
HAL Id: hal-03605029
https://hal.science/hal-03605029v2

Preprint submitted on 12 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the binary digits of n and n2

Karam Aloui, Damien Jamet, Hajime Kaneko, Steffen Kopecki, Pierre Popoli,
Thomas Stoll

To cite this version:
Karam Aloui, Damien Jamet, Hajime Kaneko, Steffen Kopecki, Pierre Popoli, et al.. On the binary
digits of n and n2. 2022. �hal-03605029v2�

https://hal.science/hal-03605029v2
https://hal.archives-ouvertes.fr

ON THE BINARY DIGITS OF n AND n2

KARAM ALOUI, DAMIEN JAMET, HAJIME KANEKO, STEFFEN KOPECKI, PIERRE POPOLI,
AND THOMAS STOLL

Abstract. Let s(n) denote the sum of digits in the binary expansion of the integer n. Hare,
Laishram and Stoll (2011) studied the number of odd integers such that s(n) = s(n2) = k, for
a given integer k ≥ 1. The remaining cases that could not be treated by theses authors were
k ∈ {9, 10, 11, 14, 15}. In this paper we show that there is only a finite number of solutions for k ∈
{9, 10, 11} and comment on the difficulties to settle the two remaining cases k ∈ {14, 15}. A related
problem is to study the solutions of s(n2) = 4 for odd integers. Bennett, Bugeaud and Mignotte
(2012) proved that there are only finitely many solutions and conjectured that n = 13, 15, 47, 111
are the only solutions. In this paper, we give an algorithm to find all solutions with fixed sum of
digits value, supporting this conjecture, as well as show related results for s(n2) = 5.

1. Introduction

Let s(n) be the sum of digits in the binary expansion (i.e. the Hamming weight) of n ∈ N. In
the present paper we investigate the question of whether or not the equation
(1) s(n) = s(n2) = k

has infinitely many odd solutions in n for a given k ∈ N.1 Hare, Laishram and Stoll [9] settled
all cases with the exception of k ∈ {9, 10, 11, 14, 15}. Our contribution here is to show, via a
combinatorial and algorithmic approach, that the equation only has finitely many solutions for
k ∈ {9, 10, 11}. We will address the computational issues that we encounter for the last remaining
open cases, namely, k = 14, 15.

The main motivation to consider (1) comes from work of Madritsch and Stoll [13] who showed
that (s(n2)/s(n))n≥1 is dense in R+. This elaborates on an old result of Stolarsky [18] (see also [8,
11, 15, 14, 17]) who showed that lim infn→∞ s(n2)/s(n) = 0. Since the average size of s(n2) is twice
as large as that of s(n) (see [1, 16]) the equation (1) concerns an exceptional set of integers. In
particular, it is intriguing that for certain values of k the equation allows for infinitely many odd
solutions n and for other values of k there is just a finite number. One of the results of Hare,
Laishram and Stoll [9] states that there are infinite parametric families of solutions for k = 12, 13
and k ≥ 16. They showed that

s(n) = s(n2) = 12, for all n = 111 · 2t + 111, with t ≥ 15,(2)
s(n) = s(n2) = 13, for all n = 23 · 2t + 1471, with t ≥ 21,(3)
s(n) = s(n2) = 16, for all n = 111 · 2t + 1919, with t ≥ 21.(4)

On the other side of the spectrum, there are only finitely many solutions for k ≤ 8. For example,
for

s(n) = s(n2) = 8,

there are only 64 solutions in odd integers and the largest solution is n = 266335 (see [9, Table 2]).
These results are based on an algorithm that handles all the possible orderings of the exponents

Key words and phrases. Digital expansions; numeration system; sum of digits function; sequences and sets.
1Note that for all integers n we have s(2n) = s(n). This means that the restriction to n odd is necessary to make

this question meaningful.
1

in n2 when n is written as a sum of a small number of powers of 2. Since the algorithm treats
(in an exhaustive way) all cases, the method of [9] allowed to explicitly determine all the solutions
for k ≤ 8. The running time of the algorithm, however, explodes for larger values of k. Some
heuristic arguments are given in [9, Section 5] to support the conjecture that there are only finitely
many solutions for k ∈ {9, 10}. The main purpose of this paper is to combine a new combinatorial
factorization lemma and two algorithms with recent results by Kaneko and Stoll [10] to reduce the
investigation to a finite case analysis. We then carry out this case analysis for k ∈ {9, 10, 11} in a
unified manner.

2. Main results

In the present article we show the following theorem:

Theorem 1. Let k ∈ {9, 10, 11}. Then the number of odd integers n with
s(n) = s(n2) = k

is finite.

We have made a global search for s(n2) = s(n) = k, 11 ≤ k ≤ 15, up to n < 280 (see Section 7).
No infinite family occurs clearly in the cases k = 14 and k = 15 compared to k ∈ {12, 13, 16},
see (2)–(4). We therefore formulate the following conjecture:

Conjecture 1. Let k ∈ {14, 15}. Then the number of odd integers n with s(n) = s(n2) = k is finite.

For Theorem 1 it is crucial to have efficient algorithms at our disposal that calculate certain sets
that appear in intermediate steps in the proof.

For fixed ℓ1 ≥ 1, ℓ2 ≥ 1 and m ≥ 1, set
(5) ∆ℓ1,ℓ2,m := {n ∈ N : s(n) = ℓ1, s(n2) ≤ ℓ2, n < 2m, n odd}.

Our first algorithm, called next, has the purpose to calculate ∆ℓ1,ℓ2,m for small values of ℓ1, ℓ2,m.

For fixed k ∈ N and λ ≥ 1, let
(6) Ek,λ := {n ∈ N : s(n2) = k, s(n) = λ, n odd},
and set
(7) Ek :=

∪
λ≥1

Ek,λ.

The aim of the second algorithm, called max-integer, is to calculate efficiently Ek,λ for small k
and λ. Several results about the sets Ek are already known in the literature. To begin with, it is
an elementary calculation to show that E2 = {3}. Szalay [19] showed that
(8) E3 = {2t + 1 : t ≥ 2} ∪ {7, 23},
see also [12] for a generalization. Szalay’s proof relies on a result of Beukers on the Ramanujan–
Nagell equation. Typically such sets are composed of a union of a set of infinite parametrized inte-
gers and a set of small sporadic solutions. Bennett/Bugeaud/Mignotte [4], Bennett/Bugeaud [3],
Hajdu/Pink [7] and Bérczes/Hajdu/Miyazaki/Pink [5] generalized Szalay’s results to other bases
and more general powers, see also Bennett [2]. Finally, we mention also the recent work of Sza-
lay [20] who considered algorithms to find the solution set of the Diophantine equation 2n + α ·
2m + α2 = x2, where α is a fixed positive integer.

As for E4, it is known that it is a finite set (so, no infinite families occur), see Bennett, Bugeaud
and Mignotte [4], and Corvaja and Zannier [6]. Bennett, Bugeaud and Mignotte conjectured:

2

Conjecture 2.
(9) E4 = {13, 15, 47, 111}.

This conjecture remains still open.
We here consider a refined version of Conjecture 2, namely, we restrict our attention to those

integers n that have a fixed sum of binary digits. This is particularly valuable in the study of (1),
where we need to know explicitly E4,λ and E5,λ for small values of λ. Indeed, the infinite family
given in (3) is built from the two integers 23 and 1471. Since s(232) = 3, s(14712) = 5 and
s(23 · 1471) = 5, we have the correct amount of bits in the square of n = 23 · 2t + 1471 for
sufficiently large t.

We apply max-integer to show the following result.

Theorem 2. We have
(10)

∪
λ≤17

E4,λ = {13, 15, 47, 111}

and
(11)

∪
4≤λ≤15

E5,λ = {29, 31, 51, 79, 91, 95, 157, 223, 279, 479, 727, 1471, 5793}.

Moreover,
(12) E5 = {1 + 2 + 2ℓ : ℓ ≥ 3} ∪ {1 + 2ℓ + 2ℓ+1 : ℓ ≥ 3} ∪ {1 + 2ℓ + 22ℓ−1 : ℓ ≥ 3} ∪ E′,

where E′ is a finite set.

This theorem gives more evidence on (9): all E4,λ are empty sets for 5 ≤ λ ≤ 17. The result
might also point towards a possible computational proof if we could establish a universal bound
for λ. For (12) we conjecture:

Conjecture 3.
E′ = {29, 31, 51, 79, 91, 95, 157, 223, 279, 479, 727, 1471, 5793}.

This is supported by the fact that the largest weight of an integer in E′ occurs for n = 1471,
namely s(1471) = 9, so that the sets E5,λ are all empty for 10 ≤ λ ≤ 15.

The paper is structured as follows. In Section 3, we state, collect and prove some related auxiliary
results; in particular, we give a new combinatorial factorization lemma that is at the core of our
method. Section 4 is devoted to the proof of Theorem 1, where we make use of the algorithm
next. In Section 5, we give the proof of Theorem 2 where we rely on the algorithm max-integer.
We postpone, for an easier readability, the detailed description of the two algorithms and their
implementation to Section 6. We finally conclude in Section 7 with some remarks on the remaining
cases of (1), i.e. the cases k = 14 and k = 15, that remain unsettled.

3. Preliminaries

Let n =
∑ℓ

i=0 εi2
i with εi ∈ {0, 1} and εℓ = 1. We write (n)2 to refer to the binary expansion

of the integer n. Recall that s(n) =
∑ℓ

i=0 εi is the sum of digits of n. We use the letter x (with or
without indices) to denote binary blocks that always end in 1, so that they correspond to the binary
expansions of odd integers. In the language of combinatorics on words, x will be a non-empty word
over the alphabet {0,1} (the “bits”) whose rightmost symbol is 1. We always use boldface to talk
about bits. To keep notation as simple and readable as possible, we will use x (note the change

3

in the font) to denote the associated odd integer. For example, for x = 11 we have x = 3; also,
we write 1 for the integer “one”, and 1 for the one-bit. Note that ℓ = ℓ((n)2) is the length of the
binary expansion of the integer n. Again, for simplicity reasons, we also use ℓ(n) for ℓ((n)2). As
usual, in combinatorics on words, we will write xy for the concatenation of the binary words x and
y, and xℓ for the ℓ-fold concatenation of the word x. Moreover, we write |x| for the length of the
word x. On the other hand, xy, or x ·y, will systematically denote the multiplication of the integers
x and y.

For an odd integer n such that s(n) = k, we consider a decomposition of its binary expansion in
the form
(13) (n)2 = xm0ℓmxm−1 · · · x10ℓ1x0
into m < k blocks of 0-bits of length ℓi, for 1 ≤ i ≤ m, which separate xi, for 0 ≤ i ≤ m. Recall
that all xi end in 1-bits, so that they correspond to the binary expansion of odd integers. Note
that the decomposition (13) is not unique since we can merge or split inner blocks to obtain other
factorizations. Let us denote yi,j = xi · xj for 0 ≤ i, j ≤ m, and yi,j the associated binary blocks
that will compose n2. Note that yi,j again ends in a 1-bit. Let

ℓ̂j =

j∑
i=1

(ℓi + ℓ(xi−1))

for 0 ≤ j ≤ m, which represents the length of 0ℓjxj−1 · · · x10ℓ1x0. Furthermore let ℓi,i = 2ℓ̂i for
0 ≤ i ≤ m and ℓi,j = ℓ̂i + ℓ̂j + 1 for 0 ≤ i, j ≤ m and i ̸= j. Then the square n2 is the sum of the
integers

ui,i = 2ℓi,iyi,i for 0 ≤ i ≤ m and
ui,j = 2ℓi,jyi,j for 0 ≤ i < j ≤ m.

