
HAL Id: hal-03604983
https://hal.science/hal-03604983v1

Preprint submitted on 10 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an efficient computation of masks for
multichannel speech enhancement

Louis Delebecque, Romain Serizel, Nicolas Furnon

To cite this version:
Louis Delebecque, Romain Serizel, Nicolas Furnon. Towards an efficient computation of masks for
multichannel speech enhancement. 2022. �hal-03604983�

https://hal.science/hal-03604983v1
https://hal.archives-ouvertes.fr


Towards an efficient computation of masks for
multichannel speech enhancement

Louis Delebecque, Romain Serizel, Nicolas Furnon
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Abstract—Most of recent advances in speech enhancement (SE)
have been enabled by the use of complex deep neural network
(DNN) architectures. Although these results are convincing, they
are not yet applicable in small wearable devices like hearing
aids. In this paper, we propose a DNN-based SE which benefits
from the spatial information to simplify the requirements of the
DNN architecture. We show that the DNN inference is the most
time and energy consuming step and we simplify the architecture
of a convolutional recurrent neural network by removing its
recurrent layer. This achieves comparable performance to the
initial architecture, while reducing the processing time and
energy consumption by a factor of 4.4.

Index Terms—Fast inference, speech enhancement

I. INTRODUCTION

Speech enhancement (SE) benefits a lot from spatial in-
formation captured by several devices : using several micro-
phones embedded in one or several devices has shown to
deliver improved performance over single-channel SE [1], [2].
In recent years, DNN-based solutions enabled a great progress
in both single-channel [3], [4] and multichannel [5], [6] SE,
but at the cost of increasingly complex DNN architectures,
requiring powerful devices even at inference, which makes
these solutions impractical in real life if they are to operate
on small wearable devices like hearing aids.

Alleviating the computational cost of DNN-based SE solu-
tions has been the focus of a number of research works and
addressed with different approaches. One way of reducing the
computational cost is to reduce the dimensionality of the input
data, for example by considering low-dimensional features
[7], [8] or by applying an element-selection method [9].
DNN compression [10] has also allowed for significant model
reduction, without impacting too much, if at all, the model
performance. Examples of model compression are network
pruning [11], [12], weights and activations quantization [13],
knowledge distillation into smaller network architectures [14],
or a combination thereof. Fedorov et al. for example direclty
learn a pruned structure by incorporating a penalty in the
loss function, thus avoiding costly hyperparameter search [15].
Rather than compressing a complex DNN, the computational
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cost of a DNN can be alleviated by the design of a simple
architecture. For example Sivaraman et al. accelerate the infer-
ence by selecting a smaller sub-network specialised in specific
sub-conditions [16]. In a similar inference-acceleration spirit,
Chen et al. stop the inference with an early-exit mechanism
when the distance between the output of two successive layers
remains below a given threshold [17].

Despite numerous solutions to reduce the computational
cost of DNN in a SE context, these solutions suffer from
several drawbacks. The first of them is that they barely exploit
the spatial information, although this extra information can
help reducing the complexity of DNNs. Besides, network
pruning does not necessarily translate into faster learning
and inference because most of the software and hardware
implementations are not adapted to sparse structures [18].
Lastly, model compression, especially knowledge distillation,
requires to fine-tune or even retrain the models, which can
have a high cost, in particular when considering the search of
hyperparameters.

In previous works, we introduced a distributed SE sys-
tem for ad-hoc microphone arrays, called Tango [19], [20].
This solution exploits spatial information and relies partly on
classical processing which allows respectively to provide rich
information to DNNs and to alleviate its task.

In this paper, based on this system, we propose an efficient
and fast SE solution, that is a first step towards a real-time
implementation on embedded devices. The original convolu-
tional recurrent neural network (CRNN) architecture of our
DNNs is further simplified by a direct work on the network
architecture, without compression, thus avoiding the process
of retraining models. We perform a detailed ablation study to
better dissociate the effects of all elements of our processing
pipeline and report both time and energy usage of all these
elements. We propose a closer study of the relevance of time
information in our SE. Lastly, the importance of the recurrent
layer in the CRNN is analysed and we show that this layer
can be removed.

II. PROBLEM FORMULATION

A. Notations

In the following, signals will be considered in the short-
time Fourier transform (STFT) domain, where time and
frequency indices are dropped for the sake of conciseness.
Bold lowercase letters will represent vectors. Bold uppercase



Fig. 1: Graphical representation of our distributed SE solu-
tion in a two-node case. Bold arrows represent multichannel
signals, simple arrows represent single-channel signals.

letters will represent matrices. Regular letters will represent
scalars. We consider K nodes of Ik microphones each. The
i-th microphone of the k-th node records a noisy mixture
yk,i = sk,i+nk,i according to an additive noise model, where
sk,i and nk,i are respectively the target speech and the noise
components recorded by the microphone. The signals recorded
by node k are stacked in a vector yk = [yk,1, · · · , yk,Ik ]T .

