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We are interested in the long time behavior of solutions of the nonlinear Schrödinger equation on the d-dimensional torus in low regularity, i.e. for small initial data in the Sobolev space H s 0 (T d ) with s0 > d/2. We prove that, even in this context of low regularity, the H s -norms, s ≥ 0, remain under control during times, Tε = exp -| log ε| 2 4 log | log ε| , exponential with respect to the initial size of the initial datum in H s 0 , u(0) H s 0 = ε. For this, we add to the linear part of the equation a random Fourier multiplier in ℓ ∞ (Z d ) and show our stability result for almost any realization of this multiplier. In particular, with such Fourier multipliers, we obtain the almost global well posedness of the nonlinear Schrödinger equation on H s 0 (T d ) for any s0 > d/2 and any d ≥ 1.

Introduction

The long time behavior of solutions of Hamiltonian partial differential equations has been a major issue in the PDE community for two decades. A central question, initially posed by Bourgain [START_REF] Bourgain | Construction of approximative and almost-periodic solutions of perturbed linear Schrödinger and wave equations[END_REF], concerns the possibility that a solution sees its Sobolev H s -norm tend to infinity when time tends to infinity for s large enough although the energy -the Hamiltonian -is conserved (see also [START_REF] Bourgain | Remarks on stability and diffusion in high dimensional Hamiltonian systems and PDEs[END_REF][START_REF] Bourgain | A remark on normal forms and "I-method" for periodic NLS[END_REF]). Such a behavior would clearly contrast with the behavior of solutions of linear PDEs. A number of results have been obtained to postpone this eventuality to very long times with respect to the size of the initial data (see e.g. [Bou96, BG06, BDGS07, BD17, BFG20, BMP20, FI21]). Unfortunately they only concern very regular solutions (the larger is s, the longer is the stability time) contrary to what the numerical simulations suggest ( [START_REF] Cohen | Long-Time Analysis of Nonlinearly Perturbed Wave Equations Via Modulated Fourier Expansions[END_REF][START_REF] Cohen | Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations[END_REF]). On the contrary we consider here low regularity solutions of an emblematic Hamiltonian PDE, namely the nonlinear Schrödinger equation. Concretely we consider the Cauchy problem (NLS) i∂ t u = -∆u + V * u + σ|u| 2p u, u(0) = u (0) , where t ∈ R, x ∈ T d = (R/2πZ) d , d ≥ 1, p ≥ 1 is an integer, σ ∈ {-1, 1} allows to consider both the focusing and the defocusing cases and u → V * u is a Fourier multiplier with a potential V ≡ (V k ) k∈Z d ∈ ℓ ∞ (Z d ; R) whose Fourier coefficients are real and bounded. More precisely, we identify every function v ∈ L 2 (T d ) with the sequence of its Fourier coefficients

v k = (2π) -d/2 T d v(x)e -ik•x dx, k ∈ Z d
and so V * u is defined by the relation (V * u) k = (2π) -d/2 V k u k . Our main result is Theorem 1.1. There exists a non empty set V ⊂ ℓ ∞ (Z d ) such that for V ∈ V and s 0 > d/2, there exits ε 0 ≡ ε 0 (s 0 , V, d, p) > 0 such that for any u (0) ∈ H s 0 (T d ) satisfying ε := u (0) H s 0 ≤ ε 0 , the Cauchy problem (NLS) has a unique solution

u ∈ C 0 ((-T ε , T ε ); H s 0 (T d )) ∩ C 1 ((-T ε , T ε ); H s 0 -2 (T d )) with T ε = ε -| log ε|
4 log | log ε| . If moreover u (0) ∈ H s (T d ) for some s ≥ 0 then u ∈ C 0 ((-T ε , T ε ); H s (T d )) and

(1)

u(t) H s ≤ C s u (0) H s for |t| ≤ T ε
where C s ≥ 1 is a constant depending only on s.

Remark 1.2. The estimate (1) means that, to control the growth of the H s norm for very long times, the initial datum only needs to be small in H s 0 . In particular, as recently highlighted in [START_REF] Feola | Quadratic lifespan and growth of Sobolev norms for derivative Schrödinger equations on generic tori[END_REF], contrary to what is usually assumed, it does not have to be small in H s (moreover note that we do not have to assume that s ≥ s 0 ).

1.1. Context and further bibliographical comments. Let us first situate this theorem in regard to previous results. First, we point out that the local well-posedness of (NLS) in H s , s > d/2, provides a similar result but for much shorter times: we would only have T ε ≃ ε -2p . On the side of stability over long times, the work of Bambusi and Bambusi-Grebert (see [START_REF] Bambusi | Birkhoff Normal Form for Some Nonlinear PDEs[END_REF][START_REF] Bambusi | Forme normale pour NLS en dimension quelconque[END_REF][START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF]) established, by a normal form method, the following result concerning (NLS): for large families of Fourier multipliers V ∈ H m (T d ) with m > 0, for r ≫ 1 chosen arbitrarily large, s ≥ s 0 (r) r 2 and u (0) H s = ε small enough, the existence time of the solution of (NLS) is larger than ε -r and we have u(t) H s ≤ 2ε for |t| ≤ ε -r . In this result the time of stability is directly related to the regularity of the solution, we have stability in H s for time of order ε -c √ s where c > 0 is a universal constant. In [START_REF] Biasco | An Abstract Birkhoff Normal Form Theorem and Exponential Type Stability of the 1d NLS[END_REF], in dimension d = 1, this time has been enlarged to ε -cs . We also note that this result was extended in [START_REF] Bernier | Rational normal forms and stability of small solutions to nonlinear Schrödinger equations[END_REF] to the case with V = 0 but then for random initial data. The main flaw in all these results is that they apply only in very high regularity although the corresponding partial differential equations are locally well-posed in low regularity. Theorem 1.1 relaxes this constraint: s only need to be larger than d/2, this last constraint coming from the fact that we want to work in an algebra. We also note that in the result of Bambusi-Grebert, the coefficients of the Fourier multipliers are decreasing and actually correspond to potentials in H m which is not the case in Theorem 1.1. Moreover, the potential, V ∈ V, we actually consider are not very generic in ℓ ∞ : the eigenvalues of the operator u → V * u have a lot of multiplicities (see ( 7)). As we will see, this specificity is a key ingredient allowing us to have the stability result (see subsections 1.2 and 3.1 for details).

On the side of instability, Colliander-Keel-Staffilani-Takaoka-Tao (see [START_REF] Colliander | Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation[END_REF]), considered the cubic nonlinear Schrödinger equation, on the two dimensional torus T 2 without Fourier multipliers (V = 0 in (NLS)) and proved that for any ε ≪ 1, any K ≫ 1 and s > 1 there exists a solution u and a time T such that u(T ) H s ≥ K and u(0) H s ≤ ε.

After that, Guardia-Kaloshin (see [START_REF] Guardia | Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation[END_REF][START_REF] Guardia | Erratum to "Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation[END_REF]), proved a quantitative estimate on T :

0 < T ≤ e K ε c
where c > 0 is a constant depending only on s. A maybe less intuitive extension is then obtained by M. Guardia (see [START_REF] Guardia | Growth of Sobolev Norms in the Cubic Nonlinear Schrödinger Equation with a Convolution Potential[END_REF]): he proves that this "almost unbounded" behavior is not a consequence of the exact resonances, since it persists when one adds a convolution potential V , i.e. for (NLS) with V ∈ H m (T 2 ), m > 0. Of course the stability time we obtain, although of exponential type, is much shorter than the instability time obtained by Guardia. Furthermore (1) is obtained for bounded Fourier multipliers while the one of [START_REF] Guardia | Growth of Sobolev Norms in the Cubic Nonlinear Schrödinger Equation with a Convolution Potential[END_REF] requires a polynomial decay of these multipliers. In other words, to obtain the instability in [START_REF] Guardia | Growth of Sobolev Norms in the Cubic Nonlinear Schrödinger Equation with a Convolution Potential[END_REF] the linear frequencies are supposed to be asymptotically close to the fully resonant situation (i.e. V = 0) while for (1) this is not the case. We conjecture that our result is still true with some slow polynomial decay1 on the Fourier multipliers but we can glimpse a proof only for d = 1. Nevertheless it appears that the fact of being asymptotically close (in Fourier variables) to the resonant case is decisive for the appearance of weak turbulence phenomena (of course we could easily extend our result to the case where (V k ) k∈Z d decreases logarithmically but this is not fair since this does not put V in a Sobolev space). Regarding to the last sentence, it deserves to mention the following less turbulent case: Hani-Pausader-Tzvetkov-Visciglia considered in [START_REF] Hani | Modified scattering for the cubic Schrödinger equation on product spaces and applications[END_REF] the cubic nonlinear Schrödinger equation on the wave-guide manifolds R × T d

(2)

i∂ t u + ∆ R×T d u = |u| 2 u, (t, x, y) ∈ R × R × T d ,
and proved that when 2 ≤ d ≤ 4 the equation admits unbounded solutions in H s for s large enough. However when adding a "typical" convolution potential V to (2), it is proved in [START_REF] Grébert | Modified scattering for the cubic Schrödinger equation on product spaces: the nonresonant case[END_REF] that all the small solutions remain bounded in H s . So in this less turbulent case, the fact of having an exactly resonant linear part is decisive for the appearance of weak turbulence phenomena. We also mention a recent result by Giulliani-Guardia where the authors proved that the Colliander-Keel-Staffilani-Takaoka-Tao ideas still apply when considering irrational tori (see [START_REF] Giuliani | Sobolev norms explosion for the cubic NLS on irrational tori[END_REF]).

In finite dimension n, the standard Nekhoroshev result [Nek77] controls the dynamics over times of order exp -αε -1/(τ +1) for some α > 0 and τ > n+1 (see for instance [START_REF] Benettin | A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems[END_REF][START_REF] Galgani | Rigourous estimates for the series expansions of Hamiltonian perturbation theory[END_REF][START_REF] Pöschel | Nekhoroshev estimates for quasi-convex Hamiltonian systems[END_REF]) which is, of course, much better than T ε = exp -| log ε| 2 4 log | log ε| Nevertheless, clearly this standard result does not extend to the infinite dimensional context, i.e. when n → +∞. Actually this kind of exponential times expα | log ε| 2 log | log ε| were obtained by Benettin-Fröhlich-Giorgilli in [BFG88] for a Hamiltonian system with infinitely many degrees of freedom but with finite-range couplings. We also notice that this time was suggested by Bourgain as the optimal time that we could obtain in an analytical context (see eq. (2.14) in [START_REF] Bourgain | A remark on normal forms and "I-method" for periodic NLS[END_REF]). We note that in [START_REF] Faou | A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus[END_REF] a Nekhoroshev result for (NLS) equation was proved in an analytical context and for time of order ε -α| ln ε| β with β < 1. See also mention [START_REF] Biasco | An Abstract Birkhoff Normal Form Theorem and Exponential Type Stability of the 1d NLS[END_REF] for results in Gevrey regularity and [START_REF] Chen | Long time stability result for 1-dimensional nonlinear Schrödinger equation[END_REF] for a result in class of regularity between C ∞ and Gevrey. We note that all these results with exponential stability time were proved for very regular solutions while we only assume, in Theorem 1.1, H s 0 regularity with s 0 > d/2. Actually, in our case, the exponential time is linked to the very good control of the small divisors that we obtain for Fourier multipliers in V (see (8)).

We point out that our theorem implies the so called almost global well-posedness of (NLS) on H s (T d ) for any d ≥ 1 and any s > d/2 when the Fourier multiplier V is chosen in the non empty set V.