We say that the summand yi,j interferes with the summand yi′,j′ if, in the addition of the two
terms written in binary, a carry propagation caused by yi,j reaches a binary bit of yi′,j′ , or vice-versa
(we take liberty to say also, that yi,j interferes with yi′,j′). We will frequently discuss the situation
on how many 1-bits remain in the addition of interfering terms. We will reject possibilities when
the additions lead to numbers with too many 1-bits. If blocks are non-interfering then the number
of 1-bits of the their sum is the sum of the 1-bits of the summands. Let us explain the procedure
with an example. If we add 111 or its shifts to 11100001, we observe that it is impossible to find
shifts in a way that the sum of the two summands gives a single 1-bit:

11100001

+ ←− 111 −→
This procedure can be easily implemented: it is sufficient to test via one for-loop. If more than

two terms are added together, then more for-loops will do the job.
The next lemma gives a sufficient condition for non-interference between two summands.

Lemma 1. Let yi,j, yi′,j′ be two summands defined as before. If ℓi,j ≥ ℓi′,j′ + ℓ(yi′,j′) + k2, then
yi,j does not interfere with yi′,j′.

Proof. If these two summands interfered, then there would be at least k2 1-bits involved in the carry
propagation from yi′,j′ to yi,j . But the number of 1-bits in all summands is at most k + k(k−1)

2 <

k2. □
Let ℓmin = min1≤i≤m(ℓi) and ℓmax = max0≤i≤m ℓ(xi). By Lemma 1 we can deduce that if

ℓmin > 2ℓmax + k2, then two summands yi,j , yi′,j′ do not interfere if i > i′ and j ≥ j′.

4

Lemma 2 (Factorization lemma). For k ≥ 1 there is a bound Nk such that the binary expansion
of every odd n ≥ Nk that satisfies s(n) = s(n2) = k can be factorized as
(14) (n)2 = xm0ℓmxm−1 · · · x10ℓ1x0
where 1 ≤ m < k, x0, . . . , xm are the binary words corresponding to the binary expansions of
odd integers and ℓ1, . . . , ℓm ∈ N such that ℓmin > 2xmax + k2 where ℓmin = min1≤i≤m(ℓi) and
xmax = max0≤i≤m |xi|.

Proof. Let f(i) = 4i + k2, let Nk = 2f
k(1) where fk(1) is the k-fold composition of f evaluated at

1. Consider an odd integer n ≥ Nk such that s(n) = k. If the binary expansion of n contains k− 1
blocks of 0-bits and if each of these 0-blocks is longer than k2+2, then each 1-bit in the expansion
forms one of the xi with m = k−1 and we are done. Otherwise, we combine all 0-blocks which have
a length at most k2+2 with its bordering 1-bits and make this one of the factors xi. If all remaining
0-blocks are longer than 2(k2 + 4) + k2, we find a suitable factorization of (n)2 with m = k − 2.
Otherwise, we continue inductively and obtain n > 2f

k(1) has a desired factorization. □

We will also need some elementary results on multiples of 3 with few non-zero digits.

Lemma 3. Let n be an odd integer with s(3n) = 2. Then (n)2 ∈ {(10)ℓ11 : ℓ ≥ 0} ∪ {1}.

Proof. For n ≥ 5 we set (n)2 = 1εdεd−1 · · · ε01 (εi ∈ {0,1}, d ≥ 0) and observe that the usual
addition 2n+ n translates into

1 εd εd−1 · · · ε1 ε0 1

+ 1 εd εd−1 · · · ε1 ε0 1.

Since the last 1-bit will stay after the addition, the addition of the penultimate 1 to ε0 must give
rise to a carry that propagates up to the highest significant digits. The only way to make this
happen without creating additional 1-bits in the sum is ε0 = ε2 = ε4 = · · · = 1 and ε1 = ε3 = ε5 =
· · · = 0. □
Lemma 4. Let n be an odd integer with s(3n) = 4. Then (n)2 = x10

sx0 for some s ≥ 2 with
x1, x0 ∈ {(10)ℓ11 : ℓ ≥ 1} ∪ {1},

or n ≤ 22s(n)−1.

Proof. If there is a block of 0’s of length ≥ 2 inside (n)2, then in the addition of 2n + n = 3n
there are non-interfering terms and the additions have to amount for 2 bits in the sum of the
corresponding portions. Lemma 3 shows that the only possibilities are the blocks (10)ℓ11 for some
ℓ ≥ 0, and the block consisting of a single 1. This gives the first part in the statement. If there is
no block of consecutive 0’s of length ≥ 2 then x is evidently bounded by 22s(n) − 1. □
Lemma 5. Let n be an odd integer with s(3n) = 3. Then

(n)2 ∈ {1(01)ℓ1(10)ℓ211 : ℓ1, ℓ2 ≥ 0}

Proof. Recall the reasoning of the proof of Lemma 3 first. A possible carry has to propagate all the
way up to the highest significant digits in order to generate only 0-bits except the lowest significant
bit and the highest significant bit. In the former proof, this implied an alternation of 0-bits and
1-bits in the middle part. In the statement of the present lemma, since we want three 1-bits in
the resulting sum, we need to break this alternation at least once. We therefore have the following
addition:

5

1 εd · · · εk 1 1 0 · · · 1 0 1 1

+ 1 εd · · · εk 1 1 0 · · · 1 0 1 1.

The lowest significant 1-bit will stay after the summation of the two numbers (it does not
interact with the other bits). In the overlapping 1-bits at the breaking point (underlined in the
above addition scheme) there will remain one 1-bit in the sum. The addition of these bits generates
a carry that has to generate only 0-bits up to the highest significant 1-bit. The only way to achieve
this is again to alternate the 0-bits and 1-bits. This directly translates into the given form. □
Lemma 6. If (n)2 ∈ {(10)ℓ11 : ℓ ≥ 2} then s(n2) ≥ 7.
Proof. An elementary calculation shows that, if (n)2 = (10)ℓ11, ℓ ≥ 1, then

(n2)2 =


(111000)j−1111001(000111)j001 if ℓ = 3j for some j ≥ 1,

(111000)j1111(000111)j001 if ℓ = 3j + 1 for some j ≥ 0,

(111000)j11100111(000111)j001 if ℓ = 3j + 2 for some j ≥ 0.

□
In our application for the infinite family in Lemma 4, we will fix the value of s(n), which means

that ℓ is small. Lemma 6 then guarantees that the squares of such integers have (too) many 1-bits,
which will lead to a contradiction. We will make use of this procedure at several places in our
investigation, in particular to check that there are no solutions in odd integers n for the system
s(3n) = 4, s(n) = 9 and s(n2) = 5. The sporadic solutions that are bounded in Lemma 4 can be
checked directly by an exhaustive computer search.

We next recall two recent results by Kaneko and Stoll [10] that deal with products of integers
with few binary digits.
Lemma 7. Let ℓ,m ≥ 2, and let a and b be two odd integers such that s(a) = ℓ and s(b) = m. If
s(ab) = 2, then we have

ab < 22ℓm−4.

Lemma 8. Let ℓ,m ≥ 2, and a and b be two odd integers such that s(a) = ℓ, s(b) = m and mℓ ≥ 5.
If s(ab) = 3, then we have

ab < 24ℓm−13.

We will use these results when we look for solutions in the form x10 · · ·0x0 for a large inner block
of 0-bits. For such a structure, we have three separated contributions to the binary decomposition
in the square: x21, x20 and the double product x1 · x0 which do not interfere since they are well-
separated. When s(x1x0) = 2 or s(x1x0) = 3, we can apply these two lemmas to bound x1 and x0,
and an exhaustive search will then be sufficient to conclude. We mention that the direct analogue
to Lemma 7 and Lemma 8 for s(ab) = 4 does not hold true (see [10]).

4. Proof of Theorem 1

According to Lemma 2, if there exist infinitely many odd solutions of (1) for some k, then almost
all (i.e. all with a finite number of exceptions) of the binary expansions of these solutions can be
factorized. Consider a factorization of (n)2 as stated in Lemma 2 and note that none of the 2m+1
summands in the set {ym,i}mi=0 ∪ {yi,0}mi=0 interfere with each other. Some of these summands may
interfere with other summands, yet, even in that cases, each contributes with at least one 1-bit to
the binary expansion of n2. Thus, if m ≥ k/2, then s(n2) ≥ 2m+1 > k and n cannot be a solution
of (1). We therefore can safely suppose that 1 ≤ m < k/2.

6

We have the corresponding graphs that show the various possibilities of interference. Herein,
vertices are the summands and the edges correspond to possible instances of interference between
summands.

y2,0y2,1y2,2 y0,0y1,0

y1,1

Figure 1. Interference graph for m = 2.

y3,0y3,1y3,2y3,3 y0,0y1,0y2,0

y2,1y2,2 y1,1

Figure 2. Interference graph for m = 3.

y4,1y4,2y4,3y4,4 y0,0y1,0y2,0y3,0y4,0

y3,1y3,2y3,3 y1,1y2,1

y2,2

Figure 3. Interference graph for m = 4.

7

As a consequence of Lemma 2, the following result implies Theorem 1.

Lemma 9. Let k ∈ {9, 10, 11} and n ≥ Nk be a sufficiently large odd integer with
s(n) = s(n2) = k.

Then there exists no factorization of (n)2 in the form (14).

For k = 9 and k = 10 we have 1 ≤ m ≤ 4, and for k = 11 we have 1 ≤ m ≤ 5. The proof
of Lemma 9 is based on elementary considerations but we need to combine several ingredients to
conclude: Szalay’s result on E3, Kaneko and Stoll’s results on products of integers with 2 or 3
digits, non-existence of certain squares modulo powers of 2, analysis of possible interference for
multiple blocks, the tables of Hare, Laishram and Stoll [9] etc. The investigation results in a finite
case analysis where the details depend on the parameters. For the convenience of the reader, we
have arranged the proof for fixed m since the reasoning is very similar for k ∈ {9, 10, 11} when the
interference graph stays the same. We use freely our algorithms next and max-integer, whose
descriptions are postponed to Section 6.

4.1. The case m = 1. We have (n)2 = x10 · · ·0x0 with a (long) contiguous inner block of 0-bits.
First, we observe that if x0 = 1 (recall that this is the same as saying that x0 = 1), then n cannot
be a solution of (1) since then we would have s(n2) = s(x21) + s(x1) + 1 = s(x21) + (k − 1) + 1 > k.
Similarly, we have x1 ̸= 1. By symmetry we can suppose that s(x1) ≥ s(x0). We therefore have to
solve the following system:

(15)


s(x1) + s(x0) = k,
s(x21) + s(x1x0) + s(x20) = k,
s(x1), s(x0), s(x

2
1), s(x

2
0), s(x1 · x0) ≥ 2,

s(x1) ≥ s(x0).

