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Transient analysis of an affine Queue-Hawkes process

Abstract

We investigate the transient behavior of a multi-server queue with a linearly increasing arrival rate, also

called affine Queue-Hawkes process. We obtain expressions of the Laplace Transform of the transient prob-

abilities involving confluent hypergeometric functions. When the arrival rate without congestion-attraction

is higher than the service rate or with an initial condition with all servers busy, these Laplace Transforms

can be numerically inverted. Our numerical investigations show that convergence to the stationary regime

is slower than for an M/M/s queue.

Keywords: Queueing; transient analysis; Queue-Hawkes; Laplace Transform.

1 Introduction

[19] introduced the idea of self-excitement, a model in which the current intensity of events is determined by

events in the past. In the so-called Hawkes processes, the rate of new event occurrences increases as each event

occurs. The crowd-attraction behavior in Finance is well represented by Hawkes processes [13, 9, 18]. Hawkes

processes are also known to capture the spread of infectious diseases [25], or the evolution of a population

[7, 21, 28]. In contact centers also, [3] showed that the expressed sentiment of the customer influences agent

response times and vice versa. The empirical analysis of [10] further proved that this phenomenon of self-

excitement could be well modeled by Hawkes processes. In general, arrival processes with herding behavior

in queueing systems can be modeled by Hawkes processes. For instance, [14] analyzed a queue with Hawkes

arrival process and infinite number of servers in the asymptotic regime where the baseline intensity is large.

The concept of Hawkes process has been extended to queueing processes via the definition of the Ephemerally

Self-Exciting Process (ESEP) in [12]. In this paper, we analyze an ESEP with a linearly increasing arrival rate

in the stationary and transient regimes. This model has been introduced in Section 3 of [12] and is called an

affine Queue-Hawkes Process.

Specifically, we consider a single queue with a capacity of n customers and a pool of s homogeneous and

independent servers, with 1 ≤ s ≤ n. Service times are exponentially distributed with rate 1. Customers

arrive at the system according to a Poisson process with state-dependent arrival rate λ(x) = λ + γx, where

x is the number of customers present in the system, for 0 ≤ x < n. If a customer is not routed to service

immediately upon arrival, then she/he waits in a queue for her/his turn to be served, with customers being
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served in order of arrival. One way to interpret this arrival process is to consider a primary flow of informed

customers who are insensitive to the system state and a secondary flow of arriving customers generated by

the presence of customers in the system. Each customer present in the system generates a new Poisson

arrival process with rate γ. Note that our model can be adjusted to the evolution of a population with the

parameters s and n being infinite, γ being a birth rate, 1 being a mortality rate, and λ being an immigration

rate. For the transient analysis, we let N(t) be the number of customers in the system at time t ≥ 0 and set

px(t) = P (N(t) = x|N(0) = x0), so that px(t) is the transient probability to have x customers present in the

system at time t given that the system is in state x0 at t = 0, for 0 ≤ x0 ≤ n. For the stationary regime,

we denote by px the probability to have x customers in the system. When n is finite, the number of states is

finite. So, the system is stable. When n is infinite, the stability condition is s = ∞ and γ < 1 [12] or λ < s

and γ = 0 as for an M/M/s queue.

Providing a transient analysis is useful for decision makers as the herding behavior seen in airports or

in restaurants is often observed over short-time periods. Having a finite number of servers corresponds to

situations where the system has a limited service capacity like in a restaurant or when a non-lethal disease

can only be cured with hospital intervention. With an infinite number of servers, we mention [11] and [24]

who determined the mean, and the moments of the Hawkes process-driven queue in both transient and steady

state. Instead, in this paper, we express the Laplace Transform (LT) of the transient probabilities explicitly

with finite or infinite number of servers and finite or infinite capacity. Having closed-form expressions is useful

as it allows for a better understanding of the effect of the parameters and enables us to compute a specific

probability without computing any other probabilities. Nevertheless, when the number of states is finite, other

methods can be potentially more efficient to derive the transient probabilities. For instance, we mention the

uniformization method introduced in [20] which was shown to be efficient in comparison with Runge-Kutta

and Liou methods [15] and in comparison with Padé’s approximation [30].

For our queueing model, in states where some servers are idling, Laplace Transforms of transient probabili-

ties are expressed using hypergeometric functions when γ ≥ 1. In the opposite case (as for the M/M/s queue),

if the system starts when at least one server is idling, then the LT of transient probabilities are expressed using

a contour integral. In states where all servers are busy, the LT of transient probabilities are expressed using the

confluent hypergeometric functions of the first and second kind. Simplified expressions are provided when n or

s tends to infinity. After applying a numerical inversion of the LT, we observe that the affine Queue-Hawkes

process needs longer to reach stationarity compared to an M/M/s queue with the same flow of arrivals. This

result is a consequence of over-dispersion of the arrival process. That is, the variance of the arrival process

is larger than the mean, whereas the Poisson process has equal mean and variance. This phenomenon is also
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observed in other Hawkes processes [19] and further justifies the need to obtain transient expressions.

