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Abstract: Statistical learning has been proposed as a mechanism to structure and segment the
continuous flow of information in several sensory modalities. Previous studies
proposed that the medial temporal lobe, and in particular the hippocampus, may be
crucial to parse the stream in the visual modality. However, the involvement of the
hippocampus in auditory statistical learning, and specifically in speech segmentation is
less clear. To explore the role of the hippocampus in speech segmentation based on
statistical learning, we exposed seven pharmaco-resistant temporal lobe epilepsy
patients to a continuous stream of trisyllabic pseudowords and recorded intracranial
stereotaxic electro-encephalography (sEEG). We used frequency-tagging analysis to
quantify neuronal synchronization of the hippocampus and auditory regions to the
temporal structure of words and syllables of the stream. Results show that while
auditory regions highly respond to syllable frequency, the hippocampus responds
mostly to word frequency. These findings provide direct evidence of the involvement of
the hippocampus in speech segmentation process and suggest a hierarchical
organization of auditory information during speech processing.

Response to Reviewers: Reviewer #1: Ramos-Escobar and colleagues presented continuous streams of
auditory syllables to patients with intractable epilepsy followed by a forced choice
recognition test on three-syllable words hidden in the streams. Using frequency tagging
on intracranial EEG recordings on the surface of the auditory cortex and from depth
electrodes in the medial temporal lobe, they measured statistical learning of syllables,
two-syllables and three-syllable words. The authors report that the auditory cortex
responds more to syllables than to words (i. e. shows a higher power in the frequency
range at which syllables are presented than to the frequency at which words are
presented), while the hippocampus responds more to words than to syllables (shows a
higher power in the frequency range at which words are presented than to the
frequency at which syllables are presented). Based on those findings the authors
conclude that statistical learning is hierarchically organized in the brain,
and that the hippocampus plays an important role in statistical learning of speech.

The manuscript is well written and clear and shows interesting and compelling results.

I have a few comments which need attention before I can recommend publication.
Major comment:
-   The most puzzling issue is the finding that behavior shows a strong discrepancy to
the neural responses. The authors mention that the force choice has low sensitivity to
learning (page 11, line13). This may be true, but alternatively, the hippocampus may
not be necessary for statistical learning (as was previously mentioned in line 1 of the
same page). It would be good to discuss that possibility too in the context of learning
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speech sequences and in the context of the damage of the MTL in these patients. It
would also be good to suggest alternative behavioral methods which would reveal
learning.

We thank the reviewer for this comment. We have further developed this point in the
discussion and also refer to other studies that have shown similar discrepancies (e.g.
Henin et al., 2021). Most importantly, in relation to this point, we now report the
analysis of sEEG data acquired during the test phase together with the corresponding
figure (Figure 4). These results show that the event-related potentials (ERPs) to words
and nonwords differ in the hippocampus. In other words, neurophysiological data show
that 1) the hippocampus contributes to speech stream segmentation, as seen during
the learning phase, 2) the hippocampus is sensitive to the familiarity of the items during
the test phase (thus in a different dataset). Then, the absence of behavioural learning
seems to be due to a high noise at the decision making level. We now further discuss
this point in relation to possible weaknesses of the behavioural task and make
reference to newly developed experimental designs (François et al., 2016, 2017).
Finally, we would like to clarify that we do not make any causal statement in the
manuscript and that our data only show that the hippocampus is involved in speech
segmentation, but not that it is necessary for speech segmentation as these claims
possibly require perturbation or lesion studies.

Results section:

Page 10, lines 235-241: ”Importantly, however, as shown on Figure 4, the ERP data
show a significant difference between words and nonwords in hippocampal channels in
the 250-400 (beta = -18.8; CI = -33.3 -4.2; p <.01) and 550-700 ms (beta = -19.6, CI = -
35.9 -3.2; p < .01) time-windows. A significant effect over a single 50ms time window,
between 350 and 400 ms, is also found over auditory channels (beta = -8.4, CI = -16.5
-0.7; p < .05). Overall, these results confirm that patients did segment the words during
the learning phase and that the hippocampus is particularly sensitive to the familiarity
of the items.”
Discussion section:
Page 12-13, lines 289-327: “In the current work, patients, most of whom had temporal
lobe epilepsy, performed poorly in the explicit recognition test as patients with MTL
lesions. By contrast, they presented robust neural tuning at target frequencies
corresponding to different levels of the speech hierarchy (i.e., word, syllable, and pair
of syllables) during the learning phase. This result indicates that learning did take place
and that the hippocampus was functional with respect to statistical learning. It also
confirms that implicit online measures of learning based on electrophysiological data
are more sensitive than behavioural measures (François, Tillmann & Schön, 2012).
Indeed, the analysis of the ERPs collected during the 2AFC task also revealed
significant differences between words and nonwords over hippocampal channels. This
result fits well with previous studies on speech segmentation based on SL showing
functional activations of the hippocampus during speech segmentation tasks (Turk-
Browne et al., 2009; Schapiro, Kustner, & Turk-Browne 2012; Schapiro et al., 2016;
Barascud et al., 2016). A similar familiarity effect has been also reported when focusing
on the 2AFC test (François & Schön, 2010, 2011; De Diego Balaguer et al., 2007).
These studies used scalp EEG to show that healthy adults exhibited a larger negativity
for unfamiliar than for newly learned. However, the percentage of correct explicit word
recognition did not differ from chance level. Similar discrepancies between behavioural
and neural data have been reported in previous neuroimaging studies of speech
segmentation based on SL in healthy adults (François & Schön, 2010, 2011; McNealy
et al., 2006; Turk-Browne et al., 2009; Sanders et al., 2002) and in patients with MTL
damage (Henin et al., 2021; Schapiro et al., 2014; Covington, Brown-Schmidt & Duff,
2018). Moreover, the role of the hippocampus and MTL region during recognition
memory tasks has largely been demonstrated in both healthy adults and patients with
damage to the MTL (Brown & Aggleton, 2001; Düzel et al., 2001; Eldridge et al., 2000;
Stark & Squire, 2000; Ranganath et al., 2004). Here, we used an implicit procedure
during the learning phase and evaluated the learning using an explicit behavioural task
that requires the conscious recognition of word-forms presented auditorily. While our
approach has the advantage of being of a very short duration, the 2AFC task has been
largely criticized for its low sensitivity due to different factors (François, Tillmann &
Schön, 2012; Batterink et al., 2015; Siegelman, Bogaerts & Frost, 2017; Siegelman et
al., 2018; Frost, Armstrong & Christiansen, 2019; Christiansen, 2019; ). For instance,
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the AFC task requires participants to make an explicit judgment on two presented
items without feedback, which might be particularly challenging in the case of the
relatively weak memory traces created during the implicit learning phase (Schön &
François, 2011; Rodriguez-Fornells et al., 2009). Moreover, the design of the AFC test
trials does not allow differentiating between word recognition and nonword rejection as
it is the case when using a lexical decision task (François et al., 2016; Ramos-Escobar
et al., 2021). Recent studies on speech segmentation based on SL have elegantly
proposed innovative designs to overcome the weaknesses associated with the use of
explicit tests. Of particular relevance is the use of implicit measures such as EEG,
sEEG, or Reaction-Times collected during the learning or an online test phase (see for
example François et al., 2016, 2017; de Diego Balaguer et al., 2007 for the analysis of
ERPs to illegal items without explicit recognition) that seem more appropriate and
sensitive to fully capture implicit learning processes (Kim, Seitz, Feenstra, & Shams,
2009; Kóbor et al., 2020; Turk-Browne et al., 2005; Batterink & Paller, 2017;
Siegelman, Bogaerts & Frost, 2017).”

Minor comments:
-   The experimental methods are very briefly described and it is difficult to understand
the flow of events, particularly the duration of the trial or trials and the test phase. It
would help to move the sentence from the stimuli section "Each word is presented 60
times …" up to the experimental procedure section. Without the understanding that
there is only one stream it is also difficult to understand the segmenting of the EEG
signal.

We thank the reviewer for this comment. We agree that the experimental method
should be developed further to facilitate the replication of the study. Therefore, we have
added more details in the method section. We now also acknowledge that the
procedure that we used here was similar to the one used in various studies of our
group with healthy adults and children (François & Schön, 2010; 2011; François et al.,
2013; 2014).

Page 6-7, lines 152-167: “We used a similar experimental design to the one used in
our previous studies with healthy adults and children (Schön et al., 2008; François &
Schön 2010; 2011; François et al., 2013; 2014). Specifically, the experimental
procedure consisted of two consecutive phases, an implicit learning phase followed by
an explicit 2-alternative forced-choice (2AFC) task. Before starting the implicit learning
phase, patients were asked to listen carefully to one single auditory stream without
explicit instructions of learning (see Stimuli section for a description of the speech
streams). Importantly, we did our best to keep the entire procedure implicit. During the
learning phase, patients were exposed to a single continuous speech stream that was
composed of 4 pseudo-words presented 60 times each, thus leading to a single
continuous stream of 240 words that lasted 4 min. Immediately after this learning
phase, patients performed the behavioural 2AFC task that lasted 5 min. During each
trial of the test, patients were presented with two consecutive auditory words and had
to press one of two buttons to indicate which of two words (first or second item) most
closely resembled what they had just heard in the continuous stream (see Figure 2).
Importantly, one test item was a word from the learning stream while the other was a
“nonword” that was never heard before the test. Each familiar word of the language
(word) was presented with each unfamiliar word (nonwords), making up 16 pairs that
were repeated twice, thus leading to 32 test trials.”
”

-   The authors mention that "epochs time-locked at the onset of each word were
created by segmenting the recordings from 4 words before and 4 after the stimulus
yielding epochs of 8-word length (lasting 7.2s)." I don't understand that sentence.
Shouldn't 4+4+1 be 9 word length? Or is the word itself included in the "4 after the
stimulus"?