We distinguish the cases according to the value of s(x1 · x0) ∈ {2, . . . , k − 4}.

(1) s(x1 · x0) = 2. Here, Lemma 7 provides an upper bound for x1 and x0. Recall the definition
of ∆ℓ1,ℓ2,m given in (5). The following table lists all sets to check for possible solutions
(x1, x0) of (15):

Sets ∆ for k = 9 Sets ∆ for k = 10 Sets ∆ for k = 11

∆5,5,36 ×∆4,5,36 ∆5,6,46 ×∆5,6,46 ∆6,7,56 ×∆5,7,56

∆6,5,36 ×∆3,5,36 ∆6,6,46 ×∆4,6,46 ∆7,7,56 ×∆4,7,56

∆7,5,36 ×∆2,5,36 ∆7,6,46 ×∆3,6,46 ∆8,7,56 ×∆3,7,56

- ∆8,6,46 ×∆2,6,46 ∆9,7,56 ×∆2,7,56

We construct these sets with our algorithm next in an efficient manner and check whether
it gives a solution to the system (15); there is no solution. We could also use the tables
of [9] for the cases k = 9 and k = 10 , however, for the case k = 11 , the tables of [9] do
not allow to conclude and we need a new method to construct the related sets.

(2) s(x1 · x0) = 3. With the help of Lemma 8 we can, similarly to before, restrict our attention
to a finite number of sets. These sets are given in the following table:

8

Sets ∆ for k = 9 Sets ∆ for k = 10 Sets ∆ for k = 11

∆5,4,67 ×∆4,4,67 ∆5,5,87 ×∆5,5,87 ∆6,6,107 ×∆5,6,107

∆6,4,67 ×∆3,4,67 ∆6,5,87 ×∆4,5,87 ∆7,6,99 ×∆4,6,99

∆7,4,67 ×∆2,4,67 ∆7,5,87 ×∆3,5,87 ∆8,6,83 ×∆3,6,83

- ∆8,5,87 ×∆2,5,87 ∆9,6,59 ×∆2,6,59

In the last column we have already reduced the number of cases to consider in order to
speed up the calculations. Again, as before, there is no solution.

(3) s(x1 · x0) = 4. We here investigate the weight of the square parts since there is no universal
bound on x1 · x0.
• Let k = 9 . Then we have max(s(x21), s(x

2
0)) = 3 and min(s(x21), s(x

2
0)) = 2. Recall the

definitions of Ek,λ and Ek in (6) and (7), and Szalay’s result (8). We have x1 ∈ E3 and
x0 = 3, or x0 ∈ E3 and x1 = 3. Then s(x1) + s(x0) ≤ 6 < 9, which is a contradiction.
• Let k = 10 .

(a) If s(x21) = 4 then we have s(x20) = 2 and x0 = 3. Thus s(x1) = 8 and there is no
such x1, see Table 3 in [9].

(b) If s(x21) = 3 then x0, x1 ∈ E3 and we have s(x1) + s(x0) ≤ 8 < 10.
(c) If s(x21) = 2 then s(x1) = 2 and s(x0) = 8. We conclude as in case (a).

• Let k = 11 .
(a) If s(x21) = 5 then we have s(x20) = 2 and x0 = 3. Thus x1 satisfies

(16) s(3x1) = 4, s(x1) = 9.

A machine calculation shows that there is no solution of (16) with x1 ≤ 217 that
also satisfies s(x21) = 5. Lemma 4 now states that if there were a solution of (16)
with x1 > 217 then

x1 ∈ {10α(10)611 : α ≥ 1} ∪ {(10)6110α1 : α ≥ 1}

∪ {(10)ℓ1110α(10)ℓ211 : ℓ1 + ℓ2 = 4, ℓ1, ℓ2 ≥ 0, α ≥ 1}.

A direct computer search shows that none of the above forms satisfies s(x21) = 5
(note that for sufficiently large α the sum of digits of the above forms stabilizes
since the blocks in the square do not interfere anymore, so this is a finite verifica-
tion.) Alternatively, we could also check the solutions of (16) via the algorithms
in the Section 5.

(b) If s(x21) = 4. We have s(x20) = 3 and x0 ∈ E3. Thus s(x1) ∈ {7, 8, 9}. Algorithm
max-integer shows that E4,λ is empty for λ ∈ {7, 8, 9} which allows to conclude.

(4) s(x1 · x0) = 5.
• If k = 9 , then we have s(x21) = s(x20) = 2 and x1 = x0 = 3. Hence s(x1) + s(x0) =
4 < 9.
• If k = 10 , then we have max(s(x21), s(x

2
0)) = 3 and min(s(x21), s(x

2
0)) = 2 and s(x1) +

s(x0) ≤ 6 < 10.
• Let k = 11 .

(a) If s(x21) = 4, then we have s(x20) = 2 and x0 = 3. Thus s(x1) = 9 and we
conclude since E4,9 is empty.

(b) If s(x21) = 3, then we have x0, x1 ∈ E3 and we have s(x1) + s(x0) ≤ 8 < 11.
(5) s(x1 · x0) = 6.

9

• If k = 10 , then we have s(x21) = s(x20) = 2 and x1 = x0 = 3. Then s(x1) + s(x0) =
4 < 10.
• If k = 11 , then we have max(s(x21), s(x

2
0)) = 3 and min(s(x21), s(x

2
0)) = 2 and again

s(x1) + s(x0) ≤ 6 < 11.
(6) s(x1 · x0) = 7. Here, necessarily k = 11 , thus we have s(x21) = s(x20) = 2 and x1 = x0 = 3.

Then s(x1) + s(x0) = 4 < 11.

The proof of Lemma 9 is therefore complete for the case m = 1.

4.2. The case m = 2. Here, we change our strategy and use the interference graph given in
Figure 1. There are five independents summands y2,2, y2,1, y2,0, y1,0, y0,0 each contributing to (n)2
with at least one 1-bit and only y2,0 may interfere with y1,1. None of these five summands can
contribute with more than (k − 4) 1-bits since s(n2) = k.

We distinguish the following cases.
(1) x2 = 1.

• If k = 9 then s(y2,1) = s(x1) and x1 has at most five 1-bits. Hence x0 ̸= 1 and
s(y1,0) ≥ 2. Therefore,

1 + s(x1) + s(x0) = 9 ≥ 1 + s(x1) + 1 + 2 + s(x20).

Thus s(x20) ≤ s(x0)− 3. This condition has no solution when 2 ≤ s(x0) ≤ 7, see [9].
• If k = 10 then s(y2,1) = s(x1) and x1 has at most six 1-bits. Hence x0 ̸= 1 and
s(y1,0) ≥ 2. As before, we get s(x20) ≤ s(x0) − 3. The only solution to this is x0 =
111011111 and x1 = 1, see [9], Table 3. But now y1,0 = x0 has 8 > 6 1-bits, which is
too many.
• If k = 11 then s(y2,1) = s(x1) and x1 has at most seven 1-bits, thus x0 ̸= 1 and
s(y1,0) ≥ 2. Again, 2 ≤ s(x20) ≤ s(x0) − 3 and the only solution for s(x0) ≤ 8 is
x0 = 111011111. We get x1 = 10α1 for some α ≥ 0. But this implies s(y1,0) ≥ 7 and
this contribution is too large to s(n2) = 11 to hold since s(y0,0) = 5. In fact, s(y1,0)
is constant for α ≥ 9 so we can check the values for 0 ≤ α ≤ 9 directly. If there were
any such solution for s(x0) = 9, then x1 = 1 and so s(y1,0) = 9 > 11 − 4. Again, this
contradicts with s(n2) = 11.

(2) x0 = 1. This is symmetric to the first case.
(3) x2 ̸= 1 and x0 ̸= 1. The four summands y2,2, y2,1, y1,0, y0,0 contain more than one 1-bit. Note

also that x1 ̸= 1. In fact, if x1 = 1, then s(n) = s(x2)+1+s(x0) ≤ s(y2,1)+s(y2,0)+s(y1,0) <
s(n2).
• If k = 9 , then all these summands contain two 1-bits and therefore x2 = x0 = 3.
The fact that s(x1) = 5 and s(x2x1) = 2, together with Lemma 3, implies that x1 =
10101011. Then the summand y1,1 = 111001000111001 contributes with more than
one 1-bit to (n2)2. Indeed if we shift y1,1 = 111001000111001 against y2,0 = 1001
and add the terms, the result always has more than one 1-bit (this can be checked by
a simple for-loop, see the discussion in Section 3).
• If k = 10 , then at least three of the summands contain exactly two 1-bits. By symme-
try, we may assume that y2,2 and y2,1 contain exactly two 1-bits. This implies x2 = 3
and x1 = (10)α11 for some α ≥ 0, depending on x0.
(a) If s(y0,0) = 2 then x0 = 3 and x1 = 1010101011. Thus we have y1,1 =

1110001111000111001 which may interfere with y2,0 = 1001. This inter-
ference contributes with more than two 1-bits.

10

(b) If s(y0,0) = 3 then the possible choices of x0 are 10111, 111 and 10β1 for some
β ≥ 1, see Szalay’s result (8). Therefore, 4 ≤ s(x1) ≤ 6 and we can easily check
that in all cases y1,0 has more than two 1-bits.

• If k = 11 , the four summands y2,2, y2,1, y1,0, y0,0 contain more than one 1-bit, thus at
least two of them contain exactly two 1-bits. We now distinguish the cases regarding
the number of summands with two 1-bits.
First, suppose that there are at least three terms among y2,2, y2,1, y1,0, y0,0 that contain
exactly two 1-bits. By symmetry we can assume that y2,2 and y2,1 contain exactly two
1-bits. This implies x2 = 11 and x1 = (10)α11 for some α ≥ 0.
(a) If s(y0,0) = 2 then x0 = 11, x1 = (10)511 and

y1,1 = 11100011100111000111001

which may interfere with y2,0 = 1001. This interference has more than three
1-bits.

(b) If s(y0,0) = 3 then the possible choices for x0 are 10111, 111, and 10β1 for some
β ≥ 1. Therefore, s(x1) ≥ 5 and in all cases y1,0 has more than two 1-bits.

(c) If s(y0,0) = 4 then, since s(x0) ≤ 7, the possible choices for x0 are 101111,
1101111, 1111, and 1101 (see Table 1 and Table 3 in [9]). Therefore, s(x1) ≥ 3
and in all cases y1,0 has more than two 1-bits.

