recapitulates phenotypically and functionally ageing of these resistance arteries. The loss of this
function could take part in vascular ageing.

Keywords: estrogen receptors; shear stress; flow-mediated dilation; resistance arteries; ageing;
endothelium

1. Introduction

Resistance arteries are the small blood vessels located upstream of capillaries. They
control blood delivery to tissues at relevant flow and pressure. Disorders in their structure
and function raise capillary pressure, which exacerbates organ damage, favored by age-
associated cardio- and cerebrovascular risk factors. The basal tone of these small arteries
allows a tight control of local blood flow. It results in part from the interaction between
pressure-induced smooth muscle contraction (myogenic tone) and flow-mediated dilation
(FMD) due to the activation of endothelial cells by shear stress. A reduced FMD is the
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hallmark of endothelium dysfunction and FMD is altered very early in cardiovascular and
metabolic disorders [1–3]. FMD is also progressively reduced in ageing thus amplifying
the negative impact of the other risk factors [4–7].

Both sex and age are independent risk factors for the reduction in endothelial func-
tion [8]. Endothelial function decreases with age in healthy men and women with very low
cardiovascular risk [4,5]. An age-dependent reduction in FMD is also observed in coronary
human resistance arteries with a shift of the mediators involved in FMD from prostacyclin
to NO with ageing whereas H2O2 is the mediator of FMD in patients with coronary artery
disease [9]. We recently reported that endothelial ERα contributed to optimize flow (shear
stress)-mediated dilation in young healthy mouse resistance arteries [10]. Interestingly, the
only known mutation in the gene encoding ERα has been described in one man [11] and
the main observed vascular defect was a strong reduction in FMD [12].

ERα belongs to the nuclear receptor superfamily and acts classically as a transcription
factor, but it can also exert extranuclear, non-genomic actions by activating rapid membrane-
initiated steroid signaling (MISS), as demonstrated specifically in the endothelium [13]. The
vascular effects of ERα are mediated by both membrane-associated ERα, mainly through
the production of NO by endothelial cells [14], and by the nuclear effects of ERα through the
activating function AF2 allowing protection against atherosclerosis and hypertension [15].
Although most of the vascular protective effects of ERα are mediated by AF2-dependent
nuclear effects, we have previously shown that FMD is facilitated by membrane-associated
ERα-signal transduction in young male and female mice in a ligand-independent mode [10].

Beside the decline in estrogens at menopause, abnormalities in the expression and/or
function of ERs in tissues, and particularly in arteries, could contribute to the failure of
classic estrogens to protect arteries during ageing [16]. Thus, we investigated FMD in
resistance arteries in old male mice (24 months old) in comparison to young mice (6 months
old) in two mouse models: (i) totally deficient in ERα (Esr1−/− mice) and (ii) lacking
the plasma membrane ERα as the codon for palmitoylable cystein (Cys) 451 of ERα was
mutated into alanine (C451A-ERα mice) [14].

2. Results
2.1. Mice Age, Heart Weight, Body Weight, Blood Pressure and Heart Rate

The average age of the two groups of mice, all genotypes together, was 5.97 ± 0.12
months (n = 38 young mice) and 23.53 ± 0.38 months (n = 56 old mice). There was no signifi-
cant difference in age between the four groups of young or old mice (Figure 1A,B). Similarly,
body weight was equivalent between the groups independently of age (Figure 1C,D). The
ratio of the left ventricle to the tibia length was not significantly affected by the genotypes
or by age (Figure 1E,F). Similarly, systolic blood pressure and heart rate measured using
plethysmography were not significantly affected by age and by the genotypes (Figure 1G–J).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 18 
 

 

 

Figure 1. Biometric characteristics of the Esr1−/− and C451A-ERα mice. Age (A,B), body weight (C,D), the ratio left ven-

tricle (LV) weight/tibia length (E,F), systolic blood pressure (SBP, G,H) and heart rate (HR, I,J) were measured in young 

mice (6 months old, A and C, E, G and I) and old mice (24 months old, B,D,F,H and J) Esr1−/− and C451A-ERα mice and 

their littermate controls (Esr1+/+ or C451-WT). Mean ± SEM is shown (n = 5 to 18 per group). BPM: beats per minute. NS, 

Mann–Whitney test. 

2.2. FMD in Mouse Mesenteric Arteries 

Stepwise increases in intraluminal flow in perfused and cannulated mesenteric re-

sistance arteries induced vasodilation (FMD, Figure 2A–D).  

As expected, FMD was significantly reduced in resistance arteries isolated from 

young mice lacking ERα compared to young littermate Esr1+/+ mice (Figure 2A). FMD 

was also significantly lower in old Esr1+/+ mice compared to young Esr1+/+ mice (Figure 

2B versus Figure 2A), whereas ageing did not further reduce FMD in Esr1−/− mice (Figure 

2B versus Figure 2A).  

A similar pattern was observed in C451A-ERα mice, which lack membrane-associ-

ated ERα compared to their littermate control C451-WT mice (Figure 2C,D). 