We apologize for this misunderstanding. The epoch is defined with respect to the word
onset, so it consists of 4 words before and four words after the onset. We have
rephrased this sentence.
Page 8, lines 190-192: “Then, epochs time-locked to the onset of each word were
created by segmenting the continuous EEG data from 4 words before and 4 after the
stimulus yielding epochs of 8-word length (lasting 7.2s).”
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-   The syntax in the legend of Figure 3: "Black arrows indicate the bar where falls …"
should be corrected

We thank the reviewer for pointing this out. We have rephrased the legend as
following:
“Black arrows indicate the bin where the hippocampal power response falls.”

-   Delete ; at the end of the citations on page 11 in line 16.

This has been done.

Reviewer #2: The authors provide an interesting examination of statistical learning
using intracranial recordings in patients with epilepsy. Specifically, using frequency-
tagged auditory stimuli they reported observing greater entrained responses in the
hippocampus to artificial words and greater entrained responses in auditory cortex to
phonemes. Studies with intracranial recordings (sEEG/ECoG) remain uncommon and
valuable datasets for human neuroscience research. At present, however, the strength
of the results is unclear to this reader, expanded on below, as it is possible that the
pattern of results observed is unrelated to statistical learning, instead reflecting the
particular set of analyses employed.

Primary Concerns

Statistical comparisons. The study examined significance within subjects by comparing
power across electrodes. This is less commonly used than comparing power at each
individual electrode to some baseline -- given the continuous nature of the stimulus in
this experiment, I would expect the use of a prestimulus resting state period. The major
weakness of the current approach is that non-baselined power will reflect a mixture of
intrinsic power and evoked power, particularly because there was no temporal jitter
between presentation of the 240 stimuli. Moreover, this measure of relative power
across electrodes is dependent on where the other electrodes are located -- if a patient
had auditory and hippocampal electrodes that each responded strongly to phonemes,
then neither would be significant.

We understand the reviewer’s concern. The choice of comparing power across
electrodes was constrained by the absence of a sufficiently long baseline. Indeed,
ideally, one would need a baseline as long as the learning phase in order to have an
equivalent SNR. This was clearly not the case due to clinical constraints requiring to
keep the experiment as short as possible.
However, we would like to argue that our approach is actually more conservative than
testing against a baseline. Indeed entrainment to auditory stimuli will be apparent in
many regions (not limited to the auditory cortex, see Pesnot et al., 2021). Thus,
thresholding using the distribution of the whole dataset is more conservative than using
the baseline that will present NO entrainment but only intrinsic oscillatory activity. What
we now tried to clarify, and that is important in this context, is the fact that by
computing averages, we remove non time-locked activity (intrinsic oscillations) and
only focus on evoked activity.

Page 8, lines 196-199: “Importantly, by computing averages, similarly to other
frequency tagging studies (Nozaradan et al., 2021; Jonas et al., 2016), we remove non
time-locked activity (intrinsic oscillations), enhance the signal-to-noise ratio of EEG
activities time locked to the patterns and only focus on evoked activity.”

Below, we computed the same power analysis on a surrogate data built by randomly
picking non time-locked epochs for one patient. Such a surrogate distribution, possibly
simulating a baseline thresholding strategy, shows extremely low values at the
frequencies of interest compared to the real data (top panel). This shows that our
approach is possibly more conservative than using a baseline approach: the probability
of one single value (e.g., in the hippocampus) being above threshold by chance is
smaller.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



The reviewer has another related remark: whether this measure of relative power
across electrodes is dependent on where the other electrodes are located; “if a patient
had auditory and hippocampal electrodes that each responded strongly to phonemes,
then neither would be significant”. This is indeed correct, BUT we do systematically
have many more contacts in regions outside the auditory and hippocampal areas than
inside these areas. Patients have between ~140 and ~200 useful contacts and only a
few of these (<10) are located in the hippocampus and auditory regions (<10).

Page 9, lines 209-211: “For each patient and for each target frequency (word, syllable
& two syllables), we computed the distribution of power values across all contacts
(between 140 and 200 per patient, spanning several brain regions beyond the primary
auditory cortex and the hippocampus).”

Statistical learning. Patients did not demonstrate behavioral effects of statistical
learning, and so it's possible that they were unaware which syllable groups formed
word boundaries. It appears the test phase data was not analyzed, which could lend
credibility to the authors' claim that subjects implicitly learned the statistical
representation. More generally, 4 minutes of a stimulus may be too short a period for
learning to occur in these patients. If the authors split their data in half, can they show
that frequency-tagged responses to words increased whereas other syllable frequency
stayed the same?

We thank the reviewer for this comment. We now report the neurophysiological data
acquired during the behavioural task, namely the testing phase following the learning
phase. These results show that the ERPs to words and pseudowords differ in the
hippocampus. In other words, neurophysiological data show that 1) the hippocampus
contributes to speech stream segmentation, as seen during the learning phase, 2) the
hippocampus is sensitive to the familiarity of the items during the test phase (thus in a
different dataset). Then, the absence of behavioural learning seems to be due to a high
noise at the decision making level. We now discuss this point also in relation to some
weaknesses of the behavioural task.

Page 12-13, lines 289-327: “In the current work, patients, most of whom had temporal
lobe epilepsy, performed poorly in the explicit recognition test as patients with MTL
lesions. By contrast, they presented robust neural tuning at target frequencies
corresponding to different levels of the speech hierarchy (i.e., word, syllable, and pair
of syllables) during the learning phase. This result indicates that learning did take place
and that the hippocampus was functional with respect to statistical learning. It also
confirms that implicit online measures of learning based on electrophysiological data
are more sensitive than behavioural measures (François, Tillmann & Schön, 2012).
Indeed, the analysis of the ERPs collected during the 2AFC task also revealed
significant differences between words and nonwords over hippocampal channels. This
result fits well with previous studies on speech segmentation based on SL showing
functional activations of the hippocampus during speech segmentation tasks (Turk-
Browne et al., 2009; Schapiro, Kustner, & Turk-Browne 2012; Schapiro et al., 2016;
Barascud et al., 2016). A similar familiarity effect has been also reported when focusing
on the 2AFC test (François & Schön, 2010, 2011; De Diego Balaguer et al., 2007).
These studies used scalp EEG to show that healthy adults exhibited a larger negativity
for unfamiliar than for newly learned. However, the percentage of correct explicit word
recognition did not differ from chance level. Similar discrepancies between behavioural
and neural data have been reported in previous neuroimaging studies of speech
segmentation based on SL in healthy adults (François & Schön, 2010, 2011; McNealy
et al., 2006; Turk-Browne et al., 2009; Sanders et al., 2002) and in patients with MTL
damage (Henin et al., 2021; Schapiro et al., 2014; Covington, Brown-Schmidt & Duff,
2018). Moreover, the role of the hippocampus and MTL region during recognition
memory tasks has largely been demonstrated in both healthy adults and patients with
damage to the MTL (Brown & Aggleton, 2001; Düzel et al., 2001; Eldridge et al., 2000;
Stark & Squire, 2000; Ranganath et al., 2004). Here, we used an implicit procedure
during the learning phase and evaluated the learning using an explicit behavioural task
that requires the conscious recognition of word-forms presented auditorily. While our
approach has the advantage of being of a very short duration, the 2AFC task has been
largely criticized for its low sensitivity due to different factors (François, Tillmann &
Schön, 2012; Batterink et al., 2015; Siegelman, Bogaerts & Frost, 2017; Siegelman et
al., 2018; Frost, Armstrong & Christiansen, 2019; Christiansen, 2019; ). For instance,
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the AFC task requires participants to make an explicit judgment on two presented
items without feedback, which might be particularly challenging in the case of the
relatively weak memory traces created during the implicit learning phase (Schön &
François, 2011; Rodriguez-Fornells et al., 2009). Moreover, the design of the AFC test
trials does not allow differentiating between word recognition and nonword rejection as
it is the case when using a lexical decision task (François et al., 2016; Ramos-Escobar
et al., 2021). Recent studies on speech segmentation based on SL have elegantly
proposed innovative designs to overcome the weaknesses associated with the use of
explicit tests. Of particular relevance is the use of implicit measures such as EEG,
sEEG, or Reaction-Times collected during the learning or an online test phase (see for
example François et al., 2016, 2017; de Diego Balaguer et al., 2007 for the analysis of
ERPs to illegal items without explicit recognition) that seem more appropriate and
sensitive to fully capture implicit learning processes (Kim, Seitz, Feenstra, & Shams,
2009; Kóbor et al., 2020; Turk-Browne et al., 2005; Batterink & Paller, 2017;
Siegelman, Bogaerts & Frost, 2017).”

Concerning the possibility of splitting the data, we followed the reviewer suggestion.
However, as the reviewer can see in the figure below, the effect is not clear cut,
although there is a tendency for an increase at the word frequency. This is possibily
due to different learning curves in the different patients that may prevent observing a
clear increase. We also tried to have a more temporally resolved analysis to explore
inter-individual differences, but the estimate became too noisy when using small data
sets (e.g. 8 periods of 30 seconds). We eventually decided not to report this analysis in
the manuscript.

Secondary Comments

4 ms is a very short baseline period which can introduce noise to the analysis. Do the
authors have justification over a longer baseline (at least 100 ms)?

Sorry this was a typo error, it should be seconds and correspond to half of the window.

The authors mention normalization in the methods. How was power normalized?
A common approach with frequency-tagging is to replot the data as signal-to-noise
ratios, wherein power at the target frequency is compared against neighboring
frequencies to cancel out the effects of the 1/f distribution.