Suppose now that there are exactly two among y2,2, y2,1, y1,0, y0,0 that contain two
1-bits. It is then sufficient to discuss the following cases:
(a) y2,2 and y1,0 (or analogously y2,1 and y0,0) contain exactly two 1-bits. Then

x2 = 11 and s(y0,0) = 3 so that x0 ∈ E3. Hence, 5 ≤ s(x1) ≤ 7. We now consider
y2,1 = 3x1 and s(3x1) = 3.
By Lemma 5, the only solutions for x1 are 1(01)ℓ1(10)ℓ211 for some ℓ1, ℓ2 ≥ 0
such that 2 ≤ ℓ1 + ℓ2 ≤ 4.
Therefore, all the possible values for y2,0 and y1,1 are:

y2,0 y1,1
10101 1110110010001
1000101 10000001011001
110t−211, t ≥ 2 10110010111001

11100101110010001
11101011001011001
100000001010111001
100000001010111001
111010101101010111001
111010101101010111001
111010101101010111001
1000000010000000111001
1000000010000000111001

Therefore, in each of the above possibilities the terms y1,1 and y2,0 will contribute
with more than one 1-bit.

(b) y2,2 and y0,0 contain exactly two 1-bits. Then x2 = x0 = 11 so s(x1) = 7. Thus
the contribution of interference of y2,0 with y1,1 is only one 1-bit if and only if
(x21)2 is of the form 1 · · ·10111. This implies that x21 ≡ 7 (mod 8), which is not
possible for any odd integer x1.

11

(c) y2,1 and y1,0 contain exactly two 1-bits. Then y2,2 and y0,0 contain exactly three
1-bits thus x0, x2 ∈ E3. The summand y2,0 which might interfere with y1,1 has
to be one 1-bit.
The following forms for y2,0 contradict the fact that y1,1 ≡ 1 (mod 8):

y2,0 (x2, x0) Requested form for y1,1
110001 (7,7) (∗)11
1000010001 (23,23) (∗)11
10100001 (7,23) (∗)11
10001 (7, 22 + 1) (∗)11
1110011 (23, 22 + 1) (∗)101
- (2t2 + 1, 2t0 + 1), t2, t0 ≥ 2 (∗)11

The remaining forms are more complicated because the same argument does not
work.

y2,0 (x2, x0) Requested form for y1,1
11001111 (23, 23 + 1) 1 · · ·100110001
110000111 (23, 24 + 1) 1 · · ·1001111001
1110t−3111 (7, 2t + 1), t ≥ 3 1 · · ·10001t−3001
101110t−510111 (23, 2t + 1), t ≥ 5 1 · · ·1010001t−501001

The first case implies that x21 = 28(2λ − 1) + 49 for some λ ≥ 1, since s(x1) =
5 gives that x21 = 49 is not possible. However, λ is bounded since s(x21) ≤
s(x1)(s(x1) + 1)/2, so λ ≤ 12. Thus it is sufficient to check if the integers
28(2λ − 1) + 49, for 0 ≤ λ ≤ 12 are perfect square, and it is not the case.
The second case is similar since we have x21 = 28(2λ − 1) + 111 for some λ ≥ 1
and s(x1) = 4. We conclude in the same way as before.
As for the third case, we have x21 = 2t+4(2λ−1)+23(2t−3−1)+1 for some λ ≥ 1
and s(x1) = 6. Again, t is bounded and we find the only solution x1 = 31 for
t = 3. However, s(y2,1) = s(7 × 31) = 5 contradicts our first hypothesis in this
case. The last case works in a same manner and we are done.

Therefore, the proof of Lemma 9 is complete for m = 2.

4.3. The case m = 3. There are seven independent summands y3,3, . . . , y3,0, . . . , y0,0 each con-
tributing to (n2)2 with at least one 1-bit, see Figure 2. The considerations for k = 9, 10, 11 are
slightly different here.

If k = 9 then at least five of the seven independents summands have to contain only one 1-bit.
(1) x3 = x0 = 1. We have y3,2 = x2 and y1,0 = x1. Therefore , s(n2) > s(y3,3) + s(y3,2) +

s(y1,0) + s(y0,0) = s(x3) + s(x2) + s(x1) + s(x0) = 9, a contradiction.
(2) x3 ̸= 1. The summands y3,3 and y3,2 contain two 1-bits while all the other summands only

contribute with one 1-bit. Thus, x3 = 3, x1 = x0 = 1, and s(x2) = 5. Lemma 3 shows
that the only solution to s(y3,2) = 2 is x2 = 10101011. However, the summand y2,2 =
111001000111001 can only interfere with either y3,1 = 11 or y3,0 = 11 and in both cases
its contribution to n2 is larger than one 1-bit.

(3) x0 ̸= 1. This is symmetric to the previous case.

If k = 10 then, among the seven independent summands y3,3, . . . , y3,0, . . . , y0,0, at least four of
them must contain exactly one 1-bit and none of the summands can contribute with more than

12

three 1-bits. In fact, if there were a summand with more than three 1-bits then all other six
summands have to contribute with a single 1-bit which is impossible. We now distinguish several
cases.

(1) x3 = x0 = 1. We have y3,2 = x2 and y1,0 = x1, therefore, s(n2) > s(y3,3)+s(y3,2)+s(y1,0)+
s(y0,0) = 10, a contradiction.

(2) s(y3,3) = 2. This implies x3 = 11: the summand y3,2 contains at least two 1-bits, thus, one
of y1,0 and y0,0 is 1 which implies that x0 = 1.
(a) s(y3,2) = 2 and s(y1,0) = 2. As y1,0 = x1 and s(x1) = 2, we obtain x2 = (10)311 and

y2,2 = 111001000111001. This summand may interfere with one of
y3,1 ∈ {110γ11 : γ ≥ 0} ∪ {1001}

and y3,0 = 11, in both cases its contribution will be more than one 1-bit. Note that
for y3,1 we can use a for-loop over γ to conclude.

(b) s(y3,2) = 2 and s(y1,0) = 1. We have x1 = 1, x2 = (10)411 and
y2,2 = 1110001111000111001.

This summand may interfere with one of y3,1 = x3 = 3 and y3,0 = x3 = 3, but its
contribution will be more than two 1-bits.

(c) s(y3,2) = 3. Here again x1 = 1 and the summand y2,1 = x2 can only interfere with
y3,0 = 11 and they must add up to a power of 2. According to Lemma 5, the system
s(3x2) = 3, s(x2) = 6 implies that

x2 ∈ {101010111,101101011,101011011,110101011}.
In any case, the interference between y2,1 and y3,0 = 3 would then again contribute
with too many 1-bits.

(3) s(y3,3) = 3. We have x3 ∈ E3 and s(y3,2) ≥ 2. Furthermore, we have x1 = x0 = 1 because
y1,0 = 1. In any case 4 ≤ s(x2) ≤ 6 the summand y2,0 = x2 has to interfere with y1,1 = 1
and add up to a power of 2. Thus, x2 = 1j for 4 ≤ j ≤ 6 and y2,2 = 1j−10j1. This summand
can only interfere with one of y3,1 = x3 and y3,0 = x3 and we see that the contribution of
this summand is then again more than one 1-bit in all cases.

(4) s(y0,0) ≥ 2. These cases are symmetric to the previous two cases.

If k = 11 then at least three of the independents summands have to contain one 1-bit only. We
distinguish between the cases:

(1) x3 = x0 = 1. We have y3,2 = x2 and y1,0 = x1, therefore, s(n2) > s(y3,3)+s(y3,2)+s(y1,0)+
s(y0,0) = 11, again a contradiction.

(2) s(y3,3) = 4. Since s(x3) ≤ 8 the possible values for x3 are 101111, 1101111, 1111 and
1101 (see [9]). Also, since in this case s(y3,2) ≥ 2, we have x1 = x0 = 1. This implies
3 ≤ s(x2) ≤ 6. The summand y2,0 = x2 has to interfere with y1,1 = 1 and the contribution
has exactly one 1-bit. Hence, x2 = 1i for 3 ≤ i ≤ 6 and y2,2 = 1i−10i1. This summand can
only interfere with one of y3,1 = x3 and y3,0 = x3 and we can see that the contribution of
this summand is more than one 1-bit in each case.

(3) s(y3,3) = 3. Possible forms of x3 are 10111, 111 and 10i1 for some i ≥ 1. Furthermore,
x0 = 1 since one of y0,0 and y1,0 is 1.
(a) If s(x1) = 2 then in any case 4 ≤ s(x2) ≤ 6. The summand y2,0 = x2 has to interfere

with y1,1 and contributes with one 1-bit. Since x1 = 10j1 for some j ≥ 0, we have y1,1
equals to 1001 or 10j−110j+11 for some j ≥ 1. A computation regarding the possible
interference of the summands shows that we have one of the following cases:

13

s(x2) x2
4 {10111,100111}
5 {110111,1100111,101111}
6 {1110111,11100111,10101111}

By computing every value of y2,2 we finally have to check the possible interference of
y2,2 with y3,1 or y3,0 = x3. In each case the result has more than one 1-bit and this
leads to a contradiction.

(b) If x1 = 1 then 5 ≤ s(x2) ≤ 7. First, suppose that the summand y2,0 = x2 interferes
with y1,1 = 1 and adds up to a power of 2. Then x2 = 1j for 5 ≤ j ≤ 7 and s(y3,2) ≥ 3.
The term y2,2 = 1j−10j1 can only interfere with one of y3,1 = x3 and y3,0 = x3 and
the contribution is again more than one 1-bit. If y2,0 = x2 interferes with y1,1 = 1 and
gives a contribution of the form 10j1, then x2 is of the form 11110j−41, 111110j−51
or 1111110j−61. We compute y2,2 in all theses cases and conclude that this summand
contributes with more than one 1-bit when it interacts with x3.

(4) s(y3,3) = 2. We have x3 = 11.
First, we assume that x0 = 1. We have the following cases:

s(y3,2) s(y1,0) x2 y2,2
2 3 (10)311 111001000111001
2 2 (10)411 1110001111000111001
2 1 (10)511 11100011100111000111001
3 2 (10)411 1110001111000111001
3 1 (10)511 11100011100111000111001
4 1 (10)511 11100011100111000111001

In each case, y2,2 may interfere with one of y3,1 = x3 · x1 and y3,0 = 11. In both cases;
this interference is always more than one 1-bit due to the submultiplicativity property of
the sum of digits function. Indeed, this fact ensure that s(x3 · x1) ≤ s(x3) · s(x1) ≤ 6 and
it is not sufficient to cancel all the inner 1-bits in y2,2.

Secondly, assume that x0 ̸= 1. Then, s(y0,0) = s(y1,0) = s(y3,2) = 2 and so x0 = 11,
x1 = (10)i11 and x2 = (10)j11 for some positive integers i and j such that i+ j = 3. (The
case x1 = 1 and/or x2 = 1 is easier and can be treated in a similar fashion.) By symmetry
we may suppose i < j.
(a) If j = 3, then x2 = 10101011 and x1 = 11, and we have y2,2 = 111001000111001.

This summand may interfere with one of y3,1 = 1001 and y3,0 = 1001, but this
contribution is always more than one 1-bit.

(b) If j = 2, then x2 = 101011 and x1 = 1011. Then we have y2,2 = 11100111001.
This summand may interfere with one of y3,1 = 100001 and y3,0 = 1001, but this
contribution is always more than one 1-bit.

Therefore, the proof of Lemma 9 is complete for m = 3.

