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ABSTRACT
Recent studies showed both experimental and numerical evidence that the occurrence probability of
freak waves could be significantly enhanced as results of non-equilibrium dynamics induced by strong
depth variations. The sea-state is characterized by strong non-Gaussian behavior in a short spatial
extent after the depth transition, covering a fewwavelengths. In this work, we investigate the complete
equilibration process of an out-of-equilibrium sea-state via high-fidelity numerical simulations. In the
simulations, the region after the depth transition is set as long as around one hundredwavelengths, such
that the spectral adaptation develops and terminates eventually. The results are analyzed with spectral,
cross-spectral and statistical approaches. It is shown that there are two stages with different spatial
scales in the equilibration process. In the short scale, the sea-state is characterized by significant
changes in wave statistics, freak wave occurrence probability is intensified. In the long scale, the
wave spectrum undergoes strong modulation, the spectral peak disintegrate into a relative broad band,
and low-frequency waves are enhanced as well. We show evidence that the spectral changes in the
long scale are due to interactions of free components. The wave nonlinearity is shown to be positively
correlated to themagnitude of the dynamical responses, but irrelevant to the length of the spatial scales
in the equilibration process. In the established shallow-water equilibrium, the freak wave occurrence
probability becomes less than Gaussian expectation and the waves are asymmetric in the vertical
direction and symmetric in the horizontal.

1. Introduction
In oceanography, the term "freakwave" (or "roguewave")

denotes a wave whose crest-to-trough heightH takes a very
large value in comparison to the background waves. One
common criterion used to identify a freak wave isH > 2Hs,whereHs is the significant wave height of the sea-state (seee.g., Draper, 1964; Haver, 2001). Such extreme waves have
attracted considerable attention of the scientific community,
since they pose severe risks to the safety of maritime struc-
tures, ship navigation and human lives. In recent decades,
more and more freak wave events were observed and re-
ported (see e.g., Nikolkina andDidenkulova, 2011b; O’Brien
et al., 2017; Didenkulova and Pelinovsky, 2020; Häfner et al.,
2021), implying that freak waves may occur with startling
frequency in the real world and potentially manifest under
a broad range of conditions (Nikolkina and Didenkulova,
2011a). Combining the statistics inNikolkina andDidenkulova
(2011b) and Didenkulova and Pelinovsky (2020), plotted in
Fig. 1, it is seen that from 2006 to 2018, over 80% of the freak
waves occurred either in the shallow water zone (with water
depth lower than 50 m following their definition) or at the
coast, causing tragic loss of lives. Moreover, the ships and
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Figure 1: Statistics of the freak waves reported in mass media
over the period 2006 – 2018, based on the works of Nikolk-
ina and Didenkulova (2011b) and Didenkulova and Pelinovsky
(2020). The number and percentage of freak wave events are
shown in (a), and the loss of lives in (b).

infrastructures damage induced by freak waves (not listed
here) took place mostly in the shallow and coastal regions
too. Thus, it is of great importance to better evaluate the
risk of freak waves, especially in coastal areas.

The topic of freak waves has been studied for several
decades, with a number of hypotheses put forward to explain
the occurrence of abnormal large waves from both linear and
nonlinear perspectives (see e.g., Dysthe et al., 2008; Kharif
et al., 2009; Adcock and Taylor, 2014; Dudley et al., 2019).
However, the scientific community has not yet come to a
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consensus on the dominant mechanism of freakwaves occur-
ring in nature. The modulation instability as a result of four
wave quasi-resonant interactions (Benjamin and Feir, 1967)
has gained much attention and is proposed as the prototype
of freak waves (Onorato et al., 2006; Akhmediev et al., 2009;
Wang et al., 2020), because it allows extremely large waves
to manifest spontaneously in a local scale. However, some
researchers argue that the wave modulation instability can
hardly survive under complex conditions in real seas (Fedele
et al., 2016). For example, the modulation instability mecha-
nism fails to explain the freak waves occurring in the coastal
areas with relative water depth kℎ (k denotes the wavenum-
ber and ℎ the local water depth) lower than 1.363, since the
modulation instability ceases to exist. Recent studies revis-
ited the well-known Draupner wave and attributed its forma-
tion to the particular sea conditions, including the significant
wave height, the spectral shape, and the directional condi-
tion (Cavaleri et al., 2016). The Draupner wave has been
reproduced in a wave basin with good quality by separat-
ing the sea-state into two crossing systems (McAllister et al.,
2019). This work indicates that the limiting crest height due
to wave breaking could be significantly elevated in crossing
sea-states.

In the coastal areas, significant decrease of water depth
is another popular mechanism of freak waves. Trulsen et al.
(2012) showed experimental evidence that, as unidirectional
irregular waves passed over a steep slope, strong non-Gaussian
behavior of the sea-state occurred within a short range af-
ter the end of the slope, and the occurrence probability of
extreme waves was significantly enhanced. The underlying
physics is attributed to the non-equilibrium dynamics (NED)
(Trulsen, 2018): due to depth variations, the sea-state leaves
the quasi-equilibrium status it had in the deeper region and
adapts to a new shallow-water equilibrium.

The investigation of the depth variation induced NED
effects has been recently enriched by a number of experi-
mental works. For waves propagating over submerged bars,
Ma et al. (2014, 2015) showed the spatial evolution of sta-
tistical parameters of the sea-state, and the relation between
skewness and kurtosis of the free surface elevation (i.e., nor-
malized third and fourth order statistical moments). Chen
et al. (2018) considered different up-slope gradients of a sub-
merged bar, and studied the strong nonlinear triad interac-
tions occurring during the shoaling process using wavelet
bispectral analysis. Recent experimental work reported in
Trulsen et al. (2020) (hereafter referred to as TRJR20 for
brevity) showed that the condition kpℎ < 1.3 on the rela-
tive water depth is required after the depth transition, such
that the NED enhances the occurrence probability of freak
waves conspicuously. For waves propagating over shoals,
Kashima et al. (2014) showed the maximum wave heights
as functions of skewness and kurtosis. Kashima and Mori
(2019) attributed the occurrence of freak waves to the after-
effects of modulation instability.

In the large-scale experiments reported in Zhang et al.
(2019), transient second-order harmonics appeared atop of
the slope, and the bound harmonics were shown to play an

important role. Experiments of waves passing over abrupt
depth changes were also conducted. Bolles et al. (2019)
showed that, in the out-of-equilibrium area, the distribution
of free surface elevation conforms closely to a Gamma dis-
tribution. Based on this distribution, the skewness, kurtosis
and other statistical properties can be estimated.

The NED effects were also studied with numerical simu-
lations. Janssen andHerbers (2009) was the pioneeringwork
pointing out that the NED could elevate the probability of
freak waves basing onMonte-Carlo simulations with a spec-
tral wavemodel. Sergeeva et al. (2011) then studied theNED
effects with the Korteweg-de Vries model, showing the in-
crease of skewness and kurtosis with the decrease of water
depth. Zeng and Trulsen (2012) adoptedMonte-Carlo simu-
lations with the nonlinear Schrödinger equation, and found a
complex spatial variation of wave statistics over the bottom
step. Gramstad et al. (2013) tested the NED effects resulting
from different shapes of bottom profile using a Boussinesq
model with improved dispersion. Viotti and Dias (2014)
firstly investigated the problem using fully nonlinear poten-
tial flow (FNPF) simulations (basing on the free surface Eu-
ler equations), and attributed the non-Gaussian behavior of
the sea-state to the spectral settling effect. The effects of
directionality turn out to be significant as well: Ma et al.
(2017) showed large values of the incident angle of a wave
train weaken triad-wave interactions (with a fully nonlinear
Boussinesq-type model), and Ducrozet and Gouin (2017)
showed a broader angular spreading of wave energy sup-
presses the occurrence of freak waves using simulations with
a model based on the high-order spectral (HOS) method.
Zheng et al. (2020) studied the experiments of Trulsen et al.
(2012) with a FNPF model solved by the boundary element
method, and considered the roles played by different har-
monic components. Their results implied that the second-
order harmonics dominated the increase of freak wave prob-
ability. Zhang and Benoit (2021) (hereafter referred to as
ZB21) further investigated the experiments of TRJR20 with
a different FNPF model, called Whispers3D. In their work,
the importance of the third-order harmonics on the freak
wave occurrence probability was revealed via the harmonic
separation technique (Fitzgerald et al., 2014).