B. Distributed SE in ad-hoc microphone arrays

Tango SE system processes in two steps, represented in
Figure 1. In the first step, a multichannel Wiener filter (MWF)
is applied at each node on the local signals yk. To do this,
a single-node CRNN (SN CRNN) is used to predict a time-
frequency (TF) mask mk out of the reference signal yk,1. The
TF mask is used to compute the spatial covariance matrices
of the speech and noise required by the MWF :

Rs,k(f) =
1

T

T∑
t=1

ŝk(f, t)ŝk(f, t)H

where Rs,k is the spatial covariance matrix of the speech;
T is the number of STFT frames of the signals; ·H denotes
the Hermitian transpose; ŝk is estimated as ŝk = mk · yk.
The noise covariance matrix is similarly computing with
n̂k = (1 − mk) · yk.

The local MWF wkk is computed following the rank-1
generalized eigenvalue decomposition (GEVD) of the matrix
pencil {Ry,k,Rn,k} [21]. Filtering the mixture with this beam-
former yields a so-called compressed signal zk = wH

kkyk .
The compressed signals are exchanged among nodes, so
the node k receives K − 1 compressed signals z−k :
z−k = [z1, ..., zk−1, zk+1, ..., zK ]T . In the second step, a
global MWF is applied on ỹk =

[
yT
k , zT−k

]T
, where a multi-

node CRNN (MN CRNN) predicts a second TF mask m̃k, this
time out of the local reference signal yk,1 and the received
compressed signals z−k.

We showed that this algorithm could efficiently process
the spatial information conveyed by the compressed signals
and outperform an oracle voice activity detector (VAD)-based
MWF [19]. We also showed in another study [20] that it
performs comparatively well to FaSNet [22], while allowing

for a trade-off between noise reduction and speech distortion,
and relying on a much simpler DNN architecture.

III. EXPERIMENTAL SETUP

A. Datasets

The dataset used to train the DNNs and evaluate our
proposed solution is the same as the one of our previous
work [20]. It consists of simulations of shoebox-like rooms
with one target source and one noise source randomly laid
in the room. Four nodes of four microphones each are also
randomly placed in the room. Dimensions of the room are
chosen randomly within the following ranges : from 3 to 8 m
for the length, from 3 to 5 meters for the width and from 2.5
to 3 m for the height.

All sources and nodes are distant of at least 50 cm of the
closest source, node and wall. The speech material is taken
from LibriSpeech [23]. The noise material is downloaded from
Freesound [24]. It is split into two non-overlapping subsets
of Freesound users for the training and testing sets1. Some
speech-shaped noise was also used to train the DNN because
it was shown to improve the robustness of the DNN [20].
The rooms were simulated with the Python toolbox Pyrooma-
coustics [25]. The source to interferences ratio (SIR) of the
non-reverberated source signals is randomly taken between
0 dB and 6 dB. The reverberation time ranges from 300 ms
to 600 ms. We created around 25 hours of training material
(gathering both training and validation sets) and 2.7 hours of
testing material.

B. Models parameters

All the signals are sampled at 16 kHz. The STFT is com-
puted with a Hann window of 32 ms with an overlap of 16 ms.
The CRNN architecture is composed of three convolutional
layers followed by a recurrent layer and a fully-connected
layer. The convolutional layers have 32, 64 and 64 filters, with
kernel size 3 × 3 and stride 1 × 1. Each convolutional layer
is followed by a batch normalisation and a maximum-pooling
layer of kernel size 4 × 1 so that no pooling is applied over
the time axis. The recurrent layer is a 256-unit GRU. The
fully-connected layer has 257 units with a sigmoid activation
function. The input of the model are the magnitudes of the
STFT windows of 21 consecutive frames and the ground truth
labels are the corresponding frames of the ideal ratio mask.
At test time, only the middle frame of the predicted window
is considered to estimate the mask, so sliding windows of the
input are fed to the DNN. The mask of the whole signal is
predicted before being used to enhance the speech in a batch
mode.

C. Performance evaluation

Three metrics are used to evaluate the results: the SIR
improvement, denoted as ∆SIR; the source to artifacts ratio
(SAR); and the source to distortion ratio (SDR) [26]. The ref-
erences needed to compute these metrics are the reverberated

1The noise dataset is available at https://zenodo.org/record/4019030.