A B

C D

E F

Age (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

2

4

6

8

A
g

e
 (

m
o
n

th
s
)

Body weight (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

10

20

30

40

50

B
o
d

y
 w

e
ig

h
t 
(g

)

LV / tibia weight ratio (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0.000

0.002

0.004

0.006

0.008

0.010

(m
g
/m

g
)

Systolic blood pressure (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

20

40

60

80

100

120

140

S
B

P
 (

m
m

H
g
)

Heart rate (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

100

200

300

400

500

600

700

800

H
R

 (
B

P
M

)

Age (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

10

20

30

A
g

e
 (

m
o
n

th
s
)

Body weight (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

10

20

30

40

50

B
o
d

y
 w

e
ig

h
t 
(g

)

LV / tibia weight ratio (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0.000

0.002

0.004

0.006

0.008

0.010

(m
g
/m

g
)

Systolic blood pressure (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

20

40

60

80

100

120

140

S
B

P
 (

m
m

H
g

)

Heart rate (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

100

200

300

400

500

600

700

800

H
R

 (
B

P
M

)

G H

I J

Figure 1. Cont.



Int. J. Mol. Sci. 2022, 23, 2862 3 of 17

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 18 
 

 

 

Figure 1. Biometric characteristics of the Esr1−/− and C451A-ERα mice. Age (A,B), body weight (C,D), the ratio left ven-

tricle (LV) weight/tibia length (E,F), systolic blood pressure (SBP, G,H) and heart rate (HR, I,J) were measured in young 

mice (6 months old, A and C, E, G and I) and old mice (24 months old, B,D,F,H and J) Esr1−/− and C451A-ERα mice and 

their littermate controls (Esr1+/+ or C451-WT). Mean ± SEM is shown (n = 5 to 18 per group). BPM: beats per minute. NS, 

Mann–Whitney test. 

2.2. FMD in Mouse Mesenteric Arteries 

Stepwise increases in intraluminal flow in perfused and cannulated mesenteric re-

sistance arteries induced vasodilation (FMD, Figure 2A–D).  

As expected, FMD was significantly reduced in resistance arteries isolated from 

young mice lacking ERα compared to young littermate Esr1+/+ mice (Figure 2A). FMD 

was also significantly lower in old Esr1+/+ mice compared to young Esr1+/+ mice (Figure 

2B versus Figure 2A), whereas ageing did not further reduce FMD in Esr1−/− mice (Figure 

2B versus Figure 2A).  

A similar pattern was observed in C451A-ERα mice, which lack membrane-associ-

ated ERα compared to their littermate control C451-WT mice (Figure 2C,D). 

A B

C D

E F

Age (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

2

4

6

8

A
g

e
 (

m
o
n

th
s
)

Body weight (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

10

20

30

40

50

B
o
d

y
 w

e
ig

h
t 
(g

)

LV / tibia weight ratio (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0.000

0.002

0.004

0.006

0.008

0.010

(m
g
/m

g
)

Systolic blood pressure (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

20

40

60

80

100

120

140

S
B

P
 (

m
m

H
g
)

Heart rate (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

100

200

300

400

500

600

700

800

H
R

 (
B

P
M

)

Age (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

10

20

30

A
g

e
 (

m
o
n

th
s
)

Body weight (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

10

20

30

40

50

B
o
d

y
 w

e
ig

h
t 
(g

)

LV / tibia weight ratio (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0.000

0.002

0.004

0.006

0.008

0.010

(m
g
/m

g
)

Systolic blood pressure (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

20

40

60

80

100

120

140

S
B

P
 (

m
m

H
g

)

Heart rate (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

100

200

300

400

500

600

700

800

H
R

 (
B

P
M

)

G H

I J

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 18 
 

 

 

Figure 1. Biometric characteristics of the Esr1−/− and C451A-ERα mice. Age (A,B), body weight (C,D), the ratio left ven-

tricle (LV) weight/tibia length (E,F), systolic blood pressure (SBP, G,H) and heart rate (HR, I,J) were measured in young 

mice (6 months old, A and C, E, G and I) and old mice (24 months old, B,D,F,H and J) Esr1−/− and C451A-ERα mice and 

their littermate controls (Esr1+/+ or C451-WT). Mean ± SEM is shown (n = 5 to 18 per group). BPM: beats per minute. NS, 

Mann–Whitney test. 

2.2. FMD in Mouse Mesenteric Arteries 

Stepwise increases in intraluminal flow in perfused and cannulated mesenteric re-

sistance arteries induced vasodilation (FMD, Figure 2A–D).  

As expected, FMD was significantly reduced in resistance arteries isolated from 

young mice lacking ERα compared to young littermate Esr1+/+ mice (Figure 2A). FMD 

was also significantly lower in old Esr1+/+ mice compared to young Esr1+/+ mice (Figure 

2B versus Figure 2A), whereas ageing did not further reduce FMD in Esr1−/− mice (Figure 

2B versus Figure 2A).  

A similar pattern was observed in C451A-ERα mice, which lack membrane-associ-

ated ERα compared to their littermate control C451-WT mice (Figure 2C,D). 

