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Hippocampal and auditory contributions to speech segmentation
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Statistical learning has been proposed as a mechanism to structure and segment the continuous flow of information in several sensory modalities. Previous studies proposed that the medial temporal lobe, and in particular the hippocampus, may be crucial to parse the stream in the visual modality. However, the involvement of the hippocampus in auditory statistical learning, and specifically in speech segmentation is less clear. To explore the role of the hippocampus in speech segmentation based on statistical learning, we exposed seven pharmaco-resistant temporal lobe epilepsy patients to a continuous stream of trisyllabic pseudowords and recorded intracranial stereotaxic electro-encephalography (sEEG). We used frequency-tagging analysis to quantify neuronal synchronization of the hippocampus and auditory regions to the temporal structure of words and syllables of the stream. Results show that while auditory regions highly respond to syllable frequency, the hippocampus responds mostly to word frequency. These findings provide direct evidence of the involvement of the hippocampus in speech segmentation process and suggest a hierarchical organization of auditory information during speech processing.

Response to Reviewers:

Reviewer #1: Ramos-Escobar and colleagues presented continuous streams of auditory syllables to patients with intractable epilepsy followed by a forced choice recognition test on three-syllable words hidden in the streams. Using frequency tagging on intracranial EEG recordings on the surface of the auditory cortex and from depth electrodes in the medial temporal lobe, they measured statistical learning of syllables, two-syllables and three-syllable words. The authors report that the auditory cortex responds more to syllables than to words (i. e. shows a higher power in the frequency range at which syllables are presented than to the frequency at which words are presented), while the hippocampus responds more to words than to syllables (shows a higher power in the frequency range at which words are presented than to the frequency at which syllables are presented). Based on those findings the authors conclude that statistical learning is hierarchically organized in the brain, and that the hippocampus plays an important role in statistical learning of speech.

The manuscript is well written and clear and shows interesting and compelling results.

I have a few comments which need attention before I can recommend publication.

Major comment:

-The most puzzling issue is the finding that behavior shows a strong discrepancy to the neural responses. The authors mention that the force choice has low sensitivity to learning (page 11, line13). This may be true, but alternatively, the hippocampus may not be necessary for statistical learning (as was previously mentioned in line 1 of the same page). It would be good to discuss that possibility

speech sequences and in the context of the damage of the MTL in these patients. It would also be good to suggest alternative behavioral methods which would reveal learning.

We thank the reviewer for this comment. We have further developed this point in the discussion and also refer to other studies that have shown similar discrepancies (e.g. Henin et al., 2021). Most importantly, in relation to this point, we now report the analysis of sEEG data acquired during the test phase together with the corresponding figure (Figure 4). These results show that the event-related potentials (ERPs) to words and nonwords differ in the hippocampus. In other words, neurophysiological data show that 1) the hippocampus contributes to speech stream segmentation, as seen during the learning phase, 2) the hippocampus is sensitive to the familiarity of the items during the test phase (thus in a different dataset). Then, the absence of behavioural learning seems to be due to a high noise at the decision making level. We now further discuss this point in relation to possible weaknesses of the behavioural task and make reference to newly developed experimental designs (François et al., 2016[START_REF] François | 484 Neurophysiological evidence for the interplay of speech segmentation and word-referent mapping 485 during novel word learning[END_REF]. Finally, we would like to clarify that we do not make any causal statement in the manuscript and that our data only show that the hippocampus is involved in speech segmentation, but not that it is necessary for speech segmentation as these claims possibly require perturbation or lesion studies.

Results section:

Page 10, lines 235-241: "Importantly, however, as shown on Figure 4, the ERP data show a significant difference between words and nonwords in hippocampal channels in the 250-400 (beta = -18.8; CI = -33.3 -4.2; p <.01) and 550-700 ms (beta = -19.6, CI = -35.9 -3.2; p < .01) time-windows. A significant effect over a single 50ms time window, between 350 and 400 ms, is also found over auditory channels (beta = -8.4, CI = -16.5 -0.7; p < .05). Overall, these results confirm that patients did segment the words during the learning phase and that the hippocampus is particularly sensitive to the familiarity of the items." Discussion section: Page 12-13, lines 289-327: "In the current work, patients, most of whom had temporal lobe epilepsy, performed poorly in the explicit recognition test as patients with MTL lesions. By contrast, they presented robust neural tuning at target frequencies corresponding to different levels of the speech hierarchy (i.e., word, syllable, and pair of syllables) during the learning phase. This result indicates that learning did take place and that the hippocampus was functional with respect to statistical learning. It also confirms that implicit online measures of learning based on electrophysiological data are more sensitive than behavioural measures [START_REF] François | Cognitive and methodological considerations 479 on the effects of musical expertise on speech segmentation[END_REF]. Indeed, the analysis of the ERPs collected during the 2AFC task also revealed significant differences between words and nonwords over hippocampal channels. This result fits well with previous studies on speech segmentation based on SL showing functional activations of the hippocampus during speech segmentation tasks [START_REF] Turk-Browne | Neural evidence of 601 statistical learning: Efficient detection of visual regularities without awareness[END_REF]Schapiro, Kustner, & Turk-Browne 2012;[START_REF] Schapiro | Statistical 581 learning of temporal community structure in the hippocampus[END_REF][START_REF] Barascud | Brain responses 413 in humans reveal ideal observer-like sensitivity to complex acoustic patterns[END_REF]. A similar familiarity effect has been also reported when focusing on the 2AFC test [START_REF] François | Learning of musical and linguistic structures: comparing 473 event-related potentials and behavior[END_REF][START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] De | These studies used scalp EEG to show that healthy adults 302 exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct 303 explicit word recognition did not differ from chance level. Similar discrepancies between behavioural References[END_REF]. These studies used scalp EEG to show that healthy adults exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct explicit word recognition did not differ from chance level. Similar discrepancies between behavioural and neural data have been reported in previous neuroimaging studies of speech segmentation based on SL in healthy adults [START_REF] François | Learning of musical and linguistic structures: comparing 473 event-related potentials and behavior[END_REF][START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] Mcnealy | Cracking the language code: neural 527 mechanisms underlying speech parsing[END_REF][START_REF] Turk-Browne | Neural evidence of 601 statistical learning: Efficient detection of visual regularities without awareness[END_REF][START_REF] Sanders | Segmenting nonsense: an event-related 571 potential index of perceived onsets in continuous speech[END_REF] and in patients with MTL damage (Henin et al., 2021;[START_REF] Schapiro | The 578 necessity of the medial temporal lobe for statistical learning[END_REF][START_REF] Covington | The necessity of the hippocampus 441 for statistical learning[END_REF]. Moreover, the role of the hippocampus and MTL region during recognition memory tasks has largely been demonstrated in both healthy adults and patients with damage to the MTL [START_REF] Brown | Recognition memory: what are the roles of the 431 perirhinal cortex and hippocampus?[END_REF][START_REF] Düzel | Brain activity evidence 468 for recognition without recollection after early hippocampal damage[END_REF]Eldridge et al., 2000;Stark & Squire, 2000;[START_REF] Ranganath | 556 Dissociable correlates of recollection and familiarity within the medial temporal lobes[END_REF]. Here, we used an implicit procedure during the learning phase and evaluated the learning using an explicit behavioural task that requires the conscious recognition of word-forms presented auditorily. While our approach has the advantage of being of a very short duration, the 2AFC task has been largely criticized for its low sensitivity due to different factors [START_REF] François | Cognitive and methodological considerations 479 on the effects of musical expertise on speech segmentation[END_REF]Batterink et al., 2015;[START_REF] Siegelman | Measuring individual differences in statistical 590 learning: Current pitfalls and possible solutions[END_REF][START_REF] Siegelman | Redefining "learning" in 592 statistical learning: What does an online measure reveal about the assimilation of visual regularities? 593[END_REF][START_REF] Frost | Statistical learning research: A 490 critical review and possible new directions[END_REF][START_REF] Christiansen | Implicit-statistical learning: A tale of two 443 literatures[END_REF]). For instance, the AFC task requires participants to make an explicit judgment on two presented items without feedback, which might be particularly challenging in the case of the relatively weak memory traces created during the implicit learning phase [START_REF] François | Musical expertise and statistical learning of musical and 477 linguistic structures[END_REF]Rodriguez-Fornells et al., 2009). Moreover, the design of the AFC test trials does not allow differentiating between word recognition and nonword rejection as it is the case when using a lexical decision task (François et al., 2016;Ramos-Escobar et al., 2021). Recent studies on speech segmentation based on SL have elegantly proposed innovative designs to overcome the weaknesses associated with the use of explicit tests. Of particular relevance is the use of implicit measures such as EEG, sEEG, or Reaction-Times collected during the learning or an online test phase (see for example François et al., 2016[START_REF] François | 484 Neurophysiological evidence for the interplay of speech segmentation and word-referent mapping 485 during novel word learning[END_REF][START_REF] De | These studies used scalp EEG to show that healthy adults 302 exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct 303 explicit word recognition did not differ from chance level. Similar discrepancies between behavioural References[END_REF] for the analysis of ERPs to illegal items without explicit recognition) that seem more appropriate and sensitive to fully capture implicit learning processes [START_REF] Kim | Testing assumptions of statistical learning: 519 Is it long-term and implicit[END_REF][START_REF] Kóbor | Perceiving structure 521 in unstructured stimuli: Implicitly acquired prior knowledge impacts the processing of unpredictable 522 transitional probabilities[END_REF]Turk-Browne et al., 2005;[START_REF] Batterink | Online neural monitoring of statistical learning[END_REF][START_REF] Siegelman | Measuring individual differences in statistical 590 learning: Current pitfalls and possible solutions[END_REF]."

Minor comments: -The experimental methods are very briefly described and it is difficult to understand the flow of events, particularly the duration of the trial or trials and the test phase. It would help to move the sentence from the stimuli section "Each word is presented 60 times …" up to the experimental procedure section. Without the understanding that there is only one stream it is also difficult to understand the segmenting of the EEG signal.

