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Combining experiments and numerical simulations with a mechanical/statistical model of twisted
yarns, we discuss the spinning transition between a cohesion-less assembly of fibers into a yarn. We
show that this transition is continuous but very sharp due to a giant amplification of frictional forces
which scales as exp θ2, where θ is the twist angle. We demonstrate that this transition is controlled
solely by a non-dimensional number H involving twist, friction coefficient, and geometric lengths. A
critical value of this number Hc ≃ 30 can be linked to a locking of the fibers together as the tensile
strength is reached. This critical value imposes that yarns must be very slender structures with a
given pitch. It also induces the existence of an optimal yarn radius. Predictions of our theory are
successfully compared to yarns made from natural cotton fibers.

Yarns made from natural fibers are one of the first
materials ever processed by humans, including Nean-
derthals [1]. They are done by making bundles of initially
aligned fibers which are then stuck together by twisting.
The fact that many individual fibers a few centimeters
may form yarns of tens of meters drew early attention
from scientists. Galileo [2] argued that the twist ”binds”
the filaments together, but do not discuss the origin of
this cohesion. We now know that the binding forces are
created by the tension throughout the filaments which
creates normal forces due to the curvatures of the fibers,
and that tangential frictional forces prevents sliding of
fibers [3–5]. If the twist is large enough, the relative slid-
ing of fibers are totally blocked, and the rupture of the
yarn is then a problem of statistic of rupture of individ-
ual fibers [6, 7]. The description of the transition be-
tween fibers which are ”free to slide” without spinning,
to ”blocked by spinning” is still a open problem. Experi-
mentally, only very few studies addressed the dependence
of yarn strength with twist level [8]. Theoretically, de-
spite numerous attempts, the mechanism linking twist
and strengthening has not been clearly understood [9–
13]. Recently, an analogy with the percolation transition
had been suggested [14]. Assembly of fibers is an exam-
ple of assembly of objects that interact through numerous
frictional contacts. For such systems, the geometrical ar-
rangement of the contact points may generate huge stress
throughout the system. Some examples of such systems
are granular materials in proximity to a solid wall (Jansen
effect [15, 16]), assembly of parallel sheets in contact (In-
terleaved phone book experiment [17, 18]), or contact
points distributed around a cylinder (Capstan). In all
those examples, the proportionality between the tangen-
tial and the normal stress at contact means that the me-
chanical stress in the system decreases exponentially with
the distance to applied load, and then have drastic effects
of the mechanical equilibrium of such system.
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FIG. 1. (a,b) Preparation of the model yarn before (a) and
after (b) twisting. (c) Photo of a yarn made from cotton
strings after twisting. (d) Traction forces as function of dis-
placement for cotton yarn L = 800 mm: (blue) θ/2π = 11,
(red) θ/2π = 3. (e) Symbol: Maximum traction force as full
twist angles (cotton yarn, L = 800 mm), dotted line is for eye
guide, and dashed line is the rupture force.

We show in this letter that an assembly of fibers be-
longs to the same class of system. For this we consider
model yarns made of entangled twisted fibers. The ten-
sion necessary to unravel the fibers is shown to vary con-
tinuously, but very rapidly with the twist. This sharp
evolution of the disentanglement force creates a phase
transition like transition between free fibers and stuck
fibers phases. A simple mechanical model of frictional
helicoidal fibers allows us to define a non dimensional
number whose value characterizes this transition. These
results can be successfully applied to real yarns.