We also point out that we have recently shown (see [START_REF] Bernier | Birkhoff normal forms for Hamiltonian PDEs in their energy space[END_REF]) a normal form result for (NLS) in weak regularity (in fact in the energy space H 1 ) in dimension d = 1 or d = 2 and almost surely with respect to the random Fourier coefficients of potentials V ∈ H m , m > 0. On one hand this later result is better because it holds true for almost all Fourier multipliers but the price we pay is that we essentially control only a finite (but large!) number of Fourier modes and in particular it cannot prove the almost global well-posedness. We note that both results are based on a new way of estimating the so-called small divisors. This result has been extended to the nonlinear Klein-Gordon in S 2 in [START_REF] Bernier | Dynamics of nonlinear Klein-Gordon equations in low regularity on S 2[END_REF]. As in this paper but for other reasons, it was crucial to use partially resonant Birkhoff normal form, precisely normal forms that decompose the dynamics on large blocks of modes with an increasing size of the blocks (see (7) in our case).

1.2. Ideas of the proof. We now give an idea of the proof of Theorem 1.1. We do not try to explain the Birkhoff normal form procedure (which is quite classical, an introduction can be found in [START_REF] Bambusi | A Birkhoff normal form theorem for some semilinear PDEs[END_REF] or in [START_REF] Grébert | Birkhoff normal form and Hamiltonian PDEs, Partial differential equations and applications[END_REF]) but rather to present the novelties of this paper.

First let us note that to control the H s of the solution it is enough to control the observable

(3) N s (u) = n≥0 (2 n ) 2s J n where J n = k∈Bn |u k | 2
and Z d = n≥0 B n stands for the standard dyadic decomposition 2 of the Fourier space

(4) ∀n ≥ 1, B n = {k ∈ Z d | 2 n ≤ |k| < 2 n+1 } and B 0 = {k ∈ Z d | |k| < 2}.
Indeed, it is clear that √ N s is a norm which is equivalent to the standard H s norm

2 -2s u 2 H s ≤ N s (u) ≤ u 2 H s .
Therefore, to control the variations of the H s norm of the solutions it is enough to control the (relative) variation of the super-actions J n . Note that it is useless to control the variations of each action |u k | 2 or of the standard super-actions |k|=m |u k | 2 (as it is usually done, see e.g. [BG06, FG13, FGL13, YZ14, BFG20, BMP20, FGI20, FI21]).

Concretely, it means that in the Birkhoff normal form procedure, we only have to remove all the monomials of the form u k 1 . . . u kq u ℓ 1 . . . u ℓq , where 2 ≤ q and k, ℓ ∈ (Z d ) q are such that

(5) ∃n ∈ N, ♯{j ∈ 1, q | k j ∈ B n } = ♯{j ∈ 1, q | ℓ j ∈ B n }.
Indeed, it is simple to check that the remaining ones commute with the super actions J n . Therefore it is enough to control the small divisors

Ω(k, ℓ) := 2i(ω k 1 + • • • + ω kq -ω ℓ 1 -• • • -ω ℓq )
whenever (k, ℓ) is non-resonant (i.e. it satisfies (5)) and the frequencies 3 ω k , k ∈ Z d , are defined by

ω k := |k| 2 + (2π) -d/2 V k .
2 We point out that we chose this standard dyadic decomposition just for simplicity. Our result could be easily extended provided that the size of the blocks grows exponential fast.

3 which are the eigenvalues of the linearized vector field.

For potentials V ∈ H m , m > 0, drawn following classical probability laws, it is standard to establish lower bounds of the kind (see e.g. [START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF])

(6) |Ω(k, ℓ)| ≥ γ(q, V ) max 1≤j≤q ( k j , ℓ j ) -αq whenever k = ℓ up to a permutation
where α > 0 is a constant depending only on m and γ(q, V ) > 0 depends only on q and V . Of course, as usual, the maximum could be replaced by the third largest number (as in [START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF]) or even by the minimum as in [START_REF] Bernier | Birkhoff normal forms for Hamiltonian PDEs in their energy space[END_REF]. Nevertheless, it seems that the "losses of derivatives" associated with such estimates are too big to hope to put (NLS) in Birkhoff normal form in low regularity. That is why, the previous almost global well-posedness results only deal with very smooth solutions to (NLS).

In this paper, we take advantage of the fact that it is enough to have small divisor estimates when (k, ℓ) satisfies (5) to draw potentials V which are much less generic but which enjoy much better small divisors estimates. For simplicity4 , we consider potentials of the form

(7) V (x) = 1 (2π) d/2 k∈Z d
V k e ik•x where V k = X n , n being the index such that k ∈ B n and X n ∼ U (0, 1) are independent random variables uniformly distributed in [0, 1]. Note that, this choice makes (NLS) partially resonant : generically the frequencies inside a same block are not rationally independent and so, a priori there should be energy exchanges inside blocks. Thanks to these multiplicities (in the values of (V k ) k ) we have actually much less small divisors to estimate and so we have much better lower bounds on them. Roughly speaking, in the probability estimates, we do not have to make converge sums with respect to k but only sums with respect to n ≃ log 2 k. Therefore using standard estimates, we prove in Lemma 3.4 that, almost surely, 2q+1) whenever (k, ℓ) satisfies (5).

(8) |Ω(k, ℓ)| ≥ γ(q, V ) log max 1≤j≤q ( k j , ℓ j ) - ( 
We point out that the gain between the standard small divisor estimates (6) and the new ones (8) is huge: we have replaced polynomial losses of derivatives by logarithmic ones. Moreover, using technics inspired by [START_REF] Delort | On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus[END_REF][START_REF] Bernier | Long-Time Existence for Semi-linear Beam Equations on Irrational Tori[END_REF], these logarithms losses can almost be considered as constants. So it means that we have no losses in our small divisor estimates. It is the main novelty of this paper and the reason why we can prove the almost global well-posedness of (NLS) in low regularity (i.e. Theorem 1.1). The rest of the proof is quite classical but contains some technicalities mainly due to the three following facts :

• since we work in low regularity, it is harder to justify some standard formal computations.

In particular, we approximate the non-smooth solutions by smooth solutions in order to prove that if τ (0) is the change of variable associated with the Birkhoff normal form procedure then v(t) := τ (0) (u(t)) is time derivable (see (60) for details). • since we prove a Nekhoroshev result (i.e. stability for exponentially long times), we have to optimize the order of the normal form with respect to the size of the solution and so to track all the constants carefully. • the logarithmic losses associated with the small divisors involve the largest index (see (8)).

They can be seen as logarithmic losses of derivatives at each step of the Birkhoff normal form procedure. Therefore, a priori, the Hamiltonian flows we have to introduce cannot be simply defined by a fix point argument. To overcome this technicality we introduce a truncation in the spirit of [START_REF] Bernier | Long-Time Existence for Semi-linear Beam Equations on Irrational Tori[END_REF] (see subsection 3.2 for details).

Notation. We shall use the notation A B to denote A ≤ CB where C is a positive constant depending on parameters fixed once for all, for instance d and p. We will emphasize by writing s when the constant C depends on some other parameter s.
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Hamiltonian formalism and Birkhoff normal form

The results and formalisms of this section are standard and quite similar to the ones of [START_REF] Bambusi | Birkhoff Normal Form for Some Nonlinear PDEs[END_REF][START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF][START_REF] Bernier | Birkhoff normal forms for Hamiltonian PDEs in their energy space[END_REF]. Nevertheless, since we aim at proving a Nekhoroshev result, we have to track carefully the constants and, since we work in low regularity, we have to pay attention to justify the formal computations.

2.1. Functional setting. We use the standard functional setting to deal with Hamiltonian systems. Nevertheless to avoid any possible confusion we recall it precisely (and we refer to section 3.1 of [START_REF] Bernier | Birkhoff normal forms for Hamiltonian PDEs in their energy space[END_REF] for further details and comments).

We always identity any function u ∈ L 1 (T d ; C) with the sequence of its Fourier coefficients

u k = (2π) -d/2 T d u(x)e -ik•x dx, k ∈ Z d
We also naturally extend this definition to any distribution u ∈ D ′ (T d ; C) by continuity. With such a convention, for all s ∈ R and all u ∈ H s (T d ; C), we have

u 2 H s = k∈Z d k 2s |u k | 2
and for u ∈ L 2 (T d ; C), the Fourier inversion formula reads

u(x) = (2π) -d/2 k∈Z d u k e ik•x .
We always consider L 2 (T d ; C) = H 0 (T d ; C) as a real vector space. So it is naturally equipped with the following scalar product

∀u, v ∈ L 2 , (u, v) L 2 := ℜ T d u(x)v(x) dx = ℜ k∈Z d u k v k .
Identifying distributions with their Fourier coefficients, we also equip

D ′ (T d ; C) with the discrete ℓ p norms p ≥ 1, u p ℓ p = k∈Z d |u k | p and u ℓ ∞ := sup k∈Z d |u k |.
Being given s ∈ R, we define the ℓ 1 s norm by

u ℓ 1 s := k∈Z d k s |u k |.
As usual we extend this scalar product when u ∈ H s (T d ; C) and v ∈ H -s (T d ; C). Being given a smooth function P :

ℓ 1 (Z d ; C) → R and u ∈ ℓ 1 , its gradient ∇P (u) is the unique element of ℓ ∞ (Z d ; C) satisfying ∀v ∈ ℓ 1 (Z d ; C), (∇P (u), v) L 2 = dP (u)(v).
Note that it can be checked that

∀k ∈ Z d , (∇P (u)) k = 2∂ u k P (u). We equip L 2 (T d ; C) of the usual symplectic form (i•, •) L 2 . Therefore a smooth map τ : Ω → ℓ 1 (Z d ; C), where Ω is an open set of ℓ 1 (Z d ; C), is symplectic if ∀u ∈ Ω, ∀v, w ∈ ℓ 1 (Z d ; C), (iv, w) L 2 = (idτ (u)(v), dτ (u)(w)) L 2 . Moreover, if P, Q : ℓ 1 (Z d ; C) → R are two functions such that ∇P is ℓ 1 (Z d ; C) valued then the Poisson bracket of P and Q is defined by {P, Q}(u) := (i∇P (u), ∇Q(u)) L 2 .
Note that, as usual, we have

(9) {P, Q} = 2i k∈Z d ∂ u k P (u)∂ u k Q(u) -∂ u k P (u)∂ u k Q(u).

A class of homogeneous polynomials.

In this section, we aim at establishing the main properties of the class of Hamiltonians defined just below. The two main results are Proposition 2.5 in which we prove its stability by Poisson bracket and Proposition 2.8 in which we study their Hamiltonian flows.

Definition 2.1 (homogeneous polynomials). For q ≥ 2, let H 2q be the space of the homogeneous formal polynomials of degree 2q of the form

P (u) = k,ℓ∈(Z d ) q P k,ℓ u k 1 . . . u kq u ℓ 1 . . . u ℓq with P k,ℓ ∈ C, satisfying the reality condition (10) P ℓ,k = P k,ℓ
the symmetry condition (11) ∀φ, σ ∈ S q , P φk,σℓ = P k,ℓ the zero momentum condition

(12) P k,ℓ = 0 =⇒ k 1 + • • • + k q = ℓ 1 + • • • + ℓ q
and the bound

(13) P ℓ ∞ = sup k,ℓ∈(Z d ) q |P k,ℓ | < ∞.
Lemma 2.2. The formal homogeneous polynomials define naturally smooth real valued functions on ℓ 1 (Z d ). More quantitatively, if q ≥ 2, P ∈ H 2q and u (1) , . . . , u (2q) ∈ ℓ 1 (Z d ) we have

(14) h∈(Z d ) 2q |P h u (1) h 1 . . . u (2q) h 2q | ≤ P ℓ ∞ 2q j=1 u (j) ℓ 1
In other words, the multi-linear map naturally associated with P is well defined and continuous on ℓ 1 .

Proof. The estimate ( 14) is a direct consequence of the zero momentum condition (12). Using the reality condition (10), it is straightforward to check that P is real valued.