We thank the reviewer for this comment. We agree that the experimental method should be developed further to facilitate the replication of the study. Therefore, we have added more details in the method section. We now also acknowledge that the procedure that we used here was similar to the one used in various studies of our group with healthy adults and children [START_REF] François | Learning of musical and linguistic structures: comparing 473 event-related potentials and behavior[END_REF][START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] François | Music training for the development 475 of speech segmentation[END_REF]2014). Page 6-7, lines 152-167: "We used a similar experimental design to the one used in our previous studies with healthy adults and children [START_REF] Schön | Songs as an 573 aid for language acquisition[END_REF][START_REF] François | Learning of musical and linguistic structures: comparing 473 event-related potentials and behavior[END_REF][START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] François | Music training for the development 475 of speech segmentation[END_REF]2014). Specifically, the experimental procedure consisted of two consecutive phases, an implicit learning phase followed by an explicit 2-alternative forced-choice (2AFC) task. Before starting the implicit learning phase, patients were asked to listen carefully to one single auditory stream without explicit instructions of learning (see Stimuli section for a description of the speech streams). Importantly, we did our best to keep the entire procedure implicit. During the learning phase, patients were exposed to a single continuous speech stream that was composed of 4 pseudo-words presented 60 times each, thus leading to a single continuous stream of 240 words that lasted 4 min. Immediately after this learning phase, patients performed the behavioural 2AFC task that lasted 5 min. During each trial of the test, patients were presented with two consecutive auditory words and had to press one of two buttons to indicate which of two words (first or second item) most closely resembled what they had just heard in the continuous stream (see Figure 2). Importantly, one test item was a word from the learning stream while the other was a "nonword" that was never heard before the test. Each familiar word of the language (word) was presented with each unfamiliar word (nonwords), making up 16 pairs that were repeated twice, thus leading to 32 test trials." " -The authors mention that "epochs time-locked at the onset of each word were created by segmenting the recordings from 4 words before and 4 after the stimulus yielding epochs of 8-word length (lasting 7.2s)." I don't understand that sentence. Shouldn't 4+4+1 be 9 word length? Or is the word itself included in the "4 after the stimulus"?

We apologize for this misunderstanding. The epoch is defined with respect to the word onset, so it consists of 4 words before and four words after the onset. We have rephrased this sentence. Page 8, lines 190-192: "Then, epochs time-locked to the onset of each word were created by segmenting the continuous EEG data from 4 words before and 4 after the stimulus yielding epochs of 8-word length (lasting 7.2s)."
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-The syntax in the legend of Figure 3: "Black arrows indicate the bar where falls …" should be corrected We thank the reviewer for pointing this out. We have rephrased the legend as following: "Black arrows indicate the bin where the hippocampal power response falls."

-Delete ; at the end of the citations on page 11 in line 16. This has been done.

Reviewer #2: The authors provide an interesting examination of statistical learning using intracranial recordings in patients with epilepsy. Specifically, using frequencytagged auditory stimuli they reported observing greater entrained responses in the hippocampus to artificial words and greater entrained responses in auditory cortex to phonemes. Studies with intracranial recordings (sEEG/ECoG) remain uncommon and valuable datasets for human neuroscience research. At present, however, the strength of the results is unclear to this reader, expanded on below, as it is possible that the pattern of results observed is unrelated to statistical learning, instead reflecting the particular set of analyses employed.

Primary Concerns

Statistical comparisons. The study examined significance within subjects by comparing power across electrodes. This is less commonly used than comparing power at each individual electrode to some baseline --given the continuous nature of the stimulus in this experiment, I would expect the use of a prestimulus resting state period. The major weakness of the current approach is that non-baselined power will reflect a mixture of intrinsic power and evoked power, particularly because there was no temporal jitter between presentation of the 240 stimuli. Moreover, this measure of relative power across electrodes is dependent on where the other electrodes are located --if a patient had auditory and hippocampal electrodes that each responded strongly to phonemes, then neither would be significant.

We understand the reviewer's concern. The choice of comparing power across electrodes was constrained by the absence of a sufficiently long baseline. Indeed, ideally, one would need a baseline as long as the learning phase in order to have an equivalent SNR. This was clearly not the case due to clinical constraints requiring to keep the experiment as short as possible. However, we would like to argue that our approach is actually more conservative than testing against a baseline. Indeed entrainment to auditory stimuli will be apparent in many regions (not limited to the auditory cortex, see Pesnot et al., 2021). Thus, thresholding using the distribution of the whole dataset is more conservative than using the baseline that will present NO entrainment but only intrinsic oscillatory activity. What we now tried to clarify, and that is important in this context, is the fact that by computing averages, we remove non time-locked activity (intrinsic oscillations) and only focus on evoked activity.

Page 8, lines 196-199: "Importantly, by computing averages, similarly to other frequency tagging studies (Nozaradan et al., 2021;[START_REF] Jonas | A face-selective ventral occipito-temporal map of the human brain with intracerebral 512 potentials[END_REF], we remove non time-locked activity (intrinsic oscillations), enhance the signal-to-noise ratio of EEG activities time locked to the patterns and only focus on evoked activity." Below, we computed the same power analysis on a surrogate data built by randomly picking non time-locked epochs for one patient. Such a surrogate distribution, possibly simulating a baseline thresholding strategy, shows extremely low values at the frequencies of interest compared to the real data (top panel). This shows that our approach is possibly more conservative than using a baseline approach: the probability of one single value (e.g., in the hippocampus) being above threshold by chance is smaller.

The reviewer has another related remark: whether this measure of relative power across electrodes is dependent on where the other electrodes are located; "if a patient had auditory and hippocampal electrodes that each responded strongly to phonemes, then neither would be significant". This is indeed correct, BUT we do systematically have many more contacts in regions outside the auditory and hippocampal areas than inside these areas. Patients have between ~140 and ~200 useful contacts and only a few of these (<10) are located in the hippocampus and auditory regions (<10).

Page 9, lines 209-211: "For each patient and for each target frequency (word, syllable & two syllables), we computed the distribution of power values across all contacts (between 140 and 200 per patient, spanning several brain regions beyond the primary auditory cortex and the hippocampus)." Statistical learning. Patients did not demonstrate behavioral effects of statistical learning, and so it's possible that they were unaware which syllable groups formed word boundaries. It appears the test phase data was not analyzed, which could lend credibility to the authors' claim that subjects implicitly learned the statistical representation. More generally, 4 minutes of a stimulus may be too short a period for learning to occur in these patients. If the authors split their data in half, can they show that frequency-tagged responses to words increased whereas other syllable frequency stayed the same?

We thank the reviewer for this comment. We now report the neurophysiological data acquired during the behavioural task, namely the testing phase following the learning phase. These results show that the ERPs to words and pseudowords differ in the hippocampus. In other words, neurophysiological data show that 1) the hippocampus contributes to speech stream segmentation, as seen during the learning phase, 2) the hippocampus is sensitive to the familiarity of the items during the test phase (thus in a different dataset). Then, the absence of behavioural learning seems to be due to a high noise at the decision making level. We now discuss this point also in relation to some weaknesses of the behavioural task.

Page 12-13, lines 289-327: "In the current work, patients, most of whom had temporal lobe epilepsy, performed poorly in the explicit recognition test as patients with MTL lesions. By contrast, they presented robust neural tuning at target frequencies corresponding to different levels of the speech hierarchy (i.e., word, syllable, and pair of syllables) during the learning phase. This result indicates that learning did take place and that the hippocampus was functional with respect to statistical learning. It also confirms that implicit online measures of learning based on electrophysiological data are more sensitive than behavioural measures [START_REF] François | Cognitive and methodological considerations 479 on the effects of musical expertise on speech segmentation[END_REF]. Indeed, the analysis of the ERPs collected during the 2AFC task also revealed significant differences between words and nonwords over hippocampal channels. This result fits well with previous studies on speech segmentation based on SL showing functional activations of the hippocampus during speech segmentation tasks [START_REF] Turk-Browne | Neural evidence of 601 statistical learning: Efficient detection of visual regularities without awareness[END_REF]Schapiro, Kustner, & Turk-Browne 2012;[START_REF] Schapiro | Statistical 581 learning of temporal community structure in the hippocampus[END_REF][START_REF] Barascud | Brain responses 413 in humans reveal ideal observer-like sensitivity to complex acoustic patterns[END_REF]. A similar familiarity effect has been also reported when focusing on the 2AFC test [START_REF] François | Learning of musical and linguistic structures: comparing 473 event-related potentials and behavior[END_REF][START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] De | These studies used scalp EEG to show that healthy adults 302 exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct 303 explicit word recognition did not differ from chance level. Similar discrepancies between behavioural References[END_REF]. These studies used scalp EEG to show that healthy adults exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct explicit word recognition did not differ from chance level. Similar discrepancies between behavioural and neural data have been reported in previous neuroimaging studies of speech segmentation based on SL in healthy adults [START_REF] François | Learning of musical and linguistic structures: comparing 473 event-related potentials and behavior[END_REF][START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] Mcnealy | Cracking the language code: neural 527 mechanisms underlying speech parsing[END_REF][START_REF] Turk-Browne | Neural evidence of 601 statistical learning: Efficient detection of visual regularities without awareness[END_REF][START_REF] Sanders | Segmenting nonsense: an event-related 571 potential index of perceived onsets in continuous speech[END_REF] and in patients with MTL damage (Henin et al., 2021;[START_REF] Schapiro | The 578 necessity of the medial temporal lobe for statistical learning[END_REF][START_REF] Covington | The necessity of the hippocampus 441 for statistical learning[END_REF]. Moreover, the role of the hippocampus and MTL region during recognition memory tasks has largely been demonstrated in both healthy adults and patients with damage to the MTL [START_REF] Brown | Recognition memory: what are the roles of the 431 perirhinal cortex and hippocampus?[END_REF][START_REF] Düzel | Brain activity evidence 468 for recognition without recollection after early hippocampal damage[END_REF]Eldridge et al., 2000;Stark & Squire, 2000;[START_REF] Ranganath | 556 Dissociable correlates of recollection and familiarity within the medial temporal lobes[END_REF]. Here, we used an implicit procedure during the learning phase and evaluated the learning using an explicit behavioural task that requires the conscious recognition of word-forms presented auditorily. While our approach has the advantage of being of a very short duration, the 2AFC task has been largely criticized for its low sensitivity due to different factors [START_REF] François | Cognitive and methodological considerations 479 on the effects of musical expertise on speech segmentation[END_REF]Batterink et al., 2015;[START_REF] Siegelman | Measuring individual differences in statistical 590 learning: Current pitfalls and possible solutions[END_REF][START_REF] Siegelman | Redefining "learning" in 592 statistical learning: What does an online measure reveal about the assimilation of visual regularities? 593[END_REF][START_REF] Frost | Statistical learning research: A 490 critical review and possible new directions[END_REF][START_REF] Christiansen | Implicit-statistical learning: A tale of two 443 literatures[END_REF]). For instance,
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the AFC task requires participants to make an explicit judgment on two presented items without feedback, which might be particularly challenging in the case of the relatively weak memory traces created during the implicit learning phase [START_REF] François | Musical expertise and statistical learning of musical and 477 linguistic structures[END_REF]Rodriguez-Fornells et al., 2009). Moreover, the design of the AFC test trials does not allow differentiating between word recognition and nonword rejection as it is the case when using a lexical decision task (François et al., 2016;Ramos-Escobar et al., 2021). Recent studies on speech segmentation based on SL have elegantly proposed innovative designs to overcome the weaknesses associated with the use of explicit tests. Of particular relevance is the use of implicit measures such as EEG, sEEG, or Reaction-Times collected during the learning or an online test phase (see for example François et al., 2016[START_REF] François | 484 Neurophysiological evidence for the interplay of speech segmentation and word-referent mapping 485 during novel word learning[END_REF][START_REF] De | These studies used scalp EEG to show that healthy adults 302 exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct 303 explicit word recognition did not differ from chance level. Similar discrepancies between behavioural References[END_REF] for the analysis of ERPs to illegal items without explicit recognition) that seem more appropriate and sensitive to fully capture implicit learning processes [START_REF] Kim | Testing assumptions of statistical learning: 519 Is it long-term and implicit[END_REF][START_REF] Kóbor | Perceiving structure 521 in unstructured stimuli: Implicitly acquired prior knowledge impacts the processing of unpredictable 522 transitional probabilities[END_REF]Turk-Browne et al., 2005;[START_REF] Batterink | Online neural monitoring of statistical learning[END_REF][START_REF] Siegelman | Measuring individual differences in statistical 590 learning: Current pitfalls and possible solutions[END_REF]."