In what follows, we review the literature related to the analysis of transient queues. The M/M/1 queue

was the first transient queue analyzed [26, 6]. The transient queue-length distribution for this queue is ex-

pressed through modified Bessel functions of the first kind. Later, [1] provided a transform factorization that

helps developing approximations for the moments of the queue length in the M/M/1 queue. Several other

approaches for the analysis of the M/M/1 queue have been developed. We refer to [31] for a review of the

main findings for the computation of the performance measures of the M/M/1 queue. For the multi-server

setting, [22] investigated the transient behavior of the M/M/s queue and showed the implications of their

results for simulation. As in this paper, they considered the issue of the speed of convergence to the stationary

regime. Later, [29] found a solution for the M/M/s queue from which the stationary regime could be derived.

Including abandonment or rejection renders the performance evaluation difficult. We mention [2] and [23]

for the performance measures of the M/M/s+M queue, [4] for the study of its busy period and [27] when

deterministic reneging is involved.

Structure of the paper. The rest of the paper is organized as follows. Section 2 presents the stationary

behavior of the affine Queue-Hawkes process. Section 3 determines the Laplace Transform of the transient

probabilities. Section 4 provides a numerical illustration for the computation of the transient probabilities.

The proofs are given in the appendix at the end of the paper.

2 Stationary analysis

We present the stationary behavior of our queueing model. We have (λ + γx)px = min(x + 1, s)px+1, for

0 ≤ x < n. This leads to

px = p0

γxΓ
(
λ
γ + x

)
x!Γ

(
λ
γ

) , for 0 ≤ x ≤ s, and, px = p0

γxΓ
(
λ
γ + x

)
s!sx−sΓ

(
λ
γ

) , for s ≤ x ≤ n, with, (1)

p0 =

s−1∑
x=0

γxΓ
(
λ
γ + x

)
x!Γ

(
λ
γ

) +

n∑
x=s

γxΓ
(
λ
γ + x

)
s!sx−sΓ

(
λ
γ

)
−1

, (2)

where Γ(z) is the Gamma-function defined for all complex numbers except the non-positive integers as

Γ(z) =

∫ ∞
t=0

tz−1e−t dt. Recall that our queueing model has been studied in [12] with an infinite number

of servers or with a finite number of servers and no queue (i.e., the blocking model). As such, the stationary

probabilities in [12], given in Theorem 3.3 in the infinite number of servers case can be deduced from our

results in Equations (1) and (2) by letting s tend to infinity under the stability condition γ < 1. Those given
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Table 1: Conditions for the monotonicity property of px in x (s > 1 and n > s)
Interval px is increasing px is decreasing px has a minimum px has a maximum

0 ≤ x ≤ s λ ≥ 1 and γ ≥ s−λ
s−1 λ ≤ 1 and γ ≤ s−λ

s−1 λ < 1 and γ > s−λ
s−1 λ > 1 and γ < s−λ

s−1

s ≤ x ≤ n γ ≥ s−λ
s γ ≤ s−λ

n−1
s−λ
n−1 < γ < s−λ

s -

in Section C for the blocking model can be obtained from Equations (1) and (2) by setting s = n.

Figure 1 presents the stationary probabilities in two systems with 10 servers and a capacity of 15 customers.

In the first system, we set λ = 1 and γ = 0.903 to represent a situation with a significant congestion-attraction,

and in the second one we adopt λ = 6.803 and γ = 0 to represent a queue without the phenomenon of

congestion-attraction. The parameters are chosen such that the stationary expected number of customers in

the system, E(N), is equal to 7 in both cases. In the queue without congestion-attraction, the stationary
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Figure 1: Stationary distribution (s = 10, n = 15)

probabilities are highest when they are close to E(N). However, in the queue with congestion-attraction,

extreme values (x = 0 and x = n = 15) have the highest probabilities. This indicates that this system spends

a long time either being almost empty (i.e., around x = 0) or being highly congested (i.e., around x = n).

In Table 1, we specify the conditions on the system parameters to have px increasing, decreasing, with one

minimum, or with one maximum for the intervals 0 ≤ x ≤ s and s ≤ x ≤ n. This table is obtained by

analyzing the sign of px+1

px
− 1, for s > 1 and n > s. In the remaining case s = 1, we have p1 ≥ p0 if and only if

λ ≥ 1. While [19] did not consider a queueing model, they also show that the Hawkes process is over-dispersed.

This particular behavior of congestion-attraction queue, also viewed as an affine Queue-Hawkes process [12],

slows down the speed of convergence to the stationary regime (see Section 3).