From the theoretical perspective, Didenkulova and Peli-
novsky (2016) showed the dispersion focusing conditions for
freak wave formation in strongly inhomogeneous media in
linear regime, while Onorato and Suret (2016) showed, in
weakly nonlinear regime, that the skewness and kurtosis are
related to the change of spectral width. Very recently, Li
et al. (2021b) demonstrated with second-order asymptotic
theory that, after abrupt depth transitions, the peaks of sta-
tistical parameters arise from the interaction of free compo-
nents and bound components in a wave packet. Such an ex-
planation is in line with the conclusion drawn in ZB21 for
irregular wave trains. Later, their second-order theory was
also verified by numerical simulations (Li et al., 2021c) and
experiments (Li et al., 2021a).

In summary, theNED could result in strong non-Gaussian
behaviors of the sea-state, including: (i) local variations of
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the statistical parameters of the free surface elevation and the
kinematics (orbital velocities, accelerations, etc.) beneath
the free surface, (ii) spectral modulations due to rapid wave
energy exchanges among harmonics, and (iii) a heavy tail
of the wave height exceedance probability distribution. Pre-
vious studies have shown that the NED exists in a longer
spatial extent than that of the depth variation, the delay of
dynamics being called "latency" in Zheng et al. (2020). The
spatial desynchronization between the depth variation and
the change of wave dynamics poses risks of freak waves
not only in the sloping bottom area, but also in a certain
region after it. The knowledge on the spatial scale where
the NED affects the sea-state is therefore of practical inter-
est. However, most of the existing works focus on the area
shortly after the depth variation (in a few wavelengths), and
rarely discuss the aftereffects of the NED in the wave evo-
lution in a larger scale. This work extends the analysis of
the step-bottom case discussed in ZB21 to a much longer
spatial extent, from O(Lp) to O(102Lp) in the shallow water
area, withLp being the wavelength of the peak period. Here,the equilibration process of the sea-state is investigated in-
depth, and the wave evolution is characterized by combin-
ing spectral and statistical analyses to study the transforma-
tion of the wave spectrum and statistical characteristics of
the wave field.

The remainder of this paper is organized as follows: in
section 2, we introduce the considered cases, seabed config-
urations and incident wave conditions. Section 3 shows the
essence of the adopted FNPFmodel used for wavemodelling
as well as the selected numerical parameters, while section 4
presents the methods adopted for interpreting the results. In
section 5, the complete process of the sea-state equilibration
is analyzed, and the effects of wave nonlinearity on the wave
evolution are discussed. The main findings and conclusions
are summarized in section 6.

2. Bathymetric configuration and wave
conditions
In the experimental work of TRJR20, the non-equilibrium

phenomenon has been studied with unidirectional irregular
waves propagating over a submerged bar. The bar is of steep
slopes on two sides (±1∕3.81), both provoking strong sea-
state adaptation processes. To determine the condition of the
occurrence of NED, TRJR20 conducted a series of tests with
a similar level of wave nonlinearity but different relative wa-
ter depths. They showed that the condition kpℎ < 1.3 over
the shallower region was required in their tests for the man-
ifestation of strong non-Gaussian behavior of the sea-state.
The Run 3 in TRJR20 is of particular interest, as it contains
measurements of the horizontal flow velocity below the still
water level (SWL) on one hand, and as the kurtosis of the
free surface elevation achieves a maximum value as high as
4.2 (indicating a heavy tail of the wave height distribution)
on the other hand. In ZB21, deterministic numerical simu-
lations were performed and validated by comparing with the
measurements of TRJR20, showing the high-fidelity of the

code. Then, additional tests with a step-bottom profile (not
considered in TRJR20) were simulated to isolate the NED
effects induced by the shoaling and de-shoaling processes.

Here, we pursue the investigation of the step-bottom case
introduced in ZB21, by extending the shallower region far
after the step, over a distance of order O(102Lp), to study
the complete stabilization process of the out-of-equilibrium
sea-state induced by the depth transition.

The considered setup and the numerical wave tank are
shown in Fig. 2 (note the origin of x-axis is placed at the start
of the shallower region). Similar to ZB21, the bottom profile
consists of a deeper flat zone with uniform water depth ℎ1 =
0.53mand a shallower zone with ℎ2 = 0.11m, connected by
a steep (1/3.81) plane slope. The peak wave period is fixed
for all cases considered here: Tp = 1.1 s. The correspondingwavelengths are Lp,1 = 1.80 m in the deeper region and
Lp,2 = 1.07m in the shallower region. Lp,2 is used hereafterto normalize the distance in the shallower region. The length
of the shallower region L is set either to 103.6 m in case 1
or to 43.6m in the other cases, which correspond to roughly
96Lp,2 and 40Lp,2, respectively.In ZB21, the Run3 of TRJR20 was simulated in a deter-
ministic way, i.e. we used the record of free surface elevation
at the first probe located 1.1 m before the depth transition in
the experiment of Run 3 to force the numerical model. Fur-
thermore, the simulations lasted for the same duration as in
the experiment (about 4,900 waves with period Tp). Here,
a different approach is adopted: the incident irregular wave
trains imposed at x0 = −2.7 m are generated by linear su-
perposition (as described in Appendix A) from a JONSWAP
spectrum, governed by a significant wave heightHs, a peakfrequency fp = 1∕Tp and a peak enhancement factor :

SJ (f ) =
�Jg2

(2�)4
1
f 5
exp

[

−5
4

(fp
f

)4]


exp

[

− (f−fp)
2

2(�J fp)2
]

, (1)

where g denotes the gravitational acceleration, �J is the ad-
justment factor forHs, and �J is the spectral asymmetry pa-
rameter (�J = 0.07 for f ≤ fp and �J = 0.09 for f > fp).
The significant wave height is defined here asHs = 4

√

m0,
with mn being the ntℎ-order moment of a given spectrum
S(f ):

mn = ∫

∞

0
f nS(f )df. (2)

The JONSWAP parameters of the reference case 1 are
set as Hs = 0.030 m, Tp = 1.1 s and  = 3.3. Six addi-
tional cases are introduced to investigate the effects of the
incident sea-state nonlinearity, by varyingHs from 0.010m
to 0.035 m. The configurations of all tested cases are sum-
marized in Table 1, where three non-dimensional parame-
ters are computed for both the deeper and shallower zones,
including relative water depth � ≡ kpℎ, wave steepness " ≡
kpac with ac ≡

√

2m0, and Ursell number Ur ≡ "∕�3.
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Figure 2: Definition sketch of the bathymetry adopted in the simulations, with L denoting the length of the shallower region,
and gray zones representing the relaxation zones.

Table 1
Summary of dimensional and non-dimensional wave parame-
ters of the seven considered cases.