4.4. The case m = 4. There are nine independent summands y4,4, . . . , y4,0, . . . , y0,0 each contribut-
ing to n2 with at least one 1-bit and at most (k− 8) 1-bits, see Figure 3. While there will be more
restrictions compared to the previous cases due to the fact that there are more independent terms,
the downside is that we have now three levels of interaction in the interference graph.

Let k = 9 . This is the easiest case since it implies that all of these summands contribute to n2

with exactly one 1-bit. We have y4,4 = y4,3 = y1,0 = y0,0 = 1 it implies that x4 = x3 = x1 = x0 = 1

14

and s(x2) = 5. The summand y4,2 = x2 can only interfere with y3,3 = 1 and the result of adding
these two summands has to be a power of 2; this is only possible if x2 = 11111. Now, the summand
y2,2 = 111100001 can interfere with two of the summands y3,1, y4,1, y3,0 and y4,0 . As each of these
four summands is 1, this contribution to n2 has more than one 1-bit. This concludes this case.

For k = 10 , among the nine independant summands, only one can contribute with two 1-bits.
We immediately obtain that x0 = x4 = 1 and one of x1 and x3 is 1.

(1) x3 ̸= 1 (or symmetrically x1 ̸= 1). We see that s(x3) = s(y4,3) = 2 and s(x2) = 5. The
factor y2,0 = x2, which can only interfere with y1,1 = 1, has to contribute with one 1-bit
only, therefore, x2 = 11111. Now, the summand y2,2 = 1111000001 can interfere with
two of the summands y3,1 = x3, y4,1 = 1, y3,0 = x3, and y4,0 = 1. This contribution to n2

has more than one 1-bit.
(2) x3 = x1 = 1. We have s(x2) = 6 and the factor y2,0 = x2, which can only interfere with

y1,1 = 1, has to contribute with one 1-bit only. Indeed if it contributes with more than
1-bit, by symmetry y4,2 will interfere with y3,3 = 1 with more than one 1-bit and we have
a contradiction. In fact, if x2 ̸= 111111, then the factor y2,0 = x2 (resp. y4,2 = x2), which
can only interfere with y1,1 = 1 (resp. y3,3 = 1) contributes contribute with more than one
1-bit. Therefore, x2 = 111111. The summand y2,2 = 111110000001 can interfere with
two of the summands y3,1 = 1, y4,1 = 1, y3,0 = 1, and y4,0 = 1 and its contribution to n2

has to be at most two 1-bits. There is a solution for the given conditions as the summands
may be shifted against each other. However, as we will see next, the contradiction arises
when we try to find a solution for ℓ̂1, . . . , ℓ̂4, where

ℓ̂j =

j∑
i=1

ℓi + |xi−1|

(we refer to Section 3 for the notation). The following pairs of summands have to interfere
with each other such that their contribution has one 1-bit only:

(y2,0, y1,1), (y3,0, y2,1), (y4,1, y3,2), (y4,2, y3,3).

More precisely, their least significant bits have to align:
ℓ̂2 + 1 = 2ℓ̂1 =⇒ ℓ̂2 = 2ℓ̂1 − 1.

ℓ̂3 + 1 = ℓ̂2 + ℓ̂1 + 1 =⇒ ℓ̂3 = 3ℓ̂1 − 1.

ℓ̂4 + ℓ̂1 + 1 = ℓ̂3 + ℓ̂2 + 1 =⇒ ℓ̂4 = 4ℓ̂1 − 2.

ℓ̂4 + ℓ̂2 + 1 = 2ℓ̂3.

Recall that ℓ̂0 = 0. Thus, the summands y2,2, y3,1, and y4,0 align as
111110000001

1

1

and their contribution to n2 is 111110000111 which is too much.

For k = 11 we distinguish the following cases:

(1) x4 ̸= 1. The summands y4,4 and y4,3 have to contain two 1-bits and all other summands
only contribute with one 1-bit. Thus x4 = 3 and x1 = x0 = 1. As s(y4,3) = 2, we have
x3 = (10)i11 for some 0 ≤ i ≤ 4. Furthermore y2,0 = x2 can only interfere with y1,1 and
this summand has to contribute with only one 1-bit so that x2 = 1k for some 1 ≤ k ≤ 5. Yet

15

the summand y4,2 can only interfere with y3,3. The statement
∑

0≤i≤4 s(xi) = 11 implies
i+ k = 5. Thus the possible values for the couple (y4,2, y3,3) are:

y4,2 y3,3
1011101 1001
101101 1111001
10101 11100111001
1001 111001000111001
11 1110001111000111001

This gives a contribution to n2 that has more than one 1-bit.
(2) x0 ̸= 1. This is symmetric to the previous case.
(3) x4 = x0 = 1. By symmetry we may assume that s(x3) ≥ s(x1). As each of the nine indepen-

dent summands has to contribute to n2 with at least one 1-bit, by inspection of y4,3 = x3
we have s(x3) ≤ 3. By an inspection of y1,0 = x1, we have in the same way s(x1) ≤ 3. If
s(x3) = 3, then s(x1) = 1. We finally have to discuss the following four cases:

s(x3) s(x1) s(x2)

3 1 5
2 2 5
2 1 6
1 1 7

For the first line in this table, except for y4,3 = x3, all contributions have to be exactly one
1-bit. Since y2,0 = x2 can only interfere with y1,1 = 1, we have x2 = 11111. Furthermore,
y4,2 = x2 can only interfere with y3,3 = x23 and this contribution has to be a single 1-
bit. This happens if and only if (x23)2 = 1 · · ·100001, i.e. x23 correspond to the integer
1 + 25(2λ − 1) for some λ ≥ 1 . We can solve this such as in the case m = 2, k = 11 (c), or
more directly with the following calculation: Write x3 = 1 + 2a + 2b for some 0 < a < b.
Then

x23 = 1 + 2a+1 + 2b+1 + 22a + 2a+b+1 + 22b,

= 1 + 2a+1(1 + 2b−a + 2a−1 + 2b + 22b−a−1).

Thus we have a = 4 and all other power of 2 have to be consecutive. This implies in
particular b− a = 2 and b = 3. This is not possible since a < b.

For the second line, x1 = 10i1 for some i ≥ 0. Thus y1,1 = 1001 for i = 0 or 10i−110i+11
for i ≥ 1. Again, the summand y2,0 = x2 can only interfere with y1,1 and this contribution
has more than one 1-bit except for the cases (x1, x2) = (11,110111) and (101,1100111).
For i ≥ 2, having a contribution of one 1-bit implies that s(x2) ≥ 6, and the blocks of 0-bits
of y1,1 are too large to be covered. Yet y4,2 = x2 can only interfere with y3,3 with only one
1-bit and we have the same result as before. The value of x2 sets the values of x1 and x3,
and we have to study the two following cases:
(a) If x2 = 110111, then we have x1 = x3 = 11. This implies y3,2 = 10100101 and y3,2

can interfere with y4,1 = x1 and y4,0 = x0. In all cases the contribution is more than
one 1-bit.

16

(b) If x2 = 1100111, then we have x1 = x3 = 101. This implies y3,2 = 1000000011 and
y3,2 can interfere with y4,1 = x1 and y4,0 = x0. In all cases the contribution is more
than one 1-bit.

For the third line, we have that y2,0 = x2 can only interfere with y1,1 = x21 = 1 with at
most two 1-bits. We write x3 = 10i1 for some i ≥ 0. We distinguish two cases according
to this contribution.
(a) If this contribution has only one 1-bit then we have x2 = 111111. Yet y4,2 = x2 can

only interfere with y3,3 = x23 and the contribution has at most two 1-bits. This im-
plies x3 ∈ {11,1001,100001,10000001}, i.e i ∈ {0, 2, 4, 6}. To see this, if i ≥ 8,
the 0-blocks are too large in x23 and we can check all other possible values of i
directly. In all theses cases the contribution is exactly of two 1-bits. The sum-
mand y3,2 = x3x2 can only interfere with y4,1 = 1 and y4,0 = 1. Since x3,2 ∈
{10111101,1000110111,100000011111,1111110111111}, all of theses contribu-
tions are more than one 1-bit.

(b) Suppose now that the contribution between y2,0 and y1,1 is exactly two 1-bits. We then
have x2 = 1011111 or x2 = 1111101. Moreover, y4,2 = x2 can only interfere with
y3,3 = x23 and this contribution has to be exactly one 1-bit. However, in both cases,
this contribution exceeds one 1-bit, by a similar argument as before for the different
values of i.

For the fourth line, the summand y2,0 = x2 can only interfere with y1,1 = x1 with at
most three 1-bits. As in the precedent case, we have a contribution of one 1-bit if and only
if x2 = 1111111, resp., a contribution of two 1-bits if and only if

x2 ∈ {10a111111 : a ≥ 1} ∪ {1111110a1 : a ≥ 1} := B2,

resp., a contribution of three 1-bits if and only if
x2 ∈ {10a

′
10a11111 : a, a′ ≥ 1} ∪ {10a′111110a1 : a, a′ ≥ 1}

∪ {111110a′10a1 : a, a′ ≥ 1}.
Denote this last union by B3.
(a) If x2 ∈ B3 then y4,2 can only interfere with y3,3 = 1 resulting in one 1-bit. This is not

possible since y4,2 = x2.
(b) If x2 ∈ B2 then y4,2 = x2 can only interfere with y3,3 = 1 with at most two 1-bits. If

this contribution does not exceed two bits, it has to be exactly two 1-bits by the form
of the binary expansion of x2. This implies that the summand y3,2 = x2 can interfere
with y4,1 = 1 and y4,0 = 1 with at most one 1-bit. This is not possible.

(c) If x2 = 11111111 then we have y2,2 = 11111100000001 can interfere with y4,1,
y4,0, y3,1 and y3,0 and all contributions should be equal to 1 in the end. All theses
contributions have more than one 1-bit since the 0-block is too large.

Therefore, the proof of Lemma 9 is complete for m = 4.

4.5. The case m = 5. There are eleven independent summands y5,5, . . . , y5,0, . . . , y0,0 each con-
tributing to n2 with exactly one 1-bit. We have not drawn the interference graph since it gets too
large and it is not needed to follow the argument. Recall that we here necessarily have k = 11 .
Since y5,5 = y5,4 = y1,0 = y0,0 = 1 then x5 = x4 = x1 = x0 = 1. The summand y5,3 = x3 can only
interfere with y4,4 = 1 and the result of these two summands has to be a power of two. The same
remark is also true for y2,0 which could only interfere with y1,1 = 1. We therefore have x3 = 1n3

and x2 = 1n2 for some n3 ≥ 1 and n2 ≥ 1 such that n3 + n2 = 7.

17

(1) If n3 = 6, i.e. x3 = 111111, then y3,3 = 111110000001 can interfere with three of the
summands y5,2, y5,1, y5,0, y4,2, y4,1, and y4,0. As each of these six summands is 1, this con-
tribution to n2 has more than 1-bit since the 0-block of y3,3 containing 6 consecutive 0-bits
is too large.

(2) If n3 = 5, i.e. x3 = 11111 and x2 = 11. Then y3,3 = 1111000001 can interfere with three
of the summands y5,2 = y4,2 = 11, y5,1 = y5,0 = y4,1 = y4,0 = 1. We conclude as done
previously.