Experimental model yarn system. Our starting point
is the demonstrating experiment of friction force in yarns
as proposed by Bouasse [4]. We consider two brushes of
N/2 identical fibers (see fig.1(a)). The fibers are passed
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FIG. 2. (a) Scaling law f(γ2) for cotton yarn at fixed R and L. Line is linear fit. (b) Scaling law g(L/R) for flax yarn at
fixed twist θ = 2.5 turns. Line is linear fit. (c) ln(TM/T0) as function H. Dashed line is eq.(2), plain curve is eq.(6b). For
(a,b,c) Crosses and open symbols are experimental data. Cotton, N = 20, R = 3.15 mm: L = 200 mm (▽), L = 400 mm (♦),
L = 200 mm (▽). Flax, N = 20, R = 4.15 mm: L = 400 mm, various θ (�), θ = 2.5 turns, various L (×). Plain symbols
are numerical data with L/R = 60: µm = 1, N = 40 (N), µm = 0.5, N = 40 (•), µm = 0.5, N = 20 (◭), µm = 0.5, N = 100
(◮), µm = 0.2, N = 40 (H). (d,e,f) Schematic drawing of the preparation of the numerical yarn: (d) uniform tension t0 is
applied; (e) shear force s is applied to twist the yarn; (f) Tension is increased to t on the top of half fibers, and on the bottom
of the other fibers. (g) Snapshot of a brush of fibers after twisting, and during the increase of t (N = 20, L/R = 60). Note the
difference of vertical and horizontal scales.

through rings which are connected to puller jaws (N/2
fibers in each jaw). The model fibers are of flexible
strings of cotton (diameter d = 1 mm, linear density
λ = 0.48 g.m−1, friction coefficient µm = 0.35, bend-
ing modulus B ∼ 10−6 N.m2), or flax (d = 1 mm,
λ = 1.03 g.m−1, µm = 0.53, B ∼ 4.10−6 N.m2). The
twist of the elementary yarns composing each string are
always very large compared to the twist that we ap-
ply. We first prepare the entanglement by alternately
aligning the brushes roughly parallel. The brushes are
then zipped together with two plastic cable clamps, and
twisted by a angle θ (fig.1(b,c)). The puller jaws are
attached to a traction measurement apparatus (Instron
5965, 5 kN force sensor) and elongated at fixed velocity
50 mm.min−1. Fig.1(d) shows the force variations for two
different twist angles. If the twist angle is low enough,
the force first increases, reaches a peak value (noted TM )
and then decreases slowly. Such variations are associated
to a smooth relative sliding of the two brushes. For large
enough twist, a force drop is measured after the maxi-
mum force (noted Tr). This is associated to the rupture
of one or many strings that we may observe by post-
mortem inspection. The figure 1(e) shows the evolution
of TM as a function of the twist angle. This value is likely
constant up to θ/2π ≃ 5 revolutions for this yarn, and
increases rapidly up to 9 revolutions where TM reaches
Tr at point C.

Scaling laws for maximum traction. We first limit our
analysis to the maximum force TM and we do not dis-
cuss rupture. Since we expect that the maximum force
is dependant of friction, TM should depend on µm and

of geometric characteristics of the yarn : θ, L, R and
N . We define the twist rate γ = Rθ/L ≪ 1. We first
discuss the γ dependence of TM . Noting T0 the traction
force at vanishing twist, we must have TM (γ) = T0 F (γ),
or ln(TM ) = ln(T0) + f(γ) with f = ln(F ) an even func-
tion vanishing at γ = 0. Leading term of expansion at
small twist is f ∼ γ2. This dependence is experimentally
verified as shown on fig.2(a). It follows that:

ln(TM/T0) = γ2 g(L/R,N, µm) (1)

where g is a non-dimensional function of non-dimensional
parameters. The L/R dependence of g is obtained by
considering the evolution of traction force at fixed θ, R
and N and of various lengths L. We found (see fig.2(b))
that g(L/R,N, µm) ∼ L/R, so that ln(TM/T0) =
(γ2L/R) h(N,µm).
Numerical yarn. We use discrete element method sim-