Case Hs [m] L [m] Deeper/shallower area

�1∕�2 "1∕"2 Ur,1∕Ur,2
1 0.030 103.6 1.85/0.64 0.037/0.062 0.0058/0.232
2 0.010 43.6 1.85/0.64 0.012/0.020 0.0019/0.077
3 0.015 43.6 1.85/0.64 0.019/0.031 0.0029/0.116
4 0.020 43.6 1.85/0.64 0.025/0.041 0.0039/0.155
5 0.025 43.6 1.85/0.64 0.031/0.052 0.0049/0.194
6 0.030 43.6 1.85/0.64 0.037/0.062 0.0058/0.232
7 0.035 43.6 1.85/0.64 0.043/0.073 0.0068/0.271

a For all cases, Tp = 1.1 s,  = 3.3. Parameters with subscript
1 refer to the deeper region with depth ℎ1 = 0.53 m, and
those with subscript 2 refer to the shallower region with
depth ℎ2 = 0.11 m.

3. Numerical model and parameters
3.1. Wave propagation model

Wave propagation is modelled here using the FNPF the-
ory, assuming (i) the fluid is inviscid and incompressible,
(ii) the flow is irrotational, and (iii) the surface tension is
negligible. Consider a two-dimensional Cartesian coordi-
nate system (x, z) with the origin set on the SWL and z-axis
pointing upward, the computational domain is bounded by
a moving free surface z = �(x, t) and a fixed impermeable
bottom profile z = −ℎ(x).

The equations governing wave motion are
�xx + �zz = 0 in − ℎ ≤ z ≤ �, (3)

�t + �x�x − �z = 0 on z = �, (4)
�t +

1
2
(

�2x + �
2
z
)

+ g� = 0 on z = �, (5)
ℎx�x + �z = 0 on z = −ℎ, (6)

where �(x, z, t) represents the velocity potential, and sub-
scripts denote partial derivatives.

Following Zakharov (1968), the free surface boundary
conditions (4) and (5) can be expressed as functions of the
free surface variables � and �̃ ≡ �(x, z = �, t)

�t = −�̃x�x + w̃
(

1 + �2x
)

, (7)

�̃t = −g� −
1
2
�̃2x +

1
2
w̃2

(

1 + �2x
)

, (8)
where w̃(x, t) ≡ �z(x, z = �, t) is the vertical component of
the velocity on the free surface. w̃ is needed to integrate
Eqs. (7–8) in time, determining it from the known quan-
tities (�, �̃) is the so-called Dirichlet–to–Neumann (DtN)
problem. The DtN problem is solved in different models
such as Boussinesq-type models (Madsen et al., 2006; Bing-
ham et al., 2009), HOS models (Dommermuth, 2000; Gouin
et al., 2016) and the Hamiltonian Coupled-Mode model (Be-
libassakis and Athanassoulis, 2011; Papoutsellis et al., 2018)
with different methodologies.

In the recent work of Yates and Benoit (2015), the DtN
problem is solved by using a Chebyshev-tau approach ini-
tially introduced in Tian and Sato (2008). With this method,
the FNPF problem is solved without perturbation expansion
(thus no need to evaluate high-order derivatives), and no
additional assumption made on the wave nonlinearity, dis-
persion, nor on the bathymetry profile. This model, called
Whispers3D, is therefore considered as fully nonlinear and
dispersive. It has been presented and validated in previous
works (Raoult et al., 2016; Benoit et al., 2017; Zhang et al.,
2019; Zhang and Benoit, 2021), to which interested readers
are referred for a detailed description. Only the main steps
are outlined below.

First, the physical domain with varying boundaries z ∈
[−ℎ, �] is mapped into the computation domain s ∈ [−1, 1]
with fixed boundaries, via the change of vertical coordinate:

s(x, z, t) =
2z + ℎ − �
ℎ + �

. (9)
Then, the governing equations (3–6) are reformulated in the
transformed (x, s, t) domain, andwe denote the potential with
'(x, s(x, z, t), t) ≡ �(x, z, t). Secondly, the potential ' is
approximated using a set of orthogonal Chebyshev polyno-
mials of the first kind, denoted as Tn(n = 0, 1, ..., NT ):

'(x, s, t) ≈ 'NT
(x, s, t) =

NT
∑

n=0
an(x, t)Tn(s), (10)

where the coefficients an(x, t), n = 0, 1, ..., NT , are now the
main unknowns of the problem. Thirdly, the Chebyshev-
tau method is applied to the Laplace equation (3), providing
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NT − 1 equations. The problem is closed with the bottom
boundary condition (6) and a Dirichlet free surface bound-
ary condition 'NT

(x, s = 1, t) = �̃. Thus, a linear system
withNT +1 equations forNT +1 unknowns is built. Lastly,with the an coefficients determined from the linear system,
the vertical velocity at the free surface is computed as

w̃(x, s = 1, t) = 2
ℎ + �

NT
∑

n=1
ann

2, (11)

so that Eqs. (7–8) can be integrated in time.
It should be mentioned that, although effects like viscous

bulk dissipation and wave breaking are readily included in
Whispers3D by modifying the free surface boundary condi-
tions Eqs. (7–8) (Simon et al., 2019), they are not considered
in the present work. Such a choice allows simplifying the
discussion and to focus on the effects resulting from NED.
The overall dissipation would decrease the level of sea-state
nonlinearity as waves propagate, and the wave breaking ef-
fects would possibly limit the height of the highest waves. It
is anticipated that such effects would introduce some differ-
ences, but not overturn our conclusions on the NED effects.
3.2. Numerical parameters and settings

In Whispers3D, Eqs. (7–8) are marched in time using an
explicit strong-stability preserving third-order Runge-Kutta
scheme (Gottlieb, 2005), with a constant time-step Δt. Spa-
tial derivatives are approximated using high-order finite dif-
ference schemes on a regular grid with spatial resolution Δx
using centered stencils ofNsten nodes. The accuracy and ef-ficiency of the model can be balanced by properly choosing
the numerical parameters: NT ,Nsten, Δx and Δt.

Following the successful simulation of the Run 3 of TRJR20
reported in ZB21, the same set of numerical parameters is
adopted here, namely NT = 7, Nsten = 5, Δx = 0.01 m,
and Δt = 0.01 s. These time and spatial steps correspond
to roughly 110 points per peak wave period and peak wave
length Lp,2. The corresponding Courant-Friedrichs-Lewy
numbers are CFL1 = Lp,1Δt∕(TpΔx) = 1.64 in the deeper
region and CFL2 = 0.97 in the shallower one.In the numerical model, waves are generated and damped
using the relaxation zone technique (Bingham and Agnon,
2005), see the setup of the relaxation zones in Fig. 2. Meth-
ods used to discretize the target spectrum and construct the
free surface elevation and potential of the incident wave field
by linear superposition are classic, they are briefly re-called
in Appendix A.1. Absorbing long waves in the relaxation
damping zone revealed challenging during the simulations.
Therefore, a specific choice of the damping zone parameters
(in particular its length L) was made, see Appendix A.2.

Numerical wave gauges are evenly distributed along the
flume, recording the free surface elevation with sampling
frequency fs = 1∕Δt = 100 Hz. For x ∈ [−2.6, 3] m, the
spacing between wave gauges is 0.2m, and for x ∈ [3, L]m,
it is 0.5 m.

To obtain a sufficient number of waves for subsequent
spectral and statistical analyses and to evaluate the uncer-

tainty of the simulated results, each case of interest is sim-
ulated over a duration of 500 s, equivalent to 455 waves
(with period Tp) and repeated 10 times with different ran-
dom phases in the imposed time series. Eventually, for each
case, the size of the data-set is about 4, 500 waves.

4. Methods of sea-states analysis
4.1. Statistical and spectral parameters

TheNED is induced by rapid changes of water depth, and
the sea-state adaptation process is characterized by strong
non-Gaussian behavior. To investigate the equilibration pro-
cess of an out-of-equilibrium sea-state, we start by comput-
ing statistical parameters and applying a spectral (Fourier)
analysis technique.