Corollary 2.3. We can permute derivatives with the sum defining P .

Proof. It is a classical corollary of the continuity of the multi-linear maps associated with P .

Corollary 2.4. If P ∈ H 2q vanishes everywhere on ℓ 1 then P = 0 (i.e. all its coefficients vanish).

Proof. It follows from the symmetry condition (11) and Corollary 2.3 that we have

P k,ℓ ≈ k,ℓ ∂ u k 1 • • • ∂ u kq ∂ u ℓ 1 • • • ∂ u ℓq P (0) = 0.
Now, in the following proposition, we focus on the stability of the class by Poisson brackets.

Proposition 2.5. Let q, q ′ ≥ 2, P ∈ H 2q and Q ∈ H 2q ′ be two homogeneous polynomials. Then, there exists a unique S ∈ H 2(q+q ′ -1) such that for all u ∈ ℓ 1 (Z d ), we have

{P, Q}(u) = S(u).
Moreover, we have the estimate

S ℓ ∞ ≤ 4 q q ′ P ℓ ∞ Q ℓ ∞ .
Proof. Thanks to the symmetry condition (11) and the zero momentum condition (12), we note that for all u ∈ ℓ 1 and m ∈ Z d

∂ um P (u) = q k 1 +•••+kq=ℓ 1 +•••+ℓ q-1 +m P k,ℓ,m u k 1 . . . u kq u ℓ 1 . . . u ℓ q-1
and that a similar formula holds for ∂ um P (u). Therefore, as usual, we deduce that

{P, Q}(u) = 2iqq ′ m∈Z d ∂ um P (u)∂ um Q(u) -∂ um P (u)∂ um Q(u) = k 1 +•••+k q ′′ =ℓ 1 +•••+ℓ q ′′ R k,ℓ u k 1 . . . u k q ′′ u ℓ 1 . . . u ℓ q ′′
where we have set

q ′′ = q + q ′ -1, R k,ℓ = 2iqq ′ T k,ℓ , T k,ℓ =P k 1 ,••• ,kq,ℓ 1 ,••• ,ℓ q-1 ,k 1 +•••+kq-ℓ 1 -•••-ℓ q-1 Q k q+1 ,••• ,k q ′′ ,ℓq+•••+ℓ q ′′ -k q+1 -•••-k q ′′ ,ℓq,••• ,ℓ q ′′ -P k 1 ,••• ,k q-1 ,ℓ 1 +•••+ℓq-k 1 -•••-k q-1 ,ℓ 1 ,••• ,ℓq Q kq,••• ,k q ′′ ,ℓ q+1 ,••• ,ℓ q ′′ ,kq+•••+k q ′′ -ℓ q+1 -•••-ℓ q ′′
and the converge of the series is ensured by Lemma 2.2. The coefficients R k,ℓ satisfy clearly the reality condition and enjoy the bound

|R k,ℓ | ≤ 4 q q ′ P ℓ ∞ Q ℓ ∞ .
Moreover, they can be extended by zero in such a way that they enjoy the zero momentum condition (12). However, a priori, they do not satisfy the symmetry condition (11), so we just have to set

S k,ℓ := ((q ′′ )!) -2 φ,σ∈S q ′′ R φk,σℓ .
Now, we are going to estimate the vector fields these Hamiltonians generate.

Lemma 2.6. Let q ≥ 2 and P ∈ H 2q be a homogeneous formal polynomial of degree 2q. Then, if

u (1) , . . . , u (2q-1) ∈ ℓ 1 (Z d ) and w ∈ ℓ ∞ (Z d ), we have h∈(Z d ) 2q |P h u (1) h 1 . . . u (2q-1) h 2q-1 w h 2q | ≤ P ℓ ∞ w ℓ ∞ 1≤j≤2q-1 u (k) ℓ 1 .
Proof. This estimate is still a direct consequence of the zero momentum condition (12).

As a consequence, we get the following corollary directly by duality.

Corollary 2.7. Let q ≥ 2, P ∈ H 2q be a homogeneous formal polynomial of degree 2q. Then for all u ∈ ℓ 1 , ∇P (u) ∈ ℓ 1 and we have the estimates

∇P (u) ℓ 1 ≤ 2q P ℓ ∞ u 2q-1 ℓ 1 .
Moreover, the map ∇P : ℓ 1 → ℓ 1 is smooth and locally Lipschitz :

∀v ∈ ℓ 1 , d∇P (u)(v) ℓ 1 ≤ (2q) 2 P ℓ ∞ u 2q-2 ℓ 1 v ℓ 1 .
As a consequence, we are in position to study the existence of Hamiltonian flows in ℓ 1 (Z d ).

Proposition 2.8 (Lie transform). Let q ≥ 2, χ ∈ H 2q and

ε χ := 1 4 (2q χ ℓ ∞ ) -1 2q-2 .
Then there exists

C ∞ map Φ χ : [-1, 1] × B ℓ 1 (0, ε χ ) → ℓ 1 (Z d ) such that if |t| ≤ 1 and u ℓ 1 < ε χ , we have (15) -i∂ t Φ t χ (u) = ∇χ(Φ t χ (u)) and Φ 0 χ (u) = u.
Moreover, being given u ℓ 1 < ε χ and |t| ≤ 1, it enjoys the following properties :

i) Φ t χ is symplectic : ∀v, w ∈ ℓ 1 , (iv, w) L 2 = (idΦ t χ (u)(v), dΦ t χ (u)(w)) L 2 .
ii) Φ t χ is invertible :

(16) Φ t χ (u) ℓ 1 < ε χ ⇒ Φ -t χ (Φ t χ (u)) = u.
iii) Φ t χ is close to the identity :

(17) Φ t χ (u) -u ℓ 1 ≤ u ℓ 1 ε χ 2q-2 u ℓ 1 . iv) Φ t χ is locally Lipschitz : (18) ∀v ∈ ℓ 1 , dΦ t χ (u)(v) ℓ 1 ≤ 2 v ℓ 1 .
Proof. Since, by Corollary 2.7, the vector field i∇χ is locally-Lipschitz, the local existence and the smoothness of the flow Φ t χ is ensured by the Cauchy-Lipchitz Theorem. The only thing we have to check is that the solutions exist for |t| ≤ 1. Without loss of generality we only consider positive times. More precisely, let T > 0 and v ∈ C 1 ([0, T ); ℓ 1 ) be a solution of the Cauchy problem

-i∂ t v(t) = ∇χ(v(t)) and v(0) = u ∈ B ℓ 1 (0, ε χ ). It is enough to prove that if u = 0, 0 ≤ t < T and t ≤ 1 then v(t) ℓ 1 ≤ 2 u ℓ 1 < 2ε χ . We set I = [0, T ) ∩ [0, 1]
and we aim at proving that S = I where

S = {t ∈ I | ∀τ ∈ [0, t], v(τ ) ≤ 2 u ℓ 1 }. Since v is continuous, S is clearly non-empty and closed in I. Moreover, if t ∈ I then (19) v(t) -u ℓ 1 ≤ t 0 ∇χ(v(τ )) ℓ 1 dτ ≤ 2qt χ ℓ ∞ (2 u ℓ 1 ) 2q-1 ≤ 2 2q-1 u ℓ 1 4ε χ 2q-2 u ℓ 1 ≤ 2 -2q+3 u ℓ 1 ε χ 2q-2 u ℓ 1 and so v(t) ℓ 1 ≤ (1 + 2 -2q+3 ) u ℓ 1 < 2 u ℓ 1 .
Therefore, since v is continuous, S is open and so, since I is connected, we have S = I. Now, that we have checked the existence of Φ χ , we focus on properties i), ii) and iii). First, the property ii) is ensured by the fact that Φ χ is a flow. Moreover the property iii) has been proven in (19). Finally, since Φ χ is a Hamiltonian flow, it is standard to check i) (i.e. that Φ t χ is symplectic).

Finally, we focus on iv).

If w ∈ ℓ 1 , we have (20) -i∂ t dΦ t χ (u)(w) = d∇χ(v(t))(dΦ t χ (u)(w)) and thus dΦ t χ (u)(w) -w ℓ 1 ≤ t 0 d∇χ(v(τ ))(dΦ τ χ (u)(w)) ℓ 1 dτ ≤ (2q) 2 χ ℓ ∞ t 0 v(τ ) 2q-2 ℓ 1 dΦ τ χ (u)(w) ℓ 1 dτ ≤ u ℓ 1 ε χ 2q-2 t 0 dΦ τ χ (u)(w) ℓ 1 dτ.
Therefore, as a consequence of Grönwall's inequality, we get (18). Now, we aim at establishing H s tame estimates.

Lemma 2.9 (H s tame estimates). Let s ≥ 0, q ≥ 2 and P ∈ H 2q be a homogeneous formal polynomial of degree 2q. Then, if u (1) , . . . , u (2q-1) ∈ ℓ 1 ∩ H s and w ∈ H -s , we have

h∈(Z d ) 2q |P h u (1) h 1 . . . u (2q-1) h 2q-1 w h 2q | ≤ (2q -1) (s-1) + P ℓ ∞ w H -s 2q-1 j=1 u (j) H s k =j u (k) ℓ 1
where (s -1) + = max(s -1, 0).

Proof. We define u

(2q) k = k -2s w -k in order to have u (2q) H s = w H -s .
Using the zero momentum condition, we have

J := h∈(Z d ) 2q |P h u (1) h 1 . . . u (2q-1) h 2q-1 w h 2q | ≤ P ℓ ∞ σ 1 h 1 +•••+σ 2q h 2q =0 |u (1) h 1 | . . . |u (2q) h 2q | h 2q 2s .
where σ j = 1 if j ≤ q and σ j = -1 else. Since, by Jensen (and the triangle inequality), we have

σ 1 h 1 + • • • + σ 2q-1 h 2q-1 s ≤ (2q -1) (s-1) + ( h 1 s + • • • + h 2q-1 s )
where (s -1) + = max(s -1, 0), applying the Young's inequality for convolutions, we deduce that

J ≤ P ℓ ∞ (2q -1) (s-1) + u (2q) h 2q H s 2q-1 j=1 u (j) h j H s k =j u (k) h k ℓ 1 .
As a consequence, the following corollary follows directly by duality (see [START_REF] Bernier | Birkhoff normal forms for Hamiltonian PDEs in their energy space[END_REF] for more details).

Corollary 2.10. Let q ≥ 2, s ≥ 0 and P ∈ H 2q be a homogeneous formal polynomial of degree 2q. Then for all u ∈ ℓ 1 ∩ H s , ∇P (u) ∈ H s and we have the estimates

(21) ∇P (u) H s ≤ 2q(2q -1) 1+(s-1) + P ℓ ∞ u 2q-2 ℓ 1 u H s
Moreover, the map ∇P : ℓ 1 ∩ H s → H s is smooth and locally Lipschitz :

for all v ∈ ℓ 1 ∩ H s (22) d∇P (u)(v) H s ≤ 2q(2q -1) 2+(s-1) + P ℓ ∞ u 2q-3 ℓ 1 ( u H s v ℓ 1 + u ℓ 1 v H s ).
Thus, we also get tame estimates for the Lie transforms.