ulations [19] to obtain the function h. Fibers are mod-
eled as set of point masses connected with elongational
spring/dashpot without torsional or bending restoring
forces. Successive masses are connected with cylinders
of diameter d. The contact points between cylinders (be-
longing to same or different fibers) are calculated, and the
contact forces are calculated considering normal stiffness
and damping, and tangential stiffness with Coulomb fric-
tion coefficient µm. Equations of motion are integrated
using a Verlet algorithm. The steps for making numer-
ical yarns is depicted in fig.2. We first stretch the N
fibers under a force t0 (fig.2(d)) such that the strain of
each fiber is 10−4. A torque is then applied to the yarn
by submitting both ends of fibers to orthoradial forces s
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FIG. 3. (a) Section of a yarn of radius R composed of fibers
of diameter d. Gray fibers go downwards and white fibers go
upwards. (b) A fiber twisted on a cylinder of radius r.

(fig.2.(e)). During this preloading phase, µm is kept to a
low value 0.05 which ensure an uniform twist along the
yarn (fig.2(g)). Finally, while keeping forces t0 and s ap-
plied, the tension t of half the fibers on the bottom and
to the other half at the top (fig.2(f)) is slowly increased
until a value t = tM where the brush separates.
Full symbols of Fig.2(c) shows the evolution of tM/t0

with the twist angle for different values of µm and N .
First, we obtain that ln (tM/t0) ∼ θ2 as for experimental
data. We have also checked (data not shown here) that:
g ∼ L/R. The friction coefficient µm is varied, and the
N -dependency is obtained from simulations of N fibers
of radius aN such that R = aN

√

N/φ (with φ = 0.80
the packing fraction) ensuring fixed string radius R. We
did not identify significant variations with N between
N = 20 and N = 100 (fig.2(c)).
Finally, fig.2(c) shows that all the experimental and

numerical data may be collapsed using the single law:

TM/T0 = exp (0.75 µ θ2
R

L
) (2)

with µ = 0.63 µm for laboratory and µ = 1.13 µm for
numerical experiments. The experimental dependence
on µm may be viewed on fig.2(c) where data for flax
and cotton collapse when plotted as function of µθ2R/L.
Finally, the amplification of the tension in the yarn is thus
exponential, and only related to a dimensionless number
H = µθ2R/L that we name ”Hercules twist Number”.
Mechanical model. We develop a mechanical model for

deriving (2). We consider a yarn made of N helicoidal
fibers (fig.3(a)) with some rising and descending fibers.
We consider first a twisted fiber at a distance r from the
axis: r = reρ + zez in cylindrical coordinates (ρ, ϕ, z)
(fig.3(b)). The geometry of the helix of constant pitch
P gives ϕ/2π = z/P and we define the reduced pitch as
p = P/2π. For pitch large compared to r, the tangent
vector of the fiber is et(z) ≃ r/p eϕ + ez. The tension is
t(z) = t(z)et(z), and:

dt

dz
=

dt

dz
et −

r

p2
t(z)eρ ≃ dt

dz
ez −

r

p2
t(z)eρ (3)

We first consider the force equilibrium, in a section of
the yarn, for a portion of fiber between z and z+dz. The
force −(rdz/p2)t(z)eρ is a linear restoring force towards
the axis of the yarn: the torsion of the yarn is then equiv-
alent putting the fiber into a twist-controlled harmonic
potential V (r) = t(z)dz (r2/2p2). At mechanical equi-
librium, contact forces must balance this confining force.
The equilibrium of forces in the plane perpendicular to
the fiber writes:

r

p2
t(z)eρ =

j=N
∑

j=1

f (j)
n e

(j)
n (4)

with N the number of contacts, f
(j)
n dz e

(j)
n the contact

force between z and z + dz exerted by fiber j, and e
(j)
n

the normal vectors at contact points. Let fn be the order

of magnitude of normal forces f
(j)
n . Since vectors e

(j)
n

have random orientations, r.h.s. of (4) may be viewed
as a 2d random walk in force space, and we should have:
t(z)r/p2 ∼

√
Nfn. We now consider the force along z of

the rising fiber due to the N/2 fibers that do not rise.
Each contact exerts a sliding force ≃ µmfn, and then
(dt/dz) ≃ (N/2)µmfn ≃ (