We agree with the reviewer that some studies have used such a normalization
procedure. However, we think that in the case of sEEG recordings the SNR is much
higher than with scalp data. The suggested procedure that implicitly increases the local
SNR may not be necessary in our case and we prefer not to use it and to show the
‘true’ FFT. Please also note that, as detailed above, we do not have the 1/f in the PSD
because we work on averages. Further, recent studies have used similar approaches
to study the neural mechanisms supporting the extraction of speech units based on SL
in adults and children (see Jonas et al., 2016; Ordin et al., 2020; Ramos-Escobar et al.,
2021).

Why was evoked power calculated as opposed to total power averaged across the
entire time-range? Evoked power, when no jitter across trials, can lead to peaks at
intrinsic oscillations. Moreover, total power would enable a plot of the 1/f distributions
for electrodes and subjects which can be helpful in evaluating the quality of the
recordings.

As we clarified above, the strategy of averaging is commonly used (see for instance
Nozaradan et al., 2021; Jonas et al., 2016) in frequency tagging analysis to enhance
the signal-to-noise ratio of EEG activities time locked to the patterns. Below, we
computed the full range power spectral density for each patient (colored lines) for both
hippocampal (top) and auditory (bottom) channels. On the left, the reviewer can
appreciate that it is not easy to see much on the regular PSD of hippocampal channels.
The scenario becomes a little bit better when normalizing by neighbours (dividing each
value by two neighbour values), as can be seen on the right part of the figure.
However, while for the auditory cortex, that has a very strong response to the syllabic
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rate, the result is clear cut, for the hippocampal channels, have smaller responses,
results are less clear and mostly visible in the first harmonic of the word frequency (2.2
Hz). We feel that this well illustrates the advantage of computing the FFT of a sliding
average. Also, note that, as reported in the methods section, we cautiously use an
overlap equal to twice the size of the word duration to ensure that possible artifacts
would not lead to a spurious peak at the word frequency.

Assuming the power effects are driven by the stimuli, is it possible that the
hippocampus tracked 'words' because the task required discrimination of 3 phoneme
groups? Were subjects aware what they would be tested on?

We thank the reviewer for this comment. In this specific case, the answer is no. We
used an implicit version of the SL paradigm in which the patients were not aware of the
purpose of the task nor that they would be tested afterward. We agree that some
studies have used explicit instructions of learning which may have triggered different
cognitive mechanisms (Cunillera et al., 2006, 2009). Again, here, the patients were
only instructed to listen carefully to an auditory stream without explicit instructions of
learning. Importantly, the grouping of phonemes can only be done by statistical
learning as there are no other (e.g., acoustic) cues to group the individual phonemes.
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Marseille, 2nd of November 2021 

Dear Editor, 

 

Thank you for giving us with the opportunity to submit a revised version of our work. Please find 

attached the revised version of our manuscript entitled “Hippocampal and auditory contributions to 

speech segmentation”, which we would like considered for publication in Cortex.  

 

We are grateful to the two reviewers for all their helpful comments and interesting suggestions. We 

feel that we were able to address all the suggestions in an appropriate manner. You will find our 

detailed answers in the “responses to the reviewers” section but we would like to acknowledge some 

specific points that have been raised during the review. 

 

Both reviewers had concern about the experimental procedure, the methods and the analyses we 

used. Therefore, we have provided further details about each of these points and have added new 

results with the corresponding figure in the new version of the manuscript. Based on the reviewers’ 

comments, we have added new analyses focusing on the ERPs of the 2AFC test and discuss these 

new results in the discussion section. However, we have preferred not include the results comparing 

the two halves of the learning phase nor those obtained with the neighboring normalization. We will be 

delighted to add them in a new version of the manuscript if the editor considers these results 

important.   

  

 

Thank you very much in advance for your consideration 

Sincerely yours, 

  

Neus Ramos-Escobar, Manuel Mercier, Agnés Trébuchon, Antoni Rodriguez-Fornells, Clément 
François & Daniele Schön 

Cover Letter



Reviewer #1: Ramos-Escobar and colleagues presented continuous streams of auditory 

syllables to patients with intractable epilepsy followed by a forced choice recognition test on 

three-syllable words hidden in the streams. Using frequency tagging on intracranial EEG 

recordings on the surface of the auditory cortex and from depth electrodes in the medial 

temporal lobe, they measured statistical learning of syllables, two-syllables and three-syllable 

words. The authors report that the auditory cortex responds more to syllables than to words 

(i. e. shows a higher power in the frequency range at which syllables are presented than to 

the frequency at which words are presented), while the hippocampus responds more to words 

than to syllables (shows a higher power in the frequency range at which words are presented 

than to the frequency at which syllables are presented). Based on those findings the authors 

conclude that statistical learning is hierarchically organized in the brain, 

and that the hippocampus plays an important role in statistical learning of speech. 

 

The manuscript is well written and clear and shows interesting and compelling results. 

 

I have a few comments which need attention before I can recommend publication. 

Major comment: 

-    The most puzzling issue is the finding that behavior shows a strong discrepancy to the 

neural responses. The authors mention that the force choice has low sensitivity to learning 

(page 11, line13). This may be true, but alternatively, the hippocampus may not be necessary 

for statistical learning (as was previously mentioned in line 1 of the same page). It would be 

good to discuss that possibility too in the context of learning speech sequences and in the 

context of the damage of the MTL in these patients. It would also be good to suggest 

alternative behavioral methods which would reveal learning. 

 

We thank the reviewer for this comment. We have further developed this point in the 

discussion and also refer to other studies that have shown similar discrepancies (e.g. Henin 

et al., 2021). Most importantly, in relation to this point, we now report the analysis of sEEG 

data acquired during the test phase together with the corresponding figure (Figure 4). These 

results show that the event-related potentials (ERPs) to words and nonwords differ in the 

hippocampus. In other words, neurophysiological data show that 1) the hippocampus 

contributes to speech stream segmentation, as seen during the learning phase, 2) the 

hippocampus is sensitive to the familiarity of the items during the test phase (thus in a different 

dataset). Then, the absence of behavioural learning seems to be due to a high noise at the 

decision making level. We now further discuss this point in relation to possible weaknesses of 

the behavioural task and make reference to newly developed experimental designs (François 

et al., 2016, 2017). Finally, we would like to clarify that we do not make any causal statement 

in the manuscript and that our data only show that the hippocampus is involved in speech 

segmentation, but not that it is necessary for speech segmentation as these claims possibly 

require perturbation or lesion studies. 

 

Results section:  

 

Page 10, lines 235-241: ”Importantly, however, as shown on Figure 4, the ERP data show a 

significant difference between words and nonwords in hippocampal channels in the 250-400 (beta = -

18.8; CI = -33.3 -4.2; p <.01) and 550-700 ms (beta = -19.6, CI = -35.9 -3.2; p < .01) time-windows. 

A significant effect over a single 50ms time window, between 350 and 400 ms, is also found over 

auditory channels (beta = -8.4, CI = -16.5 -0.7; p < .05). Overall, these results confirm that patients 

Detailed Response to Reviewers



did segment the words during the learning phase and that the hippocampus is particularly sensitive to 

the familiarity of the items.” 

Discussion section: 

Page 12-13, lines 289-327: “In the current work, patients, most of whom had temporal lobe 

epilepsy, performed poorly in the explicit recognition test as patients with MTL lesions. By contrast, 

they presented robust neural tuning at target frequencies corresponding to different levels of the speech 

hierarchy (i.e., word, syllable, and pair of syllables) during the learning phase. This result indicates 

that learning did take place and that the hippocampus was functional with respect to statistical learning. 

It also confirms that implicit online measures of learning based on electrophysiological data are more 

sensitive than behavioural measures (François, Tillmann & Schön, 2012). Indeed, the analysis of the 

ERPs collected during the 2AFC task also revealed significant differences between words and 

nonwords over hippocampal channels. This result fits well with previous studies on speech 

segmentation based on SL showing functional activations of the hippocampus during speech 

segmentation tasks (Turk-Browne et al., 2009; Schapiro, Kustner, & Turk-Browne 2012; Schapiro et 

al., 2016; Barascud et al., 2016). A similar familiarity effect has been also reported when focusing on 

the 2AFC test (François & Schön, 2010, 2011; De Diego Balaguer et al., 2007). These studies used 

scalp EEG to show that healthy adults exhibited a larger negativity for unfamiliar than for newly 

learned. However, the percentage of correct explicit word recognition did not differ from chance level. 

Similar discrepancies between behavioural and neural data have been reported in previous 

neuroimaging studies of speech segmentation based on SL in healthy adults (François & Schön, 2010, 

2011; McNealy et al., 2006; Turk-Browne et al., 2009; Sanders et al., 2002) and in patients with MTL 

damage (Henin et al., 2021; Schapiro et al., 2014; Covington, Brown-Schmidt & Duff, 2018). 

