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The fixed bed bioreactor is modelised by a non linear hyperbolic system of partial differential equations. This mode! is considered in an aim of control by the flowrate at the input of the reactor. We propose to design this control law by pointing out a fi at output for the studied process, the property of flatness insuring then the tracking of a given trajectory.

INTRODUCTION

Diffe re ntial flatne ss of syste ms [START_REF] Fliess | On differentially fiat nonlinear systems, ln: Nonlinear Contrai Systems Design[END_REF] is a ve ry powe rful prope rty that allows to solve easily the two following main problems: the motion planning for an open loop structure and the design of a linearizing dynamical control fee dback in the aim of traje ctory tracking. But it doesn't exist actually neither flatness criterion nor any general method to find a fiat output of a system. Nevertheless the flatness property has already been shown and used for control design of several nonlinear dynamical systems as: aircrafts [l], electrical motors [START_REF] Martin | Flatness and sampling control of induction motors[END_REF], magnetic bearings [START_REF] Lévine | A non linear approach to the contrai of magnetic bearings[END_REF], mechanical systems [START_REF] Sordalen | Path planning and stabilization of a nonholonomic manipulator[END_REF][START_REF] Murray | An introduction to differential flatness of mechanical systems: A catalog of prototype systems[END_REF]. Flatness of chemical reactors has also been proved and used for control [START_REF] Rothfu8 | Flatness based control of a non linear chemical reactor mode![END_REF], but until now in a lumped parameter system framework (namely for systems described by algebro-differential equations).

The aim of this paper is to point out flatness property for a non linear distributed parameter system that modelizes a class of bio technological processes. For this purpose, the paper is organized as follows: after the description of an hyperbolic mode! for the fixed bed bioreactor, the notion of fiatness in the sense of Fliess et al. [START_REF] Fliess | On differentially fiat nonlinear systems, ln: Nonlinear Contrai Systems Design[END_REF][START_REF] Fliess | Linéarisation par bouclage dynamique et transformations de Lie-Backlund[END_REF][START_REF] Fliess | Flatness and defect of nonlinear systems: Introductory theory and examples, !nt[END_REF], is briefiy recalled. The main features of this study consists, in a third part, to point out a fiat output for this hyperbolic mode!. This leads then to the flow control law insuring the tracking of a given trajectory.

STRUCTURAL MODELISATION OF THE PROCESS

The studied process in a fixed bed bioreactor formed by a tube in which microorganisms (called the active biomass) are growing in a fixed bed of pouzzolane. The growth of biomass is produced by sub strate dissolution in the flowing medium according to propitious en vironment conditions (temperature, pH, etc.); its decrease is due to death of micro-organisms. Consequently, the growth of biomass is de scribed by a local type submodel and the substrate consumption by a distributed submodel. The general mode! considered for such a bio reactor is of parabolic type; but if the axial diffusion is negligible, it can be reduced to the following hyperbolic form:

Hyperbolic mode!:

{ ôs � ; z ) = -U (t) ôs �; z ) _k,µ(x , s)x (t ,z) ,
(1)

ô x b� , z ) = [ µ (x,s) -k d]x(t,z),
with the boundary and initial conditions:

{ s(t, 0) = S a (t), s(O,z) = so(z), x(O, z) = xo(z) .
(

) 2 
The state of the system is characterized by the concentrations of substrate s and biomass x which are both of them, fonctions of the time and space independent variables, respectively t and z.

The substrate concentration at the input is denoted Sa(t) and the length of the reactor tube being scaled to one, the space domain is 0 < z :S 1 and the substrate concentration at the output is s(t, 1). This concentration s(t, 1) will be considered in ail the following as the out put of process (J -2), and will be denoted:

y(t) = s(t, 1 ) . ( 3 
)
The specific growth rateµ of the micro-organisms can be described as a fonction of biomass and substrate defined by the general mode! of Contois [START_REF] Contais | Kinetics of bacterial growth relationship between population density and specific growth rate of continuons cultures[END_REF]:

( ) µ m s µs,x = k ---, cX+s (4 ) 
In which µ m is the maximum specific growth rate, and k c is the satu ration coefficient. In some cases µ can be defined by the simplified mode! of Monod [START_REF] Dochain | Modelling and adaptive control of nonlinear distributed parameter bioreactors via orthogonal collocation[END_REF]:

µms µ( s,x)=- K c+ s (5)
but, as we will see in the following, the choice of a specific µ will not be of importance for our purpose. The coefficient k 1 stands for the yield coefficient of the biomass for a unit of substrate.