A B

C D

E F

Age (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

2

4

6

8

A
g

e
 (

m
o
n

th
s
)

Body weight (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

10

20

30

40

50

B
o
d

y
 w

e
ig

h
t 
(g

)

LV / tibia weight ratio (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0.000

0.002

0.004

0.006

0.008

0.010

(m
g
/m

g
)

Systolic blood pressure (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

20

40

60

80

100

120

140

S
B

P
 (

m
m

H
g
)

Heart rate (young mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

100

200

300

400

500

600

700

800

H
R

 (
B

P
M

)

Age (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

10

20

30

A
g

e
 (

m
o
n

th
s
)

Body weight (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

10

20

30

40

50

B
o
d

y
 w

e
ig

h
t 
(g

)

LV / tibia weight ratio (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0.000

0.002

0.004

0.006

0.008

0.010

(m
g
/m

g
)

Systolic blood pressure (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

20

40

60

80

100

120

140

S
B

P
 (

m
m

H
g

)

Heart rate (old mice)

Esr1+/+ Esr1-/- C451

-WT

C451A

-ERα

0

100

200

300

400

500

600

700

800

H
R

 (
B

P
M

)

G H

I J

Figure 1. Biometric characteristics of the Esr1−/− and C451A-ERα mice. Age (A,B), body weight
(C,D), the ratio left ventricle (LV) weight/tibia length (E,F), systolic blood pressure (SBP, G,H) and
heart rate (HR, I,J) were measured in young mice (6 months old, A,C,E,G,I) and old mice (24 months
old, B,D,F,H,J) Esr1−/− and C451A-ERα mice and their littermate controls (Esr1+/+ or C451-WT).
Mean ± SEM is shown (n = 5 to 18 per group). BPM: beats per minute. NS, Mann–Whitney test.

2.2. FMD in Mouse Mesenteric Arteries

Stepwise increases in intraluminal flow in perfused and cannulated mesenteric resis-
tance arteries induced vasodilation (FMD, Figure 2A–D).

As expected, FMD was significantly reduced in resistance arteries isolated from young
mice lacking ERα compared to young littermate Esr1+/+ mice (Figure 2A). FMD was also
significantly lower in old Esr1+/+ mice compared to young Esr1+/+ mice (Figure 2B versus
Figure 2A), whereas ageing did not further reduce FMD in Esr1−/− mice (Figure 2B versus
Figure 2A).

A similar pattern was observed in C451A-ERα mice, which lack membrane-associated
ERα compared to their littermate control C451-WT mice (Figure 2C,D).
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Figure 2. Flow-mediated dilation in Esr1−/− and C451A-ERα mice. Flow-mediated dilation was
determined in mesenteric resistance arteries isolated from young (A,C 6-month-old) and old (B,D 24-
month-old) Esr1−/− (A,B) and C451A-ERα (C,D) male mice and their littermate controls (Esr1+/+
or WT). Mean ± SEM is shown (n = 11 Esr1+/+, 10 Esr1−/−, 7 C451-WT, 8 C451A-ERα mice).
* p < 0.05, ** p < 0.01, two-way ANOVA for repeated measurements (flow), Esr1−/− or C451A-ERα
versus the corresponding WT. # p < 0.05, two-way ANOVA for repeated measurements, old versus
young mice within each group.

2.3. Agonist-Mediated Endothelium-Dependent Dilation in Mouse Mesenteric Arteries

Acetylcholine-mediated dilation was not significantly affected by the total absence of
ERα in Esr1−/− mice (Figure 3A,B) or by its absence at the membrane level in C451A-ERα
mice (Figure 3C,D).

Acetylcholine-mediated dilation was significantly reduced in old mice compared to
young mice in all the study groups (Figure 3A,C compared to Figure 3B,D, respectively).
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Figure 3. Endothelium-dependent dilation induced by acetylcholine. Acetylcholine-mediated dilation
was measured in mesenteric resistance arteries isolated from young (A,C 6-month-old) and old
(B,D 24-month-old) Esr1−/− (A,B) and C451A-ERα (C,D) male mice and their littermate controls
(Esr1+/+ or WT). Mean ± SEM is shown (n = 11 Esr1+/+, 10 Esr1−/−, 6 C451-WT, 6 C451A-ERα
mice). NS (not significant), two-way ANOVA for repeated measurements, Esr1−/− or C451A-ERα
versus Esr1+/+ or WT, respectively. # p < 0.05, two-way ANOVA for repeated measurements, old
versus young mice within each group.

2.4. Smooth Muscle-Dependent Contraction in Mouse Mesenteric Arteries

Stepwise increases in intraluminal pressure induced contraction in isolated perfused
mesenteric resistance arteries (Figure 4). Pressure-induced contraction or myogenic tone
was not significantly affected by the genotype or by ageing in all study groups (Figure 4).
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Figure 4. Pressure-induced myogenic tone in Esr1−/− (A,B) and C451A-ERα mice (C,D). Myogenic
tone was measured in mesenteric resistance arteries isolated from young (A,C 6-month-old) and old
(B,D 24-month-old) Esr1−/− (A,B) and C451A-ERα (C,D) male mice and their littermate controls
(Esr1+/+ or WT). Mean ± SEM is shown (n = 7 Esr1+/+, 8 Esr1−/−, 6 C451-WT and 6 C451A-
ERα mice). NS, two-way ANOVA for repeated measurements, Esr1−/− or C451A-ERα versus the
corresponding WT group NS, two-way ANOVA for repeated measurements, old versus young.