3 Transient analysis

We dedicate this section to the transient analysis of this queue. We provide an analysis involving complex

integral to represent the Laplace Transforms (LT) of the transient probabilities as in [23]. This method is

an alternative to the usual method which consists of finding the LT of the transient probabilities from the
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computation of the probability-generating function (see for instance [16] page 95) or the moment-generating

function (see Section 3 of [12] for the affine Queue-Hawkes process similar to ours). This method enables us

to directly express the solutions of the equations governing the evolution of the system state with known and

tabulated confluent hypergeometric functions. The LT of the transient probabilities can be inverted either

when the system starts with at least s customers or when the arrival rate generated by present customers (γ)

is higher than or equal to the service rate.

The Markov chain associated with our queueing system can be split into two parts. In the first one, when

the number of customers in the system is below s, the Markov chain behaves as in the evolution of a population

with birth, death and immigration rates. The second part of the Markov chain, is the symmetric counterpart

of the M/M/s+M queue. For this part of the Markov chain, the death rate is constant while the birth rate

is linearly increasing. In the M/M/s+M queue, the birth rate is constant and the death rate is linearly

increasing. Therefore, the method with contour integral adopted in [23] for the M/M/s+M queue provides us

with interesting representations of the LT of the transient probabilities. As opposed to the M/M/s+M queue,

the involved integrals are real and can be expressed with some known confluent hypergeometric functions.

Analysis of the Markov chain is provided in Section 3.1. Section 3.2 combines the results of the previous

section to explicitly state the LT of the transient probabilities.

We start the analysis with the equations governing the evolution of the system state. The forward Kol-

mogorov equations are

p′0(t) = p1(t)− λp0(t), (3)

p′x(t) = (λ+ (x− 1)γ)px−1(t)− (λ+ xγ + x)px(t) + (x+ 1)px+1(t), for 1 ≤ x ≤ s− 1,

p′x(t) = (λ+ (x− 1)γ)px−1(t)− (λ+ xγ + s)px(t) + spx+1(t), for s ≤ x ≤ n− 1,

p′n(t) = (λ+ (n− 1)γ)pn−1(t)− spn(t),

with px(0) = δ(x, x0), where δ(x, x0) = 1 if x = x0 and δ(x, x0) = 0, for x 6= x0.

We set the Laplace transform of the transient probabilities as P ∗x (θ)=

∫ ∞
0

e−θtpx(t) dt, the system of

Equations (3) can be rewritten as

P ∗1 (θ)− (θ + λ)P ∗0 (θ) = −δ(0, x0), (4)

(x+ 1)P ∗x+1(θ) + (λ+ (x− 1)γ)P ∗x−1(θ)− (λ+ x(γ + 1) + θ)P ∗x (θ) = −δ(x, x0), for 1 ≤ x ≤ s− 1, (5)

sP ∗x+1(θ) + (λ+ (x− 1)γ)P ∗x−1(θ)− (λ+ xγ + s+ θ)P ∗x (θ) = −δ(x, x0), for s ≤ x ≤ n− 1, (6)

(λ+ (n− 1)γ)P ∗n−1(θ)− (s+ θ)P ∗n(θ) = −δ(n, x0). (7)
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We next solve Equations (4)-(7), by considering the cases 0 < x0 < s, s < x0 < n, or x0 = 0, s, n.

Remark: Equations (4)-(7) can also be employed to obtain the LT of the first passage time from one state to

another. From the LT of the first passage time, we may easily derive the moments of the passage time from

successive derivatives.

3.1 Solution of Equations (5) and (6)

In Theorem 1, we give the solutions of Equations (5) and (6). These solutions are constructed from contour

integral where a generating function is introduced. We determine the differential equation that this generating

function should satisfy and find two independent solutions. We denote by Fx(θ) and Gx(θ) the two independent

solutions of Equation (5) and by Hx(θ) and Ix(θ) those of Equation (6). The solutions of these equations are

given as functions of the confluent hypergeometric function of the first and second kind,M(a, b, z) and U(a, b, z)

and the general hypergeometric function, Φ(a, b, c, z), for a, b, c, z ∈ C, Re(a) > 0, with |z| < 1 and c not equal

to a negative integer, where

M(a, b, z) =
∞∑
k=0

Γ(a+ k)Γ(b)

Γ(a)Γ(b+ k)

zk

k!
, U(a, b, z) =

1

Γ(a)

∫ ∞
u=0

e−zuua−1(1 + u)b−a−1 du, and,

Φ(a, b, c, z) =
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)k!
zk.

Theorem 1. We have

Fx(θ) =

x∑
k=0

γk

k!(x− k)!