Concerning the possibility of splitting the data, we followed the reviewer suggestion. However, as the reviewer can see in the figure below, the effect is not clear cut, although there is a tendency for an increase at the word frequency. This is possibily due to different learning curves in the different patients that may prevent observing a clear increase. We also tried to have a more temporally resolved analysis to explore inter-individual differences, but the estimate became too noisy when using small data sets (e.g. 8 periods of 30 seconds). We eventually decided not to report this analysis in the manuscript.

Secondary Comments 4 ms is a very short baseline period which can introduce noise to the analysis. Do the authors have justification over a longer baseline (at least 100 ms)? Sorry this was a typo error, it should be seconds and correspond to half of the window.

The authors mention normalization in the methods. How was power normalized? A common approach with frequency-tagging is to replot the data as signal-to-noise ratios, wherein power at the target frequency is compared against neighboring frequencies to cancel out the effects of the 1/f distribution.

We agree with the reviewer that some studies have used such a normalization procedure. However, we think that in the case of sEEG recordings the SNR is much higher than with scalp data. The suggested procedure that implicitly increases the local SNR may not be necessary in our case and we prefer not to use it and to show the 'true' FFT. Please also note that, as detailed above, we do not have the 1/f in the PSD because we work on averages. Further, recent studies have used similar approaches to study the neural mechanisms supporting the extraction of speech units based on SL in adults and children (see [START_REF] Jonas | A face-selective ventral occipito-temporal map of the human brain with intracerebral 512 potentials[END_REF]Ordin et al., 2020;Ramos-Escobar et al., 2021).

Why was evoked power calculated as opposed to total power averaged across the entire time-range? Evoked power, when no jitter across trials, can lead to peaks at intrinsic oscillations. Moreover, total power would enable a plot of the 1/f distributions for electrodes and subjects which can be helpful in evaluating the quality of the recordings.

As we clarified above, the strategy of averaging is commonly used (see for instance Nozaradan et al., 2021;[START_REF] Jonas | A face-selective ventral occipito-temporal map of the human brain with intracerebral 512 potentials[END_REF] in frequency tagging analysis to enhance the signal-to-noise ratio of EEG activities time locked to the patterns. Below, we computed the full range power spectral density for each patient (colored lines) for both hippocampal (top) and auditory (bottom) channels. On the left, the reviewer can appreciate that it is not easy to see much on the regular PSD of hippocampal channels. The scenario becomes a little bit better when normalizing by neighbours (dividing each value by two neighbour values), as can be seen on the right part of the figure. However, while for the auditory cortex, that has a very strong response to the syllabic rate, the result is clear cut, for the hippocampal channels, have smaller responses, results are less clear and mostly visible in the first harmonic of the word frequency (2.2 Hz). We feel that this well illustrates the advantage of computing the FFT of a sliding average. Also, note that, as reported in the methods section, we cautiously use an overlap equal to twice the size of the word duration to ensure that possible artifacts would not lead to a spurious peak at the word frequency.

Assuming the power effects are driven by the stimuli, is it possible that the hippocampus tracked 'words' because the task required discrimination of 3 phoneme groups? Were subjects aware what they would be tested on?

We thank the reviewer for this comment. In this specific case, the answer is no. We used an implicit version of the SL paradigm in which the patients were not aware of the purpose of the task nor that they would be tested afterward. We agree that some studies have used explicit instructions of learning which may have triggered different cognitive mechanisms [START_REF] Cunillera | The effects 445 of stress and statistical cues on continuous speech segmentation: an event-related brain potential study[END_REF][START_REF] Cunillera | Time course and functional neuroanatomy of speech segmentation 449 in adults[END_REF]. Again, here, the patients were only instructed to listen carefully to an auditory stream without explicit instructions of learning. Importantly, the grouping of phonemes can only be done by statistical learning as there are no other (e.g., acoustic) cues to group the individual phonemes.

Error!Error!Error!Error!

Marseille, 2 nd of November 2021 Dear Editor, Thank you for giving us with the opportunity to submit a revised version of our work. Please find attached the revised version of our manuscript entitled "Hippocampal and auditory contributions to speech segmentation", which we would like considered for publication in Cortex.

We are grateful to the two reviewers for all their helpful comments and interesting suggestions. We feel that we were able to address all the suggestions in an appropriate manner. You will find our detailed answers in the "responses to the reviewers" section but we would like to acknowledge some specific points that have been raised during the review.

Both reviewers had concern about the experimental procedure, the methods and the analyses we used. Therefore, we have provided further details about each of these points and have added new results with the corresponding figure in the new version of the manuscript. Based on the reviewers' comments, we have added new analyses focusing on the ERPs of the 2AFC test and discuss these new results in the discussion section. However, we have preferred not include the results comparing the two halves of the learning phase nor those obtained with the neighboring normalization. We will be delighted to add them in a new version of the manuscript if the editor considers these results important.

Thank you very much in advance for your consideration Sincerely yours, Neus Ramos-Escobar, Manuel Mercier, Agnés Trébuchon, Antoni Rodriguez-Fornells, Clément François & Daniele Schön

Reviewer #1: Ramos-Escobar and colleagues presented continuous streams of auditory syllables to patients with intractable epilepsy followed by a forced choice recognition test on three-syllable words hidden in the streams. Using frequency tagging on intracranial EEG recordings on the surface of the auditory cortex and from depth electrodes in the medial temporal lobe, they measured statistical learning of syllables, two-syllables and three-syllable words. The authors report that the auditory cortex responds more to syllables than to words (i. e. shows a higher power in the frequency range at which syllables are presented than to the frequency at which words are presented), while the hippocampus responds more to words than to syllables (shows a higher power in the frequency range at which words are presented than to the frequency at which syllables are presented). Based on those findings the authors conclude that statistical learning is hierarchically organized in the brain, and that the hippocampus plays an important role in statistical learning of speech.

The manuscript is well written and clear and shows interesting and compelling results. I have a few comments which need attention before I can recommend publication.

Major comment: -

The most puzzling issue is the finding that behavior shows a strong discrepancy to the neural responses. The authors mention that the force choice has low sensitivity to learning (page 11, line13). This may be true, but alternatively, the hippocampus may not be necessary for statistical learning (as was previously mentioned in line 1 of the same page). It would be good to discuss that possibility too in the context of learning speech sequences and in the context of the damage of the MTL in these patients. It would also be good to suggest alternative behavioral methods which would reveal learning.

We thank the reviewer for this comment. We have further developed this point in the discussion and also refer to other studies that have shown similar discrepancies (e.g. Henin et al., 2021). Most importantly, in relation to this point, we now report the analysis of sEEG data acquired during the test phase together with the corresponding figure (Figure 4). These results show that the event-related potentials (ERPs) to words and nonwords differ in the hippocampus. In other words, neurophysiological data show that 1) the hippocampus contributes to speech stream segmentation, as seen during the learning phase, 2) the hippocampus is sensitive to the familiarity of the items during the test phase (thus in a different dataset). Then, the absence of behavioural learning seems to be due to a high noise at the decision making level. We now further discuss this point in relation to possible weaknesses of the behavioural task and make reference to newly developed experimental designs (François et al., 2016[START_REF] François | 484 Neurophysiological evidence for the interplay of speech segmentation and word-referent mapping 485 during novel word learning[END_REF]. Finally, we would like to clarify that we do not make any causal statement in the manuscript and that our data only show that the hippocampus is involved in speech segmentation, but not that it is necessary for speech segmentation as these claims possibly require perturbation or lesion studies.

Results section:

Page 10, lines 235-241: "Importantly, however, as shown on Figure 4, the ERP data show a significant difference between words and nonwords in hippocampal channels in the , CI = -35.9 -3.2; p < .01) time-windows. A significant effect over a single 50ms time window, between 350 and 400 ms, is also found over auditory channels p < .05). Overall, these results confirm that patients Detailed Response to Reviewers did segment the words during the learning phase and that the hippocampus is particularly sensitive to the familiarity of the items."

Discussion section: Page 12-13, lines 289-327: "In the current work, patients, most of whom had temporal lobe epilepsy, performed poorly in the explicit recognition test as patients with MTL lesions. By contrast, they presented robust neural tuning at target frequencies corresponding to different levels of the speech hierarchy (i.e., word, syllable, and pair of syllables) during the learning phase. This result indicates that learning did take place and that the hippocampus was functional with respect to statistical learning.

It also confirms that implicit online measures of learning based on electrophysiological data are more sensitive than behavioural measures [START_REF] François | Cognitive and methodological considerations 479 on the effects of musical expertise on speech segmentation[END_REF]. Indeed, the analysis of the ERPs collected during the 2AFC task also revealed significant differences between words and nonwords over hippocampal channels. This result fits well with previous studies on speech segmentation based on SL showing functional activations of the hippocampus during speech segmentation tasks [START_REF] Turk-Browne | Neural evidence of 601 statistical learning: Efficient detection of visual regularities without awareness[END_REF]Schapiro, Kustner, & Turk-Browne 2012;[START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] Barascud | Brain responses 413 in humans reveal ideal observer-like sensitivity to complex acoustic patterns[END_REF]. A similar familiarity effect has been also reported when focusing on the 2AFC test [START_REF] François | Learning of musical and linguistic structures: comparing 473 event-related potentials and behavior[END_REF][START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] De | These studies used scalp EEG to show that healthy adults 302 exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct 303 explicit word recognition did not differ from chance level. Similar discrepancies between behavioural References[END_REF]. These studies used scalp EEG to show that healthy adults exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct explicit word recognition did not differ from chance level.

Similar discrepancies between behavioural and neural data have been reported in previous

neuroimaging studies of speech segmentation based on SL in healthy adults [START_REF] François | Learning of musical and linguistic structures: comparing 473 event-related potentials and behavior[END_REF][START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] Mcnealy | Cracking the language code: neural 527 mechanisms underlying speech parsing[END_REF][START_REF] Turk-Browne | Neural evidence of 601 statistical learning: Efficient detection of visual regularities without awareness[END_REF][START_REF] Sanders | Segmenting nonsense: an event-related 571 potential index of perceived onsets in continuous speech[END_REF] and in patients with MTL damage (Henin et al., 2021;[START_REF] Schapiro | The 578 necessity of the medial temporal lobe for statistical learning[END_REF][START_REF] Covington | The necessity of the hippocampus 441 for statistical learning[END_REF].