Proposition 2.11 (Tame estimates for Lie transforms). Let q ≥ 2, χ ∈ H 2q and s ≥ 0. Then, being given

t ∈ [-1, 1] and u ∈ ℓ 1 ∩ H s such that u ℓ 1 < ε χ , the map Φ χ : [-1, 1] × B ℓ 1 (0, ε χ ) → ℓ 1 (Z d )
given by Proposition 2.8 enjoys the following properties :

i) Φ t χ preserves the H s regularity : Φ t χ (u) ∈ H s . ii) Φ t χ is close to the identity in H s (23) Φ t χ (u) -u H s s u ℓ 1 ε χ 2q-2 u H s . iii) Φ t χ is locally Lipschitz on H s ∩ ℓ 1 . (24) ∀w ∈ ℓ 1 ∩ H s , dΦ t χ (u)(w) H s s w H s + ε -1 χ w ℓ 1 u H s . iv) Φ t χ : B ℓ 1 (0, ε χ ) ∩ H s → ℓ 1 ∩ H s is smooth. Proof.
Since we proven in Corollary 2.10 and Corollary 2.7 that i∇χ is smooth and locally Lipschitz on ℓ 1 ∩H s , the local existence of the flow of the equation -i∂ t v(t) = ∇χ(v(t)) in ℓ 1 ∩H s is ensured by the Cauchy Lipschitz Theorem. Therefore to prove i) and iv) we just have to prove if u ∈ ℓ 1 ∩H s satisfies u ℓ 1 < ε χ then Φ t χ (u) H s remains bounded while |t| ≤ 1. We recall that the existence of Φ t χ (u) in ℓ 1 for |t| ≤ 1 is ensured by Proposition 2.11. Without loss of generality, we only consider positive times. By definition of v(t) := Φ t χ (u), noticing that (2q -1) 1+(s-1) + s 2 q , we have

v(t) -u H s ≤ t 0 ∇χ(v(τ )) H s dτ (21) s 2q2 q χ ℓ ∞ t 0 v(τ ) 2q-2 ℓ 1 v(τ ) H s dτ (17) s 2 q (4ε χ ) -(2q-2) t 0 (2 u ℓ 1 ) 2q-2 v(τ ) H s dτ s u ℓ 1 ε χ 2q-2 t 0 v(τ ) H s dτ. (25) 
Therefore, since u ℓ 1 < ε χ and v(0) = u, it follows by Grönwall that

(26) v(t) H s ≤ e tCs u H s
where C s is a constant depending only on s. Therefore, we deduce that v(t) ∈ H s for t ∈ [-1, 1] (i.e. the assertion i)), and plugging (26) into (25) that Φ t χ is close to the identity (i.e. that ii) holds).

If w ∈ ℓ 1 ∩ H s , ∂ t dΦ t χ (u)(w)
is solution to (20), thus we have

dΦ t χ (u)(w) -w H s ≤ t 0 d∇χ(v(τ ))(dΦ τ χ (u)(w)) H s dτ (22) s 2q2 q χ ℓ ∞ t 0 v(τ ) 2q-3 ℓ 1 ( v(τ ) ℓ 1 dΦ τ χ (u)(w) H s + v(τ ) H s dΦ τ χ (u)(w) ℓ 1 )dτ.
Then we use that v(τ

) ℓ 1 ≤ 2 u ℓ 1 (see (17)), v(τ ) H s s u H s (just proved in (26)) and dΦ τ χ (u)(w) ℓ 1 ≤ 2 w ℓ 1 (see (18)) to get dΦ t χ (u)(w) -w H s s ε -1 χ u H s w ℓ 1 + t 0 dΦ τ χ (u)(w) H s dτ.
Therefore, as a consequence of Grönwall's inequality, we get (24).

Finally, in the following proposition, we prove that if Z is a quadratic integrable polynomial then ad Z is diagonal (and so easy to invert).

Proposition 2.12. Let q ≥ 2, P ∈ H 2q and Z be a polynomial of the form

Z(u) = k∈Z d g k |u k | 2 where g k ∈ R satisfies |g k |
k 2s for some s ≥ 0. Then, that for all u ∈ H s ∩ ℓ 1 , we have 5

{P, Z}(u) = -2i k,ℓ∈(Z d ) q (g k 1 + • • • + g kq -g ℓ 1 -• • • -g ℓq )P k,ℓ u k 1 . . . u kn u ℓ 1 . . . u ℓq .
Proof. This proposition is standard, we refer for example to [BG21, Lemma 3.14] for a detailed proof in a similar setting.

2.3. Birkhoff normal form. In this section, we consider a Hamiltonian system of the form

(27) H = Z 2 + P
where P ∈ H 2p+2 (p ≥ 1 is a number given by (NLS)) stands for the nonlinear part of the system and Z 2 is a quadratic Hamiltonian of the form

Z 2 (u) = k∈Z d ω k |u k | 2 .
The frequencies ω k ∈ R are real numbers. We assume for convenience that |ω| k 2 . Therefore, by Lemma 2.2, if s > max(1, d/2), H is a smooth function on H s (T d ; C). Definition 2.13 (small divisors). The small divisors, Ω(k, ℓ), are defined for k, ℓ ∈ (Z d ) q , q ≥ 2, by

Ω(k, ℓ) = 2i(ω k 1 + • • • + ω kq -ω ℓ 1 -• • • -ω ℓq ).
Definition 2.14 (resonance). Being given ν > 0, a homogeneous polynomial

P ∈ H 2q , with q ≥ 2, is ν-resonant (resp. ν-nonresonant) if ∀k, ℓ ∈ (Z d ) q , |Ω(k, ℓ)| ≥ ν ⇒ P k,ℓ = 0 (resp. |Ω(k, ℓ)| < ν ⇒ P k,ℓ = 0). We denote by H (ν-res) 2q (resp. H (ν-nonres) 2q
) the real vector space they generate.

In this section, we aim at proving the following theorem.

Theorem 2.15 (Birkhoff normal form). Let H be the Hamiltonian given by (27) and ν ∈ (0, 1). There exists a constant C > 1, depending only on P , such that for all r ≥ 2, setting

ρ = √ ν Cr ,
there exist two C ∞ symplectic maps τ (0) and τ (1) making the following diagram to commute

(28) B ℓ 1 (0, ρ) τ (0) / / id ℓ 1 2 2 B ℓ 1 (0, 2 ρ) τ (1) / / ℓ 1 (Z d )
such that on B ℓ 1 (0, 2ρ), H • τ (1) admits the decomposition

(29) H • τ (1) = Z 2 + r q=2 L (2q) + R
where

L (2q) ∈ H (ν-res) 2q
is a ν-resonant homogeneous polynomial of degree 2q satisfying

L (2q) ℓ ∞ ≤ C 2q q 2 ν q-2 and R : B ℓ 1 (0, 2ρ) → R is a C ∞ function which is a remainder term of order 2r + 2 : for all s ≥ 0 and all u ∈ B ℓ 1 (0, 2ρ) ∩ H s , (30) 
∇R(u) H s s C 2r r 3 ν r-1 u 2r ℓ 1 u H s .
Moreover, for all s ≥ 0 and they do not make the H s norm increase too much:

if u ∈ ℓ 1 ∩ H s satisfies u ℓ 1 < 2 σ ρ with σ ∈ {0, 1} then (31) τ (σ) (u) H s s u H s .
Furthermore, the map τ (σ) : B ℓ 1 (0, 2 σ ρ) ∩ H s → ℓ 1 ∩ H s is smooth.

Proof. ⊲ Step 1 : Setting of the induction. Let C 2 > 1 be the constant depending only P such that the estimates (37),(44) below hold. We are going to prove by induction that for all r ∈ 1, r , setting

ρ := √ ν 112C 2 r ,
there exist two C ∞ symplectic maps τ (0) and τ (1) making the diagram (28) to commute and such that on B ℓ 1 (0, 2ρ), H • τ (1) admits the decomposition (29) where

L (2q) ∈ H 2q is ν-resonant for q ≤ r
and satisfies the estimate

(32) L (2q) ℓ ∞ ≤ C 2q-3 2 ν -q+2 min(q, r) 2(q-2) for 2 ≤ q ≤ r.
Moreover the remainder term R :

B ℓ 1 (0, 2ρ) → R is a C ∞ map satisfying, for all u ∈ B ℓ 1 (0, 2ρ), (33) ∇R(u) ℓ 1 ≤ K r ℓ 1 (2 5 C 2 2 ν -1 r 2 ) r-1 r-1 j=1 (1 + 2 -2j ) 2r u 2r+1 ℓ 1
where K ℓ 1 > 1 is an universal constant given by (46), and for all s ≥ 0 and all u ∈ B ℓ 1 (0, 2ρ) ∩ H s , (34)

∇R(u) H s ≤ K r s (2 5 C 2 2 ν -1 r 2 ) r-1 r-1 j=1 (1 + 2 -2j ) 2r u 2r ℓ 1 u H s
where K s > 1 is the constant depending only on s given by (47), and if u ∈ ℓ 1 ∩ H s satisfies u ℓ 1 < 2 σ ρ with σ ∈ {0, 1} then we have

(35) τ (σ) (u) H s ≤ r-1 j=1 1 + M s 2 -j u H s
where M s > 0 is the constant depending only on s given by (23), and

(36)

τ (σ) (u) ℓ 1 ≤ 1 + u 2 ℓ 1 2 2σ ρ 2 u ℓ 1 .
Note that, since the product in(34) and ( 35) are convergent and that K r s s r r , this result (when r = r) is just refinement of Theorem 2.15. The fact that τ (σ) : B ℓ 1 (0, 2 σ ρ) ∩ H s → ℓ 1 ∩ H s is smooth is just a direct corollary of the construction and property iv) of Proposition 2.11.

We are going to proceed by induction on r. First, we note that the case r = 1 is obvious, provided that C 2 is chosen large enough to ensure that (37)

P ℓ ∞ ≤ C 2p-1 2 and so 6 P ℓ ∞ ≤ C 2p-1 2 ν -p+1 min(p + 1, 1) 2(p-1)
. From now, we assume that the property holds at step r < r and we are going to prove it at the step r + 1. In order to get convenient notations, we denote with a subscript ♯ the maps corresponding to the step r + 1 (like for example τ (1),♯ or R ♯ ).

⊲

Step 2 : Resolution of the cohomological equation. In order to remove the ν-non resonant terms of L (2r+2) , we define a polynomial Hamiltonian χ ∈ H 2r+2 by

χ k,ℓ := L (2r+2) k,ℓ iΩ(k, ℓ) if |Ω(k, ℓ)| ≥ ν and χ k,ℓ = 0 else.
As a consequence of Proposition 2.12 it can be easily checked that

L (2r+2),♯ = {χ, Z 2 } + L (2r+2)
where

L (2r+2),♯ ∈ H (ν-res) 2r+2
is the ν-resonant part of L (2r+2) , i.e.

(38)

L (2r+2),♯ k,ℓ = L (2r+2) k,ℓ if |Ω(k, ℓ)| < ν and L (2r+2),♯ k,ℓ
= 0 else.

⊲

Step 3 : The new variables. The Hamiltonian χ clearly enjoys the bound

χ ℓ ∞ ≤ ν -1 L (2r+2) ℓ ∞ ≤ C 2r-1 2 ν -r r 2(r-1) .
We recall that the Hamiltonian flow of χ is given by Proposition (2.8) and is well defined for |t| ≤ 1 on B ℓ 1 (0, ε χ ) where (39)

ε χ = 1 4 (2(r + 1) χ ℓ ∞ ) -1 2r ≥ 1 4 (2(r + 1)C 2r-1 2 ν -r r 2(r-1) ) -1 2r ≥ √ ν 8rC 2 = 14ρ.
6 we recall that p ≥ 1 and ν ∈ (0, 1).

Now, we aim at defining

τ (1),♯ := τ (1) • Φ 1 χ and τ (0),♯ := Φ -1 χ • τ (0) .