In statistical analysis, we consider high-order moments
of the free surface elevation. The mean value ⟨�⟩ (with ⟨⋅⟩
denoting an averaging operator) is removed from the com-
puted signal �. Then, the standard deviation � = √

m0 =
√

⟨�2⟩ can fully describe the statistical properties of a Gaus-
sian sea-state. For characterizing non-Gaussian characteris-
tics of an out-of-equilibrium sea-state, the normalized third-
and fourth-order moment, namely skewness �3 and kurtosis
�4, are needed:

�3 =

⟨

�3
⟩

�3
, �4 =

⟨

�4
⟩

�4
. (12)

�3 indicates the overall vertical asymmetry of the signal (i.e.
with respect to the horizontal SWL). In a Gaussian sea-state,
�3 = 0 is expected, indicating that the signal is symmetric
with respect to the SWL. When nonlinearity plays a role,
�3 takes non-zero values. Positive skewness means waves
have sharp high crests and shallow flat troughs in general,
and vice versa for negative values. �4 is related to the num-
ber of large values, and thus the extremes in the signal. In a
Gaussian sea-state, �4 is exactly equal to 3, and larger val-
ues of �4 indicate an increased occurrence of extreme events
compared to the Gaussian (linear) expectation.

The asymmetry parameter, As, is another parameter that
characterizes the non-Gaussianity of a sea-state. It is defined
on the basis of bispectrum, it can also be computed as the
skewness of the Hilbert transform of �, denoted(�) (Elgar
and Guza, 1985a):

As =

⟨

[

(�) − ⟨(�)⟩
]3
⟩

⟨

[

(�) − ⟨(�)⟩
]2
⟩3∕2

, (13)

As offers a measure of the overall horizontal asymmetry of
the signal (i.e. with respect to a vertical axis): a positive
As means that waves are tilting forward as a whole, while
negative values indicate waves tilting backward.

In spectral analysis, the variance density spectrum is eval-
uated with theWelch method. The time series is divided into
segments with 8, 192 points (approximately 82 s ≈ 75Tp)and 50 % overlapping rate between every two consecutive
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segments. Such choices result in a relatively fine spectral
resolution Δf ≈ fp∕75 ≈ 0.012 Hz.For a given spectrum S(f ), the spectral width is charac-
terized by the peakedness factor Qp (see Goda, 2010):

Qp =
2
m20

∫

fup

flow
fS2(f )df. (14)

Here, following e.g. Waseda et al. (2009), we consider and
plot 1∕Qp, since it increases as the spectrum broadens. The
peak frequency is estimated as

f̂p =
∫

fup

flow
fS4(f )df

∫

fup

flow
S4(f )df

. (15)

In Eqs. (14) and (15), flow = 0.5fp and fup = 0.5fs are setto discard the low-frequency (LF) components (f ∈ [0, 0.5fp])in the spectrum while evaluating the spectral parameters.
4.2. Cross-spectral analysis

It is known that Fourier analysis assumes a stationary
and ergodic sea-state and no coupling among components.
In the current scenario, the NED effects clearly violate such
assumptions. It brings some inconvenience while interpret-
ing the Fourier spectrum, since the free and bound harmon-
ics cannot be distinguished without further information. To
achieve a better understanding of the physical processes tak-
ing place over the submerged step, researchers have adopted
different approaches. The bi-spectral analysis technique (Has-
selmann et al., 1963) has been used to detect triad nonlinear
interactions (Elgar and Guza, 1985a; Ma et al., 2014; Chen
et al., 2018; Zhang et al., 2019; Zhang and Benoit, 2021).
However, such a method does not provide information about
the ratio between free and bound components.

The harmonic separation technique (Baldock et al., 1996;
Fitzgerald et al., 2014) is a powerful tool to isolate the time
series that correspond to harmonics at different orders with
few repetitions of the tests using specific phase shifts in the
incident wave field. It has been applied in analyzing the
bound harmonics that appear atop of the bottom slope, and
provided valuable insights (Zheng et al., 2020; Zhang and
Benoit, 2021). However, as this method is built on the ba-
sis of Stokes expansions, its applicability to uneven bottom
cases remains to be further investigated.

The cross-spectral analysis has been used to study the
dispersive properties of both deep water waves and shoaling
waves (see Mitsuyasu et al., 1979; Freilich and Guza, 1984;
Elgar and Guza, 1985b). Recently, Martins et al. (2021)
studied strongly nonlinear waves propagating over a mild
slope with a surf zone using cross-spectral analysis. This
method is applied in our study and briefly described here-
after.

We start by computing the cross-spectrumCx1,x2 (f ) fromtwo time series recorded at nearby locations x1 and x2, us-ing similar Welch method and settings as presented in the

previous sub-section. The spectra of phase lag �x1,x2 (f ) andcoherence cohx1,x2 (f ) can then be obtained as

�x1,x2 (f ) = arctan

⎡

⎢

⎢

⎢

⎣

ℑ
(

Cx1,x2 (f )
)

ℜ
(

Cx1,x2 (f )
)

⎤

⎥

⎥

⎥

⎦

, (16)

cohx1,x2 (f ) =
[

Cx1,x2 (f )Cx1,x2 (f )
∗

Cx1,x1 (f )Cx2,x2 (f )

]1∕2

, (17)

where ℑ(⋅) and ℜ(⋅) denote the imaginary and real parts of
a complex number, respectively. Here, the distance between
x1 and x2 separating two consecutive wave probes is either
0.47Lp,2, or 0.93Lp,2 depending on the position.

The phase lag �x1,x2 (f ) is bounded between −�∕2 and
�∕2. By unwrapping the phase lag �x1,x2 (f ), the real phasechange Θx1,x2 (f ) can be recovered for each wave compo-
nent. The unwrapped phase lag allows determining the spec-
trum of the dominant wavenumber �(f ):

�(f ) =
Θx1,x2 (f )
x2 − x1

, (18)

whichmeasures the combined effects of free and bound com-
ponents at (x1 + x2)∕2. For a free wave with frequency f ,
its wavenumber follows the dispersion relationship, and the
relative water depth �L is

�L tanh (�L) = kdeepℎ, (19)
where kdeep = !2∕g. If a wave with frequency f is a ntℎ-
order bound super-harmonic, its wavenumber follows the dis-
persion relationship of the primary harmonic k(f∕n), and
the relative water depth �supn follows

�supn tanh (�supn ) = kdeepℎ∕n2. (20)
For a wave with frequency f being a ntℎ-order bound sub-
harmonic, then its relative water depth �subn is

�subn tanh (�subn ) = n2kdeepℎ. (21)
�ℎ can be viewed as an averaged measure of the relative

water depth. When the sea-state is composed of free com-
ponents only, �ℎ is expected to be superimposed with �L,whereas when bound harmonics exist, �ℎ deviates from �L.Hereafter, we discuss deviations of �ℎ from �L toward �sub2 ,
�sup2 and �sup3 , and assume higher order effects being negli-
gible in the considered cases.

5. Analysis of the sea-state equilibration
process
In this section, the various parameters, spectra and cross-

spectra shown in the figures represent themean of 10 realiza-
tions of each case (with different sets of phases). The 95%
confidence intervals (CI) are calculated for the parameters
f̂p, 1∕Qp,Hs, �3, As and �4.
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Figure 3: Case 1: spatial evolution of normalized wave spectrum, log10(S(f )fp∕m0), plotted in the colormap with a logarithmic
scale. The close-to-horizontal dash white line represents the evolution of the peak frequency f̂p, and the vertical ones outline

the extent of the bottom slope.

5.1. Long scale sea-state evolution
We first show the long scale sea-state evolution by ana-

lyzing case 1. The shallower flat region is 103.6m (≈ 96Lp,2)long in this case, such that the full process of the sea-state
equilibration process can be observed.