Moreover, the role of the hippocampus and MTL region during recognition memory tasks has largely 

been demonstrated in both healthy adults and patients with damage to the MTL (Brown & Aggleton, 

2001; Düzel et al., 2001; Eldridge et al., 2000; Stark & Squire, 2000; Ranganath et al., 2004). Here, 

we used an implicit procedure during the learning phase and evaluated the learning using an explicit 

behavioural task that requires the conscious recognition of word-forms presented auditorily. While our 

approach has the advantage of being of a very short duration, the 2AFC task has been largely criticized 

for its low sensitivity due to different factors (François, Tillmann & Schön, 2012; Batterink et al., 2015; 

Siegelman, Bogaerts & Frost, 2017; Siegelman et al., 2018; Frost, Armstrong & Christiansen, 2019; 

Christiansen, 2019; ). For instance, the AFC task requires participants to make an explicit judgment 

on two presented items without feedback, which might be particularly challenging in the case of the 

relatively weak memory traces created during the implicit learning phase (Schön & François, 2011; 

Rodriguez-Fornells et al., 2009). Moreover, the design of the AFC test trials does not allow 

differentiating between word recognition and nonword rejection as it is the case when using a lexical 

decision task (François et al., 2016; Ramos-Escobar et al., 2021). Recent studies on speech 



segmentation based on SL have elegantly proposed innovative designs to overcome the weaknesses 

associated with the use of explicit tests. Of particular relevance is the use of implicit measures such as 

EEG, sEEG, or Reaction-Times collected during the learning or an online test phase (see for example 

François et al., 2016, 2017; de Diego Balaguer et al., 2007 for the analysis of ERPs to illegal items 

without explicit recognition) that seem more appropriate and sensitive to fully capture implicit learning 

processes (Kim, Seitz, Feenstra, & Shams, 2009; Kóbor et al., 2020; Turk-Browne et al., 2005; 

Batterink & Paller, 2017; Siegelman, Bogaerts & Frost, 2017).” 

 

Minor comments: 

-    The experimental methods are very briefly described and it is difficult to understand 

the flow of events, particularly the duration of the trial or trials and the test phase. It would help 

to move the sentence from the stimuli section "Each word is presented 60 times …" up to the 

experimental procedure section. Without the understanding that there is only one stream it is 

also difficult to understand the segmenting of the EEG signal. 

 

We thank the reviewer for this comment. We agree that the experimental method should be 

developed further to facilitate the replication of the study. Therefore, we have added more 

details in the method section. We now also acknowledge that the procedure that we used here 

was similar to the one used in various studies of our group with healthy adults and children 

(François & Schön, 2010; 2011; François et al., 2013; 2014).  

 

Page 6-7, lines 152-167: “We used a similar experimental design to the one used in our previous 

studies with healthy adults and children (Schön et al., 2008; François & Schön 2010; 2011; François 

et al., 2013; 2014). Specifically, the experimental procedure consisted of two consecutive phases, an 

implicit learning phase followed by an explicit 2-alternative forced-choice (2AFC) task. Before starting 

the implicit learning phase, patients were asked to listen carefully to one single auditory stream without 

explicit instructions of learning (see Stimuli section for a description of the speech streams). 

Importantly, we did our best to keep the entire procedure implicit. During the learning phase, patients 

were exposed to a single continuous speech stream that was composed of 4 pseudo-words presented 60 

times each, thus leading to a single continuous stream of 240 words that lasted 4 min. Immediately after 

this learning phase, patients performed the behavioural 2AFC task that lasted 5 min. During each trial 

of the test, patients were presented with two consecutive auditory words and had to press one of two 

buttons to indicate which of two words (first or second item) most closely resembled what they had just 

heard in the continuous stream (see Figure 2). Importantly, one test item was a word from the learning 

stream while the other was a “nonword” that was never heard before the test. Each familiar word of 

the language (word) was presented with each unfamiliar word (nonwords), making up 16 pairs that 

were repeated twice, thus leading to 32 test trials.” 

” 



 

-    The authors mention that "epochs time-locked at the onset of each word were created 

by segmenting the recordings from 4 words before and 4 after the stimulus yielding epochs of 

8-word length (lasting 7.2s)." I don't understand that sentence. Shouldn't 4+4+1 be 9 word 

length? Or is the word itself included in the "4 after the stimulus"? 

 

We apologize for this misunderstanding. The epoch is defined with respect to the word onset, 

so it consists of 4 words before and four words after the onset. We have rephrased this 

sentence.  

Page 8, lines 190-192: “Then, epochs time-locked to the onset of each word were created by 

segmenting the continuous EEG data from 4 words before and 4 after the stimulus yielding epochs of 

8-word length (lasting 7.2s).” 

 

-    The syntax in the legend of Figure 3: "Black arrows indicate the bar where falls …" 

should be corrected 

 

We thank the reviewer for pointing this out. We have rephrased the legend as following: 

“Black arrows indicate the bin where the hippocampal power response falls.” 

 

-    Delete ; at the end of the citations on page 11 in line 16. 

 

This has been done.  

 

Reviewer #2: The authors provide an interesting examination of statistical learning using 

intracranial recordings in patients with epilepsy. Specifically, using frequency-tagged auditory 

stimuli they reported observing greater entrained responses in the hippocampus to artificial 

words and greater entrained responses in auditory cortex to phonemes. Studies with 

intracranial recordings (sEEG/ECoG) remain uncommon and valuable datasets for human 

neuroscience research. At present, however, the strength of the results is unclear to this 

reader, expanded on below, as it is possible that the pattern of results observed is unrelated 

to statistical learning, instead reflecting the particular set of analyses employed. 

 

Primary Concerns 

 

Statistical comparisons. The study examined significance within subjects by comparing power 

across electrodes. This is less commonly used than comparing power at each individual 

electrode to some baseline -- given the continuous nature of the stimulus in this experiment, I 

would expect the use of a prestimulus resting state period. The major weakness of the current 

approach is that non-baselined power will reflect a mixture of intrinsic power and evoked 

power, particularly because there was no temporal jitter between presentation of the 240 

stimuli. Moreover, this measure of relative power across electrodes is dependent on where 

the other electrodes are located -- if a patient had auditory and hippocampal electrodes that 

each responded strongly to phonemes, then neither would be significant. 

 

We understand the reviewer’s concern. The choice of comparing power across electrodes was 

constrained by the absence of a sufficiently long baseline. Indeed, ideally, one would need a 



baseline as long as the learning phase in order to have an equivalent SNR. This was clearly 

not the case due to clinical constraints requiring to keep the experiment as short as possible. 

However, we would like to argue that our approach is actually more conservative than testing 

against a baseline. Indeed entrainment to auditory stimuli will be apparent in many regions 

(not limited to the auditory cortex, see Pesnot et al., 2021). Thus, thresholding using the 

distribution of the whole dataset is more conservative than using the baseline that will present 

NO entrainment but only intrinsic oscillatory activity. What we now tried to clarify, and that is 

important in this context, is the fact that by computing averages, we remove non time-locked 

activity (intrinsic oscillations) and only focus on evoked activity.  

 

Page 8, lines 196-199: “Importantly, by computing averages, similarly to other frequency 

tagging studies (Nozaradan et al., 2021; Jonas et al., 2016), we remove non time-locked 

activity (intrinsic oscillations), enhance the signal-to-noise ratio of EEG activities time locked 

to the patterns and only focus on evoked activity.” 

 

Below, we computed the same power analysis on a surrogate data built by randomly picking 

non time-locked epochs for one patient. Such a surrogate distribution, possibly simulating a 

baseline thresholding strategy, shows extremely low values at the frequencies of interest 

compared to the real data (top panel). This shows that our approach is possibly more 

conservative than using a baseline approach: the probability of one single value (e.g., in the 

hippocampus) being above threshold by chance is smaller. 

 



 
 

The reviewer has another related remark: whether this measure of relative power across 

electrodes is dependent on where the other electrodes are located; “if a patient had auditory 

and hippocampal electrodes that each responded strongly to phonemes, then neither would 

be significant”. This is indeed correct, BUT we do systematically have many more contacts in 

regions outside the auditory and hippocampal areas than inside these areas. Patients have 

between ~140 and ~200 useful contacts and only a few of these (<10) are located in the 

hippocampus and auditory regions (<10).  

 

Page 9, lines 209-211: “For each patient and for each target frequency (word, syllable & two 

syllables), we computed the distribution of power values across all contacts (between 140 and 

200 per patient, spanning several brain regions beyond the primary auditory cortex and the 

hippocampus).” 

 

Statistical learning. Patients did not demonstrate behavioral effects of statistical learning, and 

so it's possible that they were unaware which syllable groups formed word boundaries. It 

appears the test phase data was not analyzed, which could lend credibility to the authors' 

claim that subjects implicitly learned the statistical representation. More generally, 4 minutes 

of a stimulus may be too short a period for learning to occur in these patients. If the authors 



split their data in half, can they show that frequency-tagged responses to words increased 

whereas other syllable frequency stayed the same? 

 

We thank the reviewer for this comment. We now report the neurophysiological data acquired 

during the behavioural task, namely the testing phase following the learning phase. These 

results show that the ERPs to words and pseudowords differ in the hippocampus. In other 

words, neurophysiological data show that 1) the hippocampus contributes to speech stream 

segmentation, as seen during the learning phase, 2) the hippocampus is sensitive to the 

familiarity of the items during the test phase (thus in a different dataset). Then, the absence of 

behavioural learning seems to be due to a high noise at the decision making level. We now 

discuss this point also in relation to some weaknesses of the behavioural task. 

 

Page 12-13, lines 289-327: “In the current work, patients, most of whom had temporal lobe 

epilepsy, performed poorly in the explicit recognition test as patients with MTL lesions. By contrast, 

they presented robust neural tuning at target frequencies corresponding to different levels of the speech 

hierarchy (i.e., word, syllable, and pair of syllables) during the learning phase. This result indicates 

that learning did take place and that the hippocampus was functional with respect to statistical learning. 

It also confirms that implicit online measures of learning based on electrophysiological data are more 

sensitive than behavioural measures (François, Tillmann & Schön, 2012). Indeed, the analysis of the 

ERPs collected during the 2AFC task also revealed significant differences between words and 

nonwords over hippocampal channels. This result fits well with previous studies on speech 

segmentation based on SL showing functional activations of the hippocampus during speech 

segmentation tasks (Turk-Browne et al., 2009; Schapiro, Kustner, & Turk-Browne 2012; Schapiro et 

al., 2016; Barascud et al., 2016). A similar familiarity effect has been also reported when focusing on 

the 2AFC test (François & Schön, 2010, 2011; De Diego Balaguer et al., 2007). These studies used 

scalp EEG to show that healthy adults exhibited a larger negativity for unfamiliar than for newly 

learned. However, the percentage of correct explicit word recognition did not differ from chance level. 