(3) If n3 = 4, i.e x3 = 1111 and x2 = 111 then y3,3 = 11100001 can interfere with three of
the summands y5,2 = y4,2 = 111, y5,1 = y5,0 = y4,1 = y4,0 = 1. There exists a solution to
this which is graphically presented as follows:

1111100001

111

1

1

Here we have to study other situations of interference in order to deduce a contradic-
tion. The following pairs of summands have to interfere and to contribute with one 1-bit:
(y2,0, y1,1), (y3,0, y2,1), (y5,2, y4,3), (y5,3, y4,4). More precisely, their last significant bits have
to align: 

ℓ̂2 + 1 = 2ℓ̂1.

ℓ̂3 + 1 = ℓ̂2 + ℓ̂1 + 1.

ℓ̂5 + ℓ̂2 + 1 = ℓ̂4 + ℓ̂3 + 1.

ℓ̂5 + ℓ̂3 + 1 = 2ℓ̂4.

This implies ℓ̂2 = 2ℓ̂1− 1, ℓ̂3 = 3ℓ̂1− 1, ℓ̂4 = 4ℓ̂1 and ℓ̂5 = 5ℓ̂1. Thus the summand y3,3 does
not align in a correct way with all the other summands. In fact, since we are looking for
one 1-bit of contribution, we need an alignment of the first bit. Here this is not the case
since all the following values are different

2ℓ̂3 = 6ℓ̂1 − 2

ℓ̂5 + ℓ̂2 + 1 = 7ℓ̂1.

ℓ̂4 + ℓ̂2 + 1 = 6ℓ̂1.

ℓ̂5 + ℓ̂1 + 1 = 6ℓ̂1 + 1.

ℓ̂5 + 1 = 5ℓ̂1 + 1.

ℓ̂4 + ℓ̂1 + 1 = 5ℓ̂1 + 1.

ℓ̂4 + 1 = 4ℓ̂1 + 1.

This provides us with the wanted contradiction.
(4) If 1 ≤ n3 ≤ 3 then it turns out that x2 = 1n2 for some 4 ≤ n2 ≤ 6 which is symmetric to

one of the previous cases.
Therefore, the proof of Lemma 9 is complete for m = 5, and since all cases 1 ≤ m ≤ 5 are

treated, this finishes the proof of Lemma 9 and therefore of Theorem 1.

5. On the equation s(n2) ∈ {4, 5}

The aim in this section is to study the equations s(n2) ∈ {4, 5} in odd integers. Compared to
the previous sections, the point of view is different here as there is no precondition on the weight
of n. Since there is neither an a priori bound on the length of n, a simple direct computation
is not sufficient to determine finiteness of solutions. Our aim is to solve these equations for all n
composed by as many 1-bits as possible. The heuristic is that the larger the weight of n the more

18

unlikely such an n can be solution of s(n2) ≤ 5, since carry propagations have to cancel out more
and more bits. In view of Conjecture 2, under this heuristic, this shows that it is more and more
improbable to find new solutions other than those given by that conjecture.

5.1. The case s(n2) = 4. Let n be an odd integer with s(n) = k ≥ 9 such that s(n2) = 4. To
start with, we can suppose that k ≥ 9 since all the other cases are done in [9], but our algorithms
could also handle smaller k. Write n = 1 + 2ℓm with ℓ ≥ 1 and m an odd integer which satisfies
s(m) = k − 1. Thus we have n2 = 1 + 2ℓ+1m + 22ℓm2 and it implies that s(2ℓ+1m + 22ℓm2) = 3.
Otherwise said, we have
(17) s(m+ 2ℓ−1m2) = 3.

At this point there are two possible ways to attack the problem. The first one would be to use
Lemma 8, more precisely, a specific case in its proof where the upper bound can be improved,
see [10]. This allows to get
(18) m(1 + 2ℓ−1m) ≤ 2k(k−1)−13,

and therefore we would have m < 2k(k−1)−(ℓ−1)/2−2 which in turn implies a bound on ℓ and what
would remain is to use the algorithm next for each such ℓ to find the set of the solutions. However,
this method is not sufficient for the case s(n2) = 5 and this is the main reason that we have
created the algorithm max-integer that we describe shortly in the sequel (we give a more detailed
description in Section 6).

According to (17) we have to allocate three 1-bits in the sum S = m + 2ℓ−1m2. In order to do
so, we use the basic fact that if two integers a, b satisfy a ≡ b (mod 2λ) then a2 ≡ b2 (mod 2λ+1)
for all λ ≥ 2, and if a ≡ b (mod 2) then a2 ≡ b2 (mod 8). In this way if we write the binary
decomposition of m bit by bit from the least significant digits to the highest significant digits, then
we can also deduce at the same time the binary decomposition of 2ℓ−1m2 bit by bit again from
the least significant digits to the highest significant digits. The algorithm tests if the next bit in
the binary decomposition of m could be a 1-bit or a 0-bit in order to satisfy (17). Since we have
supposed a bound on the weight of m, the algorithm stops when the allowed amount of 1-bits is
reached.

We show an example where we suppose ℓ = 1 and the ℓ(m) least significant digits of S to be 0.
The first (rightmost) bit we add in the binary structure of m is a 1-bit in order to propagate the
carry. We can deduce the second bit of m2 but in this case it is already determined, it is a 0-bit.
Since we have supposed that there are no 1-bits on the lower significant part of the sum S, the
third bit of m is necessarily a 1-bit, and m ≡ 7 (mod 8). Thus m2 ≡ 1 (mod 16), and the fourth
bit of m2 is a 0-bit. By iterating this argument we see that we can only add 1-bits in m and we
obtain the following sum with a block of (k−1) 1-bits in m (as before, we write (*) for an arbitrary
finite string of bits).

1 · · · 1 1 1 = m
+ (*) 0 · · · 0 0 1 = m2

(*) 0 · · · 0 0 0 = S.

The algorithm also considers the cases where the right part of S contains one and two 1-bits,
see Section 6, the case above describes the main idea of the algorithm.

For the search algorithm to work efficiently, we are interested in finding good bounds for ℓ. In
fact, there is a much better bound for ℓ than the one given by (18):

19

Lemma 10. Let n be an odd integer such that s(n) = k ≥ 4, s(n2) = 4 and n = 1+2ℓm with ℓ ≥ 2
and m an odd integer. Then we have ℓ ≤ 2k.

Proof. Suppose that ℓ > 2k and set S = m+ 2ℓ−1m2. Then s(S) = 3 and S is an odd integer. We
consider the following addition (ω, ω′ are binary words, and εi ∈ {0,1}):

ω εℓ−3 · · · ε0 1 = m
+ (*) ω′ 1 = 2ℓ−1m2

(*) (*) (*) εℓ−3 · · · ε0 1 = S.

The block εℓ−3 · · · ε0 is composed of at most one 1-bit since S contains three 1-bits and carries
propagate only to the higher significant digits. We distinguish two cases according to the ℓ(m)
lowest significant bits of S (note that this part contains well the contribution of ω from the first
summand m and its interference with the rightmost 1-bit of 2ℓ−1m2). This part will be called the
(binary) right part of S. It contains at least one 1-bit (the parity bit), and at most two 1-bits
(which includes the parity bit). It cannot contain three 1-bits since the second summand has a
binary expansion strictly longer than the first summand.

We write w for the integer whose binary expansion corresponds to ω.

(1) The right part of S contains only the parity 1-bit. This implies that εi = 0 for all 0 ≤ i ≤
ℓ − 3. This means that m = 1 + 2ℓ−1w and m2 = 1 + 2ℓw + 22ℓ−2w2. Thus the ℓ lower
significant bits of m2 are all 0-bits except the parity 1-digit:

ω 0 · · · 0 1 = 1 + 2ℓ−1w
+ ω 0 · · · 0 1 = 2ℓ−1(1 + 2ℓw)
+ ω2 0 · · · 0 · · · 0 0 = 2ℓ−1 × 22ℓ−2w2

(*) (*) (*) 0 · · · 0 1 = S.

Now, consider the additions of ω and 1 in the middle part between the first and the
second summand. Since ℓ > 2k > k, the word ω in the second summand does not interfere
with the ω of the first summand. This implies that ω is a single block of (k−1) consecutive
1-bits since otherwise the carry does propagate sufficiently far. This implies that

m = 1 + 2ℓ−1(2k−1 − 1).

Thus m2 = 1 + 2ℓ(2k−1 − 1) + 22ℓ−2(22k−2 − 2k + 1), and we have
m+ 2ℓ−1m2 = 1 + 2ℓ−1(2k−1 − 1) + 2ℓ−1 + 22ℓ−1(2k−1 − 1) + 23ℓ−3(22k−2 − 2k + 1)

= 1 + 2ℓ−2+k + 22ℓ−1(2k−1 − 1) + 23ℓ−3(22k−2 − 2k + 1).

Since ℓ > 2k, the terms in the above sum are non-interfering and therefore m+2ℓ−1m2 has
too many 1-bits.

(2) The right part of S contains two isolated 1-bits.
There are two cases:
If this 1-bit is located within the block εℓ−3 · · · ε0 then there exists i0 such that εi0 = 1

and εi = 0 for i ̸= i0. Thus m = 1 + 2i0 + 2ℓ−1w, with 1 ≤ i0 < ℓ− 1, and
2ℓ−1m2 = 2ℓ−1 + 2i0+ℓ + 22i0+ℓ−1 + 22ℓ−1w + 2i0+2ℓ−1w + 23ℓ−3w2.

(a) If 2i0 ≥ ℓ then we have 2ℓ−1m2 = 2ℓ−1 + 2i0+ℓ + 22ℓ−1w′ for some integer w′. With a
similar argument as in the former case, we get

m = 1 + 2i0 + 2ℓ−1((2i0 − 1) + 2i0+1(2k
′ − 1)),

20

for some k′ ≥ 0 with k′ + i0 = k− 2. This leads to i0 ≥ ℓ/2 > k > k− 2, which gives a
contradiction.

(b) If ℓ/4 < i0 < ℓ/2 then we have 22i0+ℓ−1 < 22ℓ and this implies that m has the form
m = 1 + 2i0 + 2ℓ−1((2i0 − 1) + 2i0+1(2i0−1 − 1) + 22i0+1(2k

′ − 1)).

This leads to s(m) ≥ 2i0 > ℓ/2 > k, which gives again a contradiction.
(c) If i0 ≤ ℓ/4, then we have 2ℓ−1m2 = 2ℓ−1 + 2i0+ℓ + 22i0+ℓ−1 + 22ℓ−1w′ for some integer

w′ and we obtain
m = 1 + 2i0 + 2ℓ−1((2i0 − 1) + 2i0+1(2i0−1 − 1) + 22i0+1(2ℓ−2i0−1 − 1)).

This leads to s(m) ≥ ℓ− 2i0 ≥ ℓ/2 > k, which gives a contradiction.