2.5. Wall Structure and Properties of Mouse Mesenteric Arteries

Internal diameter of mesenteric resistance arteries (Figure 5) was not significantly
modified by the genotype or by ageing in all study groups. Cross-sectional compliance
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was attenuated in old mice compared to young mice in all the groups without significant
difference between Esr1−/− and C451A-ERα mice and without difference between these
mice and their littermate controls (Figure 6).
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Figure 5. Arterial diameter in Esr1−/− (A,B) and C451A-ERα mice (C,D). Passive arterial diameter
was measured in mesenteric resistance arteries isolated from young (A,C 6-month-old) and old
(B,D 24-month-old) Esr1−/− (A,B) and C451A-ERα (C,D) male mice and their littermate controls
(Esr1+/+ or WT). Mean ± SEM is shown (n = 7 Esr1+/+, 8 Esr1−/−, 6 C451-WT, 6 C451A-ERα mice).
NS, two-way ANOVA for repeated measurements, Esr1−/− versus Esr1+/+ and C451A-ERα versus
C451-WT NS, two-way ANOVA for repeated measurements, old versus young within each group.
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Figure 6. Arterial compliance in Esr1−/− and C451A-ERα mice. Cross-sectional arterial compliance
was measured in mesenteric resistance arteries isolated from young (A,C 6-month-old) and old
(B,D 24-month-old) Esr1−/− (A,B) and C451A-ERα (C,D) male mice and their littermate controls
(Esr1+/+ or WT). Mean ± SEM is shown (n = 7 Esr1+/+, 8 Esr1−/−, 6 C451-WT, 6 C451A-ERα mice).
NS, two-way ANOVA for repeated measurements, Esr1−/− or C451A-ERα versus the corresponding
WT groups. # p < 0.05, two-way ANOVA for repeated measurements, old versus young.
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2.6. Gene Expression Analysis of the Main Pathways Involved in FMD

In order to follow the impact of the absence of membrane ERα on mesenteric arteries
in ageing, we measured the expression of genes representative of different main biolog-
ical pathways which could affect the endothelial response to acute changes in flow or
FMD (endothelial function, mechanosensing, oxidative stress, mitochondrial homeostasis,
hormone-related genes, purinergic signaling). Considering the impact of ageing, important
changes in gene expression were observed both in WT and C451A-ERα mice (Figure 7).
They were evidenced by a down-regulation of genes involved in endothelial response and
mechanosensing (cluster 1, green). Nevertheless, some genes related to oxidative stress
were up-regulated in old mice (p66Shc, Sod1, Sod2, Gpx1). Interestingly, while in young
mice the loss of membrane ERα did not significantly affect gene expression levels, different
expression profiles were revealed with ageing between WT and C451A-ERα mice. Those
included hormone response or metabolism pathways (Esr1, AR, AhR, Cyp1b1, Comt), the
renin–angiotensin–aldosterone system (Nr3c2, Ace), mitochondrial homeostasis (Dmnl1,
Sirt1) and endothelial response (Sdc4, Kcnma1, Icam1).
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Figure 7. Gene expression profile in mesenteric arteries isolated from mice lacking membrane ERα.RT-
qPCR gene expression analysis of mesenteric resistance arteries isolated from young (6-month-old:
YNG) and old (24-month-old: OLD) C451A-ERα and C451-WT male mice (n = 6–7 mice per group).
Two-way ANOVA analysis shown on the figure. Age: p < 0.05 YNG vs. OLD (green and red labels:
down-regulated and up-regulated genes vs. YNG, respectively). C451A: p < 0.05 C451-WT vs.
C451A-ERα (blue label). Interaction: p < 0.05 between Age and C451A-ERα genotype (orange label).
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2.7. Effect of the Reduction in Oxidative Stress on FMD in Mouse Mesenteric Arteries

We then tested the acute effect of superoxide reduction with SOD plus catalase and of
Mito-tempo on FMD. Incubation of mesenteric resistance arteries with SOD and catalase
did not affect FMD in young C451-WT mice (Figure 8A), whereas it increased FMD in
young C451A-ERα mice (Figure 8B). In 24-month-old mice, SOD and catalase improved
FMD in both C451-WT and C451A-ERα mice (Figure 8C,D). A similar pattern was observed
with arteries incubated with Mito-tempo which reduces ROS of mitochondrial origin
(Figure 8A–D).
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Figure 8. Flow-mediated dilation and oxidative stress in mice lacking membrane ERα. Flow-mediated
dilation was determined in mesenteric resistance arteries isolated from male young (A,B 6-month-
old) and old (C,D 24-month-old) C451A-ERα and their littermate controls C451-WT. Flow-mediated
dilation was measured before and after the addition of SOD plus catalase or Mito-tempo in the
physiological salt solution bathing the arterial segments (20 min incubation). Mean ± SEM is shown.
Two-way ANOVA for repeated measurements, effect of SOD plus catalase or Mito-tempo. p values
shown under each graph.