Γ
(
λ
γ −

θ
1−γ + k

)
Γ
(
λ
γ −

θ
1−γ

) Γ
(

θ
1−γ + x− k

)
Γ
(

θ
1−γ

) , for γ 6= 1,

Fx(θ) =
Γ(x+ λ)

Γ(x+ 1)Γ(λ)
M(−x, λ,−θ), for γ = 1,

Gx(θ) = γ
−
(
λ
γ

+ θ
γ−1

)Γ
(
x+ λ

γ

)
Γ
(

1 + θ
γ−1

)
Γ
(
x+ 1 + λ

γ + θ
γ−1

) Φ

(
λ

γ
+

θ

γ − 1
, x+

λ

γ
, x+ 1 +

λ

γ
+

θ

γ − 1
,

1

γ

)
, for γ > 1,

Gx(θ) = Γ(x+ λ)U(x+ λ, λ, θ), for γ = 1,

Gx(θ) =
1

2πi

∫
C̃
z−(x+1)(z − 1)

− θ
1−γ (γz − 1)

−λ
γ

+ θ
1−γ dz, for γ < 1,

Hx(θ) = Γ

(
θ

γ
+ 1

)
e
− s
γU

(
θ

γ
+ 1, x+ 1 +

λ+ θ

γ
,
s

γ

)
, and

Ix(θ) = M

(
x+

λ

γ
, x+ 1 +

λ+ θ

γ
,− s

γ

) Γ
(
x+ λ

γ

)
Γ
(

1 + θ
γ

)
Γ
(
x+ 1 + λ+θ

γ

) ,

where C̃ is a contour which starts at −∞− iε and ends at −∞+ iε encircling z = 0, z = 1
γ , and z = 1 in the

counterclockwise sense.
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With this definition, we obtain F−1(θ) = 0, F0(θ) = 1, and F1(θ) = θ + λ. Therefore, Equation (4) is also

satisfied by Fx(θ) but not by Gx(θ). In the case of γ < 1, it is not possible to express Gx(θ) explicitly or as a

function of some known functions.

Model extension: λ(x) = λ + γmin(x, c), for 0 ≤ c ≤ n. The analysis with state-dependent arrival rate

λ(x) = λ + γx considered in this paper can be extended to the case λ(x) = λ + γmin(x, c), for 0 ≤ c ≤ n to

account for bounded arrival rates. The following intervals should be considered:

• For 0 ≤ x ≤ min(c, s), Equation (5) is unchanged. So, Px(θ) can be expressed as a linear combination

of Fx(θ) and Gx(θ) as expressed in Theorem 1.

• If c ≤ s and c ≤ x ≤ s, then Equation (5) is modified by letting first γ tend to zero and next replace λ

by λ + cγ. Observe that (1− γt)−
λ
γ

+ θ
1−γ tends to eλt as γ tends to zero. Therefore, from the analysis

in the proof of Theorem 1, Px(θ) can be written as a linear combination of Fx(θ) and Gx(θ) defined as

Fx(θ) =
x∑
k=0

(λ+cγ)k

k!(x−k)!
Γ(θ+x−k)

Γ(θ) and Gx(θ) =
1

2πi

∫
C̃
z−(x+1)(z − 1)−θe(λ+cγ)z dz.

• If c ≥ s and s ≤ x ≤ c, Equation (6) is unchanged. Thus, Px(θ) can be expressed as a linear combination

of Hx(θ) and Ix(θ) as expressed in Theorem 1.

• For max(c, s) ≤ x ≤ n, the transitions are identical to those of an M/M/1 queue. Therefore, the results in

[17] page 99 apply and Px(θ) can be expressed as a linear combination of
(
λ+cγ+s+θ+

√
(λ+cγ+s+θ)2−4(λ+cγ)s

2(λ+cγ)

)x
and

(
λ+cγ+s+θ−

√
(λ+cγ+s+θ)2−4(λ+cγ)s

2(λ+cγ)

)x
.

3.2 Expressions of the transient probabilities

We are now in position to express the Laplace Transform of the transient probabilities. These expressions, given

in Theorem 2 with λ(x) = λ+ γx for 0 ≤ x ≤ n, involve the Wronskian of the sequences Fx(θ), Gx(θ), Hx(θ)

and Ix(θ). We define the Wronskian application W for two sequences Ux(θ) and Vx(θ), such that W (U,V )
x (θ) =

Ux+1(θ)Vx(θ)− Vx+1(θ)Ux(θ).
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Theorem 2. We have with 0 ≤ x0 < s,

P ∗x (θ) =

W
(G,H)
s−1 (θ)−αn(θ)W

(G,I)
s−1

W
(F,H)
s−1 (θ)−αn(θ)W

(F,I)
s−1 (θ)

Fx0(θ)−Gx0(θ)

(x0 + 1)W
(G,F )
x0 (θ)

Fx(θ), for, 0 ≤ x ≤ x0,

P ∗x (θ) =
Fx0(θ)

(x0 + 1)W
(G,F )
x0 (θ)

(
W

(G,H)
s−1 (θ)− αn(θ)W

(G,I)
s−1 (θ)

W
(F,H)
s−1 (θ)− αn(θ)W

(F,I)
s−1 (θ)

Fx(θ)−Gx(θ)

)
, for, x0 ≤ x ≤ s, and,

P ∗x (θ) =
Fx0(θ)

W
(F,H)
s−1 (θ)− αn(θ)W

(F,I)
s−1 (θ)

γs−x0−1x0!

s!