If εi = 0 for all i then we have two remaining cases. If w is even then we can use the
same reasoning as before in the case (2) (a) since S has two isolated 1-bits. If w is odd
then we write ω = ω′01λ, with a possibly empty binary word ω′ and 1 ≤ λ ≤ k−1. We can
suppose that ω′ is not empty since ω = 1k−1 is already done in the case (1). Otherwise, S
has two isolated 1-bits and ω′ is composed by a 0-block of length at least ℓ. Therefore we
can conclude with the same argument as before.

□
Our implementation of the algorithm max-integer shows that all odd solutions n such that

s(n) ≤ 17 are (ℓ,m) ∈ {(3, 2), (1, 7), (1, 23), (1, 55)} and this translates into∪
λ≤17

E4,λ = {13, 15, 47, 111},

which is (10) in Theorem 2.

5.2. The case s(n2) = 5. The following result implies (12) in Theorem 2.

Lemma 11. Let n be an odd integer such that s(n2) = 5. Then:
(1) There is only a finite number of odd n such that s(n) ≥ 4.
(2) If s(n) = 3, then n is of the form

1 + 2ℓ + 2ℓ+1, 1 + 2 + 2ℓ, or 1 + 2ℓ + 22ℓ−1,

for some ℓ ≥ 3.

Proof. We adapt Lemma 2 when the amount of 1-bits in the square is fixed to be 5. The implied
constant (i.e. the constant Nk appearing in its proof) will be different but we still we get that if
there were an infinite number of solutions, then almost all (i.e. all but a finite number) of these
solutions can be factorized this way. We again distinguish according to the number m of blocks in
the factorization.

• m = 1. We have (n)2 = x10 · · ·0x0, with a large inner block of 0-bits. By symmetry we can
suppose that s(x1) ≥ s(x0). Since we have the three independents contributions x21, x1 · x0
and x20 for n2, we see that exactly one of them has to contain one single 1-bit. Thus x0 = 1
andl s(x21) + s(x1) = 4, i.e x1 = 3. Then n is on the form 1+ 2ℓ +2ℓ+1 for sufficiently large
ℓ. We can easily check that this form is valid for all ℓ ≥ 3. By symmetry we have a second
infinite family, namely 1 + 2 + 2ℓ for ℓ ≥ 3.
• m = 2. We use the interference graph given in Figure 1 to deduce that x2 = x1 = x0 = 1
and the contribution of x21 + x2 · x0 is only of one 1-bit. This implies that n is of the form
1 + 2ℓ + 22ℓ−1 for sufficiently large ℓ. As before, we can check that this form is valid for all
ℓ ≥ 3.

21

□
We now show how to obtain (11) via the algorithm max-integer. The method used here is

similar to the previous case. We suppose k ≥ 4 to avoid the infinite families in Lemma 11. Let n
be an odd integer such that s(n) = k ≥ 4 and s(n2) = 5. Let us write n = 1 + 2ℓ1 + 2ℓ1+ℓ2m with
m an odd integer with s(m) = k − 2 and ℓ1, ℓ2 ≥ 1. We have

n2 = 1 + 2ℓ1+1 + 22ℓ1 + 2ℓ1+ℓ2+1m+ 22ℓ1+ℓ2+1m+ 22ℓ1+2ℓ2m2.(19)
We evaluate the number of isolated bits and deal with different cases according to the values of

ℓ1 and ℓ2.
(1) ℓ1 = 1. Here (19) becomes

n2 = 1 + 23 + 2ℓ2+2m+ 2ℓ2+3m+ 22ℓ2+2m2.

Two subcases cases arise:
(a) ℓ2 > 1. We here have two isolated bits (associated with the powers 1 and 23) and this

leads to
s(m · (3 + 2ℓ2m)) = 3.

By a small adaptation of the algorithm max-integer, we find that the only solutions
are ℓ2 = 2,m = 11 and ℓ2 = 3,m = 3. Thus n = 51 and n = 91 satisfy s(n2) = 5.

(b) ℓ2 = 1. We have
s(1 + 3m+ 2m2) = s((2m+ 1) · (m+ 1)) = 4.

Again, we adapt the algorithm max-integer and the solutions for m is the set
{7, 19, 23, 55, 69, 119, 181, 367}.

The set of solutions for n is therefore
{31, 79, 95, 223, 279, 479, 727, 1471}.

We mention that it is this case that motivated us to create the algorithm max-integer
since the results from [10] are not sufficient to conclude.

(2) ℓ1 > 1. This leads to two isolated bits (corresponding to the power 1 and 2ℓ1+1). Thus (19)
becomes

s(2ℓ1 + 2ℓ2+1m+ 2ℓ1+ℓ2+1m+ 2ℓ1+2ℓ2m2) = 3.

A last adaptation of the algorithm gives n ∈ {29, 157, 5793} as the solution set.
Thus we have∪

4≤λ≤15

E5,λ = {29, 31, 51, 79, 91, 95, 157, 223, 279, 479, 727, 1471, 5793},

which is (11). Note that the solution with the largest weight is 1471 with s(1471) = 9.

6. Description of the algorithms

6.1. Algorithm next. The aim is to generate efficiently all odd integers smaller than a fixed bound
with a fixed weight, and most importantly, the sets

∆ℓ1,ℓ2,m = {n ∈ N : s(n) = ℓ1, s(n2) ≤ ℓ2, n < 2m, n odd},
that we needed for our applications. The following result gives, starting from a given integer, the
smallest integer with same weight larger than the given integer .

22

Lemma 12. Let n ≥ 1 be an integer. Write (n)2 = x01b+10c for some b, c ≥ 0 and x a possibly
empty binary word. Then the next integer by increasing order, denoted by m, with s(m) = s(n) is
(m)2 = x10c+11b.

Proof. It is clear that s(m) = s(n) and suppose there exist an integer p such that s(p) = s(m) and
n < p ≤ m. Since p > n and s(p) = s(n), a bit of index ≥ c + b + 1 of p is 1 because 1b+10c is
the expansion of the largest integer of length c+ b+ 1 with weight b+ 1. Since p ≤ m, this index
is exactly c + b + 1. By p ≤ m, the binary expansion of p begins with a 1-block of length b. This
implies p = m. □

The algorithm next is a translation of Lemma 12. Given an integer n, the algorithm constructs
the next integer by increasing order with same weight.

Algorithm 1: next
1 Procedure next(n):
2 c = index of the least significant set bit n ;
3 n = n/2c ;
4 n = n+ 1 ;
5 b = index of the least significant set bit n -1 ;
6 n = 2c · n ;
7 n = n|2b ; /* | is the OR operator */
8 n = n− 1 ;

Now, having constructed the set of integers with fixed weight, the second step is to determine the
weight of their squares. The program uses the fact that for an integer n of the form n = m+ 2Lp
and m < 2L, we have n2 = m2+2L+1mp+22Lp2. Thus the L+1 lowest significant digits of n2 are
determined by m, i.e. the lower part of n. In our study, we are interested in integers whose squares
contain only a small number of 1-bits. As a consequence, if the lower part of n2 contains already
too many 1-bits, then we can already reject the integer as a solution, and it is not necessary to
compute explicitly all the square n2. This preliminary calculus reduces drastically the computation
time. For efficiency and practical issues, we have implemented this algorithm with L = 64.

We have parallelized our program and distributed the calculation on multiple threads according
to a suffix before making the next procedure. Indeed, for a fixed a we can consider integers of the
form n = 1 + 2a + 2a+1m for odd m and to find next(n) it is sufficient to execute next(m). This
is equivalent to fix the place of the second 1-bit in n. The cutting is therefore done via

∆ℓ1,ℓ2,a,m = {n ∈ N : s(n) = ℓ1, s(n
2) ≤ ℓ2, the second bit of n is a , n < 2m, n odd}

and

∆ℓ1,ℓ2,m =

m−ℓ1+1∪
a=1

∆ℓ1,ℓ2,a,m.

This cutting was necessary to conclude for the case k = 11 of (1), when m = 1.
Another issue arises with this parallelization. The number of integers in ∆ℓ1,ℓ2,a,m is not equiv-

alent. The smaller the value if a, the larger is the cardinality of ∆ℓ1,ℓ2,a,m. We have supposed that
the time of computation for each integer is similar (this is heuristically supported by the use of the
same binomial coefficients). With a preliminary calculation, we designed specific implementations
for each thread. By doing so, we could again reduce the global computation time.

23

6.2. Algorithm max-integer. We describe the algorithm for the equation s(n2) = 4, which can
be written as s(y + 2ℓ−1y2) = 3 for a fixed weight s(y) = k (see Section 5.1). The other cases are
similar and only need some minor changes in the implementation.

Denote by λ the unique integer such that 2λ−1 ≤ y < 2λ and consider the following scheme for
y + 2ℓ−1y2:

1 · · · εℓ · · · ε1 1 = y
1 · · · ηλ−1 · · · · · · 1 = 2ℓ−1y2

y1 y2

We cut the sum into two binary blocks, y1 and y2. We have to allocate in total three 1-bits for
y2 and y1. We know that s(y1) ≥ 1 since the most significant digit of y+2ℓ−1y2 lies in the y1-part.
Let us focus on the case where ℓ = 1, the other cases are similar.

As explained before, we tackle this problem step by step by adding bits in the binary decom-
position of y. In this algorithm, we consider the binary blocks such as 011 and 11 to be different
since we have more knowledge for the first block. In fact, in this context, it is more useful to see
them as words rather than integers.

We say that a binary word ω is a candidate if the right part of the sum of ω+ω2 (by a slight abuse
of the notation) has at most two 1-bits for a certain length of the block. If ω is a candidate then
we can extend ω to 0ω and 1ω to the left and check if these two new words are again candidates.
If a word ω is not a candidate, then it is not possible to extend it to a candidate word since the
lower bits contains already too many 1-bits and these bits are not influenced by adding new bits
to ω since carry propagation is directed towards the higher significant digits. The algorithm starts
with the word ω = 1, constructs candidates, translates them into integers and checks whether they
satisfy s(n2) = 4. The algorithm stops when candidates cannot be extended.

For the algorithm to stop, we have two conditions. The first condition is at the core of the
algorithm: a word that is already of weight k cannot be extended anymore with additional 1-bits,
so candidates have ≤ k 1-bits. The second condition is on the length of the possible leading block
of 0-bits of a candidate of the form 0 · · ·0ω. We have the following result.

Lemma 13. Let ω be a candidate of length λ. Then the word 10λω is not a candidate.

Proof. In this case we have the following sum
1 0 · · ·0 ω = m

+ 1 0 · · ·0 ω 0 · · ·0 0 ω2 = m2

1 ω 1 ω2 + ω

The sum contains always more than three 1-bits. □
Thus the algorithm is the following.

24

Algorithm 2: max-integer
1 Procedure max-integer(k):
2 S=[1] ; /* Stack of all candidates */
3 while S is not empty do
4 ω=S.top() ; /* Top element of the stack */
5 n = 1 + 2ω ;
6 if s(n2) = 4 then
7 print(n)
8 S.pop() ; /* remove ω from the stack */
9 if 1ω is a candidate and s(ω) < k then

10 S.push(1ω) ; /* add 1ω to the top of the stack */
11 if 0ω is a candidate and 2*(length of leading zeros of 0ω) < length of ω then
12 S.push(0ω) ; /* add 0ω to the top of the stack */

With respect to Theorem 2, (10), our implementation of the algorithm takes 102 sec to end for
s(n) = 16 and 2h 50min for s(n) = 17 with a desk machine Intel(R) Core(TM) i9-9980HK CPU @
2.40GHz. The code program is available here:
https://gitlab.inria.fr/jamet/on-the-binary-digits-of-n-and-n2.

