An uncountable family of nested subshifts
Martin Lustig

To cite this version:
Martin Lustig. An uncountable family of nested subshifts. 2022. hal-03605386

HAL Id: hal-03605386
https://hal.science/hal-03605386
Preprint submitted on 11 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
AN UNCOUNTABLE FAMILY OF NESTED SUBSHIFTS

MARTIN LUSTIG

ABSTRACT. A quick elementary construction of an uncountable family of nested subshifts over a
finite alphabet A is presented. Recall that subshifts over A are special cases of algebraic laminations
in the free group $F(A)$, which appear as support of currents on $F(A)$ or as “dual support” of \mathbb{R}-trees
with an isometric action of $F(A)$.

In this note we present the construction of an uncountable family of nested subshifts: For any
sequence $d \in \{0, 1\}^\mathbb{N}$ (equipped with its natural lexicographic order) a subshift $X(d) \subset \{a, b\}^\mathbb{Z}$ is
constructed such that:

$$ d < d' \implies X(d) \subsetneq X(d') $$

The author doesn’t believe that the given uncountable nested subshift family is the first such
known, although he cannot point to any specific reference. The main reason for this note to be
written is the simplicity of the construction; also, the author freely admits that he actually started
out by trying to show that nested families of pairwise distinct subshifts must always be countable.
It thus appears fair to share with interested colleagues the author’s surprise about both, the untruth
of his intuitive conjecture and the simplicity of the exhibited counterexample.

Before starting the construction which fulfills the promise in the title of this note we need to set
up the following:

For any alphabet $A = \{a, b\}$ and any integer $\ell \geq 0$ consider an alphabet $A' = \{a', b'\}$ as well as
the following morphism:

$$ (1) \quad \sigma_{A, \ell} : A^{\ell*} \to A^*, \quad a' \mapsto a^{\ell+1}b, \quad b' \mapsto a^{\ell+2}b $$

It is easy to see that $\sigma_{A, \ell}$ is recognizable in the full shift $A^\mathbb{Z}$, so that in particular the induced map
$X \mapsto \sigma_{A, \ell}(X) := X(\sigma_{A, \ell}(L(X)))$ on the set of subshifts $X \subset A^\mathbb{Z}$ is injective. (Here $L(X)$
denotes the language of the subshift X and $X(L)$ the subshift generated by an infinite language L.)

We now define iteratively for any infinite sequence $d = d_1d_2 \ldots \in \{0, 1\}^\mathbb{N}$ a subshift $X(d) \subset A^\mathbb{Z}
as follows, for $A = \{a, b\}$:

Assume (by induction) that for a prefix $d_n := d_1d_2 \ldots d_n$ of d a subshift $X_n := X(d_n) \subset A^\mathbb{Z}$ is
defined as union of some subshift $X'_n \subset A^\mathbb{Z}$ with the image $\sigma_n(X')$, for some alphabet $A_n = \{a_n, b_n\}$,
some morphism $\sigma_n : A_n^\ell \to A^*$ and some subshift $X' \subset A_n^\mathbb{Z}$.

Assume furthermore that X' satisfies the following condition: Let $d_{m+1}d_{m+2} \ldots d_n$ be the largest
suffix of d_n with all letters d_i equal to 1 (this includes of course the possibility $m = n$). Then we
assume that X' is the subshift which consists of all sequences

$$ (2) \quad \ldots b_n a_n^{n_j} b_n a_n^{n_j+1} b_n a_n^{n_j+2} \ldots $$

subject to the condition

$$ (3) \quad 1 \leq n_j \leq 2(n - m) + 2 \quad \text{for all} \quad n_j \in \mathbb{Z}. $$

We now define the subshift $X_{n+1} = X(d_{n+1}) \subset A^\mathbb{Z}$ as follows:

2010 Mathematics Subject Classification. Primary 37B10, Secondary 20F65, 37E25.

Key words and phrases. Subshift, uncountable family, algebraic lamination.
If \(d_{n+1} = 1 \) we set \(\sigma_{n+1} := \sigma_n \) and
\[
X_{n+1} := X'_n \cup \sigma_{n+1}(X'') ,
\]
where the subshift \(X'' \subset A_2^\mathbb{Z} \) is defined just as \(X' \) through sequences as specified in (2), but with the restriction (3) replaced by
\[
1 \leq n_j \leq 2(n - m) + 4 \quad \text{for all} \quad n_j \in \mathbb{Z} .
\]
If \(d_{n+1} = 0 \) we consider the morphism \(\sigma_{A_n, \ell} \) as in (1) with \(\ell := 2(n - m) + 2 \), where we rename \(a' := a_{n+1}, b' := b_{n+1} \) and \(A' := A_{n+1} \).

We then define \(X'' \subset A_{n+1}^\mathbb{Z} \) through sequences as specified in (2) with \(a_n \) replaced by \(a_{n+1} \) and \(b_n \) by \(b_{n+1} \), and with \(m = n \) in condition (3). We set \(\sigma_{n+1} := \sigma_n \circ \sigma_{A_n, \ell} \) and define:
\[
X_{n+1} := X_n \cup \sigma_{n+1}(X'')
\]

From these definitions we see directly that in both cases one has \(X_n \subset X_{n+1} \) and \(X_n \neq X_{n+1} \). Furthermore, \(X_{n+1} \) satisfies the inductive hypotheses listed above for \(X_n \). Hence the iterative construction of the \(X_n = X(d_n) \) is well defined once we set for the empty sequence \(d_0 \) the starting data to be \(X'_0 := \emptyset, A_0 := A, a_0 := a, b_0 := b \) and \(\sigma_0 = \text{id}_{A^*} \). The starting subshift \(X' \subset A_{n+1}^\mathbb{Z} \) is then given by (2) and by (3) with \(n = m = 0 \).

We now define \(X(d) \) as closure of the increasing union of all \(X(d_n) \) and observe:

Lemma 1. For any sequence \(d = d_1d_2\ldots \in \{0, 1\}^\mathbb{N} \) and any prefix \(d_n = d_1 \ldots d_n \) of \(d \) with \(d_{n+1} = 0 \) one obtains for the finite sequence \(d_n \) of length \(n+1 \) the following proper inclusion:
\[
X(d) \subsetneq X(d_n)
\]

Proof. This is a direct consequence of the fact that from the assumption \(d_{n+1} = 0 \) and the definition of our iterative construction it follows that for any \(n' \geq n \) the subshift \(X(d_{n'}) \) is contained in the union \(X_n \cup \sigma_{n+1}(A_{n+1}) \), which in turn is easily seen to be contained in but not equal to the subshift \(X(d_n) \). \(\Box \)

We thus derive directly the desired result:

Theorem 2. For any two sequences \(d < d' \) in \(\{0, 1\}^\mathbb{N} \) the associated subshifts in \(\{a, b\}^\mathbb{Z} \) satisfy:
\[
X(d) \subsetneq X(d')
\]

Proof. The proof is a direct consequence of the statement of Lemma 1, together with the previously observed inclusion \(X(d_1 \ldots d_n) \subset X(d_1 \ldots d_n d_{n+1}) \) for any \(d' = d_1d_2\ldots \in \{0, 1\}^\mathbb{N} \). \(\Box \)

Final remark and acknowledgements: It is easy to exhibit uncountable families of pairwise distinct subshifts in \(A_2^\mathbb{Z} \) for any finite alphabet \(A \). It is also not hard find countable families of subshifts \(X_1 \subsetneq X_2 \subsetneq X_3 \subsetneq \ldots \) or \(\ldots \subsetneq X_3 \subsetneq X_2 \subsetneq X_1 \). Indeed, any presentation of a subshift \(X \) by an everywhere growing directive sequence gives directly an example of the second kind. Examples of the first kind are a bit harder to find “in nature”: the original motivation for this note came indeed from observing the existence of such families within the Pascal-adic subshift, see [1], §4. We would like to thank Pascal Hubert for having pointed our attention to this subshift, and Nicolas Bédaride for having unearthed the above reference.

References

Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, 13453 Marseille, France

Email address: Martin.Lustig@univ-amu.fr

2