Γ
(
λ
γ + s− 1

)
Γ
(
λ
γ + x0

) (Hx(θ)− αn(θ)Ix(θ)) , for, s ≤ x ≤ n.

For s ≤ x0 ≤ n, we have

P ∗x (θ) =

(γ
s

)s−x0−1
Γ
(
λ
γ + s− 1

)
sΓ
(
λ
γ + x0

) αn(θ)Ix0(θ)−Hx0(θ)

W
(H,F )
s−1 (θ)− αn(θ)W

(I,F )
s−1 (θ)

Fx(θ), for, 0 ≤ x ≤ s,

P ∗x (θ) =
αn(θ)Ix0(θ)−Hx0(θ)

sW
(I,H)
x0 (θ)(W

(H,F )
s−1 (θ)− αn(θ)W

(I,F )
s−1 (θ))

(W
(I,F )
s−1 (θ)Hx(θ)−W (H,F )

s−1 (θ)Ix(θ)), for, s ≤ x ≤ x0, and,

P ∗x (θ) =
Ix0(θ)W

(H,F )
s−1 (θ)−Hx0(θ)W

(I,F )
s−1 (θ)

sW
(I,H)
x0 (θ)(W

(H,F )
s−1 (θ)− αn(θ)W

(I,F )
s−1 (θ))

(Hx(θ)− αn(θ)Ix(θ)) , for, x0 ≤ x ≤ n,

where αn(θ) = sHn+1(θ)−(λ+nγ)Hn(θ)
sIn+1(θ)−(λ+nγ)In(θ) .

In asymptotic cases, the formulas of Theorem 2 can be simplified. In what follows, we present the cases of

n =∞ and s = n =∞.

Infinite capacity queue. We first consider the case with an infinite capacity queue (i.e., n = ∞). The

analysis of Theorem 2 can be made in a similar way using lim
x→∞

Ix = 0 and lim
x→∞

Hx =∞. With 0 ≤ x0 ≤ s, we

have

P ∗x (θ) =
Fx0(θ)W

(G,I)
s−1 (θ)−Gx0(θ)W

(F,I)
s−1 (θ)

(x0 + 1)W
(G,F )
x0 (θ)W

(F,I)
s−1 (θ)

Fx(θ), for 0 ≤ x ≤ x0,

P ∗x (θ) =
Fx0(θ)

(x0 + 1)W
(G,F )
x0 (θ)

(
W

(G,I)
s−1 (θ)

W
(F,I)
s−1 (θ)

Fx(θ)−Gx(θ)

)
, for x0 ≤ x ≤ s, and,

P ∗x (θ) =
Fx0(θ)

W
(F,I)
s−1 (θ)

γs−x0−1x0!Γ
(
λ
γ + s− 1

)
s!Γ
(
λ
γ + x0

) Ix(θ), for x ≥ s.
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With x0 ≥ s, we get

P ∗x (θ) =
Ix0(θ)

sW
(F,I)
s−1 (θ)

(γ
s

)s−1−x0 Γ
(
λ
γ + s− 1

)
Γ
(
λ
γ + x0

) Fx(θ), for 0 ≤ x ≤ s,

P ∗x (θ) =
Ix0(θ)

sW
(H,I)
x0 (θ)

(
Hx(θ)−

W
(F,H)
s−1 (θ)

W
(F,I)
s−1 (θ)

Ix(θ)

)
, for s ≤ x ≤ x0, and,

P ∗x (θ) =
W

(F,I)
s−1 (θ)Hx0(θ)−W (F,H)

s−1 (θ)Ix0(θ)

sW
(F,I)
s−1 (θ)W

(H,I)
x0 (θ)

Ix(θ), for x ≥ x0.

Infinite number of servers. In the case with an infinite number of servers and an infinite capacity, the

formulas can be further simplified into

P ∗x (θ) =
Gx0(θ)

(x0 + 1)W
(F,G)
x0 (θ)

Fx(θ), for 0 ≤ x ≤ x0, and, P ∗x (θ) =
Fx0(θ)

(x0 + 1)W
(F,G)
x0 (θ)

Gx(θ), for x ≥ x0.