These results suggest that the reduced FMD in C451A-ERα as compared to WT mice
can be attributed to damages induced by oxidative stress, such as in ageing and or in the
absence of membrane ERα mice.
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2.8. Effect of Age on Estradiol (E2)-Mediated Dilation in Mouse Mesenteric Arteries

Estradiol induced a concentration-dependent dilation of the resistance mesenteric
arteries isolated from young WT mice, whereas no significant dilation was observed in old
WT mice (Figure 9).
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Figure 9. Estradiol-mediated dilation in wild-type mice. Estradiol (E2)-mediated dilation was
determined in mesenteric resistance arteries isolated from young (6-month-old) and old (24-month-
old) wild-type (WT) male mice. Mean ± SEM is shown (n = 8 mice per group). ** p = 0.0074, Two-way
ANOVA for repeated measurements.

3. Discussion

The main finding of this study is that the membrane-located ERα has a facilitating
role in flow (shear stress)-mediated dilation (FMD) in resistance arteries of male mice, in
agreement with our previous work [10], and that this protective effect is lost in ageing.
Indeed, FMD was reduced by approximately 30% in mice lacking membrane ERα, whereas
in WT mice a similar reduction was observed only at the age of 24 months. However, in
mice lacking membrane ERα FMD did not further decrease with age. Thus, the reduction
in FMD due to the absence of membrane ERα could be presented as a premature vascular
ageing. Furthermore, reducing oxidative stress restored FMD in both young mice lacking
membrane ERα and in old WT mice. Thus, it is possible that membrane ERα reduces
oxidative stress to facilitate FMD in young mice and that this effect is lost with ageing, due
to a reduction in membrane ERα expression or function

We investigated FMD in resistance arteries as they control local blood flow delivery to
all tissues and disorders of these small arteries induce organ damage as seen in cardiovascu-
lar, metabolic and cerebrovascular disorders [17–19]. Resistance artery tone is counteracted
by FMD and a reduced FMD is the hallmark of vascular disorders in a large number of
diseases [20]. The present study showed a reduction in both FMD and receptor-dependent
(acetylcholine) endothelium-mediated dilation in 24-month-old mice. This is in agreement
with previous works on humans [8] and on animals [3,21,22] showing reduced FMD and
more generally altered endothelium-dependent dilation in ageing. This marked alteration
in endothelium-dependent dilation could be due to excessive oxidative stress as shown
by an increase in the expression level of genes involved in oxidative stress observed in
mesenteric resistance arteries isolated from WT and C451A-ERα mice (Figure 7), in agree-
ment with previous studies [3,23,24]. In addition, myogenic tone was reduced in old mice
as previously shown in male and female mice mesenteric arteries [25] and in male rat
coronary [26] and skeletal muscle arteries [27]. Ageing was also associated with a reduced
arterial compliance suggesting a change in wall structure. Indeed, arterial stiffening has
been demonstrated in mesenteric resistance arteries in 2-year-old male mice [28] and it is
well demonstrated in human ageing [29,30].
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In agreement with our previous study [10], the present work confirmed the importance
of the membrane-associated ERα in FMD. This effect also agrees with a single observation
in one young man (31 years old). The lack of functional ERα in this man [11] was associated
with a selective reduction in acute FMD [12]. Furthermore, estrogens through the nuclear
AF2 function of ERα, were shown to play a key role in flow-mediated outward remodel-
ing [31–34]. This latter is a chronic adaptation of the arterial wall leading to an increase in
lumen diameter and wall mass in response to a chronic rise in blood flow in vivo [3,35].
This remodeling is observed in collateral arteries growth in ischemic diseases [35].

The vascular protection provided by membrane-associated ERα involves two arms,
with a ligand-dependent pathway leading to acute NO-dependent vasodilation and in-
volved in endothelial repair [14,36] and a ligand-independent pathway potentiating the
acute response to flow or FMD (present study and [10]). By contrast, the protective effect of
E2 on FMD described in pathological conditions or in menopaused women involves the
ligand-dependent pathway and mainly the nuclear functions of ERα. For example, FMD,
reduced in post-menopausal women, is improved by a chronic treatment with estradiol
(E2) or SERMs [37,38]. Similarly, in old female rats, FMD is reduced and can be improved
by estrogen supplementation [39]. On the other hand, in healthy conditions, FMD is not dif-
ferent between men and women and E2 does not influence FMD in healthy conditions [40].
Despite the absence of ERα, we found no significant change in body weight, left ventricle
weight, systolic blood pressure and heart rate in mice, in agreement with our previous
work [15]. Nevertheless, these mice develop a greater hypertension when perfused with
angiotensin II [15]. Similarly, the young man with a disruptive mutation in ERα was
normotensive but more susceptible to atherosclerosis [41]

Besides membrane-located ERα, G-protein coupled estrogen receptor (GPER) is also
involved in the acute response to estrogens [42,43]. Although, our previous work demon-
strating the role of membrane ERα in FMD in young mice has excluded a possible role
for GPER [10], its involvement in the reduction in FMD observed in ageing remains to be
investigated. Indeed, GPER is associated with ageing of the cardiovascular system [44]
with a role in endothelial ageing [45,46]. Thus, further investigation is needed to define the
role of GPER in flow-dependent signaling in vascular ageing.