The input, or control variable, is the superficial velocity: [START_REF] Rothfu8 | Flatness based control of a non linear chemical reactor mode![END_REF] in which F(t) is the flowrate and A the reactor cross sectional area.

The previous mode! of a fixed bed bioreactor is a simplified form of a more complex biotechnological process, namely the denitrification bioreactor, for which a complete description is detailed in [START_REF] Jacob | Modélisation et simulation dynamique de procédés de traitements des eaux de type biofiltre: traitements de systèmes d'équations diff érentiel/es partielles et algébriques (EDPA)[END_REF] and [START_REF] Bourre | Estimation et commande d'un procédé à paramétres répartis utilisé pour le traitement biologique de l'eau à potabiliser[END_REF].

Our daim in the following is to show that the chosen description of the fi xed bed bioreactor is a fiat system with respect to this control.

FLATNESS

Precise definitions of flatness have been given, using the differential algebraic approach in [START_REF] Fliess | On differentially fiat nonlinear systems, ln: Nonlinear Contrai Systems Design[END_REF] and [START_REF] Fliess | Flatness and defect of nonlinear systems: Introductory theory and examples, !nt[END_REF], or using the infinite dimensional geometric language in [START_REF] Fliess | Linéarisation par bouclage dynamique et transformations de Lie-Backlund[END_REF]. Roughly speaking, a control system: [START_REF] Fliess | On differentially fiat nonlinear systems, ln: Nonlinear Contrai Systems Design[END_REF] is fiat if there exists a so-called fiat ( or linearizing ) output y = (y 1, ... ,Ym), with the following properties:

x = f(x, u),
1. The components of y can be calculated from the state x, the input u, and a finite number f3 of time derivatives of the latter, follow ing m relations of the type:

y;= h;(x, u, û, ... , u ( /Jl). ( 8 
)
2. The components of y, are differentially independent, i.e., they are not related by any differential equation. 3. Any system variable z, that is a state, an input, or an output vari able, and ail of its time derivatives or functions of them, can be calculated from y and its time derivatives:

_ ( • (al) z-zy,y, ... ,y . ( 9 
)
ln other words, y is a "differentially invertible" map that m sures there exists a one to one correspondence between tra j ectories (x(t), u(t)) of the system and arbitrary curves y(t).

A fundamental consequence of the above properties is that the motion planning for a fiat system is trivial: since the behavior is deter mined by the fiat outputs, one can plan tra j ectories in output space and then map these to appropriate inputs. The fact the curve y(t) is not constrained except at its end points refiects the differential inde pendence of the fiat output.

Another important property is that a fiat system can be linearized by dynamic feedback, around a regular point. When used for tracking, a quasi-state feedback according to [START_REF] Delaleau | Algorithme de structure, filtrations et découplage[END_REF][START_REF] Delaleau | Decoupling and linearizing by quasi-static feedback of generalised states[END_REF], allows to avoid the introduction of extra dynamics in the linearized closed loop system. This point of view leads to the concept of endogenous feedback [START_REF] Martin | Flat systems[END_REF].

As a remark we can say that the previous explanations have been given in a lumped parameter system framework but they have been extended to the case of distributed parameter systems with boundary controls in [START_REF] Fliess | Controlability and motion planning for linear delay systems with application to a flexible rod[END_REF][START_REF] Martin | Flat systems[END_REF].

For the approach we are going to develop in the next section, these are sufficient because we will study the candidature of the boundary output (3) to the status offlat output for the system (1-2). For this we will consider the inversion problem: can we pass from y( t ) to U( t ).

APPLICATION TO THE HYPERBOLIC MODEL OF THE FIXED BED BIOREACTOR

The Control Law

Forgetting, in ail the following the argument t and z and using the simplified notations for partial derivatives of state variables s and x:

8s âs 8x 8 2 s S1 = 8 t ' Sz = âz' X1 = 8 t ' S zz = 8z2 , ( 10 
)
the elimination of the product µ(x, s) x(t, z) in Eq. ( 1) Ieads to the following expression of V:

s, ( 11 
)
Moreover technical knowledge of the process induces the condition of independence of U with respect to space variable that is:

U, = O. (12)
From (4.2) and ( 4.3), we get the following relationship between state variables:

s,, [s1 + k1x1 + k1kdx], Sz s, + k1x, + k1kdx • • (13)

Proof of Flatness

Keeping in mind that the fiat outputs "usually have a physical interpretation", we try to show the flatness of concentration s(t, 1) of the substrate at the output of the reactor.