So we have to check that these maps are well defined on B ℓ 1 (0, 2ρ ♯ ) and B ℓ 1 (0, ρ ♯ ) respectively. First, since ρ ♯ ≤ ρ, thanks to the estimate (36), we know that τ (0) maps B ℓ 1 (0, ρ ♯ ) on B ℓ 1 (0, 2ρ ♯ ). Moreover since 2ρ ♯ ≤ 2ρ ≤ ε χ (see (39)), it follows that τ (0),♯ is well defined on B ℓ 1 (0, ρ ♯ ). Then, in order to prove that τ (1),♯ is well defined, we just have to check that Φ 1 χ maps B ℓ 1 (0, 2ρ ♯ ) on B ℓ 1 (0, 2ρ). Indeed, if u ℓ 1 < 2ρ ♯ then (since Φ 1 χ is close to the identity, see ( 17))

Φ 1 χ (u) ℓ 1 2ρ ≤ 1 + u ℓ 1 ε χ 2r u ℓ 1 2ρ ≤ 1 + u ℓ 1 14ρ ♯ 2r u ℓ 1 2ρ ♯ r r + 1 ≤ (1 + 7 -2r ) r r + 1 u ℓ 1 2ρ ♯ ≤ u ℓ 1 2ρ ♯ < 1. (40)
Then, we note that by composition it is clear that τ (1),♯ and τ (0),♯ are symplectic. Now, we aim at proving that τ (0),♯ is close to the identity in ℓ 1 . Indeed, if u ℓ 1 < ρ ♯ , we have

τ (0),♯ (u) ℓ 1 ≤ 1 + τ (0) (u) ℓ 1 ε χ 2r τ (0) (u) ℓ 1 ≤ 1 + u ℓ 1 7ρ 2r τ (0) (u) ℓ 1 ≤ 1 + u ℓ 1 7ρ 2r 1 + u ℓ 1 ρ 2 u ℓ 1 ≤ 1 + u ℓ 1 ρ 2 + 2 u ℓ 1 7ρ 2r u ℓ 1 ≤ 1 + (1 + 2 7 -2r ) r r + 1 2 u ℓ 1 ρ ♯ 2 u ℓ 1 ≤ 1 + u ℓ 1 ρ ♯ 2 u ℓ 1 .
We note that as a consequence τ (0),♯ (u) ℓ 1 < 2ρ ♯ and so τ (0),♯ (u) ℓ 1 < ε χ . Therefore as a consequence of the induction hypothesis and the invertibility of Hamiltonian flow of χ (i.e. ( 16)) the diagram (28) commute at the step r + 1. Now, we aim at proving that τ (1),♯ is close to the identity in ℓ 1 . Indeed, if u ℓ 1 < 2ρ ♯ , we have

τ (1),♯ (u) ℓ 1 ≤ 1 + Φ 1 χ (u) ℓ 1 2ρ 2 Φ 1 χ (u) ℓ 1 (40) ≤ 1 + (1 + 7 -2r ) r r + 1 2 u ℓ 1 2ρ ♯ 2 Φ 1 χ (u) ℓ 1 ≤ 1 + (1 + 7 -2r ) r r + 1 2 u ℓ 1 2ρ ♯ 2 1 + 7 -2r u ℓ 1 2ρ ♯ 2 u ℓ 1 ≤ 1 + (1 + 7 -2r ) r r + 1 2 + 2 7 -2r u ℓ 1 2ρ ♯ 2 u ℓ 1 ≤ 1 + u ℓ 1 2ρ ♯ 2 u ℓ 1 .
Finally, the H s estimate (35) of τ (1),♯ and τ (0),♯ is a direct corollary of their definition and of the H s estimate of Φ t χ (see (23)). ⊲ Step 4 : The new expansion. Let us note that since Φ χ is the Hamiltonian flow of χ (see (15)), if Q is a smooth real valued function on ℓ 1 , provided that u ℓ 1 < 2ρ ♯ and |t| ≤ 1, we have

d dt Q(Φ t χ (u)) = {χ, Q}(Φ t χ (u)).
Therefore, since Φ 0 χ = id ℓ 1 , the Taylor expansion of Q(Φ t χ (u)) in t = 0 at the order m is given by

Q(Φ 1 χ (u)) = m n=0 ad n χ Q(u) n! + 1 0 (1 -t) m m! ad m+1 χ Q(u)dt.
As a consequence, we also get explicitly the Taylor expansion of L (2q) • Φ 1 χ at the order 2r :

L (2q) • Φ 1 χ (u) = mq n=0 ad n χ L (2q) (u) n! + 1 0 (1 -t) mq m q ! ad mq+1 χ L (2q) (u)dt.
where m q is the smallest index such that (m q + 1)r + q > r. Now, recalling that by induction hypothesis, we have

H •τ (1) = Z 2 +L (4) +• • •+L (2r)
+R and that, by construction, τ (1),♯ = τ (1) •Φ 1 χ , we deduce that

H • τ (1),♯ = Z 2 + L (4),♯ + • • • + L (2r),♯ + R ♯ where L (2q),♯ := n≥0, q ′ ≥2 nr+q ′ =q 1 n! ad n χ L (2q ′ ) + n≥1 nr+1=q 1 n! ad n-1 χ {χ, Z 2 }. and (41) R ♯ = r q=2 1 0 (1 -t) mq m q ! ad mq+1 χ L (2q) • Φ t χ dt + 1 0 (1 -t) m 1 m 1 ! ad m 1 χ {χ, Z 2 } • Φ t χ dt + R • Φ 1 χ .
We are going to estimate this new remainder term carefully at the next steps of the proof. For the moment, we focus on estimating L (2q),♯ . We recall that -{χ, Z 2 } = L (2r+2) -L (2r+2),♯ ∈ H 2r+2 is nothing but the ν-nonresonant part of L (2r+2) (see (38)). Therefore, we have

(42) 1 n! L (2r+2) + 1 (n + 1)! {χ, Z 2 } ℓ ∞ ≤ 1 n! L (2r+2)
ℓ ∞ and so we do not have to take into account the contribution of the terms associated with Z 2 in the estimate of L (2q),♯ ℓ ∞ for q ≥ r + 1. As a consequence, we deduce of Proposition 2.5 that, for all 2 ≤ q ≤ r, L (2q),♯ ∈ H 2q is indeed a homogeneous polynomial of degree 2q and that it satisfies the bound (43)

L (2q),♯ ℓ ∞ ≤ n≥0, q ′ ≥2 nr+q ′ =q 4 n (r + 1) n L (2r+2) n ℓ ∞ ν n n! L (2q ′ ) ℓ ∞ n-1 j=0 (q ′ + rj).
By induction hypothesis, we know that L (2q) ℓ ∞ ≤ C 2q-3 2 ν -q+2 min(q, r) 2(q-2) for all q. We aim at proving that L (2q,♯) ℓ ∞ ≤ C 2q-3 2 ν -q+2 min(q, r + 1) 2(q-2) . First, we note that since the sum in (43) is trivial for q ≤ r + 1 (i.e. it is reduced to n = 0), we only have to focus on the case q ≥ r + 2 (else the estimate is obvious).

Then, using the induction hypothesis in (43), for q ≥ r + 2, we get7 

B ♯ q := L (2q),♯ ℓ ∞ C 2q-3 2 ν -q+2 (r + 1) 2(q-2) ≤ n≥0, q ′ ≥2 nr+q ′ =q
ν -n+(q-2)-(q ′ -2)-n(r-1) C -(2q-3)+n(2r-1)+(2q ′ -3) 2 × (r + 1) n-2(q-2) r 2n(r-1)+2(q ′ -2) 4 n q n n! Therefore, thanks to the relation nr + q ′ = q, we get

B ♯ q ≤ n≥0, q ′ ≥2 nr+q ′ =q C -n 2 (r + 1) n-2(q-2) r 2(q-2)-2n 4 n q n n! ≤ n≥0, q ′ ≥2 nr+q ′ =q q n r r + 1 2(q-2) r -n 8 n C -n 2 n! .
Then, using the estimate A -q q n ≤ e -n n n (log(A)) -n whenever A > 1 and the convexity of the logarithm, we get

q n r r + 1 2(q-2) ≤ 2 4 2 -n e -n n n log 1 + 1 r -n ≤ 2 4 e -n n n log(2) -n r n .
Therefore, since e -n n n ≤ n!, we get

B ♯ q ≤ r r + 1 2(q-2) + n≥1, q ′ ≥2 nr+q ′ =q 2 4 8 n log(2) -n C -n 2 .
Moreover, since q ≥ r + 2 and r ≥ 1, we have

r r + 1 2(q-2) ≤ r r + 1 2r ≤ e -1
and so, as expected, since C 2 can be chosen large enough, (44)

B ♯ q ≤ e -1 + 2 8 log(2)
C -1 2 ≤ 1.

⊲

Step 5 : Estimate of the new remainder term in ℓ 1 . Finally, we just have to control the new remainder term R ♯ (given by ( 41)). Reasoning as in (42), with a small abuse of notations, we ignore the contribution of the terms coming from {χ, Z 2 }.

We have to control terms of the form ∇(Q • Φ t χ )(u) where u ℓ 1 < 2ρ ♯ and Q is a smooth function in ℓ 1 . First, let us prove the following formula which is very convenient

(45) ∇(Q • Φ t χ )(u) = -i(dΦ -t χ )(Φ t χ (u)) i(∇Q)(Φ t χ (u)) on B ℓ 1 (0, 2ρ ♯ )
. Indeed, by ( 16) and ( 17), we have

Φ t χ • Φ -t χ = id ℓ 1 on B ℓ 1 (0, ε χ /2) and so [(dΦ t χ ) • Φ -t χ ]dΦ -t χ = id ℓ 1 on B ℓ 1 (0, ε χ /2).
We note that if

u ℓ 1 < 2ρ ♯ then Φ t χ (u) ℓ 1 < 2ρ < ε χ /2 (see (39),( 40 
)
) and so we have

(dΦ t χ )[(dΦ -t χ ) • Φ t χ ] = id ℓ 1 on B ℓ 1 (0, 2ρ ♯ ). Therefore, since Φ t χ is symplectic, if u ℓ 1 < 2ρ ♯ , we have, for all v ∈ ℓ 1 (∇(Q • Φ t χ )(u), v) L 2 = d(Q • Φ t χ )(u)(v) = ((∇Q) • Φ t χ (u), dΦ t χ (u)(v)) L 2 =(i(∇Q) • Φ t χ (u), idΦ t χ (u)(v)) L 2 = dΦ t χ (u)[(dΦ -t χ )(Φ t χ (u))] i(∇Q) • Φ t χ (u) , idΦ t χ (u)(v) L 2 =((dΦ -t χ )(Φ t χ (u)) i(∇Q) • Φ t χ (u) , iv) L 2 = (-i(dΦ -t χ )(Φ t χ (u)) i(∇Q) • Φ t χ (u) , v) L 2 which is clearly equivalent to (45).
Now thanks to this identity (45) and the estimate (18) on dΦ -t χ , by the triangular inequality, we have

∇R ♯ (u) ℓ 1 ≤ ∇(R • Φ 1 χ )(u) ℓ 1 + max 0≤t≤1 r q=2 1 m q ! ∇(ad mq+1 χ L (2q) • Φ t χ (u)) ℓ 1 (∇R) • Φ 1 χ (u) ℓ 1 + max 0≤t≤1 r q=2 1 m q ! ∇(ad mq+1 χ L (2q) ) • Φ t χ (u) ℓ 1 .
Then, estimating the vector field of ad mq+1 χ L (2q) by Corollary 2.7, we get

∇R ♯ (u) H s r r q=2 ad mq+1 χ L (2q) ℓ ∞ m q ! Φ t χ (u) 2fq+1 L ∞ t ℓ 1 + (∇R) • Φ 1 χ (u) ℓ 1
where f q := (m q + 1)r + q -1. We note that by definition of m q , we have r ≤ f q < 2r. Therefore, since Φ t χ is close to the identity, we have the estimates

Φ t χ (u) 2fq +1 L ∞ t ℓ 1 ≤ 2 4r+1 u 2fq+1 ℓ 1
Estimating the sum as at the previous step (thanks to Proposition 2.5), it comes