Fig. 3 shows the spatial evolution ofwave spectrum, which
is normalized as S(f )fp∕m0 for the convenience of compar-
ison among cases with different levels of energy (recalling
fp = 1∕1.1Hz denotes the peak frequency of the target JON-
SWAP spectrum). f̂p(x) evaluated over the range [flow, fup]is superimposed to track the evolution of the main spectral
peak. It is seen that, shortly after the abrupt depth change,
a particular pattern appears near 2fp. This spatial pattern is
due to the interactions of the second-order free and bound
components, which has also been observed in TRJR20 and
explained in ZB21 on the basis of considerations from Mas-
sel (1983). Such a trend remains visible, though progres-
sively attenuated over a distance of about 10Lp,2 after the
depth variation.

As waves propagate further over the shallower region,
the spectrum undergoesmore pronounced changes. The spec-
tral peak "disintegrates" into a relatively broad band near fp,whereas the spectral evolution near 2fp becomes negligible.
Meanwhile, the LF waves are considerably enhanced over
the shallower region. The disintegration of the spectral peak
develops as waves propagate relatively far from the depth
variation. Such a large scale spectral evolution was also ob-
served in the experiments of Zhang et al. (2019), but has not
yet been thoroughly analyzed.

In Figs. 4 and 5, more detailed spectra at eight specific
positions are shown in both logarithmic and linear scales to
better highlight the spectral changes. Fig. 4 illustrates the
short-scale evolution from the wavemaker (x = −2.7 m)
to a position close to the end of the slope (x = 1.6 m).
Figs. 5 shows the long-scale evolution from x = 10 m till
x = 100 m, where the spectral peak disintegration process

is included. In each panel of two figures, the JONSWAP
spectrum is superimposed for comparison. In Fig. 4(a), the
target JONSWAP spectrumSJ at the wavemaker is superim-
posed for comparison. For probes over the shallower region,
in Figs. 4(b–d) and 5, the incident JONSWAP spectrum is
amended to the shallower water depth ℎ2 asSJ (f )Csℎoal(f ),whereCsℎoal is a shoaling factor from the linear wave theory,
computed as

Csℎoal(f ) = Cg(ℎ1, f )∕Cg(ℎ2, f ), (22)
with Cg(ℎ, f ) = d!∕dk denoting the group velocity follow-
ing the linear dispersion relationship. The JONSWAP spec-
trum corrected with Csℎoal thus represents the linear expec-tation of the spectral evolution from the deeper region to the
shallower.

In Fig. 4(a), we see only long waves with frequencies
around 0.1fp are enhanced very slightly. The good agree-
ment between the simulated and the target spectrum indi-
cates the validity of the linear wave-making approach and
relaxation absorption zone setup. In Figs. 4(b-d), the fre-
quency range in f < 1.5fp is still in good agreement with
JONSWAP spectrum with shoaling coefficient, whereas the
second- and third-harmonics manifest and evolve as waves
propagate in the area closely after the end of the slope. As
can be seen from both Fig. 3 and Fig. 4(b) however, right at
the end of the sloping area at x = 0, the second order peak
around 2fp is hardly visible, and the wave spectrum is very
close to the incident one, apart from a higher level of LF
energy. The weak enhancement of super-harmonics at the
end of the slope is due to the fact that this slope is steep and
over a short distance, its length (1.6 m) representing 89% of
the incident peak wavelengthLp,1. Therefore, the dynamical
responses develop slower compared to the depth transition.

As waves propagate further over the shallower region,
it is observed in Fig. 5 that the energy of high-order har-
monics returns to its initial level, the main spectral peak pro-
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Figure 4: Case 1: normalized wave spectra S(f )fp∕m0 at different locations close to the depth transition. In all panels, the
black line represents the spectrum from the numerical simulations. In panel (a) the blue line is the target JONSWAP spectrum
SJ (f ), while in panels (b-d) the red line represents the target JONSWAP spectrum amended to water depth ℎ2 by applying a

shoaling coefficient from the linear wave theory.
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Figure 5: Case 1: normalized wave spectra S(f )fp∕m0 at different locations relatively far from the depth transition. In all
panels, the black line represents the spectrum from the numerical simulations and the red line represents the target JONSWAP

spectrum amended to water depth ℎ2 by applying a shoaling coefficient from the linear wave theory.

gressively decreases in magnitude and evolves into a broader
band. The spectral shape in the frequency range f < 1.5fpsignificantly differs from linear expectation, themodified JON-
SWAP spectral shape. Besides, the spatial evolution of the
high-frequency (HF) range (f > 1.5fp) is very limited, the
HF spectral tail decays algebraically with the same rate as in
themodified JONSWAP spectrum, close to f−5. As awhole,
Figs. 3–5 clearly show how the wave spectrum "reacts" to

the abrupt depth change, first in the HF range with energy
transfers towards super-harmonics, and then at a longer scale
around the spectral peak and LF range.

The spectral parameters are computed to quantify the
spectral changes over the shallower flat region. In Fig. 6(a),
the averaged spectral peak frequency f̂p is normalized by
fp of the incident sea-state. We verify f̂p is equal to fp atthe wavemaker, and remains nearly unchanged shortly after
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Figure 6: Case 1: spatial evolution of spectral parameters: (a)
normalized peak frequency f̂p∕fp; (b) spectral width parameter
1∕Qp; and (c) normalized significant wave heightsHs∕Hs,inc for
different spectral ranges. In all panels, the gray areas represent
95% CI. The vertical dash lines outline the extent of the bottom
slope.

the slope. More marked changes occur between x = 5Lp,2and x = 35Lp,2, the peak frequency shifts first downwards
then upwards, and eventually tends to a constant mean level
slightly higher than the incident fp. Note that the most evi-
dent frequency downshift takes place at x ≈ 10Lp,2, whichcan be identified in the spectrum shown in Fig. 5(a).

The spectral width parameter 1∕Qp is shown in Fig. 6(b).A small spectral broadening takes place right after the slope,
which is related to the enhancement of the higher order har-
monics. Then, the spectrum significantly broadens in the
range between x = 5Lp,2 and x = 35Lp,2 with the evolution
of f̂p, this is due to the spectral peak disintegration. Even-
tually, 1∕Qp is almost doubled from 0.28 at the incidence to
0.51 at x = 35Lp,2.In Fig. 6(c), the significant wave heights Hs computed
for the LF range f ∈ [0, 0.5fp], the short-wave range f ∈
[0.5fp, 0.5fs] and the total range f ∈ [0, 0.5fs] of the wavespectrum are shown. They are normalized by the correspond-
ing significant wave heightsHs,inc of the incident JONSWAP
spectra, listed in Table 1. It is noticed that, over the shal-
lower region, Hs of the LF components increases at the ex-
pense ofHs of the short-wave components and stabilizes af-
ter x = 35Lp,2. As the dissipation due to friction or breakingevents are excluded, Hs of the total spectral range remains
more or less unchanged in the computation domain.

The statistical moments are shown in Fig. 7. In Fig. 7(a),
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Figure 7: Case 1: spatial evolution of statistical parameters:
(a) skewness �3, (b) asymmetry parameter As and (c) kurtosis
�4. In all panels the gray areas represent 95% CI, the vertical
dash lines outline the extent of the bottom slope.

the skewness �3 increases significantly in a short region af-
ter the slope and achieves its local maximum (slightly larger
than 1) at x ≈ 0.75Lp,2. It indicates that the overall wave
profile evolves from nearly symmetric to skewed shape with
sharp crests and flat troughs. Previous works have explained
this local increase as the results of the development of high-
order harmonics, and the interactions of bound and free com-
ponents. After this significant enhancement, �3 gradually
decreases to a mean constant level at x ≈ 35Lp,2. After thatposition, �3 ≈ 0.57 indicates that waves remain asymmetric,
due to the nonlinear shallow water effects.