√
N /2)µmt(z)r/p2. We finally

obtain:

dt

dz
= µ

r

p2
t(z) (5)

with µ = (
√
N/2)µm. The coordination number for a

random close packing of disks being 4 [20], we should
have µ ≃ µm, in agreement with laboratory and numer-
ical experiments. Integrating (5) along z gives t(L) =
t0 exp

(

µrL/p2
)

. Using θ = L/p, and dN(r)/dr =

Nr/R2 the density of rising fibers, the force on the yarn
section is:

TM =

∫ r=R

r=0

t0 exp (µθ2
r

L
) dN(r) (6a)

= T0
2[(H− 1) expH + 1]

H2
(6b)

where T0 = Nt0/2, and with H the Hercules twist Num-
ber H previously defined. Since t0 is only in prefactor of
the exponential amplification, the scaling ln(TM/T0) ∼
H is expected to hold if (6a) is extended to a radius de-
pendant tension t0(r), as it is the case for dense packing
of twisted fibers [21], or if there is disorder on the values
of t0.
Staples yarn. We now apply our results to a yarn made

of an assembly of fibers of length L as shown in fig.4.
Fig.4(c) shows a yarn which separates in two parts from
an arbitrary plane z = 0. A fiber with center located
above this plane rises. Let’s ze the distance between the
end of the fiber and the plane, and t0 the tension at the
end of the fiber. Integrating (5) from −ze to 0 gives
t(z = 0) = t0 exp (µrze/p

2). By symmetry, the relation
is the same for a descending fiber. Noting P(ze) dze the
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FIG. 4. (a)Fibers of cotton. (b)Length L and tortuosity ξ of
fiber. (c) Separation of a yarn at a plane z = 0. Arrows show
the directions relatively to the plane z = 0.

probability that fiber ends at a distance between ze and
ze + dze, the total separating force is then:

TM =

∫ r=R

r=0

dN(r)

∫

ze

t0 exp (µrze/p
2) P(ze)dze (7a)

= Nt0
2[exp (H/2)− (1 + (H/2))]

(H/2)2
(7b)

where H = µRL/p2. We used dN(r) = 2Nrdr/R2

with N the number of fiber in one section, and assumed
an uniform distribution of ends of fibers P(ze) = 2/L
for 0 ≤ ze ≤ L/2. The tension Nt0 that the yarn
may support without twist is then amplified by a factor
A(H) = 2[exp (H/2)− (1 + (H/2))]/(H/2)2. We expect
that the exponential amplification still occurs for various
distribution P(ze): i.e. taking P(ze) as a Dirac distribu-
tion δ(ze −L) in (7a), we recover (6b). Exponential am-
plification should also occurs in case of disordered values
of t0, or if fibers trajectories are not perfectly helicoidal.
Critical Hercules twist Number and Spinning Transi-

tion. This amplification factor A(H) increases nearly
exponentially with H. However, the maximum traction
TM cannot be larger that the force Tr for which the
rupture of the fibers occurs. We note Hc the critical
value of the Hercules twist Number which verifies
Tr = Nt0A(Hc). It occurs at a point C on fig.1(e). Hc

separates weakly twisted yarns (H < Hc) that fail by
sliding of fibers, from highly twisted yarns (H > Hc)
that fail by breaking of fibers.
A typical value ofHc for a yarn made of identical fibers

of diameter d and of length L may be evaluated. Noting
E the Young Modulus, and εr the deformation of fibers
at rupture, and dropping constant numerical factor, the
rupture tension is tr ∼ εrEd2 for a fiber, and Tr = Ntr
for a yarn. Since fibers are slender objects, we take t0 as
the force necessary to straighten into a yarn the fibers
that are initially bent. Noting ξ the initial flexion of
the fibers (fig.4b) we have t0 ∼ Ed4ξ/L3. It follows
that A(Hc) = tr/t0 ∼ εrL3/ξd2. For cotton fibers with
L = 30 mm, d = 16 µm, µm = 0.48 [22, 23], εr ≃ 0.08,
and ξ ∼ L/3: A(Hc) ∼ 105, and Hc ≃ 33. The
associated pitch for a yarn of radius R = 80 µm is
P = 2π