Moreover, the role of the hippocampus and MTL region during recognition memory tasks has largely been demonstrated in both healthy adults and patients with damage to the MTL [START_REF] Brown | Recognition memory: what are the roles of the 431 perirhinal cortex and hippocampus?[END_REF][START_REF] Düzel | Brain activity evidence 468 for recognition without recollection after early hippocampal damage[END_REF]Eldridge et al., 2000;Stark & Squire, 2000;[START_REF] Ranganath | 556 Dissociable correlates of recollection and familiarity within the medial temporal lobes[END_REF]. Here, we used an implicit procedure during the learning phase and evaluated the learning using an explicit behavioural task that requires the conscious recognition of word-forms presented auditorily. While our approach has the advantage of being of a very short duration, the 2AFC task has been largely criticized for its low sensitivity due to different factors [START_REF] François | Cognitive and methodological considerations 479 on the effects of musical expertise on speech segmentation[END_REF]Batterink et al., 2015;[START_REF] Siegelman | Measuring individual differences in statistical 590 learning: Current pitfalls and possible solutions[END_REF][START_REF] Siegelman | Redefining "learning" in 592 statistical learning: What does an online measure reveal about the assimilation of visual regularities? 593[END_REF][START_REF] Frost | Statistical learning research: A 490 critical review and possible new directions[END_REF][START_REF] Christiansen | Implicit-statistical learning: A tale of two 443 literatures[END_REF]). For instance, the AFC task requires participants to make an explicit judgment on two presented items without feedback, which might be particularly challenging in the case of the relatively weak memory traces created during the implicit learning phase [START_REF] François | Musical expertise and statistical learning of musical and 477 linguistic structures[END_REF]Rodriguez-Fornells et al., 2009). Moreover, the design of the AFC test trials does not allow differentiating between word recognition and nonword rejection as it is the case when using a lexical decision task (François et al., 2016;Ramos-Escobar et al., 2021). Recent studies on speech segmentation based on SL have elegantly proposed innovative designs to overcome the weaknesses associated with the use of explicit tests. Of particular relevance is the use of implicit measures such as EEG, sEEG, or Reaction-Times collected during the learning or an online test phase (see for example François et al., 2016[START_REF] François | 484 Neurophysiological evidence for the interplay of speech segmentation and word-referent mapping 485 during novel word learning[END_REF][START_REF] De | These studies used scalp EEG to show that healthy adults 302 exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct 303 explicit word recognition did not differ from chance level. Similar discrepancies between behavioural References[END_REF] for the analysis of ERPs to illegal items without explicit recognition) that seem more appropriate and sensitive to fully capture implicit learning processes [START_REF] Kim | Testing assumptions of statistical learning: 519 Is it long-term and implicit[END_REF][START_REF] Kóbor | Perceiving structure 521 in unstructured stimuli: Implicitly acquired prior knowledge impacts the processing of unpredictable 522 transitional probabilities[END_REF]Turk-Browne et al., 2005;[START_REF] Batterink | Online neural monitoring of statistical learning[END_REF][START_REF] Siegelman | Measuring individual differences in statistical 590 learning: Current pitfalls and possible solutions[END_REF]."

Minor comments: -

The experimental methods are very briefly described and it is difficult to understand the flow of events, particularly the duration of the trial or trials and the test phase. It would help to move the sentence from the stimuli section "Each word is presented 60 times …" up to the experimental procedure section. Without the understanding that there is only one stream it is also difficult to understand the segmenting of the EEG signal.

We thank the reviewer for this comment. We agree that the experimental method should be developed further to facilitate the replication of the study. Therefore, we have added more details in the method section. We now also acknowledge that the procedure that we used here was similar to the one used in various studies of our group with healthy adults and children [START_REF] François | Learning of musical and linguistic structures: comparing 473 event-related potentials and behavior[END_REF][START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] François | Music training for the development 475 of speech segmentation[END_REF]2014). Page 6-7, lines 152-167: "We used a similar experimental design to the one used in our previous studies with healthy adults and children [START_REF] Schön | Songs as an 573 aid for language acquisition[END_REF][START_REF] François | Learning of musical and linguistic structures: comparing 473 event-related potentials and behavior[END_REF][START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] François | Music training for the development 475 of speech segmentation[END_REF]2014). Specifically, the experimental procedure consisted of two consecutive phases, an implicit learning phase followed by an explicit 2-alternative forced-choice (2AFC) task. Before starting the implicit learning phase, patients were asked to listen carefully to one single auditory stream without explicit instructions of learning (see Stimuli section for a description of the speech streams).

Importantly, we did our best to keep the entire procedure implicit. During the learning phase, patients were exposed to a single continuous speech stream that was composed of 4 pseudo-words presented 60 times each, thus leading to a single continuous stream of 240 words that lasted 4 min. Immediately after this learning phase, patients performed the behavioural 2AFC task that lasted 5 min. During each trial of the test, patients were presented with two consecutive auditory words and had to press one of two buttons to indicate which of two words (first or second item) most closely resembled what they had just heard in the continuous stream (see Figure 2). Importantly, one test item was a word from the learning stream while the other was a "nonword" that was never heard before the test. Each familiar word of the language (word) was presented with each unfamiliar word (nonwords), making up 16 pairs that were repeated twice, thus leading to 32 test trials." " -The authors mention that "epochs time-locked at the onset of each word were created by segmenting the recordings from 4 words before and 4 after the stimulus yielding epochs of 8-word length (lasting 7.2s)." I don't understand that sentence. Shouldn't 4+4+1 be 9 word length? Or is the word itself included in the "4 after the stimulus"?

We apologize for this misunderstanding. The epoch is defined with respect to the word onset, so it consists of 4 words before and four words after the onset. We have rephrased this sentence.

Page 8, lines 190-192: "Then, epochs time-locked to the onset of each word were created by segmenting the continuous EEG data from 4 words before and 4 after the stimulus yielding epochs of 8-word length (lasting 7.2s)."

-

The syntax in the legend of Figure 3: "Black arrows indicate the bar where falls …" should be corrected

We thank the reviewer for pointing this out. We have rephrased the legend as following: "Black arrows indicate the bin where the hippocampal power response falls."

-Delete ; at the end of the citations on page 11 in line 16.

This has been done.

Reviewer #2:

The authors provide an interesting examination of statistical learning using intracranial recordings in patients with epilepsy. Specifically, using frequency-tagged auditory stimuli they reported observing greater entrained responses in the hippocampus to artificial words and greater entrained responses in auditory cortex to phonemes. Studies with intracranial recordings (sEEG/ECoG) remain uncommon and valuable datasets for human neuroscience research. At present, however, the strength of the results is unclear to this reader, expanded on below, as it is possible that the pattern of results observed is unrelated to statistical learning, instead reflecting the particular set of analyses employed.

Primary Concerns

Statistical comparisons. The study examined significance within subjects by comparing power across electrodes. This is less commonly used than comparing power at each individual electrode to some baseline --given the continuous nature of the stimulus in this experiment, I would expect the use of a prestimulus resting state period. The major weakness of the current approach is that non-baselined power will reflect a mixture of intrinsic power and evoked power, particularly because there was no temporal jitter between presentation of the 240 stimuli. Moreover, this measure of relative power across electrodes is dependent on where the other electrodes are located --if a patient had auditory and hippocampal electrodes that each responded strongly to phonemes, then neither would be significant.

We understand the reviewer's concern. The choice of comparing power across electrodes was constrained by the absence of a sufficiently long baseline. Indeed, ideally, one would need a baseline as long as the learning phase in order to have an equivalent SNR. This was clearly not the case due to clinical constraints requiring to keep the experiment as short as possible. However, we would like to argue that our approach is actually more conservative than testing against a baseline. Indeed entrainment to auditory stimuli will be apparent in many regions (not limited to the auditory cortex, see Pesnot et al., 2021). Thus, thresholding using the distribution of the whole dataset is more conservative than using the baseline that will present NO entrainment but only intrinsic oscillatory activity. What we now tried to clarify, and that is important in this context, is the fact that by computing averages, we remove non time-locked activity (intrinsic oscillations) and only focus on evoked activity.

Page 8, lines 196-199: "Importantly, by computing averages, similarly to other frequency tagging studies (Nozaradan et al., 2021;[START_REF] Jonas | A face-selective ventral occipito-temporal map of the human brain with intracerebral 512 potentials[END_REF], we remove non time-locked activity (intrinsic oscillations), enhance the signal-to-noise ratio of EEG activities time locked to the patterns and only focus on evoked activity."

Below, we computed the same power analysis on a surrogate data built by randomly picking non time-locked epochs for one patient. Such a surrogate distribution, possibly simulating a baseline thresholding strategy, shows extremely low values at the frequencies of interest compared to the real data (top panel). This shows that our approach is possibly more conservative than using a baseline approach: the probability of one single value (e.g., in the hippocampus) being above threshold by chance is smaller.

The reviewer has another related remark: whether this measure of relative power across electrodes is dependent on where the other electrodes are located; "if a patient had auditory and hippocampal electrodes that each responded strongly to phonemes, then neither would be significant". This is indeed correct, BUT we do systematically have many more contacts in regions outside the auditory and hippocampal areas than inside these areas. Patients have between ~140 and ~200 useful contacts and only a few of these (<10) are located in the hippocampus and auditory regions (<10).

Page 9, lines 209-211: "For each patient and for each target frequency (word, syllable & two syllables), we computed the distribution of power values across all contacts (between 140 and 200 per patient, spanning several brain regions beyond the primary auditory cortex and the hippocampus)."

Statistical learning. Patients did not demonstrate behavioral effects of statistical learning, and so it's possible that they were unaware which syllable groups formed word boundaries. It appears the test phase data was not analyzed, which could lend credibility to the authors' claim that subjects implicitly learned the statistical representation. More generally, 4 minutes of a stimulus may be too short a period for learning to occur in these patients. If the authors split their data in half, can they show that frequency-tagged responses to words increased whereas other syllable frequency stayed the same?

We thank the reviewer for this comment. We now report the neurophysiological data acquired during the behavioural task, namely the testing phase following the learning phase. These results show that the ERPs to words and pseudowords differ in the hippocampus. In other words, neurophysiological data show that 1) the hippocampus contributes to speech stream segmentation, as seen during the learning phase, 2) the hippocampus is sensitive to the familiarity of the items during the test phase (thus in a different dataset). Then, the absence of behavioural learning seems to be due to a high noise at the decision making level. We now discuss this point also in relation to some weaknesses of the behavioural task.