Processing stage Processing time Energy consumed (Wh)
CRNN step 1 1722.3± 5.2 8.28± 0.08
CRNN step 2 1778.6± 6.7 8.52± 0.10
MWF step 1 24.5± 0.5 0.09± 0.03
MWF step 2 41.0± 0.7 0.16± 0.03

TABLE I: Computing time and energy consumed for each of
the four stages in Tango, mean values and 95% confidence
intervals over 3 measures.

noise and speech signals. The results reported in this work are
the average over the whole evaluation dataset of the metrics
computed on the node with the highest SIR among the four
nodes of each evaluation configuration.

Power consumption and processing time are computed on
the full evaluation dataset. To do this, Tango is run on 48 cores
from Intel Xeon E5-2650 v4 CPUs. We choose to run the
experiments on CPU under the assumption that GPU are not
always available at runtime, in particular on embedded devices.
The power consumption reported in this paper is computed
using CodeCarbon [27].

IV. RESULTS AND DISCUSSION

In the following experiments, we propose to analyse to
which extent we can reduce the CRNN complexity while
maintaining the performance of the SE system. In a first
set of experiments, we investigate the baseline system. In a
second set of experiments, we propose several ways of directly
reducing the DNN complexity and analyse their impact in
terms of both SE performance and power consumption.

A. Baseline CRNN analysis

Tango is a rather complex algorithm involving two filtering
steps. Each step in turn includes a masking stage based on a
CRNN model and a filtering stage based on a rank-1 GEVD-
MWF [21]. Note that the signal conversion from time domain
to time-frequency domain is not taken into account here as
reducing the complexity of this step is out of the scope of the
paper.

Table I presents the computing time and the energy con-
sumed for each of the four filter stages described above. The
CRNN stages for both steps 1 and 2 are much more demanding
than the MWF filtering stages. This is true for the processing
time as well as the energy consumed during the computation.
This large difference can partially be attributed to the fact
the MWF is operated at a batch level (only one filter is
computed for the whole segment), but is consistent with the
results observed by other researchers [13]. In this particular
operating mode, reducing the complexity of the models used
to estimate the mask appears to be the most obvious way to
reduce the overall processing time and power consumption.
Note that as the processing time and energy consumption of
the CRNN are similar for both steps, in the remainder of
the paper, unless stated otherwise, we will present only the
processing time and energy consumption for the CRNN at the
second step (even though networks at both steps are always
modified simultaneously).
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Fig. 2: SE performance when different output frames are
considered by the GRU layer.

The baseline model includes a gated recurrent unit (GRU)
recurrent layer between the convolutional layers and the last
fully-connected layer of the network. Previous studies have
reported that recurrent layers have a rather high computa-
tional cost for little impact on the final performance of the
systems [28]. Here we propose to analyse the performance of
Tango depending on the context that is effectively taken into
account by the recurrent part of the network. Figure 2 presents
the SE performance obtained with Tango when different output
frames are considered by the GRU layer. Since the recurrent
layer is unidirectional, taking its first output frame results
in not using any context at test time. Taking the last frame
corresponds to using the context of the past 14 frames2.

The Figure 2 shows that the SIR improvement increases
softly with the output frame index until reaching a constant
value for the frame 7. However this improvement is not
significant and other metrics present similar SE performance
regardless of the output frame. Therefore, at runtime, the
temporal context at the input of the GRU does not seem to be
critical.

Since the GRU context does not provide any significant
performance improvement at runtime, two simple options
follow to reduce the power consumption and the latency of
the CRNN. The first option is to use the model in a sequence-
to-sequence mode, where all the 15 frames are outputted
at once, which reduces the number of inferences needed to
construct the TF mask. The second option is to simply use
the first output frame, which reduces the latency. Not using
the context at runtime does not mean that it is not necessary
during training when the recurrent layer might learn something
from the context. To verify this latter hypothesis we propose
to retrain the CRNN but where only 1 frame is fed to the
recurrent neural network (RNN) 3.

Figure 3 presents the performance obtained with Tango
when considering different options to construct the TF mask.
The method denoted Base-1 considers the first output frame
of the baseline CRNN. Using this same notation, the baseline
would be referred as Base-8. The method denoted Base-seq
uses the baseline in a sequence-to-sequence mode, taking all
the 15 output frames to construct the TF mask. The method

2The DNN input consists in 21 frames. Because of the 3×3 convolutional
kernels, 15 frames remain at the input of the GRU layer.

3A third option would be to output the last 8 frames at once in a sequence-
to-sequence mode in order to maximise SE performance with a reasonably
low complexity.
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Fig. 3: SE performance of the baseline along with three
simplified CRNN configurations.

denoted CRNN1 retrains the baseline CRNN without any
temporal context at the input of the recurrent part, so only
1 frame is outputted by the CRNN.