∇R ♯ (u) ℓ 1 2 5r r q=2 8 (log 2)C 2 mq+1 (m q + 1) C 2fq-1 2 ν -fq+1 (r + 1) 2(fq -1) u 2fq +1 ℓ 1 + (∇R) • Φ 1 χ (u) ℓ 1 .
Recalling that by definition (r + 1)

2 ν -1 C 2 2 = (16 • 7ρ ♯ ) 2 ≥ (2ρ ♯ ) 2 , we have C 2fq-1 2 ν -fq+1 (r + 1) 2(fq -1) u 2fq ℓ 1 ≤ C 2r-1 2 ν -r+1 (r + 1) 2(r-1) u ℓ 1 2ρ ♯ 2(fq-r) u 2r ℓ 1 ≤ C 2 (C 2 2 ν -1 r 2 ) r-1 u 2r ℓ 1
and so (since m q ≤ r and

8 (log 2)C 2 < 1) ∇R ♯ (u) ℓ 1 (2 5 C 2 2 ν -1 r 2 ) r-1 u 2r+1 ℓ 1 + (∇R) • Φ 1 χ (u) ℓ 1 . Now, thanks to induction hypothesis, since Φ 1
χ is close to the identity, we have

(∇R) • Φ 1 χ (u) ℓ 1 ≤ K r ℓ 1 (2 5 C 2 2 ν -1 r 2 ) r-1 r-1 j=1 (1 + 2 -2j ) 2r Φ 1 χ (u) 2r+1 ℓ 1 ≤ K r ℓ 1 (2 5 C 2 2 ν -1 r 2 ) r-1 r j=1 (1 + 2 -2j ) 2r u 2r+1 ℓ 1
and so

(46) ∇R ♯ (u) ℓ 1 (2 5 C 2 2 ν -1 r 2 ) r-1 (1 + K r ℓ 1 r j=1 (1 + 2 -2j ) 2r ) u 2r+1 ℓ 1 .
Therefore, provided that the constant K ℓ 1 > 1 is chosen large enough, we deduce that as expected

∇R ♯ (u) ℓ 1 ≤ K r+1 ℓ 1 (2 5 C 2 2 ν -1 r 2 ) r-1 r j=1 (1 + 2 -2j ) 2r u 2r+1 ℓ 1 . ⊲
Step 6 : Estimate of the new remainder term in H s . The proof is similar to the one in ℓ 1 . As previously, with a small abuse of notations, we ignore the contribution of the terms coming from {χ, Z 2 }. Thanks to this identity (45) and the estimate (24) on dΦ -t χ , by the triangular inequality, we have

∇R ♯ (u) H s ≤ ∇(R • Φ 1 χ )(u) H s + max 0≤t≤1 r q=2 1 m q ! ∇(ad mq+1 χ L (2q) • Φ t χ (u)) H s s (∇R) • Φ 1 χ (u) H s + r q=2 1 m q ! ∇(ad mq+1 χ L (2q) ) • Φ t χ (u) L ∞ t H s + ε -1 χ Φ t χ (u) L ∞ t H s (∇R) • Φ 1 χ (u) ℓ 1 + r q=2 1 m q ! ∇(ad mq+1 χ L (2q) ) • Φ t χ (u) L ∞ t ℓ 1 .
Fortunately, the previous step has been devoted to estimating this last term in parenthesis. Therefore, since

Φ t χ (u) L ∞ t H s s u H s and u ℓ 1 ε -1 χ < 1, we have ∇R ♯ (u) H s s (∇R) • Φ 1 χ (u) H s + r q=2 1 m q ! ∇(ad mq+1 χ L (2q) ) • Φ t χ (u) L ∞ t H s + K r ℓ 1 (2 5 C 2 2 ν -1 r 2 ) r-1 r j=1 (1 + 2 -2j ) 2r u 2r ℓ 1 u H s .
Estimating the vector field of ad mq+1 χ L (2q) by Corollary 2.10 and proceeding as previously (i.e. as in step 5), we get

r q=2 1 m q ! ∇(ad mq+1 χ L (2q) ) • Φ t χ (u) L ∞ t H s s (2 5 C 2 2 ν -1 r 2 ) r-1 u 2r ℓ 1 u H s
Now, thanks to induction hypothesis, since Φ 1 χ is close to the identity (in ℓ 1 and H s ) we have

(∇R) • Φ 1 χ (u) H s ≤ K r s (2 5 C 2 2 ν -1 r 2 ) r-1 r-1 j=1 (1 + 2 -2j ) 2r Φ 1 χ (u) 2r ℓ 1 Φ 1 χ (u) H s s K r s (2 5 C 2 2 ν -1 r 2 ) r-1 r j=1 (1 + 2 -2j ) 2r u 2r ℓ 1 u H s and so (47) ∇R ♯ (u) H s s (2 5 C 2 2 ν -1 r 2 ) r-1 (1 + (K r s + K r ℓ 1 ) r j=1 (1 + 2 -2j ) 2r ) u 2r ℓ 1 u H s .
Therefore, the constant K s ≥ K ℓ 1 > 1 can be chosen large enough 8 to get

∇R ♯ (u) H s ≤ K r+1 s (2 5 C 2 2 ν -1 r 2 ) r-1 r j=1 (1 + 2 -2j ) 2r u 2r ℓ 1 u H s
which conclude the induction.

3. Proof of Theorem 1.1

In this section we aim at proving Theorem 1.1 thanks to the Birkhoff normal form theorem (Thm 2.15). Therefore, we recall that (NLS) rewrites as an Hamiltonian system

i∂ t u = 1 2 ∇H(u)
where the Hamiltonian H of (NLS) writes ( 48)

H(u) := Z 2 (u) + P (u) with Z 2 (u) = T d |∇u(x)| 2 + (V * u)(x)u(x)dx and P (u) = T d σ p + 1 |u(x)| 2p+2 dx.
In order to apply the results of Section 2, it is worth to notice that these functions rewrites

(49) Z 2 (u) = k∈Z d ω k |u k | 2 where ω k := |k| 2 + (2π) -d/2 V k and P (u) = σ(2π) -pd p + 1 k 1 +•••+k p+1 =ℓ 1 +•••+ℓ p+1 u k 1 . . . u k p+1 u ℓ 1 . . . u ℓ p+1 .
Note that P ∈ H 2p+2 and satisfies P ℓ ∞ ≤ (2π) -pd (p + 1) -1 . Before proving Theorem 1.1 thanks to a bootstrap argument, we begin with two technical subsections in which we define the non-resonant potential (i.e. the set V) and we study the resonant Hamiltonians (according to Definition 2.14).

3.1. Non resonant potentials. First, we define the set V of the Fourier multiplier V for which we are going to prove Theorem 1.1.

Definition 3.1 (Set V). A Fourier multiplier V ∈ ℓ ∞ (Z d ; R) belongs to V if exists γ > 0 such that for all q ≥ 2, all k, ℓ ∈ (Z d ) q we have |Ω(k, ℓ)| ≥ γ q -4 log 2 max 1≤j≤q (|k j |, |ℓ j |) -(2q+1) whenever (k, ℓ) satisfies (5).
Remark 3.2. We recall that the small divisors Ω(k, ℓ) are defined in Definition 2.13 (the frequencies ω k being given by (49)) and that the condition "(k, ℓ) satisfies (5)" means that the monomial u k 1 . . . u kq u ℓ 1 . . . u ℓq does not commute with the super-actions J n (defined in (3)).

Remark 3.3. In order to include more potentials, we could easily extend this definition by considering estimates of the form |Ω(k, ℓ)| ≥ γ c q 1 log max 1≤j≤q (|k j |, |ℓ j |) -c 2 q where c 1 , c 2 > 0 would depend on V but for simplicity we chose to have explicit constants (the constant 4 in the definition of T ε in Theorem 1.1 would then be related to c 2 ).

In the following lemma (which is the main result of this section), we prove that the set V is non-empty. Lemma 3.4. Almost surely, the random potential V defined by (7) belongs to V.

Proof. We aim at estimating the probability of the following events

E γ := ∃q ≥ 2, ∃k, ℓ ∈ (Z d ) q , (k, ℓ) satisfies (5) ⇒ |Ω(k, ℓ)| ≤ γc k,ℓ
where γ > 0 and the constants c k,ℓ > 0 will be defined later.

Step 1 : To Make the multiplicities appear. By definition of V , we note that Ω(k, ℓ) writes under the form

|Ω(k, ℓ)| = 2 |a + (2π) -d/2 (X n1 + • • • + X nq -X m1 -• • • -X mq )| =: Υ a (n, m)
where a ∈ Z is an integer (depending on k, ℓ) and n j is the integer such that k j ∈ B n j (m j being defined similarly with respect to ℓ j ) and (B n ) n denotes the usual dyadic decomposition of the Fourier space given by (4). Therefore, provided that ρ n,m > 0 is a constant such that ρ n,m ≥ c k,ℓ , by definition of the non-resonance condition (5), we have

E γ ⊂ q≥2 n,m∈N q n / ∈Sqm a∈Z Υ a (n, m) ≤ γρ n,m
where n / ∈ S q m just mean that n = m up to a permutation. As a consequence, we deduce the estimate

P(E γ ) ≤ q≥2 n,m∈N q n / ∈Sqm a∈Z P Υ a (n, m) ≤ γρ n,m .
Step 2 : To reduce the sum with respect to a. Now, we note that since the random variables X n are bounded by 1, if |a| > q then

Υ a (n, m) ≥ 2|a| -4(2π) -d/2 q ≥ 2(|a| -q) ≥ 2.
Therefore, assuming from now that γ and ρ n,m are such that γρ n,m < 2, we have

|a| > q ⇒ P Υ a (n, m) ≤ γρ n,m = 0
and so (50)

P(E γ ) ≤ q≥2 (2q + 1) n,m∈N q n / ∈Sqm sup a∈Z P Υ a (n, m) ≤ γρ n,m .
Step 3 : Estimation of P Υ a (n, m) ≤ γρ n,m . We note that since n / ∈ S q m, Υ a (n, m) writes under the form

Υ a (n, m) = 2(2π) -d/2 |bX k + Y | where b ∈ Z * , k ∈ {n 1 , • • • , n q , m 1 , • • • , m q } and Y is random variable independent of X k . Therefore, since X k ∼ U (0, 1) is uniformly distributed in (0, 1), we have (51) P(|Ω(k, ℓ)| ≤ γρ n,m ) = E 1 0 ½ 2(2π) -d/2 |bx k +Y |≤γρn,m dx k ≤ (2π) d/2 γρ n,m .
Step 4 : Conclusion. Putting (50) and (51) together we deduce that (52)

P(E γ ) d γ q≥2 (2q + 1) (n,m)∈N 2q \{(0,0)} ρ n,m .
Therefore, we set 2q+1) and ρ n,m = q -4 ( max

c k,ℓ = q -4 log 2 max 1≤j≤q (|k j |, |ℓ j |) -(
1≤j≤q (|m j |, |n j |)) -(2q+1) .
Since whenever 9 n / ∈ S q m max 1≤j≤q

(|k j |, |ℓ j |) ≥ 2 max 1≤j≤q (|m j |,|n j |)
as required, we have ρ n,m ≥ c k,ℓ . Finally, thank to (52) and the mean value inequality, we get

P(E γ ) d γ q≥2 q -3 m≥1 m 2q -(m -1) 2q m 2q+1 d γ q≥2 q -2 d γ
which is enough to deduce that P γ>0 E γ ≤ inf γ>0 P(E γ ) = 0.

3.2. Smallness of the resonant Hamiltonian. As we can see in our Birkhoff normal form theorem (Thm 2.15), we do not have removed the ν-resonant terms (associated with L in Thm 2.15). In this subsection, we are going to prove (in Proposition 3.6 below) that they do not make increase to much some observables N N,s which are equivalent to the square of the H s norm.