In the case x0 = 0 and γ = 1, we get P ∗x (θ) = Gx(θ)
(1+θ)G0(θ)−G1(θ) , where Gx(θ) =

∫ ∞
t=0

e−θt
tx−1+λ

(1 + t)x+1
dt, for

x ≥ 0. Using an integration by part, we obtain G1(θ) = −θ
∫ ∞
t=0

e−θt
tλ

1 + t
dt+ λG0(θ).

So, (λ+ θ)G0(θ)−G1(θ) = θ

∫ ∞
t=0

e−θttλ−1dt = θ1−λΓ(λ). Finally, we obtain P ∗x (θ) =
θλ−1

Γ(λ)

∫ ∞
t=0

e−θt
tx−1+λ

(1 + t)x+1
dt.

In the case λ = 1, we deduce that px(t) = tx

(1+t)x+1 . This means that px(t) has a geometric distribution. Since

lim
t→∞

px(t) = 0, the combination of parameters λ = γ = 1 and s =∞ leads to an unstable system.

4 Numerical illustration

The transient performance measures can be computed using a Laplace transform inversion. We use the speed up

version of the Gaver-Stehfest algorithm presented in [8], page 144, equation (7.7), where a given function f(t) is

approximated by ln(2)
t

N∑
j=1

Kj ·f∗
(
j ln(2)

t

)
, whereN is even andKj = (−1)j+

N
2

min(j,N/2)∑
k=[ j+1

2 ]

kN/2(2k)!
(N/2−k)!k!(k−1)!(j−k)!(2k−j)! .

In Figures 2 and 3, we derive p0(t) and pn(t) as functions of the time elapsed since the origin, t, for different

values of the initial state. Figure 2 presents a situation where the stationary probabilities are strictly increas-

ing in the system state while Figure 3 illustrates a case where extreme states have the highest stationary

probabilities. When comparing Figures 2(a) and 2(b) with Figures 3(a) and 3(b), we observe that the speed

of convergence to the stationary distribution is slower in Figure 3. In Figure 2, the state x = n = 15 plays a

role of attraction in the evolution of the system state. In Figure 3, both states x = 0 and x = n = 15 play

this role. This means in practice that the system state remains either around x = 0 or around x = 15 for

a long time, which slows down the achievement of a close to stationary regime. This means that a system
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(c) Stationary distribution

Figure 2: Numerical results (λ = 1, γ = 1.2, s = 10, n = 15, N = 50)

with congestion-attraction may take a long time before reaching the stationary regime as compared to classical

queueing models used to represent service systems. It also means that system managers should be careful while

using stationary performance measures when making staffing or routing decisions over a short-term horizon.

For instance, if the system initially starts empty, stationary performance measures could lead to over-staffing

decisions if the congestion-attraction phenomenon is not observed for a sufficiently long time.
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A Proof of Theorem 1

Proof. We first consider Equation (5). We propose to build two independent solutions to this equation. We

introduce the sequence fx which satisfies (x+ 1)fx+1 + (λ+ (x− 1)γ)fx−1 = (λ+ x(γ + 1) + θ)fx. The idea

is to propose to write fx as an integral and to determine the differential equation that the generating function

F(z) should satisfy in order to generate some solutions to Equation (5). From Cauchy’ integral theorem, the

function fx can be written as fx =

∫
C
z−(x+1)F(z) dz, for some contour C and some function F(z). Then, we

have

∫
C
z−(x+1)

(
λ+ x(γ + 1) + θ − (λ+ (x− 1)γ)z − x+ 1

z

)
F(z) dz = 0. (8)

We assume that C is such that there are no boundary contributions arising from endpoints of C in order to

apply the integration by parts and write xfx =

∫
C
xz−(x+1)F(z) dz =

∫
C
z−xF ′(z) dz. Therefore, Equation (8)

leads to

∫
C
z−(x+1)

[
−(1− z)(1− γz)F ′(z) + (λ(1− z) + θ)F(z)

]
dz = 0. (9)

13



One solution of this equation can be obtained if for all z we have

(1− z)(1− γz)F ′(z) = (λ(1− z) + θ)F(z). (10)

One solution of Equation (10) is

F(z) = (1− z)−
θ

1−γ (1− γz)−
λ
γ

+ θ
1−γ , if γ 6= 1, and, F(z) = (1− z)−λe

θ
1−z , if γ = 1.

Note that F(x) has branch points at z = 1 if γ < 1 and at z = 1/γ if −λ
γ + θ

1−γ < 0. Based on F(z), we are

in position to build two independent solutions for Equation (5) denoted by Fx(θ) and Gx(θ).

The function Fx(θ).

