Concurrencies in Reversible Concurrent Calculi
Résumé
The algebraic specification and representation of networks of agents have been greatly impacted by the study of reversible phenomena: reversible declensions of the calculus of communicating systems (CCSK and RCCS) offer new semantic models, finer congruence relations, original properties, and revisits existing theories and results in a finer light. But much remains to be done: concurrency, a central notion in establishing causal consistency-a crucial property for reversible systems-, was never given a syntactical definition in CCSK. We remedy this gap by leveraging a definition of concurrency developed for forward-only calculi using proved transition systems, and prove that CCSK still enjoys causal consistency for this elegant and syntactical notion of reversible concurrency. We also compare it to a definition of concurrency inspired by reversible π-calculus, discuss its relation with structural congruence, and prove that it can be adapted to any CCS-inspired reversible system and is equivalent-or refines-existing definitions of concurrency for those systems.
Fichier principal
main.pdf (461.5 Ko)
Télécharger le fichier
main.blg (917 B)
Télécharger le fichier
main.log (55.1 Ko)
Télécharger le fichier
main.out (285 B)
Télécharger le fichier
main.synctex.gz (632.25 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|