Page 12-13, lines 289-327: "In the current work, patients, most of whom had temporal lobe epilepsy, performed poorly in the explicit recognition test as patients with MTL lesions. By contrast, they presented robust neural tuning at target frequencies corresponding to different levels of the speech hierarchy (i.e., word, syllable, and pair of syllables) during the learning phase. This result indicates that learning did take place and that the hippocampus was functional with respect to statistical learning.

It also confirms that implicit online measures of learning based on electrophysiological data are more sensitive than behavioural measures [START_REF] François | Cognitive and methodological considerations 479 on the effects of musical expertise on speech segmentation[END_REF]. Indeed, the analysis of the ERPs collected during the 2AFC task also revealed significant differences between words and nonwords over hippocampal channels. This result fits well with previous studies on speech segmentation based on SL showing functional activations of the hippocampus during speech segmentation tasks [START_REF] Turk-Browne | Neural evidence of 601 statistical learning: Efficient detection of visual regularities without awareness[END_REF]Schapiro, Kustner, & Turk-Browne 2012;[START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] Barascud | Brain responses 413 in humans reveal ideal observer-like sensitivity to complex acoustic patterns[END_REF]. A similar familiarity effect has been also reported when focusing on the 2AFC test [START_REF] François | Learning of musical and linguistic structures: comparing 473 event-related potentials and behavior[END_REF][START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] De | These studies used scalp EEG to show that healthy adults 302 exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct 303 explicit word recognition did not differ from chance level. Similar discrepancies between behavioural References[END_REF]. These studies used scalp EEG to show that healthy adults exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct explicit word recognition did not differ from chance level.

Similar discrepancies between behavioural and neural data have been reported in previous

neuroimaging studies of speech segmentation based on SL in healthy adults [START_REF] François | Learning of musical and linguistic structures: comparing 473 event-related potentials and behavior[END_REF][START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] Mcnealy | Cracking the language code: neural 527 mechanisms underlying speech parsing[END_REF][START_REF] Turk-Browne | Neural evidence of 601 statistical learning: Efficient detection of visual regularities without awareness[END_REF][START_REF] Sanders | Segmenting nonsense: an event-related 571 potential index of perceived onsets in continuous speech[END_REF] and in patients with MTL damage (Henin et al., 2021;[START_REF] Schapiro | The 578 necessity of the medial temporal lobe for statistical learning[END_REF][START_REF] Covington | The necessity of the hippocampus 441 for statistical learning[END_REF].

Moreover, the role of the hippocampus and MTL region during recognition memory tasks has largely been demonstrated in both healthy adults and patients with damage to the MTL [START_REF] Brown | Recognition memory: what are the roles of the 431 perirhinal cortex and hippocampus?[END_REF][START_REF] Düzel | Brain activity evidence 468 for recognition without recollection after early hippocampal damage[END_REF]Eldridge et al., 2000;Stark & Squire, 2000;[START_REF] Ranganath | 556 Dissociable correlates of recollection and familiarity within the medial temporal lobes[END_REF]. Here, we used an implicit procedure during the learning phase and evaluated the learning using an explicit behavioural task that requires the conscious recognition of word-forms presented auditorily. While our approach has the advantage of being of a very short duration, the 2AFC task has been largely criticized for its low sensitivity due to different factors [START_REF] François | Cognitive and methodological considerations 479 on the effects of musical expertise on speech segmentation[END_REF]Batterink et al., 2015;[START_REF] Siegelman | Measuring individual differences in statistical 590 learning: Current pitfalls and possible solutions[END_REF][START_REF] Siegelman | Redefining "learning" in 592 statistical learning: What does an online measure reveal about the assimilation of visual regularities? 593[END_REF][START_REF] Frost | Statistical learning research: A 490 critical review and possible new directions[END_REF][START_REF] Christiansen | Implicit-statistical learning: A tale of two 443 literatures[END_REF]). For instance, the AFC task requires participants to make an explicit judgment on two presented items without feedback, which might be particularly challenging in the case of the relatively weak memory traces created during the implicit learning phase [START_REF] François | Musical expertise and statistical learning of musical and 477 linguistic structures[END_REF]Rodriguez-Fornells et al., 2009). Moreover, the design of the AFC test trials does not allow differentiating between word recognition and nonword rejection as it is the case when using a lexical decision task (François et al., 2016;Ramos-Escobar et al., 2021). Recent studies on speech segmentation based on SL have elegantly proposed innovative designs to overcome the weaknesses associated with the use of explicit tests. Of particular relevance is the use of implicit measures such as EEG, sEEG, or Reaction-Times collected during the learning or an online test phase (see for example François et al., 2016[START_REF] François | 484 Neurophysiological evidence for the interplay of speech segmentation and word-referent mapping 485 during novel word learning[END_REF][START_REF] De | These studies used scalp EEG to show that healthy adults 302 exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct 303 explicit word recognition did not differ from chance level. Similar discrepancies between behavioural References[END_REF] for the analysis of ERPs to illegal items without explicit recognition) that seem more appropriate and sensitive to fully capture implicit learning processes [START_REF] Kim | Testing assumptions of statistical learning: 519 Is it long-term and implicit[END_REF][START_REF] Kóbor | Perceiving structure 521 in unstructured stimuli: Implicitly acquired prior knowledge impacts the processing of unpredictable 522 transitional probabilities[END_REF]Turk-Browne et al., 2005;[START_REF] Batterink | Online neural monitoring of statistical learning[END_REF][START_REF] Siegelman | Measuring individual differences in statistical 590 learning: Current pitfalls and possible solutions[END_REF]."

Concerning the possibility of splitting the data, we followed the reviewer suggestion. However, as the reviewer can see in the figure below, the effect is not clear cut, although there is a tendency for an increase at the word frequency. This is possibily due to different learning curves in the different patients that may prevent observing a clear increase. We also tried to have a more temporally resolved analysis to explore inter-individual differences, but the estimate became too noisy when using small data sets (e.g. 8 periods of 30 seconds). We eventually decided not to report this analysis in the manuscript.

Secondary Comments 4 ms is a very short baseline period which can introduce noise to the analysis. Do the authors have justification over a longer baseline (at least 100 ms)?

Sorry this was a typo error, it should be seconds and correspond to half of the window.

The authors mention normalization in the methods. How was power normalized? A common approach with frequency-tagging is to replot the data as signal-to-noise ratios, wherein power at the target frequency is compared against neighboring frequencies to cancel out the effects of the 1/f distribution.

We agree with the reviewer that some studies have used such a normalization procedure. However, we think that in the case of sEEG recordings the SNR is much higher than with scalp data. The suggested procedure that implicitly increases the local SNR may not be necessary in our case and we prefer not to use it and to show the 'true' FFT. Please also note that, as detailed above, we do not have the 1/f in the PSD because we work on averages. Further, recent studies have used similar approaches to study the neural mechanisms supporting the extraction of speech units based on SL in adults and children (see [START_REF] Jonas | A face-selective ventral occipito-temporal map of the human brain with intracerebral 512 potentials[END_REF]Ordin et al., 2020;Ramos-Escobar et al., 2021).

Why was evoked power calculated as opposed to total power averaged across the entire timerange? Evoked power, when no jitter across trials, can lead to peaks at intrinsic oscillations. Moreover, total power would enable a plot of the 1/f distributions for electrodes and subjects which can be helpful in evaluating the quality of the recordings.

As we clarified above, the strategy of averaging is commonly used (see for instance Nozaradan et al., 2021;[START_REF] Jonas | A face-selective ventral occipito-temporal map of the human brain with intracerebral 512 potentials[END_REF] in frequency tagging analysis to enhance the signal-to-noise ratio of EEG activities time locked to the patterns. Below, we computed the full range power spectral density for each patient (colored lines) for both hippocampal (top) and auditory (bottom) channels. On the left, the reviewer can appreciate that it is not easy to see much on the regular PSD of hippocampal channels. The scenario becomes a little bit better when normalizing by neighbours (dividing each value by two neighbour values), as can be seen on the right part of the figure. However, while for the auditory cortex, that has a very strong response to the syllabic rate, the result is clear cut, for the hippocampal channels, have smaller responses, results are less clear and mostly visible in the first harmonic of the word frequency (2.2 Hz). We feel that this well illustrates the advantage of computing the FFT of a sliding average. Also, note that, as reported in the methods section, we cautiously use an overlap equal to twice the size of the word duration to ensure that possible artifacts would not lead to a spurious peak at the word frequency.

Assuming the power effects are driven by the stimuli, is it possible that the hippocampus tracked 'words' because the task required discrimination of 3 phoneme groups? Were subjects aware what they would be tested on? 1

Neus Ramos-Escobar a,b , Manuel Mercier c , Agnès Trébuchon-Fonséca 2 Abstract 17

Statistical learning has been proposed as a mechanism to structure and segment the continuous flow of 18 information in several sensory modalities. Previous studies proposed that the medial temporal lobe, and 19 in particular the hippocampus, may be crucial to parse the stream in the visual modality. However, the 20 involvement of the hippocampus in auditory statistical learning, and specifically in speech segmentation 21 is less clear. To explore the role of the hippocampus in speech segmentation based on statistical 22 learning, we exposed seven pharmaco-resistant temporal lobe epilepsy patients to a continuous stream 23 of trisyllabic pseudowords and recorded intracranial stereotaxic electro-encephalography (sEEG). We 24 used frequency-tagging analysis to quantify neuronal synchronization of the hippocampus and auditory 25 regions to the temporal structure of words and syllables of the learning stream. We also analyzed the 26 event-related potentials (ERPs) of the test to evaluate the role of both regions in the recognition of newly 27 segmented words. Results show that while auditory regions highly respond to syllable frequency, the 28 hippocampus responds mostly to word frequency. Moreover, ERPs collected in the hippocampus show 29 clear sensitivity to the familiarity of the items. These findings provide direct evidence of the 30 involvement of the hippocampus in the speech segmentation process and suggest a hierarchical 31 organization of auditory information during speech processing. 32 