Similar discrepancies between behavioural and neural data have been reported in previous 

neuroimaging studies of speech segmentation based on SL in healthy adults (François & Schön, 2010, 

2011; McNealy et al., 2006; Turk-Browne et al., 2009; Sanders et al., 2002) and in patients with MTL 

damage (Henin et al., 2021; Schapiro et al., 2014; Covington, Brown-Schmidt & Duff, 2018). 

Moreover, the role of the hippocampus and MTL region during recognition memory tasks has largely 

been demonstrated in both healthy adults and patients with damage to the MTL (Brown & Aggleton, 

2001; Düzel et al., 2001; Eldridge et al., 2000; Stark & Squire, 2000; Ranganath et al., 2004). Here, 

we used an implicit procedure during the learning phase and evaluated the learning using an explicit 

behavioural task that requires the conscious recognition of word-forms presented auditorily. While our 

approach has the advantage of being of a very short duration, the 2AFC task has been largely criticized 

for its low sensitivity due to different factors (François, Tillmann & Schön, 2012; Batterink et al., 2015; 

Siegelman, Bogaerts & Frost, 2017; Siegelman et al., 2018; Frost, Armstrong & Christiansen, 2019; 



Christiansen, 2019; ). For instance, the AFC task requires participants to make an explicit judgment 

on two presented items without feedback, which might be particularly challenging in the case of the 

relatively weak memory traces created during the implicit learning phase (Schön & François, 2011; 

Rodriguez-Fornells et al., 2009). Moreover, the design of the AFC test trials does not allow 

differentiating between word recognition and nonword rejection as it is the case when using a lexical 

decision task (François et al., 2016; Ramos-Escobar et al., 2021). Recent studies on speech 

segmentation based on SL have elegantly proposed innovative designs to overcome the weaknesses 

associated with the use of explicit tests. Of particular relevance is the use of implicit measures such as 

EEG, sEEG, or Reaction-Times collected during the learning or an online test phase (see for example 

François et al., 2016, 2017; de Diego Balaguer et al., 2007 for the analysis of ERPs to illegal items 

without explicit recognition) that seem more appropriate and sensitive to fully capture implicit learning 

processes (Kim, Seitz, Feenstra, & Shams, 2009; Kóbor et al., 2020; Turk-Browne et al., 2005; 

Batterink & Paller, 2017; Siegelman, Bogaerts & Frost, 2017).” 

 

Concerning the possibility of splitting the data, we followed the reviewer suggestion. However, 

as the reviewer can see in the figure below, the effect is not clear cut, although there is a 

tendency for an increase at the word frequency. This is possibily due to different learning 

curves in the different patients that may prevent observing a clear increase. We also tried to 

have a more temporally resolved analysis to explore inter-individual differences, but the 

estimate became too noisy when using small data sets (e.g. 8 periods of 30 seconds). We 

eventually decided not to report this analysis in the manuscript. 

 
 

 

Secondary Comments 

 

4 ms is a very short baseline period which can introduce noise to the analysis. Do the authors 

have justification over a longer baseline (at least 100 ms)? 

 

Sorry this was a typo error, it should be seconds and correspond to half of the window. 

 

The authors mention normalization in the methods. How was power normalized? 

A common approach with frequency-tagging is to replot the data as signal-to-noise ratios, 

wherein power at the target frequency is compared against neighboring frequencies to cancel 

out the effects of the 1/f distribution. 



 

We agree with the reviewer that some studies have used such a normalization procedure. 

However, we think that in the case of sEEG recordings the SNR is much higher than with scalp 

data. The suggested procedure that implicitly increases the local SNR may not be necessary 

in our case and we prefer not to use it and to show the ‘true’ FFT. Please also note that, as 

detailed above, we do not have the 1/f in the PSD because we work on averages. Further, 

recent studies have used similar approaches to study the neural mechanisms supporting the 

extraction of speech units based on SL in adults and children (see Jonas et al., 2016; Ordin 

et al., 2020; Ramos-Escobar et al., 2021).  

 

Why was evoked power calculated as opposed to total power averaged across the entire time-

range? Evoked power, when no jitter across trials, can lead to peaks at intrinsic oscillations. 

Moreover, total power would enable a plot of the 1/f distributions for electrodes and subjects 

which can be helpful in evaluating the quality of the recordings. 

 

As we clarified above, the strategy of averaging is commonly used (see for instance 

Nozaradan et al., 2021; Jonas et al., 2016) in frequency tagging analysis to enhance the 

signal-to-noise ratio of EEG activities time locked to the patterns. Below, we computed the full 

range power spectral density for each patient (colored lines) for both hippocampal (top) and 

auditory (bottom) channels. On the left, the reviewer can appreciate that it is not easy to see 

much on the regular PSD of hippocampal channels. The scenario becomes a little bit better 

when normalizing by neighbours (dividing each value by two neighbour values), as can be 

seen on the right part of the figure. However, while for the auditory cortex, that has a very 

strong response to the syllabic rate, the result is clear cut, for the hippocampal channels, have 

smaller responses, results are less clear and mostly visible in the first harmonic of the word 

frequency (2.2 Hz). We feel that this well illustrates the advantage of computing the FFT of a 

sliding average. Also, note that, as reported in the methods section, we cautiously use an 

overlap equal to twice the size of the word duration to ensure that possible artifacts would not 

lead to a spurious peak at the word frequency. 

 
 



Assuming the power effects are driven by the stimuli, is it possible that the hippocampus 

tracked 'words' because the task required discrimination of 3 phoneme groups? Were subjects 

aware what they would be tested on? 

 

We thank the reviewer for this comment. In this specific case, the answer is no. We used an 

implicit version of the SL paradigm in which the patients were not aware of the purpose of the 

task nor that they would be tested afterward. We agree that some studies have used explicit 

instructions of learning which may have triggered different cognitive mechanisms (Cunillera et 

al., 2006, 2009). Again, here, the patients were only instructed to listen carefully to an auditory 

stream without explicit instructions of learning. Importantly, the grouping of phonemes can 

only be done by statistical learning as there are no other (e.g., acoustic) cues to group the 

individual phonemes. 
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Abstract 17 

Statistical learning has been proposed as a mechanism to structure and segment the continuous flow of 18 

information in several sensory modalities. Previous studies proposed that the medial temporal lobe, and 19 

in particular the hippocampus, may be crucial to parse the stream in the visual modality. However, the 20 

involvement of the hippocampus in auditory statistical learning, and specifically in speech segmentation 21 

is less clear. To explore the role of the hippocampus in speech segmentation based on statistical 22 

learning, we exposed seven pharmaco-resistant temporal lobe epilepsy patients to a continuous stream 23 

of trisyllabic pseudowords and recorded intracranial stereotaxic electro-encephalography (sEEG). We 24 

used frequency-tagging analysis to quantify neuronal synchronization of the hippocampus and auditory 25 

regions to the temporal structure of words and syllables of the learning stream. We also analyzed the 26 

event-related potentials (ERPs) of the test to evaluate the role of both regions in the recognition of newly 27 

segmented words. Results show that while auditory regions highly respond to syllable frequency, the 28 

hippocampus responds mostly to word frequency. Moreover, ERPs collected in the hippocampus show 29 

clear sensitivity to the familiarity of the items. These findings provide direct evidence of the 30 

involvement of the hippocampus in the speech segmentation process and suggest a hierarchical 31 

organization of auditory information during speech processing. 32 

Keywords: Hippocampus, statistical learning, frequency tagging, SEEG, speech segmentation 33 
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 45 

 46 

Introduction 47 

Humans are daily exposed to a massive amount of information. Finding a structure in the 48 

sensory flow is necessary to make sense of the world. A structure can emerge thanks to regularities in 49 

the input tracked by computing low-order statistics (Reber, 1967; Frost et al., 2015). Statistical learning 50 

(SL) is a domain-general learning mechanism through which learners track statistical regularities of 51 

motor (Hunt & Aslin, 2001), visual (Fisher & Aslin, 2002), and auditory sequences (Saffran et al., 1996, 52 

1999; see Frost et al., 2015 for a review). 53 

Speech segmentation is one of the first problems that language learners must deal with when 54 

learning a new language (Graf-Estes et al., 2007; François et al., 2017). SL has been proposed as a 55 

possible mechanism that allows segmenting words from fluent speech (Cutler & Butterfield, 1992; 56 

Saffran et al., 1996). This process can occur incidentally and without effort via simple exposure, as in 57 

the case of infants (Saffran et al., 1997; Turk-Browne et al., 2005; Saffran et al., 1999). Although several 58 

behavioral (Cutler & Butterfield, 1992; Saffran et al., 1996; Schön et al., 2008) and electrophysiological 59 

studies (Sanders et al., 2002; Cunillera et al., 2006; de Diego-Balaguer et al., 2007; Abla et al., 2008; 60 

François et al., 2014; 2017) have explored the bases of SL, the underlying precise brain network 61 

dynamics are not clear yet. 62 

Capitalizing on a high spatial resolution, functional magnetic resonance imaging (fMRI) studies 63 

have allowed to decipher the brain regions supporting SL in the auditory and visual modalities. Results 64 

showed activations of modality-specific brain regions during exposure to learning streams (Turk-65 