The risk of cardiovascular diseases is higher in men than in women, and the protec-
tion due to estrogen in women is progressively lost after menopause. Estrogen substitu-
tion therapy has proved to be efficient in reducing this risk although caution should be
taken [13,47]. In the present study, in agreement with our previous work [10], we identified
a new pathway protecting the vascular tree through the involvement of non-nuclear or
membrane-associated ERα in FMD. Thus, estrogen and ERα would have a dual beneficial
effect on the endothelium through the activation of eNOS expression level and NO produc-
tion by E2 [13] and through a reduction in ROS production in a ligand-independent mode
(present study and [10]). Noteworthy, both are reduced with ageing. E2 level decreases
after menopause and flow-mediated ERα-dependent reduction in ROS production is also
lost in ageing (present study). Nevertheless, although we can envision a weak impact of
the former effect in our study on males, the precise pathway involved in this latter effect
remains to be better defined. Indeed, this question is difficult to address as membrane
ERα represents a very small percentage of the total ERα and it is barely observable using
immunohistochemistry [13]. Membrane ERα is anchored to the plasma membrane through
palmitoylation of its cysteine in position 451 in the mouse [14] and a post-translational
dysregulation of cysteine involved in palmitoylation has been reported in ageing [48]. We
have previously shown that E2-dependent acute vasodilation is mediated by membrane
ERα through activation of NO production [14]. Interestingly, E2-mediated dilation was
lost in old WT mice suggesting a loss of functional membrane ERα. This observation
agrees with the reduced FMD found in old WT mice, which would thus be equivalent
to the C451A-ERα mice which lack membrane ERα. In agreement, endothelial ageing
has been shown to be associated with reduced NO production due to decreased eNOS
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expression and to decreased availability of L-arginine and tetrahydrobiopterin, the cofactor
of eNOS [49].

The selective reduction in FMD observed in young C451A-ERα mice could represent
a premature ageing of the endothelium. In agreement, FMD is early and selectively
reduced in ageing in association with reduced NO bioavailability due to excessive ROS
production [22,50]. Interestingly, we found that several genes involved in endothelial
response and mechanosensing were down-regulated during ageing, whereas genes mainly
related to oxidative stress were up-regulated in the mesenteric arteries of old mice. These
observations confirm previous works [51,52]. While no differences in gene expression were
found in young mice groups, it is worth noting a limitation of age-related down-regulation
of several genes in old C451A-ERα mice (Figure 7, see orange and blue boxes). Thus, we
may hypothesize that the functional loss of membrane-located ERα in old WT mice further
affected the expression level of genes that could potentially worsen the endothelial response
to flow such as genes of the renin–angiotensin–aldosterone system and of mitochondrial
homeostasis (Figure 7). In agreement, we observed that Mito-tempo which reduces ROS
produced by the mitochondria improved FMD in mature and old C451A-ERα mice as well
as in old WT mice. Thus, mitochondrial ROS could be involved in the reduction in FMD, in
agreement with previous works showing a role of these organelles in the production of ROS
in ageing associated with cardiovascular disorders [53]. The pathway linking membrane-
located ERα to a reduction in mitochondria-dependent ROS production remains to be
further investigated. Nevertheless, mitochondrial fusion and fission are sensitive to shear
stress in cultured human and bovine endothelial cells [54] and shear stress-dependent
Ca2+ mobilization in human endothelial cells relies on mitochondria-dependent activation
of endoplasmic reticulum channels [55]. In cerebral endothelial cells, activation of ERα
induces a decrease in mitochondrial ROS production, possibly through up-regulation of
cytochrome C activity [56].

Thus, targeting the pathway activated by membrane ERα in response to flow could be
an attractive way to reduce oxidative damages in both healthy and diseased ageing through
a reduction in ROS production and restoration of an efficient FMD in resistance arteries.
Nevertheless, targeting membrane ERα per se could be useless as our results suggest that
it is absent, or at least functionally deficient, in old mice.

In conclusion, our findings confirm that membrane-located ERα signaling takes part
in FMD through a reduction in oxidative stress thus facilitating NO-dependent dilation. In
addition, the present work suggests that this protective effect of membrane-located ERα
could be lost in ageing and further suggests that an early alteration in this pathway may
represent premature vascular ageing as observed in young mice lacking membrane-located
ERα with a reduction in FMD equivalent to that seen in old mice.

4. Materials and Methods
4.1. Animal Protocol

We used 6-month-old and 24-month-old mice lacking the gene encoding for ERα
(Esr1−/− compared to Esr1+/+ mice) [57] and mice in which the codon encoding the
palmitoylable cystein (Cys) 451 of ERα was mutated into alanine (C451A-ERα mice com-
pared to C451-WT mice) [14]. Littermate mice were used as control (wild-type, WT or +/+)
in each group.

As previously described [15], systolic blood pressure (SBP) was measured on con-
scious mice using a non-invasive and fully automated and computerized tail-cuff method
(photoplethysmograph BP-2000 Blood Pressure Analysis System™, Visitech Systems, Apex,
NC, USA). The means of 5-day measurements were computed after one-week adapta-
tion period.