Denoting:

s, , ( )

cp(t,z) = -, 1/J t,z = k1µx, Sz ( 14 
)
It cornes, from the second equation of(!): so ( 13) can be written as:

1Pz -<p'lp = <pS1 -S1z• ( 15 
)
The solution of Eq. ( 15) can then be carried out by mean of the two following steps:

1. Getting an analytic expression of state variable s(t, z): This can be get by mean of an interpolation between the given boundary concentration s(t, 0) = S a (t) and the desired output s(t, 1) = y(t), taking into account the initial condition s(O, z) = s 0 (z). lt is then obvious that there is not unicity for the so-obtained expression of s(t, z).

Remark 1 One can always find such an interpolation fonction and there is not unicity for the so-obtained expression of s(t, z).

Remark 2 We must notice that the choice of s(t, z) has to be such that:

s,to, ( ! 6) 
to insure a controllable system, according to the evolution equa tions of process (1 -2). Theoretically, it cou Id be uncontrollable at isolated points or instants where or when s, = 0, but this doesn't happen physically in usual run conditions. Condition [START_REF] Bourre | Estimation et commande d'un procédé à paramétres répartis utilisé pour le traitement biologique de l'eau à potabiliser[END_REF] insures the existence of a piecewise bounded fonc tion cp(t, z). .

Getting the initial condition 'lf;(t, 0)

Case of the simplified model of Monod The second equation of hyperbolic mode! (l) becomes, at the input of the reactor:

. ( ) [ µm S a (t) k ] ( )

X l, 0 = Kc + S a (t) -d X t, 0 ,
with the initial condition given by (2):

x(0, 0) = xo(0).

So we get:

( 17) ( 18) 
'lf;( t , 0) = k 1 xo(0) µm S a ( t) e ([i;"-5 :.%-kd]t) .

Kc + S0 (t)

Case of the mode! of Contois The same approach leads in this case, to the following non linear differential equation: { k c x(t, O)x(t, 0) + S 0 (t)x(t, 0) + kdk c x 2 (t, 0) = ( µm + kd)S 0 (t)x(t, 0), x(0, 0) = xo(0).

(20) An analytic integration is non trivial here but the solution of (20) can be obtained by means of analytic developments of time functions x(t, 0) and s(t, 0).

Denoting: So finally we get, in this case:

(t O -k µmS a (t) � x { 1P ' ) -l k .,_.oo . !!. + S (t) L.., , i'I . C L,Q X1 i! a O (24) 
From Steps l and 2, integration of (15) according to space variable z leads to function 'lj;(t,z).

Then, in the case of the model of Monod we get: 

'lj; (t , z) 'lj; (t , z) x(t,z)=- k -= k ( / Kc+s(t,z)), (25) 
Finally, the control law U(t) is given by ( 11) which establishes the fiat property of the substrate concentration at the output.

CONCLUSION

The flatness of the hyperbolic mode! of a fixed bed bioreactor is proved here for two models of the specific growth rate: the mode! of Contois and the model of Monod.

This result can now be used to motion planning, the desired output s(t, 1) of this bioreactor being usually a first order type response ( [START_REF] Bourre | Estimation et commande d'un procédé à paramétres répartis utilisé pour le traitement biologique de l'eau à potabiliser[END_REF]). The linearization of the system by dynamic feedback will then be carried out in the same time.

In later works we are going to extend these results to a more com plex biotechnological process that is the denitrification bioreactor, which can be modelized with similar type equations than for the fixed bed bioreactor but with four state variables (see for instance [START_REF] Babary | Modelling and control algorithms for denitrification of drinking water[END_REF]). Nevertheless we can already say that the extension to the parabolic model of the bioreactor (taking into account the axial diffusion, with boundary conditions ofDanckwerts [START_REF] Danckwerts | Continuons flow systems[END_REF]) remains an open problem: this is due to the contribution of the control law in the boundary conditions .

  ,0) = S a (t) = 1:s; 1 , of initial condition S a (t), the unknown coeffi cients X; of the Taylor development of x(t, 0): oo l x(t,0) = I:x; 1 , step by step by identification when (21 ), (22) and (23): (23) are brought forward in (20) .