Browne et al., 2009; Bischoff-Grethe et al., 2000; McNealy et al., 2006; Cunillera et al., 2009; Karuza 66 

et al., 2013). Specifically, fMRI speech segmentation studies consistently observed functional 67 

activations of typical language areas such as the middle and superior temporal regions (MTG & STG) 68 

and the inferior frontal gyrus (IFG; McNealy et al., 2006; Cunillera et al., 2009; Karuza et al., 2013). 69 

However, activations of the hippocampus were also observed in a few SL studies (Turk-Browne et al., 70 

2009; Schapiro, Kustner, & Turk-Browne 2012; Schapiro et al., 2016; Barascud et al., 2016). The 71 

interplay between cortical and subcortical structures during SL fits well with cognitive models 72 

proposing that complementary neural systems may account for human learning abilities (Davis & 73 

Gaskell, 2009; McClelland et al., 1995). Specifically, these models suggest that learning and memory 74 

processes may occur in two different stages. The medial temporal structures would support the initial 75 

acquisition and formation of memory traces, while neocortical regions may participate in their long-76 

term storage. Interestingly, the hippocampus has been proposed to play a crucial role in segmenting 77 
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continuous sensory inputs into discrete events (Radvansky & Zacks, 2017). Recent studies on event 78 

memory formation propose that the interplay between sensory regions and the hippocampus may 79 

support the creation of boundaries between events. Specifically, while sensory areas seem to be 80 

responsible for fine-grained boundaries, the hippocampus instead supports cortical information binding 81 

into memory traces (Baldassano et al., 2017; Ben-Yakov & Dudai, 2011; Zacks et al., 2001; Speer et 82 

al., 2007). Further, recent studies on vocabulary acquisition based on associative or contextual learning 83 

consistently show functional activations of the hippocampus during the early stages of learning 84 

(Bartolotti et al., 2017; Breitenstein et al., 2005; Covington & Duff, 2016; Ripollés et al., 2016; Züst et 85 

al., 2019). However, direct human electrophysiological evidence for the role of the hippocampus in 86 

extracting pattern regularities in speech is still missing.  87 

Recently, electrophysiological studies have capitalized on the brain property to oscillate at the 88 

frequency of a continuous auditory stimulus to explore the neural mechanisms supporting the 89 

hierarchical processing of speech and music (Nozaradan et al., 2014; Giraud & Poeppel, 2012; Poeppel 90 

& Teng, 2020). Specifically, frequency tagging analysis have been successfully applied to surface EEG 91 

or MEG recordings to quantify the amount of neural synchronization to syllable, pairs of syllables and 92 

words during speech segmentation tasks (Buiatti et al., 2009; Ding et al., 2016; Batterink & Paller, 93 

2017). In a recent study, Henin and colleagues (2020) collected intracortical brain responses from 94 

human epileptic patients during an auditory and a visual SL task. They applied frequency-tagging to 95 

electrocorticography (EcoG) data to show that neural response in the STG synchronized to both 96 

syllables and word frequency. They also found synchronized neural response to word frequency in the 97 

IFG and Anterior Temporal Lobe. However, no evidence of neural synchronization was observed in the 98 

hippocampus possibly due to a limited access provided by EcoG probes. Nonetheless, using a more 99 

indirect method based on multivariate pattern similarity analysis, they were able to show the 100 

involvement of the hippocampus in word identity during learning.  101 

Here, we gathered intracranial recordings from 7 patients with pharmaco-resistant temporal 102 

lobe epilepsy implanted with depth electrodes to directly assess the contribution of the auditory cortex 103 

and the hippocampus during a speech segmentation task based on SL. Participants passively listened to 104 

4 minutes of an artificial statistically structured speech stream and were tested on their ability to 105 

recognize the newly segmented words. We used frequency-tagging to quantify the level of neural 106 

synchronization in auditory and hippocampal regions to the constitutive elements of the inputs, namely 107 

syllables, pairs of syllables and tri-syllabic words during the learning phase. We expected auditory 108 

regions to show a peak in the power spectrum corresponding to the syllable rate reflecting phonological 109 

processing, while the hippocampus was expected to exhibit high neural synchronization to pairs of 110 

syllables and word frequencies, reflecting its role in speech segmentation. Moreover, previous reports 111 

studying memory have extensively shown the involvement of the hippocampus (Ripollés et al., 2016; 112 
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Brown & Aggleton, 2001; Düzel et al., 2001; Eldridge et al., 2000; Stark & Squire, 2000; Ranganath et 113 

al., 2004). Therefore, we also analyzed the event-related potentials (ERPs) collected during the 114 

behavioural test to evaluate the contribution of both regions during the recall of newly segmented words.  115 

Methods 116 

Participants 117 

Seven patients with pharmaco-resistant temporal lobe epilepsy (4 females, mean age = 29; range 18-118 

45) participated in the study (see Table 1). Patients were implanted with depth electrodes for clinical 119 

reasons to determine the epileptic zone before they underwent neurosurgical treatment at the La Timone 120 

Hospital in Marseille (France). The location of the implanted electrodes was solely determined by 121 

clinical criteria. Patients provided informed consent prior to the experimental session, and the study was 122 

approved by the Institutional Review Board of the French Institute of Health (IRB00003888). No part 123 

of the study procedures was pre-registered prior to the research being conducted. 124 

Table 1: Patients clinical description 125 

Patients Gender Age 

(years) 

Hemispheric 

dominance 

Epileptogenic 

zone 

Depth 

electrodes 

Hippocampal 

electrodes 

P1  F 29 L L temporal 4R + 10L Both 

P2  F 45 L R temporal 10R + 2L Both 

P3  F 18 L R temporal 5R + 4L Both 

P4  F 23 Atypical L temporal 1R + 12L L 

P5 M 19 L L temporal 2R + 11L R 

P6 M  42  L L Frontal  1R + 13L L 

P7 M  33  L R Frontal & 

Parietal 

 14R  R 

M male, F female, L left, R right 126 

Data acquisition & electrode localization 127 
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The sEEG signal was recorded using depth electrodes of 0.8 mm diameter containing 10 to 15 electrodes 128 

contacts (Alcis, Besançon, France). The electrode contacts were 2 mm long and were spaced from each 129 

other by 1.5 mm. Data was recorded using a BrainAmp amplifier system (Brain Products GmbH, 130 

Munich, Germany), sampled at 1000 Hz and high-passed filtered at 0.016 Hz. During the acquisition, 131 

recordings were referenced to a single scalp-electrode located at Cz. Contact data was offline converted 132 

to virtual channels using a bipolar montage approach (closest-neighbor contact reference) to increase 133 

spatial resolution and reduce passive volume diffusion from neighboring areas (Mercier et al., 2017).  134 

To precisely localize the channels, a procedure similar to the one used in the iELVis toolbox was applied 135 

(Groppe et al., 2017). First, we manually identified the location of each channel centroid on the post-136 

implant CT scan using the Gardel software (Medina et al., 2018). Second, we performed volumetric 137 

segmentation and cortical reconstruction on the pre-implant MRI with the Freesurfer image analysis 138 

suite (documented and freely available for download online http://surfer.nmr.mgh.harvard.edu/). Third, 139 

we mapped channel locations to the pre-implant MRI brain (processed with FreeSurfer) and to the MNI 140 

template, using SPM12 methods (Penny et al., 2011), through the FieldTrip toolbox (Oostenveld et al., 141 

2011). The co-registration to the patient brain was done via a rigid, affine transformation to respect 142 

individual anatomy. The normalization to the MNI template was done through a non-linear 143 

transformation to map channels to a standardized space and allow brain regions labeling using the 144 

Destrieux atlas (Destrieux et al., 2010). The definition of hippocampal and primary auditory channels 145 

was determined using a combination of automatic atlas labeling and visual inspection of the anatomical 146 

data in 2D and 3D representations (see Figure 1). 147 

 148 

Figure 1. sEEG channel location. Colored dots indicate the channel location for each patient in auditory (dark-colored) and 149 
hippocampal (light-colored) regions. Light gray represents the cortical sheet of the FreeSurfer brain template. The shaded area 150 
depicts the hippocampus.  151 

Experimental procedure 152 

We used a similar experimental design to the one used in our previous studies with healthy adults and 153 

children (Schön et al., 2008; François & Schön 2010; 2011; François et al., 2013; 2014). Specifically, 154 
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the experimental procedure consisted of two consecutive phases, an implicit learning phase followed 155 

by an explicit 2-alternative forced-choice (2AFC) task. Before starting the implicit learning phase, 156 

patients were asked to listen carefully to one single auditory stream without explicit instructions of 157 

learning (see Stimuli section for a description of the speech streams). Importantly, we did our best to 158 

keep the entire procedure implicit. During the learning phase, patients were exposed to a single 159 

continuous speech stream that was composed of 4 pseudo-words presented 60 times each, thus leading 160 

to a single continuous stream of 240 words that lasted 4 min. Immediately after this learning phase, 161 

patients performed the behavioural 2AFC task that lasted 5 min. During each trial of the test, patients 162 

were presented with two consecutive auditory words and had to press one of two buttons to indicate 163 

which of two words (first or second item) most closely resembled what they had just heard in the 164 

continuous stream (see Figure 2). Importantly, one test item was a word from the learning stream while 165 

the other was a “nonword” that was never heard before the test. Each familiar word of the language 166 

(word) was presented with each unfamiliar word (nonwords), making up 16 pairs that were repeated 167 

twice, thus leading to 32 test trials.  168 

 169 

Figure 2. Illustration of the experimental procedure. After being exposed to a continuous stream of statistically structured 170 
syllables/words without instruction of learning (A), participants performed a 2AFC task to assess the level of learning (B). The 171 
auditory cortex should preferentially respond to the syllable frequency reflecting the tracking of low-order speech structure. 172 
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The hippocampus should preferentially respond to the word frequency reflecting the creation of event boundaries during the 173 
learning. 174 