√

µRL/Hc ≃ 1.2 mm. From a microscopic

inspection of the yarn, we measured a similar value of
the pitch P ≃ 1.5 mm. For fibers made of an identical
material with ξ ∼ L, and dropping non exponential
term in A(H) ∼ exp(H/2), we obtain the simple scaling
Hc ∼ 4 ln(L/d): Hc is in the range 20 − 40 when L/d
varies between 102 to 104.

Optimal yarn. The maximum resistance of a yarn is
attain for H ≥ Hc, but it is possible to attain this value?
Indeed, twisting a yarn elongates the fibers which may
break: twisting too much a yarn reduces its strength, a
fact already noticed by Galileo [2]. The elongation may
be evaluated: a length dz of an initially straight fiber

at r = R becomes ds = dz
√

1 + γ2 after the twist of
the yarn. The deformation ε = (ds − dz)/dz ≃ γ2/2
should be lower than εr, so that the twist must verify
γ2 < 2εr. The maximum attainable value of H without
breaking of fibers is then Hr = 2µεrL/R. For a maximal
resistance without breaking due to twist we must have
Hc ≤ H ≤ Hr, so that:

R ≤ Ropt = 2µεrL/Hc (8)

where we introduced Ropt as the value of the yarn radius
R which verifies Hr = Hc. Ropt is the largest radius of
yarn which may reach Hc without breaking of fibers. For
cotton fibers, with Hc ≃ 30, we obtain Ropt ≃ 80 µm
which is the value of the radius that we measure for our
cotton yarn. Thicker simple yarns may be processed, but
will not reach their maximal resistance. Making larger
yarns with maximal resistance must be done by putting
together elementary yarns of radius Ropt as it is done in
practice [24, 25].
Concluding remarks. From our experiments and our

statistical model, a relatively simple picture emerges to
properly describe the spinning transition of yarn: the
twist on the fiber creates a confining potential. The
tangential force variations are then proportional to ten-
sion, creating exponential decay of the tension. Although
the model is very simple, the experimental variations on
model yarns are very well captured. This means that
a more refined description of the disorder in the fibers
arrays, potential deviations from helicoidal structures of
fibers, or non-linearity arising from non-small curvature
(r 6≪ p) are presumably of weak importance.
A crucial result of our study is that the force ampli-

fication may be properly described with a single non-
dimensional number H that we named Hercules twist
Number. Although it appears to be a quantity of fun-
damental interest for the yarn processing, this non-
dimensional Number has apparently not be previously
defined. This name echoes to the situation of interleaved
phone book experiment [17, 18]. In those studies the au-
thors considered a ”Hercules Number” 2µM2ε/d, with
µ the friction coefficient, M the number of pages, ε the
sheet thickness and d the distance of overlap between
leaves. Writing H as µθ2R/L, the structure of these
two non-dimensional numbers appears similar, but with
the noticeable difference that θ is controlled by the de-
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formation of the yarn, whereas M is fixed. It should
be interesting to investigate in details if the assembly
of frictional objects with different symmetries, such as
packing of non-aligned fibers [26] or twisted sheets [27]
show similar exponential force variations. Also, is should
be interesting to see if recent results on friction effects
on bending of layered structures [28] may be extended to

fibrous structures.
Finally, It should be note that our theory is not only

qualitative, but also quantitative since Hc ≃ 30 corre-
sponds to the twist value for real yarns. The exponen-
tial increases of the force amplification factor A(H), to-
gether with the quadratic dependence with the twist an-
gle H ∼ θ2 induces that the spinning process appears in
practice as a sharp twist-controlled phase transition.
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