The performance obtained with Base-seq confirms the ob-
servation from the previous experiments (Figure 2) while
the performance obtained with Base-1, compared to the one
obtained with CRNN1, indicates that the temporal context at
the input of the GRU is not exploited if this context differs
from the one used at test time.

Table II presents the computing time and the energy con-
sumed by each of the proposed alternatives. Compared to
the original baseline consumption and processing time, values
obtained for Base-seq and CRNN1 are reduced by a large
margin. Although Base-seq provides the larger reduction,
because of its sequence-to-sequence configuration, it also
potentially introduces a larger processing latency. Therefore,
in the remainder of the paper, we focus on models derived
from CRNN1.

Network Processing time Energy consumed (Wh)
baseline 1778.6± 6.7 8.52± 0.10
Base-seq 195.0± 2.3 0.94± 0.02
CRNN1 404.2± 2.6 1.95± 0.05
C2FNN 397.4± 4.1 1.95± 0.03
C1FNN 401.1± 3.0 1.94± 0.01

TABLE II: Processing time and energy consumption of the
CRNN stage at the second filtering step, mean values and
95% confidence intervals over 3 measures.

B. Simplified networks performance

Based on the previous experiments, given the limited impact
of the temporal context of the CRNN, we propose to remove
the recurrent layer. One solution is to simply remove the layer,
and will be referred to as C1FNN. Another solution is to
replace the recurrent layer by a fully connected layer with 256
units. It will be referred to as C2FNN. Figure 4 presents the SE
performance for the baseline, CRNN1, C1FNN and C2FNN.
Performance is similar for all approaches, which means that
the recurrent layer could simply be removed to reduce the
complexity. However, the impact of this simplification is not
obvious in terms of processing time and energy consumption
(see C1FNN compared to CRNN1 in Table II). This is due
to the fact that, most of the resources of the network were
allocated to the RNN that considers some temporal context
(baseline). When no temporal context is considered (CRNN1),
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Fig. 4: SE performance when the GRU layer of the CRNN is
replaced by a fully-connected layer (C2FNN) or by the identity
(C1FNN).
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Fig. 5: SE performance when the masks predicted by the
different DNNs at the second step are directly used as filters.

resources allocated to this same part are negligible. Compared
to the baseline, reduction in processing time and consumption
for C1FNN model is 4.4.

C. Robustness to mask estimation

Previous experiments showed that Tango is robust to
changes in the models used for the mask estimation. In this
section, we investigate the reason for this robustness. A first
hypothesis is that the robustness comes from the fact that
the masks are used to compute a MWF rather than directly
used for masking. To check this hypothesis, we report in
Figure 5 the performance when the TF masks predicted at
the second step are directly used as filters, applied on the
reference signal of each node. As reported in Figure 5, all
networks perform similarly well when their output is used for
masking. Therefore, our first hypothesis cannot explain the
robustness of Tango to simpler models.

A second hypothesis is that the two-step mechanism of
Tango brings robustness. The mask estimation at the sec-
ond step heavily relies on the signals estimated at the first
step [20]. To check this hypothesis, we report in Figure 6
the performance obtained at the first filtering step of Tango
when masks are used to estimate a MWF (Fig. 6a) and when
they are directly used a filters (Fig. 6b). The performance
of the first step MWF is stable regardless of the network
used during the mask estimation (Fig. 6a). However, when
directly applying the estimated masks as filters (Fig. 6b),
changes in the network architecture have a moderate impact
on the performance. Compared to the baseline, masks obtained
without using recurrent networks (C2FNN and C1FNN) intro-
duce more artefact (lower SAR) while obtaining similar SIR
improvement. The fact that the masks are not directly used
but serve to compute a MWF and the two-step mechanism
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Fig. 6: SE performance at the first filtering step, when masks
are used (a) to estimate a MWF or (b) directly as a filter.

of Tango bring therefore additional robustness. Even with a
coarse TF mask prediction at the first step, the following MWF
allows the generated signals to be sufficiently clean to allow
simple models to predict accurate TF masks at the second step.

V. CONCLUSION

In this paper, we investigated several factors to simplify
and accelerate the process of a distributed SE pipeline. To do
this, we focused on the inference of CRNNs as they showed
to contribute the most in the time and energy consumption.
We showed that the temporal context at the input of the GRU
layer of the CRNN is relevant neither for the training nor for
the test. Based on this observation, we simplified the CRNN,
removing its recurrent layer. Compared to the initial baseline,
our simplified model reduces the processing time and energy
consumption by a factor of 4.4. The pipeline of our SE system,
composed of two filtering steps in which masks predicted
by the DNN are used to compute a MWF, brings additional
robustness to mask estimation. Future work could consist in
analysing whether the batch-mode processing of the signals
helps smoothing out the prediction errors of the CRNNs,
allowing for coarse mask estimation without impacting the
final SE performance.
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