The evolution of the asymmetry parameterAs in Fig. 7(b)shows that after entering the shallower region, the waves first
tilt backward then forward. It is noticed that, As = 0 at
x = 0.75Lp,2, where �3 achieves its local maximum value.
It indicates that the wave profile changes independently in
the horizontal and vertical directions, and that the waves are
symmetric in the horizontal direction while the most asym-
metric profile is achieved in the vertical.

The evolution trend of kurtosis in Fig. 7(c) is similar to
that of �3: a considerable enhancement of �4 takes place inthe shallower region close to the end of the slope, indicating
that the occurrence probability of extreme waves is elevated.
A maximum value of 4.6 is achieved, at the same position
(x ≈ 0.75Lp,2) as for �3; then a mild decrease develops in
a relatively long scale and �4 eventually converges to a con-stant level slightly lower than 3, the risk of freak waves is
then lower than linear expectation.
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Figure 8: Evolution of the normalized wave spectra in cases 2–7, shown in panels (a–f) correspondingly. log10(S(f )fp∕m0) is
plotted in the colormap with a logarithmic scale. The close-to-horizontal dash line represents the evolution of f̂p and the

vertical dash lines outline the extent of the bottom slope.

All parameters shown in Figs. 6 and 7 converge to con-
stant levels roughly at the same position (x ≈ 35Lp,2), afterwhich the sea-state achieves a quasi-equilibrium. It indicates
that the adaptation of a sea-state from a deeper to a shallower
regime finishes around x = 35Lp,2 in case 1. During the
equilibration process of the out-of-equilibrium sea-state, two
different spatial scales can be identified over the shallower
region: a short scale O(Lp) where the statistical parame-
ters vary significantly, and the probability of freak waves is
strongly enhanced; a long scale O(10 ∼ 102Lp) where the
spectral shapemodification is non-trivial, and the freak wave
occurrence probability gets suppressed. The short-scale pa-
rameter variations are mainly due to the effects of higher
order harmonics, whereas the long-scale variations are due
to the spectral disintegration that occurs around the spectral
peak.
5.2. Role of nonlinearity on the sea-state

equilibration
As seen in the previous section, the NED affects the sea-

state in a relatively long spatial extent, influencing the statis-
tics of the wave field in the area close to the end of the slope,
and the spectral shape within a long shallow water area. The
non-equilibrium dynamical responses of a sea-state result
from both external factors such as bottom gradient, depth
change, and internal factors likes relative water depth, sea-
state nonlinearity, and spectral width. Among the internal
factors, the effective relative water depth was proven impor-
tant, since it dominates the occurrence of NED. Here, the ef-
fects of sea-state nonlinearity are investigated. To this end,
cases 2–7 are set with increasing significant wave heights

(see Table 1). As shown above, the shallow water equi-
librium is achieved around x = 35Lp,2, thus the shallower
region lengthL is reduced to 40Lp,2 in cases 2–7 to limit the
computational burden.

The evolutions of the normalized spectra of cases 2–7
are shown in Fig. 8 panels (a–f) correspondingly. In case
2 shown in Fig. 8(a), the sea-state is of the mildest non-
linearity. The beating pattern in the frequency range f ∈
[1.5fp, 2.5fp] is rather clear, and lasts far after the slope.
Over the shallower region, few energy is transferred to LF
components. The primary components in f ∈ [0.5fp, 1.5fp]are more or less unchanged. This is because low sea-state
nonlinearity after the slope results in limited wave–wave in-
teractions, and thus limited energy redistribution.

When the incident sea-state nonlinearity is increased, the
spectral evolution becomes more complex. In the short scale
O(Lp), the spectral changes in all six cases are similar, apart
from more energetic second- and third-order harmonics in
the beating patterns. Then, in the long scale O(10 ∼ 40Lp),the effects of sea-state nonlinearity on the spectral evolution
become important. As Hs,inc of the incident sea-state in-
creases in cases 2–7, the disintegration of the spectral peak
becomes more and more pronounced, resulting in increas-
ingly significant broadening of the spectrum in the frequency
band [0.5fp, 1.5fp]. In the most nonlinear situation of case
7, Fig. 8(f) shows that the spectral peak almost flattens in
the shallow water equilibrium. The energy of HF harmon-
ics with f > 1.5fp increases with incident sea-state non-
linearity, with more marked maximum values in the beating
area of the 2fp peak. In the meantime, on the contrary to
what one could have expected, it is observed that the beat-
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Figure 9: Cases 2–7: Spatial evolution of the spectral pa-
rameters: (a) normalized peak frequency f̂p∕fp; (b) spectral
width parameter 1∕Qp; (c) normalized significant wave height
Hs∕Hs,inc computed for different spectral ranges, Hs defined
in f > 0.5fp is shown in solid lines, f < 0.5fp in dash lines.
The vertical dash lines outline the extent of the bottom slope,
and the gray areas represent 95% CI.

ing pattern sustains shorter and shorter in space. In the cases
with relatively strong nonlinearity, the beating pattern is in-
terrupted by the strong nonlinear wave-wave interaction af-
ter the waves propagate over a distance of a few wavelengths
in the shallower region. Compared to case 2 in Fig. 8(a),
stronger incident sea-state nonlinearity results in higher LF
wave energy over the shallower region, confirming that the
LF waves are generated as results of wave–wave interaction,
with limited effect of reflection from the damping relaxation
zone.

Fig. 9 shows the evolutions of the spectral parameters
in cases 2–7. It is observed in Fig. 9(a) that the peak fre-
quency f̂p ≈ fp and shows negligible spatial modulation
in case 2 with the lowest nonlinearity. The short scale varia-
tion of f̂p shows barely no relevance toHs,inc of the incident
sea-state, since the curves of f̂p∕fp corresponding to cases
2–7 are almost superimposed for x < 3Lp,2. Distinct spatial
modulations of f̂p take place in the long scale, a frequency
downshift first takes place, and followed by an evident up-
shift before the shallow water equilibrium is achieved. Such
a trend of peak frequency evolution gets more marked with
increasingHs,inc .In Fig. 9(b), it is shown that the spectral width increases
in both spatial scales, and the spectral broadening becomes
more pronounced with larger incident Hs,inc . In case 2, the
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Figure 10: Cases 2–7: Equilibrium values of spectral parame-
ters as functions of Ursell number Ur,1 of the incident sea-state,
averaged in the region x > 35Lp,2.

spectral width is nearly unchanged along the domain, whereas
in the caseswith higher nonlinearity, the value of 1∕Qp showsa small raise in the shorter scale, then a significant increase
in the longer one. The significant wave height evolution is
shown in Fig. 9(c). As the dissipation is not included in
the simulations, the variation of total Hs defined in f ∈
[0, 0.5fs] is negligible. OnlyHs corresponding to LF waves
in f < 0.5fp (dash lines) and short-waves f > 0.5fp (solidlines) are plotted in Fig. 9(c). The level of LF wave energy
clearly increases for higher incident nonlinearity. Such a
trend was anticipated, since stronger wave–wave interaction
results in more energy transfer from the primary modes to
LF modes.

To further illustrate the relation between the spectral pa-
rameters and the incident nonlinearity of incident sea-state,
Fig. 10 shows the spectral parameters in the equilibrium state
(evaluated by taking the arithmetic mean for x > 35Lp,2) asfunctions of incident Ur,1 given in Table 1. The Ursell num-
ber Ur,1 is chosen to highlight that the NED of the sea-state
is dominated by the combined effects of relative water depth
and the nonlinearity. In the present study, the relative water
depth of the incident sea-state is fixed, such that the change
of Ur,1 is purely due to the variation of "1 i.e., the nonlinear-ity. From Fig. 10(a), it is seen that in the cases with relatively
mild nonlinearity (Ur,1 < 4×10−3), the peak frequency f̂p inthe equilibrium is lower than fp,inc , and as the nonlinearity
of the incident sea-state increases, the f̂p in the steady sea-
state gradually shifts upward. In Fig. 10(b), 1∕Qp increases
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Figure 11: Cases 2–7: Spatial evolution of the statistical pa-
rameters: (a) skewness �3; (b) asymmetry parameter As; (c)
kurtosis �4. The vertical dash lines outline the extent of the
bottom slope, and the gray areas represent 95% CI.

with Ur,1 in a quasi-linear manner. The variations ofHs forboth LF and short wave components as functions of Ur,1 areshown in Fig. 10(c). The value of Hs for LF components
increases, whereas the values ofHs of short waves declinesas Ur,1 increases. The quasi-linear trends are also clear for
both two curves.