Keywords

Introduction 47

Humans are daily exposed to a massive amount of information. Finding a structure in the 48 sensory flow is necessary to make sense of the world. A structure can emerge thanks to regularities in 49 the input tracked by computing low-order statistics [START_REF] Reber | Implicit learning of artificial grammars[END_REF][START_REF] Frost | Domain generality 487 versus modality specificity: the paradox of statistical learning[END_REF]. Statistical learning 50 (SL) is a domain-general learning mechanism through which learners track statistical regularities of 51 motor [START_REF] Hunt | Statistical learning in a serial reaction time task: access to 503 separable statistical cues by individual learners[END_REF]), visual (Fisher & Aslin, 2002), and sequences [START_REF] Saffran | Statistical learning by 8-month-old infants[END_REF](Saffran et al., , 52 1999;;see Frost et al., 2015 

for a review). 53

Speech segmentation is one of the first problems that language learners must deal with when 54 learning a new language [START_REF] Graf-Estes | Can infants map meaning 494 to newly segmented words? Statistical segmentation and word learning[END_REF][START_REF] François | 484 Neurophysiological evidence for the interplay of speech segmentation and word-referent mapping 485 during novel word learning[END_REF]. SL has been proposed as a 55 possible mechanism that allows segmenting words from fluent speech [START_REF] Cutler | Rhythmic cues to speech segmentation: Evidence from 451 juncture misperception[END_REF]56 Saffran et al., 1996). This process can occur incidentally and without effort via simple exposure, as in 57 the case of infants [START_REF] Saffran | Incidental 564 language learning: Listening (and learning) out of the corner of your ear[END_REF]Turk-Browne et al., 2005;[START_REF] Saffran | Statistical learning of tone 567 sequences by human infants and adults[END_REF]. Although several 58 behavioral [START_REF] Cutler | Rhythmic cues to speech segmentation: Evidence from 451 juncture misperception[END_REF][START_REF] Saffran | Statistical learning by 8-month-old infants[END_REF][START_REF] Schön | Songs as an 573 aid for language acquisition[END_REF] and electrophysiological 59 studies [START_REF] Sanders | Segmenting nonsense: an event-related 571 potential index of perceived onsets in continuous speech[END_REF][START_REF] Cunillera | The effects 445 of stress and statistical cues on continuous speech segmentation: an event-related brain potential study[END_REF][START_REF] De | These studies used scalp EEG to show that healthy adults 302 exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct 303 explicit word recognition did not differ from chance level. Similar discrepancies between behavioural References[END_REF][START_REF] Abla | On-line assessment of statistical learning by 409 event-related potentials[END_REF]60 François et al., 2014;2017) have explored the bases of SL, the underlying precise brain network 61 dynamics are not clear yet. 62

Capitalizing on a high spatial resolution, functional magnetic resonance imaging (fMRI) studies 63 have allowed to decipher the brain regions supporting SL in the auditory and visual modalities. Results 64 showed activations of modality-specific brain regions during exposure to learning streams (Turk-65 Browne et al., 2009;[START_REF] Bischoff-Grethe | Conscious 425 and unconscious processing of nonverbal predictability in Wernicke's area[END_REF][START_REF] Mcnealy | Cracking the language code: neural 527 mechanisms underlying speech parsing[END_REF][START_REF] Cunillera | Time course and functional neuroanatomy of speech segmentation 449 in adults[END_REF]Karuza 66 et al., 2013). Specifically, fMRI speech segmentation studies consistently observed functional 67 activations of typical language areas such as the middle and superior temporal regions (MTG & STG) 68 and the inferior frontal gyrus (IFG;[START_REF] Mcnealy | Cracking the language code: neural 527 mechanisms underlying speech parsing[END_REF][START_REF] Cunillera | Time course and functional neuroanatomy of speech segmentation 449 in adults[END_REF][START_REF] Karuza | The neural correlates of statistical learning in a word segmentation task: An fMRI study[END_REF]. 69 However, activations of the hippocampus were also observed in a few SL studies (Turk-Browne et al., 70 2009;Schapiro, Kustner, & Turk-Browne 2012;[START_REF] Schapiro | Statistical 581 learning of temporal community structure in the hippocampus[END_REF][START_REF] Barascud | Brain responses 413 in humans reveal ideal observer-like sensitivity to complex acoustic patterns[END_REF]. The 71 interplay between cortical and subcortical structures during SL fits well with cognitive models 72

proposing that complementary neural systems may account for human learning abilities (Davis & 73 Gaskell, 2009;[START_REF] Mcclelland | Why there are complementary 524 learning systems in the hippocampus and neocortex: insights from the successes and failures of 525 connectionist models of learning and memory[END_REF]. Specifically, these models suggest that learning and memory 74 processes may occur in two different stages. The medial temporal structures would support the initial 75 acquisition and formation of memory traces, while neocortical regions may participate in their long-76 term storage. Interestingly, the hippocampus has been proposed to play a crucial role in segmenting 77 continuous sensory inputs into discrete events [START_REF] Radvansky | Event boundaries in memory and cognition[END_REF]. Recent studies on event 78 memory formation propose that the interplay between sensory regions and the hippocampus may 79 support the creation of boundaries between events. Specifically, while sensory areas seem to be 80 responsible for fine-grained boundaries, the hippocampus instead supports cortical information binding 81 memory traces [START_REF] Baldassano | 411 Discovering event structure in continuous narrative perception and memory[END_REF][START_REF] Ben-Yakov | Constructing realistic engrams: poststimulus activity of 422 hippocampus and dorsal striatum predicts subsequent episodic memory[END_REF][START_REF] Zacks | Human brain activity time-locked to perceptual event 605 boundaries[END_REF]Speer et 82 al., 2007). Further, recent studies on vocabulary acquisition based on associative or contextual learning 83 consistently show functional activations of the hippocampus during the early stages of learning 84 [START_REF] Bartolotti | Neural signatures of second 416 language learning and control[END_REF][START_REF] Breitenstein | Hippocampus activity differentiates good from poor learners of a novel lexicon[END_REF][START_REF] Covington | Expanding the language network: Direct contributions 439 from the hippocampus[END_REF][START_REF] Ripollés | Intrinsic monitoring of learning success facilitates memory encoding via the 560 activation of the SN/VTA-Hippocampal loop[END_REF]Züst et 85 al., 2019). However, direct human electrophysiological evidence for the role of the hippocampus in 86 extracting pattern regularities in speech is still missing. 87

Recently, electrophysiological studies have capitalized on the brain property to oscillate at the 88 frequency of a continuous auditory stimulus to explore the neural mechanisms supporting the 89 hierarchical processing of speech and music [START_REF] Nozaradan | Exploring how musical rhythm entrains brain activity with 535 electroencephalogram frequency-tagging[END_REF]Giraud & Poeppel, 2012;Poeppel 90 & Teng, 2020). Specifically, frequency tagging analysis have been successfully applied to surface EEG 91 or MEG recordings to quantify the amount of neural synchronization to syllable, pairs of syllables and 92 words during speech segmentation tasks [START_REF] Buiatti | Investigating the neural correlates of 433 continuous speech computation with frequency-tagged neuroelectric responses[END_REF][START_REF] Ding | Cortical tracking of 461 hierarchical linguistic structures in connected speech[END_REF]Batterink & Paller, 93 2017). In a recent study, Henin and colleagues (2020) collected intracortical brain responses from 94 human epileptic patients during an auditory and a visual SL task. They applied frequency-tagging to 95 electrocorticography (EcoG) data to show that neural response in the STG synchronized to both 96 syllables and word frequency. They also found synchronized neural response to word frequency in the 97 IFG and Anterior Temporal Lobe. However, no evidence of neural synchronization was observed in the 98 hippocampus possibly due to a limited access provided by EcoG probes. Nonetheless, using a more 99 indirect method based on multivariate pattern similarity analysis, they were able to show the 100 involvement of the hippocampus in word identity during learning. 101

Here, we gathered intracranial recordings from 7 patients with pharmaco-resistant temporal 102 lobe epilepsy implanted with depth electrodes to directly assess the contribution of the auditory cortex 103 and the hippocampus during a speech segmentation task based on SL. Participants passively listened to 104 4 minutes of an artificial statistically structured speech stream and were tested on their ability to 105 recognize the newly segmented words. We used frequency-tagging to quantify the level of neural 106 synchronization in auditory and hippocampal regions to the constitutive elements of the inputs, namely 107 syllables, pairs of syllables and tri-syllabic words during the learning phase. We expected auditory 108 regions to show a peak in the power spectrum corresponding to the syllable rate reflecting phonological 109 processing, while the hippocampus was expected to exhibit high neural synchronization to pairs of 110 syllables and word frequencies, reflecting its role in speech segmentation. Moreover, previous reports 111 studying memory have extensively shown the involvement of the hippocampus [START_REF] Ripollés | Intrinsic monitoring of learning success facilitates memory encoding via the 560 activation of the SN/VTA-Hippocampal loop[END_REF] [START_REF] Brown | Recognition memory: what are the roles of the 431 perirhinal cortex and hippocampus?[END_REF][START_REF] Düzel | Brain activity evidence 468 for recognition without recollection after early hippocampal damage[END_REF]Eldridge et al., 2000;Stark & Squire, 2000;Ranganath et 113 al., 2004). Therefore, we also analyzed the event-related potentials (ERPs) collected during the 114 behavioural test to evaluate the contribution of both regions during the recall of newly segmented words. 115

Methods 116

Participants 117

Seven patients with pharmaco-resistant temporal epilepsy (4 females, mean age = 29; range 18-118 45) participated in the study (see Table 1) The sEEG signal was recorded using depth electrodes of 0.8 mm diameter containing 10 to 15 electrodes 128 contacts (Alcis, Besançon, France). The electrode contacts were 2 mm long and were spaced from each 129 other by 1.5 mm. Data was recorded using a BrainAmp amplifier system (Brain Products GmbH, 130 Munich, Germany), sampled at Hz and high-passed filtered at 0.016 Hz. During the acquisition, 131 recordings were referenced to a single scalp-electrode located at Cz. Contact data was offline converted 132 to virtual channels using a bipolar montage approach (closest-neighbor contact reference) to increase 133 spatial resolution and reduce passive volume diffusion from neighboring areas [START_REF] Mercier | Evaluation of cortical local field potential diffusion in stereotactic electro-533 encephalography recordings: A glimpse on white matter signal[END_REF]. 134

P1 F 29 L L temporal 4R + 10L Both P2 F 45 L R temporal 10R + 2L Both P3 F 18 L R temporal 5R + 4L Both P4 F 23 Atypical L temporal 1R + 12L L P5 M 19 L L temporal 2R + 11L R P6 M 42 L L Frontal 1R + 13L L P7 M 33 L R Frontal & Parietal 14R R M male, F female, L left, R
To precisely localize the channels, a procedure similar to the one used in the iELVis toolbox was applied 135 [START_REF] Groppe | iELVis: An open source MATLAB toolbox for localizing and 498 visualizing human intracranial electrode data[END_REF]. First, we manually identified the location of each channel centroid on the post-136 implant CT scan using the Gardel software (Medina et al., 2018). Second, we performed volumetric 137 segmentation and cortical reconstruction on the pre-implant MRI with the Freesurfer image analysis 138 suite (documented and freely available for download online http://surfer.nmr.mgh.harvard.edu/). Third, 139 we mapped channel locations to the pre-implant MRI brain (processed with FreeSurfer) and to the MNI 140 template, using SPM12 methods [START_REF] Penny | Statistical 543 parametric mapping: the analysis of functional brain images[END_REF], through the FieldTrip toolbox (Oostenveld et al., 141 2011). The co-registration to the patient brain was done via a rigid, affine transformation to respect 142 individual anatomy. The normalization to the MNI template was done through a non-linear 143 transformation to map channels to a standardized space and allow brain regions labeling using the 144 Destrieux atlas [START_REF] Destrieux | Automatic parcellation of human cortical 459 gyri and sulci using standard anatomical nomenclature[END_REF]. The definition of hippocampal and primary auditory channels 145 was determined using a combination of automatic atlas labeling and visual inspection of the anatomical 146 data in 2D and 3D representations (see Figure 1). 147 