Definition 3.5 (N N,s ). Let N ≥ 1 be an integer of the form N = 2 nmax with n max ∈ N. For all s > 0 and u ∈ H s (T d ), we set

N N,s (u) = N (low) N,s (u) + N (high) N,s (u) 
where

N (low) N,s = 0≤n<nmax (2 n ) 2s J n and N (high) N,s (u) = k≥N |k| 2s |u k | 2 .
We recall that the super actions J n are defined in (3). In the proof of Theorem 1.1, the parameter N will be optimized with respect to ε (the size of the initial datum). It will be chosen much larger than usually in the literature 10 : it will be of the form N = ε -r(ε) where r(ε) goes to +∞ as ε goes to 0. Of course, as expected we note that these observables are equivalent to the square of the H s norm :

2 -2s • 2 H s ≤ N N,s ≤ • 2 H s .
The following proposition is the main result of this section. We prove that the ν-resonant Hamiltonians almost commute with the N N,s norm. Proposition 3.6. Let V ∈ V be a non-resonant potential (and γ > 0 be the associated constant), N ≥ 1 be an integer of the form N = 2 nmax with n max ∈ N * , q ≥ 2 be an integer and ν ∈ (0, 1) be a small real number such that

(53) γq -4 log 2 2qN -(2q+1) ≥ ν.
If L ∈ H (ν-res) is a ν-resonant homogeneous polynomial of degree 2q then for s ≥ 0, η ∈ (0, 1] and u ∈ ℓ 1 η ∩ H s (T d ) we have

|{N N,s , L}(u)| s q 2s+1 N -η L ℓ ∞ u ℓ 1 η u 2q-3 ℓ 1 u 2 H s .
9 and so max 1≤j≤q (|kj|, |ℓj |) = 0 . 10 usually the truncation parameter is of the form N = ε -η with 0 < η ≪ 1 (see e.g. [START_REF] Bambusi | Birkhoff Normal Form for Some Nonlinear PDEs[END_REF][START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF][START_REF] Bernier | Rational normal forms and stability of small solutions to nonlinear Schrödinger equations[END_REF]).

The rest of this subsection is devoted to the proof of this proposition. In particular, from now we assume that V ∈ V and L are fixed and that ν, q and N satisfy the estimate (53). As usual, in order to prove our multi-linear estimates, we introduce the functions µ 1 , • • • , µ 2q : (Z d ) 2q → R + such that for all h ∈ (Z d ) 2q and j ∈ 1, 2q , µ j (h) is the j est largest number among |h 1 |, • • • , |h 2q |. In other words, (µ j (h)) j is the nondecreasing sequence which is equal to (|h j |) j up to a permutation11 .

Lemma 3.7. If k, ℓ ∈ (Z d ) q satisfy |Ω(k, ℓ)| < ν and k 1 + • • • + k q = ℓ 1 + • • • + ℓ q ,
then either µ 2 (k, ℓ) ≥ N or (k, ℓ) does not satisfy (5).

Proof. We assume that (k, ℓ) satisfies (5). Since V ∈ V is non-resonant and ν, q and N satisfy the estimate (53), we have

γq -4 log 2 µ 1 (k, ℓ) -(2q+1) ≤ Ω(k, ℓ) ≤ ν ≤ γq -4 log 2 2qN -(2q+1) .
As a consequence, we deduce that µ 1 (k, ℓ) ≥ 2qN . Moreover, since (k, ℓ) satisfies the zero momentum condition

k 1 + • • • + k q = ℓ 1 + • • • + ℓ q , we have (2q -1)µ 2 (k, ℓ) ≥ µ 1 (k, ℓ)
and so, finally we deduce that µ 2 (k, ℓ) > N . Now, we decompose L in two parts L = L (low) + L (high) , where L (low) , L (high) ∈ H 2q are two homogeneous ν-resonant polynomials of degree 2q defined by

L (low) k,ℓ = L k,ℓ if µ 2 (k, ℓ) < N 0 else and L (high) k,ℓ = 0 if µ 2 (k, ℓ) < N L k,ℓ else .
As a consequence of Lemma 3.7, we prove in the following lemma that L (low) commutes with N N,s .

Lemma 3.8. The Hamiltonians L (low) and N N,s commute (i.e. {L (low) , N N,s } = 0).

Proof. First, we note that as a consequence of Proposition 2.12, for all u ∈ H s (T d ), we have

(54) {L (low) , N N,s }(u) = -2i k,ℓ∈(Z d ) q µ 2 (k,ℓ)<N (g k 1 + • • • + g kq -g ℓ 1 -• • • -g ℓq )L k,ℓ u k 1 . . . u kq u ℓ 1 . . . u ℓq where g k = |k| 2s if k ≥ N and g k = (2 n ) 2s if k ∈ B n with n < n max .
Moreover, since L is ν-resonant, as a consequence of Lemma 3.7, if L k,ℓ = 0 and µ 2 (k, ℓ) < N then (k, ℓ) does not satisfy (5). In other words, the sum in (54) can be restricted to the indices such that µ 2 (k, ℓ) < N and (k, ℓ) does not satisfy (5). Therefore, since N is of the form N = 2 nmax , all the indices also satisfy µ 1 (k, ℓ) < N and so

g k 1 + • • • + g kq -g ℓ 1 -• • • -g ℓq = (2 m 1 ) 2s + • • • + (2 m q ) 2s -(2 n 1 ) 2s -• • • -(2 n q ) 2s
where m j (resp. n j ) is the index such that k j ∈ B m j (resp. ℓ j ∈ B n j ). But since here we only consider indices such that (k, ℓ) does not satisfy (5), m and n are equal up to a permutation (i.e. m ∈ S q n) and so this sum is trivial:

g k 1 + • • • + g kq -g ℓ 1 -• • • -g ℓq = 0.
Therefore, as a consequence of (54), we have proven that {L (low) , N N,s }(u) = 0.

We are now in position to prove Proposition 3.6.

Proof of Proposition 3.6. In view of Lemma 3.8 it remains to prove, under the hypothesis of the proposition, that

(55) |{N N,s , L (high) }(u)| s q 2s+1 N -η L ℓ ∞ u ℓ 1 η u 2q-3 ℓ 1 u 2 H s .
Following the notations introduced for (54) we get

{L (high) , N N,s }(u) = 2 k,ℓ∈(Z d ) q µ 2 (k,ℓ)≥N (g k 1 + • • • + g kq -g ℓ 1 -• • • -g ℓq )L k,ℓ u k 1 . . . u kq u ℓ 1 . . . u ℓq ≤ 2 L ℓ ∞ k,ℓ∈(Z d ) q µ 2 (k,ℓ)≥N, Ω(k,ℓ)≤ν k 1 +•••+kq=ℓ 1 +•••+ℓq g k 1 + • • • + g kq -g ℓ 1 -• • • -g ℓq |u k 1 . . . u kq u ℓ 1 . . . u ℓq |.
First we order the first two indices of (k, ℓ) in such a way that µ

1 (k, ℓ) = |k 1 | and µ 2 (k, ℓ) = |k 2 | or µ 2 (k, ℓ) = |ℓ 1 |: k,ℓ∈(Z d ) q , Ω(k,ℓ)≤ν µ 2 (k,ℓ)≥N k 1 +•••+kq=ℓ 1 +•••+ℓq g k 1 + • • • + g k q -g ℓ 1 -• • • -g ℓ q |u k 1 . . . u k q u ℓ 1 . . . u ℓ q | ≤ (2q) 2 Σ 1 + Σ 2 where Σ 1 = k,ℓ∈(Z d ) q , Ω(k,ℓ)≤ν µ 1 (k,ℓ)=|k 1 |≥µ 2 (k,ℓ)=|k 2 |≥N k 1 +•••+kq=ℓ 1 +•••+ℓq g k 1 + • • • + g kq -g ℓ 1 -• • • -g ℓq |u k 1 . . . u kq u ℓ 1 . . . u ℓq | and Σ 2 = k,ℓ∈(Z d ) q µ 1 (k,ℓ)=|k 1 |≥µ 2 (k,ℓ)=|ℓ 1 |≥N k 1 +•••+kq=ℓ 1 +•••+ℓq g k 1 + • • • + g kq -g ℓ 1 -• • • -g ℓq |u k 1 . . . u kq u ℓ 1 . . . u ℓq |.
We begin by estimating Σ 1 . Using Ω(k, ℓ) ≤ ν ≤ 1, we get

|k 1 | 2 + |k 2 | 2 ≤ (2q -2)|µ 3 (k, ℓ)| 2 + 2q(2π) -d/2 V ℓ ∞ ≤ 2q( V ℓ ∞ + 1) µ 3 (k, ℓ) 2 .
Hence, since g k ≤ |k| 2s for any integer k,

g k 1 + • • • + g kq -g ℓ 1 -• • • -g ℓq ≤ (2(2q) s ( V ℓ ∞ + 1) s + q -2) µ 3 (k, ℓ) 2s s q s+1 µ 3 (k, ℓ) 2s .
and thus, setting v

(j) h = |u h | if h ≤ q and v (j) h = |u -h | else, by Young we have Σ 1 s q s+1 k,ℓ∈(Z d ) q µ 1 (k,ℓ)=|k 1 |≥µ 2 (k,ℓ)=|k 2 |≥N k 1 +•••+kq=ℓ 1 +•••+ℓq µ 3 (k, ℓ) 2s |u k 1 . . . u kq u ℓ 1 . . . u ℓq | = q s+1 h∈(Z d ) 2q µ 1 (h)=|h 1 |≥µ 2 (h)=|h 2 |≥N h 1 +•••+h 2q =0 µ 3 (h) 2s v (1) h 1 • • • v (2q) h 2q ≤ q s+1 N -η 2q j=3 h∈(Z d ) 2q µ 1 (h)=|h 1 |≥µ 2 (h)=|h 2 |≥N µ 3 (h)=|h j | h 1 +•••+h 2q =0 |h 1 | η |h 2 | s |h j | s v (1) h 1 • • • v (2q) h 2q ≤ 2q s+2 N -η u ℓ 1 η u 2q-3 ℓ 1 u 2 H s .
Now we estimate Σ 2 . We note that, in the sum Σ 2 ,

g k 1 + • • • + g kq -g ℓ 1 -• • • -g ℓq ≤ |k 1 | 2s -|ℓ 1 | 2s + (2q -2)µ 3 (k, ℓ) 2s .
On the other hand, by the mean value theorem, |k 1 | 2s -|ℓ 1 | 2s ≤ 2s|k 1ℓ 1 ||k 1 | 2s-1 and, using the zero momentum condition we have,

|k 1 | ≤ 2q|ℓ 1 | and |k 1 -ℓ 1 | ≤ 2qµ 3 (k, ℓ). Therefore, since 0 < η ≤ 1, we get g k 1 + • • • + g kq -g ℓ 1 -• • • -g ℓq ≤ 4s(2q) 2s |k 1 | s |ℓ 1 | s-1 µ 3 (k, ℓ) q 2s |k 1 | s |ℓ 1 | s-η µ 3 (k, ℓ) η
Thus, recalling that in Σ 2 we have |ℓ 1 | ≥ N , as previously we get

Σ 2 s q 2s N -η 2≤j≤2q j =q+1 h∈(Z d ) 2q h 1 +•••+h 2q =0 h 1 s h q+1 s h j η v (1) h 1 • • • v (2q) h 2q ≤ 2q 2s+1 N -η u ℓ 1 η u 2q-3 ℓ 1 u 2 H s .
3.3. Proof of Theorem 1.1.

3.3.1.