Case 1: γ 6= 1. We consider the integral Fx(θ)=
1

2πi

∫
C1
z−(x+1)(1− z)−

θ
1−γ (1− γz)−

λ
γ

+ θ
1−γ dz, where C1 is

a small circle in the z−plane on which |z| < min
(

1, 1
γ

)
. The integrand in the expression of Fx(θ) is analytic

inside the circle C1. We can obtain an explicit expression of Fx. Since (1 − z)−
θ

1−γ =
∞∑
k=0

Γ
(

θ
1−γ+k

)
Γ
(

θ
1−γ

)
k!
zk, and

(1− γz)−
λ
γ

+ θ
1−γ =

∞∑
k=0

Γ
(
λ
γ
− θ

1−γ+k
)

Γ
(
λ
γ
− θ

1−γ

)
k!
γkzk, we have

(1− z)−
θ

1−γ (1− γz)−
λ
γ

+ θ
1−γ =

∞∑
m=0

zm

 m∑
k=0

γk

k!(m− k)!

Γ
(
λ
γ −

θ
1−γ + k

)
Γ
(
λ
γ −

θ
1−γ

) Γ
(

θ
1−γ +m− k

)
Γ
(

θ
1−γ

)
 .

This leads to the expression of Fx(θ) as in Theorem 1.

Case 2: γ = 1. We define Fx(θ) as Fx(θ)=
e−θ

2πi

∫
C1
z−(x+1)(1− z)−λe

θ
1−z dz, where C1 is defined as above.

The definition of Fx(θ) corresponds to the integral representation of the Laguerre polynomials. Using Equation

(10.50) page 399 in [5], we may then write Fx(θ) = Γ(x+λ)
Γ(x+1)Γ(λ)M(−x, λ,−θ), where M(a, b, z) is the confluent

hypergeometric function of the first kind.

The function Gx(θ). Due to the initial condition at t = 0 we need another solution to Equation (5)

(independent from Fx(θ)). We differentiate the cases γ > 1, γ = 1, and γ < 1.

Case 1: γ > 1. In this case, we observe that F(1) = 0, we can then define Gx as an integral on the real

interval (1,∞) by Gx(θ)=

∫ ∞
z=1

z−(x+1)(z − 1)
θ

γ−1 (γz − 1)
−
(
λ
γ

+ θ
γ−1

)
dz. We change the variable z by t = 1/z.

This leads to Gx(θ)=

∫ 1

t=0
γ
−
(
λ
γ

+ θ
γ−1

)
t
x−1+λ

γ (1− t)
θ

γ−1

(
1− t

γ

)−(λ
γ

+ θ
γ−1

)
dt. Therefore, Gx can be related to
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the general hypergeometric function. This function has an integral representation when Re(c) > Re(b) > 0;

Φ(a, b, c, z)=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

t=0
tb−1(1− t)c−b−1(1− zt)−a dt, which proves the expression of Gx(θ).

Case 2: γ = 1. In this case, we observe that F(1+) = 0, we can then define Gx as an integral on the real

interval (1,∞) by Gx(θ)=

∫ ∞
z=1

z−(x+1)(z − 1)−λe
θ

1−z dz. We change the variable z in u = −1
1−z . This leads to

Gx(θ)=

∫ ∞
u=0

ux−1+λ(1 + u)−(x+1)e−θu du. Thus, we may write Gx(θ) = Γ(x+ λ)U(x+ λ, λ, θ).

Case 3: γ < 1. This case is more difficult since we may not find z such that F(z) = 0. We instead consider the

complex integral with contour C̃ which starts at −∞−iε and ends at −∞+iε encircling z = 0, z = 1
γ , and z = 1

in the counterclockwise sense. We thus define Gx as Gx(θ)=
1

2πi

∫
C2
z−(x+1)(z − 1)

− θ
1−γ (γz − 1)

−λ
γ

+ θ
1−γ dz.

Gx(θ) satisfies the homogeneous form of Equation (5).

We now consider Equation (6) with the same approach. We shall construct two independent solutions to

this difference equation. Let gx satisfy sgx+1 + (λ+ (x− 1)γ)gx−1 = (λ+ xγ + s+ θ)gx and represent gx as a

contour integral, with gx=

∫
C
z−(x+1)G(z) dz, for some function G(.) and contour C. Then, we have

∫
C
z−(x+1)

(
λ+ xγ + s+ θ − (λ+ (x− 1)γ)z − s

z

)
G(z) dz = 0. (11)

Again, we assume that C is such that there are no boundary contributions arising from endpoints of C in order to

apply the integration by parts and obtain
∫
C
z−(x+1)

[
γz(1− z)G′(z) +

(
λ(1− z) + s+ θ − s

z

)
G(z)

]
dz = 0.

One solution of the above equation can be obtained if for all z we have

γz(1− z)G′(z) = −
(
λ(1− z) + s+ θ − s

z

)
G(z). (12)

One solution of Equation (12) is

G(z) = e
− s
γz z
−λ+θ

γ (1− z)
θ
γ . (13)

The function G(z) has a unique branch point at z = 0. To determine two independent solutions of Equation

(6), we shall find two intervals leading to two independent solutions. These functions are denoted by Hx(θ)

and Ix(θ).