151

Experimental procedure 152

We used a similar experimental design to the one used in our previous studies with healthy adults and 153 children [START_REF] Schön | Songs as an 573 aid for language acquisition[END_REF][START_REF] François | Learning of musical and linguistic structures: comparing 473 event-related potentials and behavior[END_REF][START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] François | Music training for the development 475 of speech segmentation[END_REF]2014) the experimental procedure consisted of two consecutive phases, an implicit learning phase followed 155 by an explicit 2-alternative forced-choice (2AFC) task. Before starting the implicit learning phase, 156

patients were asked to listen carefully to one single auditory stream without explicit instructions of 157 learning (see Stimuli section for a description of the speech streams). Importantly, we did our best to 158 keep the entire procedure implicit. During the learning phase, patients were exposed to a single 159 continuous speech stream that was composed of 4 pseudo-words presented 60 times each, thus leading 160 to a single continuous stream of 240 words that lasted 4 min. Immediately after learning phase, 161 patients performed the behavioural 2AFC task that lasted 5 min. During each trial of the test, patients 162 were presented with two consecutive auditory words and had to press one of two buttons to indicate 163 which of two words (first or second item) most closely resembled what they had just heard in the 164 continuous stream (see Figure 2). Importantly, one test item was a word from the learning stream while 165 the other was a "nonword" that was never heard before the test. Each familiar word of the language 166 (word) was presented with each unfamiliar word (nonwords), making up 16 pairs that were repeated 167 twice, thus leading to 32 test trials. 168 169 The hippocampus should preferentially respond to the word frequency reflecting the creation of event boundaries during the 173 learning.

175

Stimuli 176

The language consisted of four consonants ('p', 't', 'k', 'd') and three vowels ('o', 'i', 'y'), which were 177 combined into a set of eleven syllables. The exact syllable length was set to 300 ms. These syllables 178 were then combined to give rise to 4 tri-syllabic words (POKIDY, DITOKI, PIDYTI, and KOPIDO). 179

The stream was built by random concatenation of the four pseudowords and synthesized using Mbrola 180 (http://tcts.fpms.ac.be/synthesis/mbrola.html). More precisely, the speech stream was built by 181 concatenating seven minimal sequences of non-coarticulated syllables respecting the constraint of not 182 repeating the same word twice in a row. Importantly, no acoustic cues have been inserted at word 183 boundaries. In the test, the items consisted of the four words used in the learning phase and four 184 nonwords created by pseudo-randomly mixing the syllables of the words from the language TOPIDY, 185 DYPOKI, KOKITI, and PIDITO. 186

SEEG Data analysis: Frequency tagging (learning phase) 187

For each patient, sEEG data, in a bipolar montage, were visually inspected using AnyWave software 188 [START_REF] Colombet | AnyWave: A cross-platform 436 and modular software for visualizing and processing electrophysiological signals[END_REF], and channels with artifacts or epileptic activity were excluded from the analysis. 189

Continuous sEEG recordings acquired during the learning task were filtered using a 0.5 Hz high pass 190 filter to remove slow drifts in the recorded signal. Then, epochs time-locked to the onset of each word 191 were created by segmenting the continuous EEG data from 4 words before and 4 after the stimulus 192 yielding epochs of 8-word length (lasting 7.2 s). Epochs were partially overlapping, yet we took care to 193 use an overlap equal to twice the size of the word to ensure that possible artifacts would not lead to a 194 spurious peak at the word frequency. A baseline correction was applied (-3.6 to 0 s). Epochs with high 195 amplitude values were excluded (threshold: mean +2 SD). Epochs were averaged and transformed to 196 the frequency domain using a discrete Fourier transformation (Matlab; Natick, MA). Importantly, by 197 computing averages, similarly to other frequency tagging studies (Nozaradan et al., 2021;Jonas et al., 198 2016), we remove non time-locked activity (intrinsic oscillations), enhance the signal-to-noise ratio of 199 EEG activities time locked to the patterns and only focus on evoked activity. We extracted the power 200 values for each target frequency (word frequency: 1.11 Hz; two-syllables frequency: 1.67 Hz; syllable 201 frequency: 3.33 Hz). Power values at the target frequencies were obtained for each patient and channel. 202

SEEG Data analysis: ERP analysis (Test phase) 203

We used a similar strategy with the sEEG data collected during the 2AFC test. First, we changed to a 204 bipolar montage to increase spatial resolution, high-pass filtered at 0.5 Hz and low-pass filtered at 20 205 Hz. Then, we created epochs time-locked to the item onset using a -100 ms 1200 ms time-window. A 206 baseline correction was applied (-100 to 0 ms). We only report analyses of channels in the hippocampus 207 and the primary auditory cortex. 208

Statistical analyses 209

For each patient and for each target frequency (word, syllable & two syllables), we computed the 210 distribution of power values across all contacts (between 140 and 200 contacts per patient, spanning 211 several brain regions beyond the primary auditory cortex and the hippocampus). Since the distribution 212

was not normal, we used a non-parametric threshold (median + 2.5 interquartile range, IQR) to 213 determine whether hippocampal and auditory contacts showed a significant response at the target 214 frequencies, as compared to overall channels (see Figure 3). 215

Whenever more than one channel was present in the same region (primary auditory or hippocampus), 216 the average power values of the two channels was used. For patients with bilateral implantation and 217 artifact free hippocampi, the average power values of channels located in both hemispheres was used. 218

Finally, to assess the power differences between hippocampal and auditory channels for each patient at 219 word, two-syllable, and syllable frequencies, we normalized the data across channels for each frequency 220 Test phase: The level of performance in the 2AFC test reveals that the percentage of correct explicit 233 word recognition did not differ from chance level (range: 25-56%, p > .05, wilcoxon signed-rank) thus 234 confirming previous results of impaired explicit word recall in patients with epilepsy (Schapiro et al., 235 2014;Henin et al., 2021). Importantly, however, as shown on Figure 4, the ERP data show a significant 236 difference between words and nonwords in hippocampal channels in the 250-400 (beta = -18.8; CI = -237 33.3 -4.2; p <.01) and 550-700 ms (beta = -19.6, CI = -35.9 -3.2; p < .01) time-windows. A significant 238 effect over a single 50 ms time window, between 350 and 400 ms, is also found over auditory channels 239 (beta = -8.4, CI = -16.5 -0.7; p < .05). Overall, these results confirm that patients did segment the words 240 during the learning phase and that the hippocampus is particularly sensitive to the familiarity of the 241 items. 242 For the syllable frequency, all patients except one exhibited a clear peak in contacts located within the 251 primary auditory cortex (raw data median = 12.24; IQR = 315.69). Five patients also showed significant 252 responses at this target frequency in hippocampal contacts although much smaller than auditory 253 responses (raw data median = 1.62; IQR = 2.76). 254

For the word-frequency, all patients except one (Patient 4) showed a significant response in 255 hippocampal contacts (raw data median = 3.86; IQR = 15.95). Three patients also showed a significant 256 response to word-frequency in auditory contacts although smaller than hippocampal responses (raw 257 data median = 1.62; IQR = 8.73 For the two-syllable frequency, all patients showed a significant response at hippocampal contacts (raw 259 data median = 4.79; IQR = 5.87). By contrast, none of the patients showed a significant response to the 260 two-syllable frequency in auditory contacts (raw data median = 0.59; IQR = 0.71). 261

The amplitude of the peaks in the power spectrum of the hippocampus differed from that in auditory 262 In the present study, we directly assessed the contribution of auditory regions and the 272 hippocampus during speech segmentation based on SL. Pharmaco-resistant epileptic patients implanted 273 with sEEG depth electrodes listened to a continuous stream of statistically organized syllables. The 274 frequency-tagging analysis reveals that the hippocampus preferentially responds to word-frequency. By 275 contrast, auditory regions preferentially tune their response to syllable frequency (see Figure 5B). 276

Although previous studies have suggested the involvement of MTL regions and especially the 277 hippocampus in SL based on indirect measures, we provide the first direct evidence for its role during 278 speech segmentation based on SL. 279

Previous neuropsychological studies showed that patients with lesions of the MTL are impaired 280 in extracting auditory and visual statistical patterns [START_REF] Schapiro | The 578 necessity of the medial temporal lobe for statistical learning[END_REF][START_REF] Covington | The necessity of the hippocampus 441 for statistical learning[END_REF] and neural data have been reported in previous neuroimaging studies of speech segmentation based on 305 SL in healthy adults [START_REF] François | Learning of musical and linguistic structures: comparing 473 event-related potentials and behavior[END_REF][START_REF] Schapiro | A 300 similar familiarity effect has been also reported when focusing on the 2AFC test[END_REF][START_REF] Mcnealy | Cracking the language code: neural 527 mechanisms underlying speech parsing[END_REF][START_REF] Turk-Browne | Neural evidence of 601 statistical learning: Efficient detection of visual regularities without awareness[END_REF]306 Sanders et al., 2002) and in patients with MTL damage (Henin et al., 2021;[START_REF] Schapiro | The 578 necessity of the medial temporal lobe for statistical learning[END_REF]307 Covington, Brown-Schmidt & Duff, 2018). Moreover, the role of the hippocampus and MTL region 308 during recognition memory tasks has largely been demonstrated in both healthy adults and patients with 309 damage to the MTL [START_REF] Brown | Recognition memory: what are the roles of the 431 perirhinal cortex and hippocampus?[END_REF][START_REF] Düzel | Brain activity evidence 468 for recognition without recollection after early hippocampal damage[END_REF]Eldridge et al., 2000;Stark & Squire, 310 2000;[START_REF] Ranganath | 556 Dissociable correlates of recollection and familiarity within the medial temporal lobes[END_REF]. Here, we used an implicit procedure during the learning phase and 311 evaluated the learning using an explicit behavioural task that requires the conscious recognition of 312 word-forms presented auditorily. While our approach has the advantage of being of a very short 313 duration, the 2AFC task has been largely criticized for its low sensitivity due to different factors 314 [START_REF] François | Cognitive and methodological considerations 479 on the effects of musical expertise on speech segmentation[END_REF]Batterink et al., 2015;[START_REF] Siegelman | Measuring individual differences in statistical 590 learning: Current pitfalls and possible solutions[END_REF]315 Siegelman et al., 2018;[START_REF] Frost | Statistical learning research: A 490 critical review and possible new directions[END_REF][START_REF] Christiansen | Implicit-statistical learning: A tale of two 443 literatures[END_REF]). For instance, the 316 AFC task requires participants to make an explicit judgment on two presented items without feedback, 317 which might be particularly challenging in the case of the relatively weak memory traces created during 318 the implicit learning phase [START_REF] François | Musical expertise and statistical learning of musical and 477 linguistic structures[END_REF]Rodriguez-Fornells et al., 2009). Moreover, the 319 design of the AFC test trials does not allow differentiating between word recognition and nonword 320 rejection as it is the case when using a lexical decision task (François et al., 2016;Ramos-Escobar et 321 al., 2021). Recent studies on speech segmentation based on SL have elegantly proposed innovative 322 designs to overcome the weaknesses associated with the use of explicit tests. Of particular relevance is 323 the use of implicit measures such as EEG, sEEG, or Reaction-Times collected during the learning or an 324 online test phase (see for example François et al., 2016[START_REF] François | 484 Neurophysiological evidence for the interplay of speech segmentation and word-referent mapping 485 during novel word learning[END_REF][START_REF] De | These studies used scalp EEG to show that healthy adults 302 exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct 303 explicit word recognition did not differ from chance level. Similar discrepancies between behavioural References[END_REF] for the 325 analysis of ERPs to illegal items without explicit recognition) that seem more appropriate and sensitive 326 to fully capture implicit learning processes [START_REF] Kim | Testing assumptions of statistical learning: 519 Is it long-term and implicit[END_REF][START_REF] Kóbor | Perceiving structure 521 in unstructured stimuli: Implicitly acquired prior knowledge impacts the processing of unpredictable 522 transitional probabilities[END_REF]327 Turk-Browne et al., 2005;[START_REF] Batterink | Online neural monitoring of statistical learning[END_REF][START_REF] Siegelman | Measuring individual differences in statistical 590 learning: Current pitfalls and possible solutions[END_REF]. 328