Approximation by smooth solutions. In order to justify the formal computation, we are going to prove Theorem 1.1 when u (0) is smooth. So first, let us check that this assumption can be done without loss of generality. More precisely, we assume that Theorem 1.1 holds if we add the assumption that u (0) ∈ C ∞ (T d ) and we aim at proving that this assumption can be removed. Let u (0) ∈ H s⋆ , where s ⋆ = max(s, s 0 ), be such that ε

= u (0) H s 0 ≤ ε 0 . Let u (0,n) ∈ C ∞ , n ≥ 1, be a sequence of functions such that sup n≥1 u (0,n) H s 0 ≤ u (0) H s 0 and u (0,n) -→ n→∞ u (0) in H s⋆ .
Since ε → T ε is increasing (provided that ε is small enough), for all n ≥ 1, the solution u (n) of (NLS) with initial condition u (0,n) satisfies u

(n) ∈ C ∞ ([-T ε , T ε ] × T d ; C) and M := sup n≥1 sup |t|≤Tε u (n) H s⋆ < ∞.
We are going to prove that u (n) is of Cauchy in C 0 ([-T ε , T ε ]; H s⋆ (T d )). Indeed, by Duhamel, it satisfies

(56) u (n) (t) = e it(∆-V * ) u (n,0) + t 0 e i(t-τ )(∆-V * ) |u(τ )| 2p u(τ )dτ
and so, since H s⋆ is an algebra (because s ⋆ ≥ s 0 > d/2), we have

u (n) (t) -u (m) (t) H s⋆ ≤ u (0,n) -u (0,m) H s⋆ + pC s⋆ M 2p [0;t] u (n) (τ ) -u (m) (τ ) H s⋆ dτ
where C s⋆ > 0 is a constant depending only on s ⋆ . Therefore as a consequence of Grönwall's inequality, we have

sup |t|≤Tε u (n) (t) -u (m) (t) H s⋆ ≤ u (0,n) -u (0,m) H s⋆ e pCs ⋆ M 2p Tε which proves that u (n) is of Cauchy in C 0 ([-T ε , T ε ]; H s⋆ (T d ))
. This space being a Banach space, we denote by u ∈ C 0 ([-T ε , T ε ]; H s⋆ (T d )) its limit. Passing to the limit in (56), we deduce that

u ∈ C 1 ([-T ε , T ε ]; H s⋆-2 (T d )) is also a solution of (NLS) on [-T ε , T ε ]. Moreover, since s ⋆ ≥ s, u (n 
) L ∞ H s goes to u L ∞ H s as n goes to +∞, which proves that u also satisfies the bound u L ∞ H s s u (0) H s .

3.3.2. Setting of the bootstrap. Now we focus more directly on the proof of Theorem 1.1. We assume that V ∈ V is fixed (the set V being defined in Definition 3.1). Thanks to the previous step, from now we assume without loss of generality that u (0) ∈ C ∞ (T d ; C) satisfies ε := u (0) H s 0 ≤ ε 0 where ε 0 > 0 is a constant depending only 12 on s 0 > d/2 which will be determined later (see formula (66) below). We denote by u ∈ C 0 ((-T -, T + ); H s 0 ) ∩ C 1 ((-T -, T + ); H s 0 -2 ) the maximal solution of (NLS) associated with u (0) , i.e. T + > 0 satisfies

T + = +∞ or lim sup t→+∞ u H s 0 = +∞.
Of course T -is defined similarly. Since by assumption u (0) ∈ C ∞ , for all s ≥ 0, u (0) ∈ H s , and thus, since the non-linearity enjoys tame estimates, u ∈ C 0 ((-T -, T + ); H s ) for all s ≥ 0. Therefore, since C ∞ (T d ) = H ∞ (T d ), it is clear that u ∈ C ∞ ((-T -, T + ) × T d ; C) ⊂ C 1 ((-T -, T + ); ℓ 1 ).

From now, without loss of generality, we only consider non-negative times. We consider a constant G s 0 > 1 depending only on s 0 and that will be determined later (see formula (68) below). In order to prove that T + > T ε and that u(t) H s 0 ≤ G s 0 u (0) H s 0 for all t ∈ [0, T ε ], by a standard bootstrap argument, it is enough to prove that (57)

0 ≤ T < min(T ε , T + ) ∀0 ≤ t ≤ T, u(t) H s 0 ≤ G s 0 u (0) H s 0 ⇒ u(T ) H s 0 < G s 0 u (0) H s 0 .
The estimate of the H s norms for s = s 0 will just be a byproduct of the proof (see estimate (67) below).

3.3.3. Parameters and change of variable. Following (57), from now and until the end of this proof, we consider T > 0 such that T < min(T ε , T + ) and for all t ∈ [0, T ], u(t) H s 0 ≤ G s 0 u (0) H s 0 . We consider the following parameters which will be optimized later with respect to ε ≡ u (0) H s 0 (see formula (64) and (65) below) :

• N ≥ 1 is integer of the form N = 2 nmax with n max ∈ N,

• r ≥ 2 is an integer (it will be the order of the Birkhoff normal form),

• ν > 0 is the size of the small divisors in the Birkhoff normal form. In order to apply Proposition 3.6 and to have small divisors as large as possible, we set (58) ν := γr -4 log 2 2rN

-(2r+1)
where γ = min(γ, 1) and γ > 0 is the constant associated with the non-resonance of V (see Definition 3.1). We note that by construction we have ν < 1. Since s 0 > d/2, we set

K s 0 := k∈Z d k -2s 0
and by Cauchy-Schwarz we have

• ℓ 1 ≤ K s 0 • H s 0 .
We recall that u satisfies ∀t ∈ [0, T ], i∂ t u(t) = ∇ H 2 (u(t))

where H, the Hamiltonian of (NLS), is given by (48). Therefore, we apply the Birkoff normal form Theorem 2.15 to the Hamiltonian H. In order to apply the changes of variables to u(t), the parameters we are going to design will satisfy the constraint (59)

G s 0 K s 0 ε < √ ν Cr = ρ.
Therefore, we have ∀t ∈ [0, T ], u(t) ℓ 1 < ρ and so it makes sense to consider v(t) := τ (0) (u(t)).

Note that, as a consequence of Theorem 2.15, we have v(t) ℓ 1 < 2ρ and u(t) = τ (1) (v(t)).

Moreover Recalling that u ∈ C 1 ((-T -, T + ); ℓ 1 ) and τ (0) is smooth in ℓ 1 , by composition v ∈ C 1 ([0, T ]; ℓ 1 ) and we have i∂ t v(t) = i∂ t τ (0) (u(t)) = idτ (0) (u(t))(∂ t u(t)) = -i 2 dτ (0) (u(t))(i(∇H) • τ (1) (v(t))).

Therefore, to get (60), we only have to prove that (61) dτ (0) (u(t))i = i[dτ (1) (v(t))] * on ℓ 1

where [dτ (1) (v(t))] * denotes the adjoint of dτ (1) (v(t)). On the one hand, since τ (1) is symplectic, we note that we have (62) [dτ (1) (v(t))] * idτ (1) (v(t)) = i and on the other hand, since τ (1) • τ (0) = id ℓ 1 on B ℓ 1 (0, ρ), we note that dτ (1) (v(t))dτ (0) (u(t)) = id ℓ 1 .

Therefore, multiplying on the right (62) by dτ (0) (u(t)), we get (61).

3.3.4. Sobolev norm estimates. Let s ≥ 0. We recall that the observable N N,s is given by Definition 3.5 and that it is equivalent to • 2 H s . Since τ (1) : B ℓ 1 (0, 2ρ) ∩ H s → ℓ 1 ∩ H s is smooth, by composition v ∈ C 1 ([0, T ]; H s ). As a consequence, by composition, we have Therefore, we have

∂ t N N,
|{N N,s , L (2q) }(v(t))| s 2 q K 2q-2 d/2+ηs 0 N -η L (2q) ℓ ∞ v(t) 2q-2 H s 0 v(t) 2 H s s 2 q (M s 0 G s 0 K d/2+ηs 0 ) 2q-2 N -η L (2q) ℓ ∞ ε 2q-2 N N,s (v(t)) s (2CM s 0 G s 0 K d/2+ηs 0 ) 2q-2 N -η q 2 ν q-2 ε 2q-2 N N,s (v(t)).
The parameters we are going to design will satisfy the constraint (63) 4CM s 0 G s 0 K d/2+ηs 0 ε < √ ν Cr .

Thus we get |{N N,s , L (2q) }(v(t))| s 2 -2q N -η N N,s (v(t)) and so

|∂ t N N,s (v(t))| s [N -η + (CM s 0 G s 0 K s 0 ) 2r r 3 ν r-1 ε 2r ]N N,s (v(t)).
Therefore, to homogenize this sum, we fix the parameter N in such a way that (64)

2 -1 ε -r η ≤ N < ε -r η .
and so N -η ≤ 2 η ε r ≤ 2ε r . Recalling that ν is defined as ν = γr -4 log 2 2rN -(2r+1) (see ( 58)), we have (using that ε < 1 and log 2 (2r) ≤ r)

ν -(r-1) ≤ γ -r r 4r log 2 (2rε -r η )

2r 2 ≤ γ -r r 4r log 2 (2r) -r η log(ε)

2r 2
≤ 2 2r 2 γ -r r 3r 2 η -2r 2 log 2r 2 (ε -1 ) and so |∂ t N N,s (v(t))| s [1 + (C γ -1 M s 0 G s 0 K s 0 ) 2r (2η -1 ) 2r 2 r 4r 2 log 2r 2 (ε -1 ) ε r ] ε r N N,s (v(t)).

13 Here we used q 2s+1 s 2 q for all q ∈ N.

  , thanks to (31), we have∀t ∈ [0, T ], ∀s ≥ 0, M -1 s v(t) H s ≤ u(t) H s ≤ M s v(t) H swhere M s ≥ 1 is a constant depending only on s. Finally, we aim at proving that

	(60)	i∂ t v(t) =	1 2	∇(H • τ (1) )(v(t)).

  s (v(t)) = (∇N N,s (v(t)), ∂ t v(t)) L 2 = 1 2 {N N,s , H • τ (1) }(v(t)).On the one hand, we have|(i∇N N,s (v(t)), ∇R(v(t))) L 2 | ≤ N N,s (v(t)) ∇R(v(t)) H s s N N,s (v(t))C 2r r 3 ν (CM s 0 G s 0 K s 0 ) 2r r 3 νWhile, on the other hand, by Proposition 3.6, for all η ∈ (0, 1], we have 13|{N N,s , L (2q) }(v(t))| s 2 q N -η L (2q) ℓ ∞ v(t) ℓ 1 η v(t)2q-3 way that d/2 < d/2 + η s 0 < s 0 and so v(t) ℓ 1 ηs 0 ≤ K d/2+ηs 0 v(t) H s 0 .

	Thanks to the decomposition (29) of H • τ (1) it comes s C 2r r 3 ν r-1 We choose η ≡ η s 0 = min 1, 1 2 s 0 -v(t) 2r ℓ 1 N N,s (v(t)) v(t) 2r ℓ 1 v(t) H s r-1 ε 2r N N,s (v(t)). ℓ 1 v(t) 2 H s . d 2 ∂ r-1 in such a

t N N,s (v(t)) = r q=2 {N N,s , L (2q) }(v(t)) + (i∇N N,s (v(t)), ∇R(v(t))) L 2 .

s

i.e. V would belong to some low regularity Sobolev spaces.

this choice could be easily generalized.

we simply control the product by q n .

i.e. ∃σ ∈ S2q, ∀j ∈ 1, 2q , µj(h) = |hσ j |.

We fix r as an integer satisfying Note that this definition makes sense provided that ε 0 is smaller than an universal constant. Therefore, we have

and so, since

we deduce that provided that ε 0 is small enough with respect to a constant depending only on s 0 , this quantity is bounded by 1 (and ( 59), (63) are satisfied), and so that we have

Therefore, to conclude the bootstrap (see (57)) it is enough to set 14 (68) G s 0 := M 2 s 0 2 s 0 e Υs 0 .