Mice were euthanized using a CO2 chamber and the mesentery was quickly removed
and placed in ice-cold physiological salt solution (PSS). Several segments of mesenteric
resistance arteries were isolated for the functional and biochemical studies.
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The experiment complied with the European Community standards on the care and
use of laboratory animals and the Guide for the Care and Use of Laboratory Animals
published by the US National Institutes of Health (NIH Publication No. 85–23, revised
1996). The protocol was approved by the regional ethics committee (“Comité d’éthique en
Expérimentation Animale des Pays de la Loire”, authorization # CEEA PdL 2012.141).

4.2. Flow-Mediated Dilation in Mesenteric Arteries In Vitro

Arterial segments, approximately 200 µm in internal diameter, were cannulated at
both ends on glass micro-cannulae and mounted in a video-monitored perfusion system
(Living System, LSI, Burlington, VT, USA) [58]. The arterial segment was bathed in a
5 mL organ bath containing a physiological salt solution (PSS, pH: 7.4, pO2:160 mmHg
and pCO2: 37 mmHg) [59]. Perfusion of the artery was obtained with 2 peristaltic pumps,
one controlling flow and one under the control of a pressure-servo control system (LSI,
Burlington, VT, USA) allowing the control of pressure [59]. Pressure at both ends of the
arterial segment was monitored using pressure transducers (MP-4 system, LSI, Burlington,
VT, USA). To measure flow-mediated dilation (FMD), pressure was set at 75 mmHg and
arterial tone was increased with phenylephrine (1 µmol/L). Flow (3 to 50 µL per min) was
then generated through the distal pipette with a peristaltic pump [59].

In separate series of experiments, FMD was measured before and after incubation
(20 min) of the arteries with superoxide dismutase (SOD, 120 U/mL) plus catalase
(80 U/mL) [60] or Mito-Tempo (1 µmol/L) [61].

Other segments of mesenteric arteries were used for a cumulative concentration–
response curve (CRC) to acetylcholine (10−9 to 10−5 mol/L) or to estradiol (E2, 10−9 to
10−7 mol/L) after precontraction of the arterial segment with phenylephrine (1µmol/L) to
contract the arteries by approximately 50%.

Myogenic tone (MT) was determined in response to stepwise increases in intra luminal
pressure from 10 to 125 mmHg using a video-monitored perfusion system as described
above. MT at a given perfusion pressure was defined as the magnitude of the percent
myogenic tone (%MT) at that pressure. The %MT was expressed by the active (AD) and
passive vessel diameters (PD) such that %MT = [(PD−AD)/PD]·100% [62].

At the end of each experiment, arteries were bathed in a Ca2+-free PSS containing
ethylene-bis-(oxyethylenenitrolo) tetra-acetic acid (2 mmol/L) and sodium nitroprusside
(10 µmol/L). Pressure was then increased in steps from 10 to 125 mmHg, in the absence
of flow, to determine passive arterial diameter and passive mechanical properties of the
arterial wall, as previously described [60].

4.3. Quantitative Real-Time PCR

Gene expression was investigated using quantitative polymerase chain reaction after
reverse transcription of total RNA (RT-qPCR). Mesenteric arteries were stored at −20 ◦C in
RNAlater Stabilization Reagent (Qiagen, Valencia, CA, USA) until use. RNA was extracted
using the RNeasy® Micro Kit (Qiagen, Valencia, CA, USA) following the manufacturer’s
instructions. RNA extracted (300 ng) was used to synthesize cDNA using the QuantiTect®

Reverse Transcription Kit (Qiagen, Valencia, CA, USA). RT-qPCR was performed with
Sybr® Select Master Mix (Applied Biosystems Inc., Lincoln, CA, USA) reagent using a
LightCycler 480 Real-Time PCR System (Roche, Branchburg, NJ, USA). Primer sequences
are shown in Table 1. Hprt, ActB and Gusb were used as housekeeping genes. Analysis
was not performed when Ct values exceeded 35. Results were expressed as: 2(Ct target-Ct
housekeeping gene) and heatmaps of expression values were all generated using MeV.
Expression values shown within the heatmaps were normalized per mRNA as fold changes
of means of young C451-WT mice.
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Table 1. Primer sequences used for the RT-qPCR.

Gene Protein
NCBI

Reference
Sequence

Forward Sequence (5’–3’) Reverse Sequence (5’–3’)

Ace Ace NM_009598.2 GGAACAAGTCGATGTTAGAGAAGC ACAGAGGTACACTGCTTGATCCT
ActB Beta-actin NM_007393.1 GCCGGGACCTGACTGACTAC TTCTCCTTAATGTCACGCACGAT

Agtr1b AT1R (b) NM_175086.3 GTGACATGATCCCCTGACAGT AGTGAGTGAACTGTCTAGCTAAATGC

Ahr Transcription factor
cyp1b1 NM_001314027.1 GATGCCAAAGGGCAGCTTATTC CCACCTCCAGCGACTGTGTTT

Ar Androgen receptor NM_013476.4 CCAGTCCCAATTGTGTCAAA TCCCTGGTACTGTCCAAACG
Cav1 Caveolin1 NM_007616.2 AACGACGACGTGGTCAAGA CACAGTGAAGGTGGTGAAGC

Comt Catechol O-
methyltransferase NM_001111062.1 CCGCTACCTTCCAGACACAC GTTCCCGGGACAATGACA