Previous studies with surface EEG or MEG have successfully used frequency tagging to track 329 the patterns of cortical synchronization supporting the hierarchical processing of speech (Buiatti et al., 330 2009;[START_REF] Ding | Cortical tracking of 461 hierarchical linguistic structures in connected speech[END_REF][START_REF] Batterink | Online neural monitoring of statistical learning[END_REF]see Poeppel & Teng, 2020 for a review). Importantly 331 however, while functional activations of the hippocampus have been consistently reported during visual 332 SL tasks [START_REF] Turk-Browne | Neural evidence of 601 statistical learning: Efficient detection of visual regularities without awareness[END_REF]Schapiro, Kustner & Turk-Browne 2012), this was not the case 333 using sequences of syllables [START_REF] Mcnealy | Cracking the language code: neural 527 mechanisms underlying speech parsing[END_REF][START_REF] Cunillera | Time course and functional neuroanatomy of speech segmentation 449 in adults[END_REF][START_REF] Karuza | The neural correlates of statistical learning in a word segmentation task: An fMRI study[END_REF]. Further, 334 in a recent study, Henin and colleagues gathered brain responses to statistically structured auditory and 335 visual sequences in 26 patients with MTL epilepsy (Henin et al., 2021). Using similar frequency tagging 336 analysis applied to EcoG data, they found clear neural response at both two-syllable and word 337 frequencies over multiple cortical regions. However, evidence for a contribution of the hippocampus 338 was only observed with a more indirect analysis based on representational similarities (dissimilarity 339 measures). Here, instead of using grid electrodes located at the surface of the cortex (referenced to 340 subdural/skull contacts), we used depth sEEG electrodes and in particular bipolar montages that allow 341 a high spatial resolution and directly quantifying neural response at the population level in the auditory 342 cortex and in the hippocampus. Results are clear cut in showing that auditory regions significantly 343 respond to syllable frequency but not to word frequency. Crucially, we observe an opposite pattern in 344 the hippocampus with an ample response to longer units (i.e., pairs of syllables and words, see Figure 345 5B). 346

These results strongly corroborate a hierarchical organization of auditory information during 347 speech segmentation. Moreover, the hippocampal response to both pairs of syllables and word 348 frequencies sheds light on the neural validity of speech segmentation models. According to the 349 PARSER model, continuous speech is segmented by extracting small chunks of increasing size based 350 on the computation of temporal proximity and associative learning mechanisms. items [START_REF] Perruchet | PARSER: A model for word segmentation[END_REF]. More recent work on event memory formation for spatial or temporal 353 sequences proposes that sensory regions and the hippocampus hierarchically contribute to creating 354 boundaries between events contained in long passages [START_REF] Baldassano | 411 Discovering event structure in continuous narrative perception and memory[END_REF]Radvansky & Zacks, 355 2017;[START_REF] Ben-Yakov | Constructing realistic engrams: poststimulus activity of 422 hippocampus and dorsal striatum predicts subsequent episodic memory[END_REF]; see also Zacks & Swallow, 2007). For instance, the encoding and 356 recall of narratives may involve the encoding of small temporal chunks in primary sensory regions. 357

Long events encoding would occur in higher-level brain regions, including cortical areas and the 358 hippocampus [START_REF] Baldassano | 411 Discovering event structure in continuous narrative perception and memory[END_REF]. Importantly, Schapiro and colleagues (2017) recently proposed 359 a neuroanatomically plausible model of hippocampal functioning during continuous sequence learning 360 such as SL. Specifically, they exposed an artificial neural network mimicking the functional and 361 anatomical properties of the hippocampus to continuous sequences of items with different temporal 362 regularities. Results suggested the existence of complementary learning systems in the hippocampus 363 where specific neural pathways differently contribute to learning depending on the type of input. Our 364 findings are in line with the idea that the hippocampus is sensitive to pattern regularities found in the 365 environment. It seems reasonable to think that the hippocampus is also sensitive to the co-occurrence 366 of syllable pairs as for visual sequences [START_REF] Schapiro | 583 Complementary learning systems within the hippocampus: a neural network modelling approach to 584 reconciling episodic memory with statistical learning[END_REF][START_REF] Turk-Browne | Neural evidence of 601 statistical learning: Efficient detection of visual regularities without awareness[END_REF]. Taken 367 together, our data suggest a hierarchical organization of auditory information during speech processing, 368

where both cortical and hippocampal regions contribute to language learning. While the clear response 369 at syllable frequency in primary auditory areas may reflect the tracking of the phonological structure, 370 the hippocampus would be involved in the encoding and storage of larger units as previously proposed 371 in different neurocomputational models of chunking [START_REF] Baldassano | 411 Discovering event structure in continuous narrative perception and memory[END_REF][START_REF] Schapiro | 583 Complementary learning systems within the hippocampus: a neural network modelling approach to 584 reconciling episodic memory with statistical learning[END_REF]. 372

Taken together, our data suggest that the hippocampus plays an important role in speech segmentation 373 and language learning using a more direct measure of neural activity than previously described 374 [START_REF] Schapiro | The 578 necessity of the medial temporal lobe for statistical learning[END_REF][START_REF] Covington | The necessity of the hippocampus 441 for statistical learning[END_REF][START_REF] Duff | The hippocampus and the flexible use and 463 processing of language[END_REF]375 Kepinska et al., 2018). 376

Nonetheless, our study presents methodological limitations that prevent us from drawing 377 definite conclusions on the role of the hippocampus in speech segmentation in the general population. 378

First, the complex clinical history of these temporal lobe epileptic patients may affect verbal memory 379 storage and executive functions thus, explaining impaired performance at test [START_REF] Zamarian | Executive functions in chronic mesial temporal lobe epilepsy[END_REF]380 Saling, 2009;[START_REF] Squire | Memory systems of the brain: a brief history and current perspective[END_REF]. Second, while there is evidence for left lateralized activations in the 381

Inferior and Superior Temporal Gyri during speech segmentation based on SL [START_REF] Cunillera | Time course and functional neuroanatomy of speech segmentation 449 in adults[END_REF]382 McNealy et al., 2006;[START_REF] Karuza | The neural correlates of statistical learning in a word segmentation task: An fMRI study[END_REF], it is still unclear as to whether asymmetric processing also 383 takes place in the hippocampus. In our small population, only one of the patients (P4), implanted over 384 the left hemisphere, did not significantly respond to word frequency in the hippocampus. Clinical 385 exploration revealed that this patient had an atypical language dominance to the right hemisphere, 386 probably induced by a disease-related atypical functioning of the hippocampus. Thus, further work on 387 a larger sample and possibly bilateral implantations is needed to explore the possibility of a hippocampal 388 asymmetry. Finally, Schapiro and colleagues (2017) showed that the anterior part of the hippocampus 389 where the monosynaptic pathway connects the entorhinal cortex to the "cornu ammonis 1" is more 390 involved in SL than the posterior part. Again, determining possible functional differences related to 391 topographical gradients in hippocampal structures will require further investigations with a larger 392 number of patients. 393

Conclusion 394

Here, we directly assessed the role of the hippocampus in speech segmentation based on SL. 395

We showed that the hippocampus neural response synchronizes with the word-level time scale but not 396 with the syllable-level time scale. Conversely, auditory regions consistently responded to syllable 397 frequency but not to word frequency. Moreover, we found clear neural evidence for the contribution of 398 the hippocampus in the recall of newly segmented words. These findings provide preliminary but direct 399 evidence in humans for the involvement of the hippocampus in the brain network that orchestrates 400 auditory speech segmentation based on SL. 401
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  Patients were implanted with depth electrodes for clinical 119 reasons to determine the epileptic zone before they underwent neurosurgical treatment at the La Timone 120 Hospital in Marseille (France). The location of the implanted electrodes was solely determined by 121 clinical criteria. Patients provided informed consent prior to the experimental session, and the study was 122 approved by the Institutional Review Board of the French Institute of Health (IRB00003888). No part 123 of the study procedures was pre-registered prior to the research being conducted. 124
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Figure 1 .

 1 Figure 1. sEEG channel location. Colored dots indicate the channel location for each patient in auditory (dark-colored) and

Figure 2 .

 2 Figure 2. Illustration of the experimental procedure. After being exposed to a continuous stream of statistically structured

Figure 3 .

 3 Figure 3. Example of the methodology used to define significant hippocampal implication. Histograms of power response of
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Figure 4 .

 4 Figure 4. ERPs to words and nonwords in hippocampal contacts (bipolar montage) averaged across 6 patients obtained during

  Clear power spectrum peaks at word and syllable frequencies are visible over auditory 249 and hippocampal contacts (see Figure5A). 250

Figure 5 .

 5 Figure 5. A) Example of a patient (Patient 7) power response of hippocampal and auditory electrodes to word frequency (red),
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We thank the reviewer for this comment. In this specific case, the answer is no. We used an implicit version of the SL paradigm in which the patients were not aware of the purpose of the task nor that they would be tested afterward. We agree that some studies have used explicit instructions of learning which may have triggered different cognitive mechanisms (Cunillera et al., 2006(Cunillera et al., , 2009)). Again, here, the patients were only instructed to listen carefully to an auditory stream without explicit instructions of learning. Importantly, the grouping of phonemes can only be done by statistical learning as there are no other (e.g., acoustic) cues to group the individual phonemes.
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