The function Hx(θ). Since G(1) = G(0+) = 0, we first consider the interval (0, 1). Thus, we define Hx(θ)

as Hx(θ) =

∫ 1

t=0
e
− s
γt t
−(x+1)−λ+θ

γ (1− t)
θ
γ dt. With the change of variable u = 1

t − 1, we obtain

Hx(θ) = e
− s
γ

∫ ∞
u=0

e
− s
γ
u
(u+ 1)

x−1+λ
γ u

θ
γ du, which leads to the expression of Hx(θ).
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The function Ix(θ). We now define Ix(θ) as Ix(θ) =

∫ ∞
t=1

e
− s
γt t
−(x+1)−λ+θ

γ (t− 1)
θ
γ dt. With the change of

variable z = 1
t , we obtain Ix(θ) =

∫ 1

z=0
e
− s
γ
z
z
x−1+λ

γ (1− z)
θ
γ dz. Since M(a, b, z) has the following integral

representation M(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

u=0
ezuua−1(1− u)b−a−1 du, for Re(b) > Re(a) > 0, we obtain the

expression of Ix(θ).

B Proof of Theorem 2

Proof. To simplify the writing, we do not express the dependence of the considered functions in θ in the proof.

We first consider the case 0 < x0 < s. We introduce the constant A,B,C,D, and E such that

P ∗x = AFx, for, 0 ≤ x ≤ x0, P
∗
x = BFx + CGx, for, x0 ≤ x ≤ s, and P ∗x = DHx + EIx, for, s ≤ x ≤ n.

The boundary equations allow us to relate the different constants. With Equation (7), we have (λ + (n −

1)γ)(DHn−1 + EIn−1) − (s + θ)(DHn + EIn) = 0. Moreover, we have s(DHn+1 + EIn+1) + (λ + (n −

1)γ)(DHn−1 + EIn−1) − (λ + nγ + s + θ)(DHn + EIn) = 0. By subtracting these two equations, we get

s(DHn+1 + EIn+1)− (λ+ nγ)(DHn + EIn) = 0. Therefore,

E = −DsHn+1 − (λ+ nγ)Hn

sIn+1 − (λ+ nγ)In
= −Dαn.

For x = s, we may write

BFs + CGs = D(Hs − αnIs), and, (s+ 1)(BFs+1 + CGs+1) = sD(Hs+1 − αnIs+1).

This leads to B = D (s+1)Gs+1(Hs−αnIs)−sGs(Hs+1−αnIs+1)
(s+1)(FsGs+1−GsFs+1) = Dβ1

s,n, and

C = −D (s+1)Fs+1(Hs−αnIs)−sFs(Hs+1−αnIs+1)
(s+1)(FsGs+1−GsFs+1) = −Dβ2

s,n. We now use the condition x = x0. This leads to

AFx0 = D
(
β1
s,nFx0 − β2

s,nGx0
)
, and, A(x0 + 1)Fx0+1 = D(x0 + 1)

(
β1
s,nFx0+1 − β2

s,nGx0+1

)
+ 1.

Therefore, we have A =
β1
s,nFx0−β

2
s,nGx0

β2
s,n(x0+1)(Fx0Gx0+1−Gx0Fx0+1)

, and, D =
Fx0

β2
s,n(x0+1)(Fx0Gx0+1−Gx0Fx0+1)

. Using Equation

(5), we find that (x+1)W
(G,F )
x = (λ+(x−1)γ)W

(G,F )
x−1 . Therefore, we deduce thatW (G,F )

x = W
(G,F )
0

γxΓ
(
λ
γ

+x
)

(x+1)!Γ
(
λ
γ

) ,
which further simplifies the expressions. The formulas for 0 < x0 < s can be extended to the case x0 = 0. The

case s < x0 < n can be obtained with a similar approach. We introduce the constant Ã, B̃, C̃, D̃, and Ẽ such

that P ∗x = ÃFx, for, 0 ≤ x ≤ s, P ∗x = B̃Hx+ C̃Ix, for, s ≤ x ≤ x0, and P ∗x = D̃Hx+ ẼIx, for, x0 ≤ x ≤ n. One
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difference here is that the function Gx is not involved in the solution. After using the boundary equations, the

Wronskian of Ix and Hx is involved. We find that sW (I,H)
x = (λ+ (x− 1)γ)W

(I,H)
x−1 . Therefore, we deduce that

W
(I,H)
x = W

(I,H)
0

( γs )
x
Γ
(
λ
γ

+x
)

Γ
(
λ
γ

) . The formulas obtained for s < x0 < n are valid for x0 = s and for x0 = n.
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