 175 

Stimuli  176 

The language consisted of four consonants (‘p’, ‘t’, ‘k’, ‘d’) and three vowels (‘o’, ‘i’, ‘y’), which were 177 

combined into a set of eleven syllables. The exact syllable length was set to 300 ms. These syllables 178 

were then combined to give rise to 4 tri-syllabic words (POKIDY, DITOKI, PIDYTI, and KOPIDO). 179 

The stream was built by random concatenation of the four pseudowords and synthesized using Mbrola 180 

(http://tcts.fpms.ac.be/synthesis/mbrola.html). More precisely, the speech stream was built by 181 

concatenating seven minimal sequences of non-coarticulated syllables respecting the constraint of not 182 

repeating the same word twice in a row. Importantly, no acoustic cues have been inserted at word 183 

boundaries. In the test, the items consisted of the four words used in the learning phase and four 184 

nonwords created by pseudo-randomly mixing the syllables of the words from the language TOPIDY, 185 

DYPOKI, KOKITI, and PIDITO. 186 

SEEG Data analysis: Frequency tagging (learning phase) 187 

For each patient, sEEG data, in a bipolar montage, were visually inspected using AnyWave software 188 

(Colombet et al., 2015), and channels with artifacts or epileptic activity were excluded from the analysis. 189 

Continuous sEEG recordings acquired during the learning task were filtered using a 0.5 Hz high pass 190 

filter to remove slow drifts in the recorded signal. Then, epochs time-locked to the onset of each word 191 

were created by segmenting the continuous EEG data from 4 words before and 4 after the stimulus 192 

yielding epochs of 8-word length (lasting 7.2 s). Epochs were partially overlapping, yet we took care to 193 

use an overlap equal to twice the size of the word to ensure that possible artifacts would not lead to a 194 

spurious peak at the word frequency. A baseline correction was applied (-3.6 to 0 s). Epochs with high 195 

amplitude values were excluded (threshold: mean +2 SD). Epochs were averaged and transformed to 196 

the frequency domain using a discrete Fourier transformation (Matlab; Natick, MA). Importantly, by 197 

computing averages, similarly to other frequency tagging studies (Nozaradan et al., 2021; Jonas et al., 198 

2016), we remove non time-locked activity (intrinsic oscillations), enhance the signal-to-noise ratio of 199 

EEG activities time locked to the patterns and only focus on evoked activity. We extracted the power 200 

values for each target frequency (word frequency: 1.11 Hz; two-syllables frequency: 1.67 Hz; syllable 201 

frequency: 3.33 Hz). Power values at the target frequencies were obtained for each patient and channel. 202 

SEEG Data analysis: ERP analysis (Test phase) 203 

We used a similar strategy with the sEEG data collected during the 2AFC test. First, we changed to a 204 

bipolar montage to increase spatial resolution, high-pass filtered at 0.5 Hz and low-pass filtered at 20 205 
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Hz. Then, we created epochs time-locked to the item onset using a -100 ms 1200 ms time-window. A 206 

baseline correction was applied (-100 to 0 ms). We only report analyses of channels in the hippocampus 207 

and the primary auditory cortex. 208 

Statistical analyses 209 

For each patient and for each target frequency (word, syllable & two syllables), we computed the 210 

distribution of power values across all contacts (between 140 and 200 contacts per patient, spanning 211 

several brain regions beyond the primary auditory cortex and the hippocampus). Since the distribution 212 

was not normal, we used a non-parametric threshold (median + 2.5 interquartile range, IQR) to 213 

determine whether hippocampal and auditory contacts showed a significant response at the target 214 

frequencies, as compared to overall channels (see Figure 3).  215 

 Whenever more than one channel was present in the same region (primary auditory or hippocampus), 216 

the average power values of the two channels was used. For patients with bilateral implantation and 217 

artifact free hippocampi, the average power values of channels located in both hemispheres was used. 218 

Finally, to assess the power differences between hippocampal and auditory channels for each patient at 219 

word, two-syllable, and syllable frequencies, we normalized the data across channels for each frequency 220 

and patient and applied the Wilcoxon test.  221 

 222 

Figure 3. Example of the methodology used to define significant hippocampal implication. Histograms of power response of 223 
all contacts (N ~ 150) to word, two-syllable, and syllable target frequencies for Patient 6. Power values above the threshold 224 
(median plus 2.5 IQR) are represented by red bars. Black arrows indicate the frequency bins where the hippocampal power 225 
response falls. In this example, the hippocampal response is significant at the word and two-syllable frequencies (arrow on red 226 
bars) but not at the syllable frequency (arrow on blue bars). 227 

To analyze the ERP data of the test phase, we first compared the amplitude of the ERPs to words and 228 

nonwords using mean amplitude values in successive 50 ms time-windows between 250 and 700 ms 229 

post-stimulus onset. Then, we computed a mixed-model including each trial (one value per trial per 230 

condition per patient: val~conditions+trials+(1|subjects)). 231 

Results 232 
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Test phase: The level of performance in the 2AFC test reveals that the percentage of correct explicit 233 

word recognition did not differ from chance level (range: 25-56%, p > .05, wilcoxon signed-rank) thus 234 

confirming previous results of impaired explicit word recall in patients with epilepsy (Schapiro et al., 235 

2014; Henin et al., 2021). Importantly, however, as shown on Figure 4, the ERP data show a significant 236 

difference between words and nonwords in hippocampal channels in the 250-400 (beta = -18.8; CI = -237 

33.3 -4.2; p <.01) and 550-700 ms (beta = -19.6, CI = -35.9 -3.2; p < .01) time-windows. A significant 238 

effect over a single 50 ms time window, between 350 and 400 ms, is also found over auditory channels 239 

(beta = -8.4, CI = -16.5 -0.7; p < .05). Overall, these results confirm that patients did segment the words 240 

during the learning phase and that the hippocampus is particularly sensitive to the familiarity of the 241 

items. 242 

 243 

Figure 4. ERPs to words and nonwords in hippocampal contacts (bipolar montage) averaged across 6 patients obtained during 244 
the 2AFC task. The thick and dashed lines show the mean of ERPs to words and nonwords respectively. The shaded areas 245 
correspond to the standard error of the mean in each condition. The grey areas depict the two time-windows showing significant 246 
differences between the two conditions.  247 

 248 

Learning phase: Clear power spectrum peaks at word and syllable frequencies are visible over auditory 249 

and hippocampal contacts (see Figure 5A).  250 

For the syllable frequency, all patients except one exhibited a clear peak in contacts located within the 251 

primary auditory cortex (raw data median = 12.24; IQR = 315.69). Five patients also showed significant 252 

responses at this target frequency in hippocampal contacts although much smaller than auditory 253 

responses (raw data median = 1.62; IQR = 2.76). 254 

For the word-frequency, all patients except one (Patient 4) showed a significant response in 255 

hippocampal contacts (raw data median = 3.86; IQR = 15.95). Three patients also showed a significant 256 

response to word-frequency in auditory contacts although smaller than hippocampal responses (raw 257 

data median = 1.62; IQR = 8.73). 258 
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For the two-syllable frequency, all patients showed a significant response at hippocampal contacts (raw 259 

data median = 4.79; IQR = 5.87). By contrast, none of the patients showed a significant response to the 260 

two-syllable frequency in auditory contacts (raw data median = 0.59; IQR = 0.71). 261 

The amplitude of the peaks in the power spectrum of the hippocampus differed from that in auditory 262 

regions across all target frequencies (word frequency: Cohen d = 0.5; p = .01; two-syllable frequency: 263 

d = 0.46; p = .01; syllable frequency: d = 0.7; p = .03). 264 

 265 

Figure 5. A) Example of a patient (Patient 7) power response of hippocampal and auditory electrodes to word frequency (red), 266 
two-syllable frequency (green) and syllable frequency (blue). B) Average of all patients' neural responses to word, two-267 
syllables and syllable frequencies in hippocampus and auditory regions (z-score normalized data). Black lines indicate the 268 
median of all patients and box plots indicate the interquartile range. 269 

 270 

Discussion 271 

In the present study, we directly assessed the contribution of auditory regions and the 272 

hippocampus during speech segmentation based on SL. Pharmaco-resistant epileptic patients implanted 273 

with sEEG depth electrodes listened to a continuous stream of statistically organized syllables. The 274 

frequency-tagging analysis reveals that the hippocampus preferentially responds to word-frequency. By 275 

contrast, auditory regions preferentially tune their response to syllable frequency (see Figure 5B). 276 

Although previous studies have suggested the involvement of MTL regions and especially the 277 

hippocampus in SL based on indirect measures, we provide the first direct evidence for its role during 278 

speech segmentation based on SL.  279 

Previous neuropsychological studies showed that patients with lesions of the MTL are impaired 280 

in extracting auditory and visual statistical patterns (Schapiro et al., 2014; Covington, Brown-Schmidt 281 
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& Duff, 2018). In a single case study, a patient with complete bilateral loss of hippocampus and 282 

extensive damage to surrounding MTL regions could not recall familiar sequences in a visual SL task 283 