Cyp1b1 Cytochrome P450
1b1 NM_009994.1 AGCCAGGACACCCTTTCC CCTGAACATCCGGGTATCTG

Dnm1l Drp1 NM_001276340.1 AGATCGTCGTAGTGGGAACG CCACTAGGCTTTCCAGCACT
Entpd1 NtPDase1 NM_009848.3 CTCCTGCAAGGCTATAACTTCAC GCGTTGCTGTCTTTGATCTTG

Esr1 ER alpha MN_007956.4 GCTCCTAACTTGCTCCTGGAC CAGCAACATGTCAAAGATCTCC
Gja4 Cx37 NM_008120.3 TCCTGGGAAAAAGCACTGAT CTGTGTCTGTCCAGGTGACG
Gja5 Cx40 NM_008121.2 CAGTGTGATCCTCCTTTTAGGG TTTCCTGCCTCACACTCCTT
Gpx1 gPx-1 NM_008160.6 TTTCCCGTGCAATCAGTTC TCGGACGTACTTGAGGGAAT
Gusb GUSB NM_010368.1 CTCTGGTGGCCTTACCTGAT CAGTTGTTGTCACCTTCACCTC

Hprt ter HPRT NM_013556.2 TGATAGATCCATTCCTATGACTGTAGA AAGACATTCTTTCCAGTTAAAGTTGAG
Icam1 ICAM NM_010493.2 GCTACCATCACCGTGTATTCG AGGTCCTTGCCTACTTGCTG

Kcnma1 Bkca alpha1 NM_001253358.1 GTACCTGTGGACCGTTTGCT CGTCCACTGGCTTGAGAGTA
Klf2 KLF NM_008452.2 CTAAAGGCGCATCTGCGTA TAGTGGCGGGTAAGCTCGT
Nos3 eNOS NM_008713.4 CCAGTGCCCTGCTTCATC GCAGGGCAAGTTAGGATCAG

Nr2c3
Nuclear receptor

subfamily 3, group
C, member 2

NM_001083906.1 TTCGGAGAAAGAACTGTCCTG CCCAGCTTCTTTGACTTTCG

Opa1 Opa1 NM_001199177.1 ACCAGGAGAAGTAGACTGTGTCAA TCTTCAAATAAACGCAGAGGTG
P2rx4 P2X4 NM_011026.2 CCAACACTTCTCAGCTTGGAT TGGTCATGATGAAGAGGGAGT
P2ry6 P2Y6 NM_183168.1 TCTTCCATCTTGCATGAGACA GGATGGTGCCATTGTCCT

Pecam1 CD31 NM_001032378.1 CGGTGTTCAGCGAGATCC CGACAGGATGGAAATCACAA
Piezo1 PIEZO1 NM_001037298.1 ATCAAGTGCAGCCGAGAGAC TAATGAGGCCTCCCATACCA

Ptgis
PgI2 synthase,
prostacyclin

synthase
NM_008968.3 AGGAAAAGCACGGTGACATATT CCCACACCACTGTGTCGTAA

Ptgs1 COX1 NM_008969.3 CCTCTTTCCAGGAGCTCACA TCGATGTCACCGTACAGCTC
Ptgs2 COX2 NM_011198.3 GGGAGTCTGGAACATTGTGAA GCACATTGTAAGTAGGTGGACTGT

Ptpn1
Protein tyrosine

phosphatase,
non-receptor type 1

NM_011201.3 CATCATGGAGAAAGGCTCGT CCTGTGTCATCAAAGACCATCT

S1pr1
Sphingosine-1-

phosphate receptor
1

NM_007901.5 CGGTGTAGACCCAGAGTCCT AGCTTTCCTTGGCTGGAG

Sdc4 Syndecan4 NM_011521.2 GACCTCCTGGAAGGCAGATA GCTCCTCCGTGTCATCCA
Shc1a p66shc isoform a NM_001113331 GGACCCATTCTGCCTCCTCT GCCAGCTTCAGGTTGCTCAT
Sirt1 Sirtuin1 NM_019812.2 CAGTGAGAAAATGCTGGCCTA TTGGTGGTACAAACAGGTATTGA
Sod1 SOD1 NM_011434.1 CAGGACCTCATTTTAATCCTCAC TGCCCAGGTCTCCAACAT
Sod2 SOD2 NM_013671.3 GACCCATTGCAAGGAACAA GTAGTAAGCGTGCTCCCACAC
Tfam Tfam NM_009360.4 CAAAGGATGATTCGGCTCAG AAGCTGAATATATGCCTGCTTTTC
Trpv4 Trpv4 NM_022017.3 GGCAAGAGTGAAATCTACCAGTACTAT ACCGAGGACCAACGATCC
Vcam1 VCAM1 NM_011693.2 TGATTGGGAGAGACAAAGCA AACAACCGAATCCCCAACTT

4.4. Statistical Analysis

Results were expressed as means ± SEM. Significance of the differences between
groups was determined by analysis of variance (two-way ANOVA for consecutive mea-
surements for pressure–diameter curves, myogenic, FMD and CRC to ACh) followed by a
Bonferroni test. The Mann–Whitney test was used for the other comparisons. Probability
values less than 0.05 were considered significant.
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