7. The remaining cases k = 14, 15

We here consider the problem of determining the solutions of
s(n) = s(n2) ∈ {14, 15},

which are the last two remaining cases in the original problem. These cases are much more difficult
than the previous ones since we cannot rely on the former cases to resolve the problem. As already
mentioned in Section 1, (2)–(4), there are infinitely many solutions for s(n) = s(n2) ∈ {12, 13}.

To tackle these remaining cases, we improved our programs that determine the sets ∆ℓ1,ℓ2,m. For
the case k = 14, there are many more subcases than before, and the investigation gets extremely
cumbersome. We still can rely on Lemma 2 which gives decompositions into m blocks with 1 ≤
m ≤ 6 for sufficiently large solutions.

For the case m = 1, we give in the sequel the constants implied by Lemma 7 and Lemma 8.
This demonstrates the difficulty of the computation. Such as before, write (n)2 = x10 . . .0x0. By
symmetry we can suppose that s(x1) ≥ s(x0). In this case we have s(x1)

2, s(x20) ≤ 10 and the
following table (see also Section 4.1):

s(x1) s(x0) Sets ∆ for s(x1x0) = 2 Sets ∆ for s(x1x0) = 3

7 7 ∆7,10,93 × ∆7,10,93 ∆7,9,182 × ∆7,9,182

8 6 ∆8,10,91 × ∆6,10,91 ∆8,9,178 × ∆6,9,178

9 5 ∆9,10,85 × ∆5,10,85 ∆9,9,166 × ∆5,9,166

10 4 ∆10,10,75 × ∆4,10,75 ∆10,9,146 × ∆4,9,146

11 3 ∆11,10,61 × ∆3,10,61 ∆11,9,118 × ∆3,9,118

12 2 ∆12,10,43 × ∆2,10,43 ∆12,9,82 × ∆2,9,82

The algorithm next gives us no solution for s(x1 · x0) = 2 and only the couple (3695, 143) for
s(x1 · x0) = 3. But we have s(36952) + s(1432) = 17 > 11 and then this couple is not a solution.
Therefore there is no infinite family such that m = 1 such as in (2)–(4).

25

https://gitlab.inria.fr/jamet/on-the-binary-digits-of-n-and-n2

For k = 15, we have the following sets to determine:

s(x1) s(x0) Sets ∆ for s(x1x0) = 2 Sets ∆ for s(x1x0) = 3

8 7 ∆8,11,107 × ∆7,11,107 ∆8,10,210 × ∆7,10,210

9 6 ∆9,11,103 × ∆6,11,103 ∆9,10,202 × ∆6,10,202

10 5 ∆10,11,95 × ∆5,11,95 ∆10,10,186 × ∆5,10,186

11 4 ∆11,11,83 × ∆4,11,83 ∆11,10,163 × ∆4,10,163

12 3 ∆12,11,67 × ∆3,11,67 ∆12,10,130 × ∆3,10,130

13 2 ∆13,11,47 × ∆2,11,47 ∆13,10,90 × ∆2,10,90

Finally, we have made a global search for s(n2) = s(n) = 11, 12, 13, 14, 15 for n < 280 with a
triple cutting. We found the following proportions:

k Proportion of odd integers such that
s(n) = s(n2) = k for n < 280

Running time Number of cores used

11 4 · 10−10 2min 19sec 659
12 1.5 · 10−10 4min 58sec 480
13 7.2 · 10−11 32min 25sec 360
14 2.6 · 10−11 3h 34min 43sec 277
15 1.2 · 10−11 23h 24min 47sec 218

These five proportions are similar but there is a clear difference between the cases k = 11 and
k = 12, 13. For k = 11 our algorithm finds that the largest solution is n = 35463511416833 of
binary length 46. The structure in the solutions for k = 12 and k = 13 is clearly different since
we can see a threshold between sporadic solutions and infinite families that are composed by small
blocks. These infinite families already appear before this threshold. For example, for k = 12, we
have that any solution of binary length larger than 55 is of the form 111 · 2t + 111, but this form
is already valid and appears for t ≥ 15.

For k = 14, we still find solutions of binary length 80, such as n = 605643510452789079965697
for example. Nevertheless, no infinite family occurs clearly. For k = 15, the situation is similar:
we have a solution of length 80, for example, n = 605642350760526229274625, again there is no
obvious infinite family and the 1-bits in the solutions do not follow an apparent rule. We believe
that if an infinite family exists for k = 14 or k = 15, it should appear clearly for n < 280 already,
as it is the case for k = 12, 13 and 16. It is therefore likely that there is only a finite number of
solution. We formulated this in Conjecture 1.

This dichotomy between finite and infinite number of solutions for the problem (1) is rather
surprising but seems at the same time to occur frequently in this context, for example, such as
between E3 (see (8)) and the conjectured set E4 (see Conjecture 9). Interestingly enough, there
exist again infinite (independent) families for the twisted system

s(n) = 14, s(n2) = 15,

namely
n = 23 · 2t + 2943, with t ≥ 13,

and
n = 727 · 2t + 727 with t ≥ 21.

26

To perform all calculations in our article, we used the cluster gros that consists of 123 nodes,
Intel Xeon Gold 5220 and 18 cores / CPU, with 96 GiB of memory, see
https://www.grid5000.fr/w/Nancy:Hardware#gros and the code program is available
https://gitlab.inria.fr/jamet/on-the-binary-digits-of-n-and-n2.

Acknowledgements

The authors would like to thank Lukas Spiegelhofer for discussions and a very useful C-program.
This work was supported partly by the French PIA project “Lorraine Université d’Excellence”,
reference ANR-15-IDEX-04-LUE, and by the projects ANR-18-CE40-0018 (EST) and ANR-20-
CE91-0006 (ArithRand). The third author was supported by JSPS KAKENHI Grant Number
19K03439.

References
1. N. L. Bassily and I. Kátai, Distribution of the values of q-additive functions on polynomial sequences, Acta Math.

Hung. 68 (1995), no. 4, 353–361 (English).
2. M. A. Bennett, The polynomial-exponential equation 1 + 2a + 6b = yq, Period. Math. Hungar. 75 (2017), no. 2,

387–397.
3. M. A. Bennett and Y. Bugeaud, Perfect powers with three digits, Mathematika 60 (2014), no. 1, 66–84.
4. M. A. Bennett, Y. Bugeaud, and M. Mignotte, Perfect powers with few binary digits and related diophantine

problems, ii, Mathematical Proceedings of the Cambridge Philosophical Society 153 (2012), no. 3, 525–540.
5. A. Bérczes, L. Hajdu, T. Miyazaki, and I. Pink, On the Diophantine equation 1+xa+zb = yn, J. Comb. Number

Theory 8 (2016), no. 2, 145–154.
6. P. Corvaja and U. Zannier, Finiteness of odd perfect powers with four nonzero binary digits, Ann. Inst. Fourier

63 (2013), no. 2, 715–731 (English).
7. L. Hajdu and I. Pink, On the Diophantine equation 1 + 2a + xb = yn, J. Number Theory 143 (2014), 1–13.
8. K. G. Hare, S. Laishram, and T. Stoll, Stolarsky’s conjecture and the sum of digits of polynomial values, Proc.

Am. Math. Soc. 139 (2011), no. 1, 39–49 (English).
9. K. G. Hare, S. Laishram, and T. Stoll, The sum of digits of n and n2, Int. J. Number Theory 7 (2011), no. 7,

1737–1752.
10. H. Kaneko and T. Stoll, Products of integers with few binary digits, Uniform Distribution Theory (2022), to

appear.
11. B. Lindström, On the binary digits of a power, J. Number Theory 65 (1997), no. 2, 321–324.
12. F. Luca, The Diophantine equation x2 = pa ± pb + 1, Acta Arith. 112 (2004), no. 1, 87–101.
13. M. Madritsch and T. Stoll, On simultaneous digital expansions of polynomial values, Acta Math. Hung. 143

(2014), no. 1, 192–200 (English).
14. S.-Y. Mei, The sum of digits of polynomial values, Integers 15 (2015), Paper No. A32, 12.
15. G. Melfi, On simultaneous binary expansions of n and n2, J. Number Theory 111 (2005), no. 2, 248–256.
16. M. Peter, The summatory function of the sum-of-digits function on polynomial sequences, Acta Arith. 104 (2002),

no. 1, 85–96 (English).
17. J. C. Saunders, Sums of digits in q-ary expansions, Int. J. Number Theory 11 (2015), no. 2, 593–611.
18. K. B. Stolarsky, The binary digits of a power, Proc. Am. Math. Soc. 71 (1978), 1–5 (English).
19. L. Szalay, The equations 2n ± 2m ± 2l = z2, Indag. Math. (N.S.) 13 (2002), no. 1, 131–142.
20. , Computational algorithm for solving the diophantine equations 2n ± α · 2m + α2 = x2, Houston J. Math.

46 (2020), no. 2, 295–306.

27

https://www.grid5000.fr/w/Nancy:Hardware#gros
https://gitlab.inria.fr/jamet/on-the-binary-digits-of-n-and-n2

1. Université de Tunis El Manar, Institut Supérieur des Technologies Médicales de Tunis, 9 Rue
Zouhair Essafi, 1006, Tunis, Tunisia; 2. Université de Sfax, Laboratoire d’Algèbre, Géométrie et
Théorie Spectrale, Route de la Soukra, km 3.5, 3000, Sfax, Tunisia

Email address: alouikaram@yahoo.fr

LORIA, Campus Scientifique BP 239, F-54506 Vandœuvre-lès-Nancy, France;
Email address: damien.jamet@loria.fr

Institute of Mathematics, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8571,
JAPAN; Research Core for Mathematical Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba,
Ibaraki, 305-8571, JAPAN

Email address: kanekoha@math.tsukuba.ac.jp

Email address: steffen.kopecki@gmail.com

1. Université de Lorraine, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy,
F-54506, France; 2. CNRS, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy,
F-54506, France

Email address: pierre.popoli@univ-lorraine.fr

1. Université de Lorraine, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy,
F-54506, France; 2. CNRS, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy,
F-54506, France

Email address: thomas.stoll@univ-lorraine.fr

28

	1. Introduction
	2. Main results
	3. Preliminaries
	4. Proof of maintheorem
	4.1. The case m=1
	4.2. The case m=2
	4.3. The case m=3
	4.4. The case m=4
	4.5. The case m=5

	5. On the equation s(n2){4,5}
	5.1. The case s(n2)=4
	5.2. The case s(n2)=5

	6. Description of the algorithms
	6.1. Algorithm next
	6.2. Algorithm max-integer

	7. The remaining cases k=14,15
	Acknowledgements
	References