The statistical moments of the free surface elevation for
cases 2–7 are shown in Fig. 11. Evidently, the incident sea-
state nonlinearity significantly affects the magnitude of the
statistical parameters, �3,As and �4, in their short scale evo-lutions. In the long scale, where the statistical parameters
undergo mild decreases, the effects of nonlinearity on dif-
ferent parameters are dissimilar. In Fig. 11(a), �3 achievesincreasingly higher levels in the shallow water steady state
with the growth of Hs,inc . This is again explained by non-
linear effects on shallow water waves, which result in asym-
metric wave profiles with sharp high crests and flat shallow
troughs in general. However, for the values ofAs and �4, therelevance of the established levels in the equilibrium zone
and the incident sea-state nonlinearity seems less marked. In
all cases shown in Fig. 11(b), As tends to a constant value,
slightly larger than 0. It indicates that the wave symmetry in
the horizontal direction is restored as the sea-state adaptation
finishes, and that the horizontal asymmetry of waves mainly
results from the NED. In Fig. 11(c), �4 of cases 2–7 all con-verge to a mean level lower than 3, indicating the occurrence
probability of freak waves returns close to Gaussian expec-
tation. Such a decrease of freak wave occurrence probability
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Figure 12: Cases 2–7: Maximum, minimum and equilibrium
values of the statistical parameters as functions of Ursell num-
ber Ur,1 of the incident sea-state. The lines with stars represent
the local extremes of the parameters achieved shortly after the
slope, the lines with hollow circles represent the steady levels
averaged in the region x > 35Lp,2.

is almost independent of what the level of wave nonlinear-
ity the sea-state had before the slope, and how much �4 wasenhanced in upstream.

It is illustrated in Fig. 7 and 11 that significant variations
of statistical parameters take place shortly after the depth
variation before achieving their steady levels in the long scale.
Therefore, not only the steady levels of �3, As and �4 estab-lished in the shallow water equilibrium, but also their ex-
treme values achieved in the short scale evolution are shown
in Fig. 12. We note that the short scale extremes (maximum
andminimum values) of all three parameters increase almost
linearly as the incident sea-state nonlinearity augments. Be-
sides, the steady level of �3 shown in Fig. 12(a) is of a lineardependence with Ur,1 as well. As observed in Fig. 11, the
steady levels of As and �4 seem to be independent on Ur,1.As general remarks of Figs. 9–12, the incident nonlin-
earity dominates the importance of non-equilibrium dynam-
ical response of the sea-state, the spectral properties in the
long scale as well as the statistical parameters in the short
scale increase with Ur,1 in a quasi-linear manner. Whereas,
the steady levels of As and �4 achieved in the long scale,
the positions corresponding to local extremes of statistical
parameters, and length required for the sea-state to restore
shallow water equilibration are seen to be independent on
the incident nonlinearity. Note that such a remark for non-
linearity is obtained with other effects like breaking events
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Figure 13: Cases 2, 4 and 7: Evolution of cross-spectral parameters at characteristic positions in the short equilibration scale
shown in upper panels. The corresponding coherence spectra are shown in the lower panels, where the horizontal dash line

represents coh2x1 ,x2 = 0.25.
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Figure 14: Cases 2, 4 and 7: Evolution of cross-spectral parameters at characteristic positions in the long equilibration scale
shown in upper panels. The corresponding coherence spectra are shown in the lower panels, where the horizontal dash line

represents coh2x1 ,x2 = 0.25.

and bottom friction excluded. In real sea-states, such a linear
trend may not be as straightforward as it is in the idealized
cases, but we conjecture that such effects will not overturn
the essence of our conclusions.

The cross-spectral analysis results are given in Fig. 13

and 14. The spectrum of relative water depth of the mean
wavenumber and the spectrum of coherence are shown. The
relative water depth for linear harmonics �L and bound har-
monics �sub2 , �sup2 and �sup3 are superimposed for compari-
son. In the coherence spectrum, we adopt the same thresh-
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old coh2x1,x2 = 0.25 (horizontal dash line) as in Martins et al.
(2021) for analyzing the obtained results.

In Fig. 13, the spectra of �ℎ and coh2x1,x2 for four spe-cific positions in the short scale of sea-state equilibration is
shown. Three representative cases are considered: the quasi-
linear case 2, the weakly nonlinear case 4 and the highly
nonlinear case 7. In the short scale, the spectral modulation
takes place mainly over the HF range. We therefore limit
our discussion up to third-order harmonics f < 3.5fp. Thefourth- and higher-order harmonics are omitted, since they
are of low level of energy, thus with minor contribution to
wave evolution. It is noticed that in Fig. 13(a.1), the LF com-
ponents in the spectrum of �ℎ is superimposed with second-
order sub-harmonics �sub2 . This is due to the fact that the
spectral components with f < 0.45fp are cut–off from the
imposed target spectrum, thus waves in this frequency range
are bound components resulting from nonlinear wave–wave
interactions. Waves with f > 0.45fp are well described
by linear dispersion, since they are imposed as free compo-
nents. As waves pass the slope, Figs. 13(b.1-d.1) show that
the enhancement of second- and third-order bound harmon-
ics is positively related to wave nonlinearity, since the curve
of �ℎ deviates further from �L for largerHs,inc . The strongdeviation of the mean relative water depth �ℎ from �L to
�sup2 and �sup3 indicates the increased portion of bound waves
for a given frequency. It is also noticed that the LF waves for
f < 0.45fp are gradually released as free components in the
area from −2.7 m to 1.6 m. The coherence of the two adja-
cent probes remains high (coh2x1,x2 > 0.25) for f < 3.5fp inFigs. 13(a.2-d.2), except in case 4, low coherence results in
a crude estimate of �ℎ for 3fp < f < 4fp.The long scale evolution of the cross-spectral parameters
is shown in Fig. 14. Given the spectral modulation mainly
occurs around the spectral peak, we discuss the results for
f < 2.5fp. Higher harmonics with f > 2.5fp are of low
level of energy as illustrated in Fig. 8 for x ∈ [5Lp,2, 35p,2].Furthermore, the estimate of �ℎ is crude, since the coher-
ence is low for f < 2.5fp. As a general remark, all three
cases with different levels of nonlinearity basically follow
the linear dispersion relationship, including the LF compo-
nents. Only �ℎ of case 7 with the strongest incident nonlin-
earity slightly deviates from �L for f ∈ [2fp, 2.5fp]. Suchan observation indicates the spectral evolution in the long
scale results from the interactions of free components, which
makes an important distinction between short scale and long
scale wave evolution.

6. Conclusion
We performed fully nonlinear numerical simulations of

unidirectional irregular waves propagating over a submerged
step, aiming at the investigation of evolution characteristics
of an out-of-equilibrium sea-state. The tested cases are vari-
ations of existing experiments reported in TRJR20, and the
adopted numerical code has been validated thoroughly in
ZB21. The depth change forces the incident sea-state to
leave the equilibrium it had in the deeper region and evolve to

a new shallow-water equilibrium in a certain distance. While
reestablishing the new equilibrium, the sea-state is signifi-
cantly affected by NED effects. The present work is distin-
guished from others since the full equilibration process is
discussed for the first time, by setting a sufficiently extended
shallower region after the depth variation.