(Schapiro et al., 2014). However, Covington and colleagues (2018) showed that patients with 284 

hippocampal damage could perform above chance level in SL tasks, although they were overall 285 

impaired in comparison to healthy controls. Therefore, although the hippocampus might participate and 286 

to a certain extent facilitate statistical learning by strengthening associations between input elements, 287 

its participation might not be strictly necessary and other non-hippocampal cortical regions could 288 

support SL. 289 

In the current work, patients, most of whom had temporal lobe epilepsy, performed poorly in 290 

the explicit recognition test as patients with MTL lesions. By contrast, they presented robust neural 291 

tuning at target frequencies corresponding to different levels of the speech hierarchy (i.e., word, 292 

syllable, and pair of syllables) during the learning phase. This result indicates that learning did take 293 

place and that the hippocampus was functional with respect to statistical learning. It also confirms that 294 

implicit online measures of learning based on electrophysiological data are more sensitive than 295 

behavioural measures (François, Tillmann & Schön, 2012). Indeed, the analysis of the ERPs collected 296 

during the 2AFC task also revealed significant differences between words and nonwords over 297 

hippocampal channels. This result fits well with previous studies on speech segmentation based on SL 298 

showing functional activations of the hippocampus during speech segmentation tasks (Turk-Browne et 299 

al., 2009; Schapiro, Kustner, & Turk-Browne 2012; Schapiro et al., 2016; Barascud et al., 2016). A 300 

similar familiarity effect has been also reported when focusing on the 2AFC test (François & Schön, 301 

2010, 2011; De Diego Balaguer et al., 2007). These studies used scalp EEG to show that healthy adults 302 

exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct 303 

explicit word recognition did not differ from chance level. Similar discrepancies between behavioural 304 

and neural data have been reported in previous neuroimaging studies of speech segmentation based on 305 

SL in healthy adults (François & Schön, 2010, 2011; McNealy et al., 2006; Turk-Browne et al., 2009; 306 

Sanders et al., 2002) and in patients with MTL damage (Henin et al., 2021; Schapiro et al., 2014; 307 

Covington, Brown-Schmidt & Duff, 2018). Moreover, the role of the hippocampus and MTL region 308 

during recognition memory tasks has largely been demonstrated in both healthy adults and patients with 309 

damage to the MTL (Brown & Aggleton, 2001; Düzel et al., 2001; Eldridge et al., 2000; Stark & Squire, 310 

2000; Ranganath et al., 2004). Here, we used an implicit procedure during the learning phase and 311 

evaluated the learning using an explicit behavioural task that requires the conscious recognition of 312 

word-forms presented auditorily. While our approach has the advantage of being of a very short 313 

duration, the 2AFC task has been largely criticized for its low sensitivity due to different factors 314 

(François, Tillmann & Schön, 2012; Batterink et al., 2015; Siegelman, Bogaerts & Frost, 2017; 315 

Siegelman et al., 2018; Frost, Armstrong & Christiansen, 2019; Christiansen, 2019; ). For instance, the 316 

AFC task requires participants to make an explicit judgment on two presented items without feedback, 317 
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which might be particularly challenging in the case of the relatively weak memory traces created during 318 

the implicit learning phase (Schön & François, 2011; Rodriguez-Fornells et al., 2009). Moreover, the 319 

design of the AFC test trials does not allow differentiating between word recognition and nonword 320 

rejection as it is the case when using a lexical decision task (François et al., 2016; Ramos-Escobar et 321 

al., 2021). Recent studies on speech segmentation based on SL have elegantly proposed innovative 322 

designs to overcome the weaknesses associated with the use of explicit tests. Of particular relevance is 323 

the use of implicit measures such as EEG, sEEG, or Reaction-Times collected during the learning or an 324 

online test phase (see for example François et al., 2016, 2017; de Diego Balaguer et al., 2007 for the 325 

analysis of ERPs to illegal items without explicit recognition) that seem more appropriate and sensitive 326 

to fully capture implicit learning processes (Kim, Seitz, Feenstra, & Shams, 2009; Kóbor et al., 2020; 327 

Turk-Browne et al., 2005; Batterink & Paller, 2017; Siegelman, Bogaerts & Frost, 2017).  328 

Previous studies with surface EEG or MEG have successfully used frequency tagging to track 329 

the patterns of cortical synchronization supporting the hierarchical processing of speech (Buiatti et al., 330 

2009; Ding et al., 2016; Batterink & Paller., 2017; see Poeppel & Teng, 2020 for a review). Importantly 331 

however, while functional activations of the hippocampus have been consistently reported during visual 332 

SL tasks (Turk-Browne et al., 2009; Schapiro, Kustner & Turk-Browne 2012), this was not the case 333 

using sequences of syllables (McNealy et al., 2006; Cunillera et al., 2009; Karuza et al., 2013). Further, 334 

in a recent study, Henin and colleagues gathered brain responses to statistically structured auditory and 335 

visual sequences in 26 patients with MTL epilepsy (Henin et al., 2021). Using similar frequency tagging 336 

analysis applied to EcoG data, they found clear neural response at both two-syllable and word 337 

frequencies over multiple cortical regions. However, evidence for a contribution of the hippocampus 338 

was only observed with a more indirect analysis based on representational similarities (dissimilarity 339 

measures). Here, instead of using grid electrodes located at the surface of the cortex (referenced to 340 

subdural/skull contacts), we used depth sEEG electrodes and in particular bipolar montages that allow 341 

a high spatial resolution and directly quantifying neural response at the population level in the auditory 342 

cortex and in the hippocampus. Results are clear cut in showing that auditory regions significantly 343 

respond to syllable frequency but not to word frequency. Crucially, we observe an opposite pattern in 344 

the hippocampus with an ample response to longer units (i.e., pairs of syllables and words, see Figure 345 

5B).  346 

These results strongly corroborate a hierarchical organization of auditory information during 347 

speech segmentation. Moreover, the hippocampal response to both pairs of syllables and word 348 

frequencies sheds light on the neural validity of speech segmentation models. According to the 349 

PARSER model, continuous speech is segmented by extracting small chunks of increasing size based 350 

on the computation of temporal proximity and associative learning mechanisms. Through repetition, 351 

these chunks are consolidated and stored, allowing explicit behavioural recognition of the newly learned 352 
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items (Perruchet & Vinter, 1998). More recent work on event memory formation for spatial or temporal 353 

sequences proposes that sensory regions and the hippocampus hierarchically contribute to creating 354 

boundaries between events contained in long passages (Baldassano et al., 2017; Radvansky & Zacks, 355 

2017; Ben-Yakov & Dudai, 2011; see also Zacks & Swallow, 2007). For instance, the encoding and 356 

recall of narratives may involve the encoding of small temporal chunks in primary sensory regions. 357 

Long events encoding would occur in higher-level brain regions, including cortical areas and the 358 

hippocampus (Baldassano et al., 2017). Importantly, Schapiro and colleagues (2017) recently proposed 359 

a neuroanatomically plausible model of hippocampal functioning during continuous sequence learning 360 

such as SL. Specifically, they exposed an artificial neural network mimicking the functional and 361 

anatomical properties of the hippocampus to continuous sequences of items with different temporal 362 

regularities. Results suggested the existence of complementary learning systems in the hippocampus 363 

where specific neural pathways differently contribute to learning depending on the type of input. Our 364 

findings are in line with the idea that the hippocampus is sensitive to pattern regularities found in the 365 

environment. It seems reasonable to think that the hippocampus is also sensitive to the co-occurrence 366 

of syllable pairs as for visual sequences (Schapiro et al., 2017; Turk-Browne et al., 2009). Taken 367 

together, our data suggest a hierarchical organization of auditory information during speech processing, 368 

where both cortical and hippocampal regions contribute to language learning. While the clear response 369 

at syllable frequency in primary auditory areas may reflect the tracking of the phonological structure, 370 

the hippocampus would be involved in the encoding and storage of larger units as previously proposed 371 

in different neurocomputational models of chunking (Baldassano et al., 2017; Schapiro et al., 2017). 372 

Taken together, our data suggest that the hippocampus plays an important role in speech segmentation 373 

and language learning using a more direct measure of neural activity than previously described 374 

(Schapiro et al., 2014; Covington, Brown-Schmidt & Duff, 2018; Duff & Brown-Schmidt, 2012; 375 

Kepinska et al., 2018). 376 

Nonetheless, our study presents methodological limitations that prevent us from drawing 377 

definite conclusions on the role of the hippocampus in speech segmentation in the general population. 378 

First, the complex clinical history of these temporal lobe epileptic patients may affect verbal memory 379 

storage and executive functions thus, explaining impaired performance at test (Zamarian et al., 2011; 380 

Saling, 2009; Squire et al., 2004). Second, while there is evidence for left lateralized activations in the 381 

Inferior and Superior Temporal Gyri during speech segmentation based on SL (Cunillera et al., 2009; 382 

McNealy et al., 2006; Karuza et al., 2013), it is still unclear as to whether asymmetric processing also 383 

takes place in the hippocampus. In our small population, only one of the patients (P4), implanted over 384 

the left hemisphere, did not significantly respond to word frequency in the hippocampus. Clinical 385 

exploration revealed that this patient had an atypical language dominance to the right hemisphere, 386 

probably induced by a disease-related atypical functioning of the hippocampus. Thus, further work on 387 

a larger sample and possibly bilateral implantations is needed to explore the possibility of a hippocampal 388 
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asymmetry. Finally, Schapiro and colleagues (2017) showed that the anterior part of the hippocampus 389 

where the monosynaptic pathway connects the entorhinal cortex to the “cornu ammonis 1” is more 390 

involved in SL than the posterior part. Again, determining possible functional differences related to 391 

topographical gradients in hippocampal structures will require further investigations with a larger 392 

number of patients. 393 

Conclusion 394 

Here, we directly assessed the role of the hippocampus in speech segmentation based on SL. 395 

We showed that the hippocampus neural response synchronizes with the word-level time scale but not 396 

with the syllable-level time scale. Conversely, auditory regions consistently responded to syllable 397 

frequency but not to word frequency. Moreover, we found clear neural evidence for the contribution of 398 

the hippocampus in the recall of newly segmented words. These findings provide preliminary but direct 399 

evidence in humans for the involvement of the hippocampus in the brain network that orchestrates 400 

auditory speech segmentation based on SL.  401 
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