It is found that the equilibration process of an out-of-
equilibrium sea-state has two spatial scales after the depth
transition area. The short scale refers to the area a few wave-
lengths O(Lp,2) closely after the slope. In this scale, the
NED effects result in rapid energy transfer to high-order har-
monics and evident change of wave statistics, in particular
a significant increase of freak wave occurrence probability.
Despite affecting the spectrum in the high-frequency range,
the NED effects on the representative spectral parameters are
limited. Besides, the cross-spectral analysis shows higher
incident nonlinearity results in increased portion of bound
super-harmonics in the short scale.

The longer scale covers an extent of dozens of wave-
lengths O(10 ∼ 102Lp,2) after the end of the slope. In the
longer scale, the NED leads to remarkable spectral changes
in the primary and LF wave components for f < 1.5fp. The"disintegration" of the spectral peak takes place in the long
scale sea-state evolution: the wave energy is redistributed in
the vicinity of the peak frequency, resulting in considerable
spectral broadening. In the meantime, the LF waves are also
enhanced. The mechanism behind the spectral change in the
long scale evidently differs from that in the short scale, as the
cross-spectral analysis shows thatmost of thewaves evolving
in the long scale behave as free harmonics. Although strong
spectral modulations, the changes of wave statistics are very
limited, highlighting the importance of higher harmonics on
the enhancement of freak wave probability.

After the two-stage equilibration process, all parameters
converge to constant mean levels correspondingly. In the
established shallow-water steady state, the wave spectrum is
characterized by a broader band with less pronounced peak,
the general wave profile is asymmetric in the vertical direc-
tion with sharp high crests and flat shallow troughs. In addi-
tion, kurtosis being lower than 3 in the steady state implies
that freak wave probability reduces to a level lower than the
Gaussian expectation, i.e. a lighter tail of the wave height
distribution is expected.

The incident wave nonlinearity was found to dominate
the magnitude of the dynamical response of sea-state, in-
cluding the extremes of statistical parameters in the short
scale, and the change of spectral parameters in the long scale.
But it has minor effects on the length of the two scales in the
equilibration process, and the positions where the statisti-
cal and spectral parameters achieve their maximum values
in two scales are not changed for different incident nonlin-
earity. It should also be noticed that, changing the incident
wave nonlinearity will not affect the levels of �4 (lower than3) and As (close to 0) in the steady state (x > 35Lp,2 here).From the practical perspective, the findings of the present
study would be of interest in the design of coastal struc-
tures (site selection) and in the optimization of ship routes.
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Depth variations pose risks of freak waves only in the short
scale. On the contrary, in the long scale, the depth varia-
tions could "prevent" structures or ships from freak waves
to some extent. As freak wave occurrence probability de-
creases fast in the long scale, furthermore, high waves could
be either filtered out by breaking effects or dissipated due
to friction. A more dedicated investigation on the statistical
distributions of free surface elevation, crest height and crest-
to-trough height during the equilibration process is presently
ongoing and will be reported in an upcoming paper.
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Appendix A Methods of wave generation
and absorption in the numerical
model

A.1 Wave generation
In the generation zone, the target incident wave field, de-

noted as (�targ(x, t), �̃targ(x, t)), can be calculated with eithera linear or a nonlinear wave theory. Following the analysis of
ZB21 and given the irregular wave trains of the cases listed
in Table 1 are of relatively low level of nonlinearity in the
deeper region, the incident wave field is generated here us-
ing the linear superposition technique. Considering a large
number of (M) harmonic components, the incident time se-
ries for wave-making is obtained with

�(x = x0, t) =
M
∑

i=1
ai cos(kix0 − !it + �i), (A.1)

where !i = 2�fi is the itℎ frequency component; ki is thecorresponding wavenumber obtained via the dispersion re-
lationship !2 = gk tanh (kℎ1); x0 and ℎ1 correspond to the
position and water depth at the wavemaker; �i is a random

phase uniformly distributed in [0, 2�); wave amplitude aithat corresponds to fi is chosen on the basis of the target
energy density spectrum S(f ), following eq. (1), defined in
the range [fmin, fmax].The target spectrum is divided into N segments (here
N = 215 bins are set in [fmin, fmax]), each with the same
portion of the total energy E. Such a method renders un-
evenly distributed frequency components fi and the same
wave amplitude ai for all components:

ai =
√

2E∕N, E = ∫

fmax

fmin
S(f )df. (A.2)

In the present study, we set fmin = 0.45fp and fmax = 5fp.During the numerical calculation, the actual values of
the physical variables in the relaxation zone are updated at
the end of each time step as

F (x, t) =
(

1 − Cr(x)
)

F (x, t) +Cr(x)Ftarg(x, t), (A.3)
where F stands for either � or �̃, Cr(x) is a ramp function
progressively releasing the target solutions in space. For
wave generation (left relaxation zone in Fig. 2), Ftarg cor-
responds to the incident wave field. In addition, a Dirich-
let condition of an coefficients is imposed on the left lateral
boundary of the computational domain, computed from the
target wave solution. In the present application, the Cr coef-ficient in the generation zone reads

Cr,g(x) =
⎛

⎜

⎜

⎝

1 −
|

|

|

x − xbegr,g
|

|

|

Lr,g

⎞

⎟

⎟

⎠

3

, x ∈ [xbegr,g , x
end
r,g ], (A.4)

where xbegr,g = −8.1 m and xendr,g = x0 = −2.7 m are the
abscissas of boundaries of the relaxation zone, and Lr,g =
|

|

|

xendr,g − x
beg
r,g

|

|

|

= 5.4 m = 3Lp,1 is its length.
A.2 Wave absorption

For thewave damping zone (right relaxation zone in Fig. 2),
we use the same relaxation method as eq. (A.3) but nowwith
Ftarg = 0 to progressively attenuate the waves in space and
limit wave reflection.

The Cr coefficient is chosen as

Cr,d(x) = 0.1
⎛

⎜

⎜

⎝

1 −
|

|

|

x − xendr,d
|

|

|

Lr,d

⎞

⎟

⎟

⎠

3

, x ∈ [xbegr,d , x
end
r,d ]. (A.5)

Note that Cr,d varies from 0 at xbegr,d = L to 0.1 at xendr,d =
L+Lr,d in the damping zone. According to a number of cal-
ibration tests (not shown here), such a choice of Cr,d func-
tion in combination with a large Lr,d ends up with a good
damping effect on long waves. In contrast to ZB21, where
a different form of Cr,d(x) was used and Lr,d was set to ap-
proximately 3Lp,2, we chose here a much longer zone with
Lr,d = 21 m ≈ 20Lp,2 in order to properly attenuate not
only the wave components in the spectral peak range, but
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also the LF components. This length corresponds to three
wavelengths of a LF wave with f = 0.15 Hz or two wave-
lengths of a LF wave with f = 0.1Hz. Although a bit costly,
such a choice is capable of effectively reducing most of the
long-wave reflection.

The performance of the damping zone was assessed by
calculating the averaged reflection coefficient R̄, defined as

R̄ =
∫

fb

fa
R(f )S(f )df

∫

fs∕2

0
S(f )df

, (A.6)

where R(f ) is the spectral reflection coefficient, fa and fbcontrol the spectral range for the evaluation of R̄. With the
present choice of relaxation zone function, the total wave re-
flection coefficient, computed for fa = 0 and fb = 0.5fs,
R̄ is around 4% before the slope in all simulations. Further-
more, the reflection of LF waves (R̄ evaluated for fa = 0
and fb = 0.4fp) is very low, varying from 0.01% to 0.05%
depending on the nonlinearity level of the case.
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