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Maximal Wall Shear Stress in
Arterial Stenoses: Application to
the Internal Carotid Arteries

Maximal wall shear stress (MWSS) in the convergent part of a stenosis is calculated by
the interactive boundary-layer theory. A dimensional analysis of the problem shows that

MWSS depends only on a few measurable parameters. A simple relationship between
MWSS and these parameters is obtained, validated, and used to calculate the magnitude
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of MWSS in a carotid stenosis, as a function of the patency of the circle of Willis and the
stenotic pattern. This demonstrates the huge effect of collateral pathways. Elevated

MWSS are observed even in moderate stenoses, provided they are associated with a
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Introduction

Stenoses and occlusions of internal carotid arteries are involved
in 34 [1] to 44 percent [2] of strokes. Large multicenter trials [3,4]
have shown that the risk of stroke increases significantly with the
degree of stenosis. Carotid lesions induce strokes by either a he-
modynamic or an embolic mechanism. In the first case. obstruc-
tive lesions induce a loss of perfusion pressure that causes is-
chemic lesions in the downstream cerebral territories. Poor
collateral arterial circulation through the circle of Willis (the main
anastomotic network situated at the base of skull) has been shown
to be frequently associated with this clinical condition [5.6]. In the
case of embolic strokes, materials detached from ulcerated plaque
or mural thrombus migrate from the stenosis and occlude the dis-
tal smaller vessels [7]. The embolization is probably related to
complex biochemical phenomena in plaque and/or thrombus com-
ponents, which determine their mechanical properties, but also to
shear stress due to blood flow [8]. In a simulation study. Cassot
et al. [9] showed that differences in collateral pathways of the
circle of Willis and in degree of contralateral stenosis induce great
interindividual variability of measurable parameters (flow rate, ve-
locity) in a stenosis of a given radius reduction. They suggested
that this variability could lead to large changes in maximal wall
shear stress (MWSS) that could play a role in the embolic mecha-
nism. However, the magnitude of these shear stress variations has
still to be quantified.

In spite of abundant literature about magnitude and effects of
wall shear stresses at early stages of development of atheroscle-
rosis and mural thrombosis [10—12], there is no report about the
evaluation of high shear stresses in advanced occlusive lesions
that takes the role of collateral circulatory pathways into account.
For this purpose, a simplified methodology for evaluating MWSS
in stenoses ranging from mild ones to occlusions is needed. In-
deed. even if Navier—Stokes solvers are now very efficient to
compute wall shear stress in moderate stenoses [11.13.14], some
difficulties still remain for stenoses whose degree. expressed as
percent narrowing in the luminal diameter, is higher than 70 per-
cent. Moreover, achieving a new computation for every particular
geometry and flow rate is still time consuming. Hence, Siegel

contralateral occlusion, a large anterior, and narrow posterior communicating arteries,
suggesting a potential risk of embolus release in this configuration.

Wall Shear Stress, Stenosis, Carotid Disease, Cerebral Circulation,

et al. [13] have performed a regression analysis in order to inter-
polate their numerical results for all Reynolds numbers. However,
the scaling law they have proposed is limited to three moderate
constrictions (29, 50, and 69 percent radius reduction) and cannot
be extrapolated to severe stenoses. There has been very little work
toward a simplified method valid for severe stenoses, mainly done
by Back et al. [15.16]. They used a local similarity method de-
rived from the boundary-layer theory for steady flow through a
conical axisymmetric constriction. However, they found that the
wall shear stress monotonically increases from the inlet to the
throat, whereas all other studies find a peak wall shear stress
slightly upstream of the throat. Consequently. this model is only
accurate for evaluating MWSS in approximately conical stenoses.

In the present study. the interactive boundary-layer (IBL)
theory is applied. A scaling analysis based on geometric param-
eters (radius reduction at the throat and stenosis length) is
achieved, assuming that the blood is Newtonian (viscosity of 0.03
Poise). the stenosis is axisymmetric with a small rate of change of
taper and a smooth, rigid wall, and the flow is steady. Under these
assumptions, widely used by others [11,13,14,16] and further dis-
cussed below, such an asymptotic method allows the extraction of
the fundamental mechanisms and the determination of the relevant
nondimensional parameters. In this way. a simple relationship is
obtained between the MWSS in the convergence, the flow rate (or
Reynolds number) and the geometric parameters. We thus com-
pute the magnitude of MWSS in a carotid artery stenosis. as a
function of the morphology of the circle of Willis and the stenotic
pattern of both carotid arteries.

Methods

Stenosis Geometry. The stenosis geometry is approximated
by an axisymmetric fourth-order polynomial (Fig. 1). defined by:

)
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R(x)=—D(Z) +2D(z) +1—D, xel=L,Ll, (1)

where x, R, and L are, respectively. the axial coordinate, the radial
position of the wall, and the convergence length nondimensional-
ized by the upstream radius Ry* ., and D is the stenosis degree,
i.e.. radius reduction at stenosis throat.
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tegral Method. The IBL theory is based on two hypotheses . . . .
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through the global conservation of floM7-19: The core flow : v
speed is increased to take account of the boundary-layer displar(,ees-enteol by, , see E.q(9)) and the role of the UO'SI'p Cond't'on
at'the wall are taken into account. The approximate closing laws,

ment(at order Rg . which is itself dependent on the pressurge yceq from a Runge—Kutta 4 numerical integration of the self-
gradient in the core. This modification is a significant improv 'i[nilar equation, take the following form:
ment on the classical boundary-layer approach, but even the |
theory is only valid for attached flows. dU.
Assuming a curvilinear system of coordinatésg. 1), we de- ax
note bys* the current length measured along the stenosis wall
from the beginning of the convergence< —L), n* denoting the 2.59e 0% A;<06 4 1
coordinate normal to the wall. The asymptotic dimensionless vari- “1207 A;=0.6 2=09 HZ2 H/ ©)
abless, n, u, v, andug, are chosen to be of the same scale in the . ) . )
boundary-layer as Reends to infinity. They are determined by: Given the stenosis geometfye., L and D), the upstream dis-
placement thlckness10 and Reynolds number Rgethe set of Egs.
s* Reyn* u* Reu* ue* (6) and(7) closed by Eq(9) is numerically solved by a marching
S= Ry’ n= VIR, | u= Y ue:u—_*' predictor/corrector method. The wall shear stregs(nondimen-
0 0 ° (2) sionalized by the upstream Poiseuille valyeUh*/R,* , where
) ) w is the viscosity), is obtained by:
whereu*, v*, andu,.* are, respectively, the velocity components
parallel and normal to the wall, and the velocity at the edge of the 1 UR
boundary-layer. The displacement thicknesses of the boundary- Tw:msz A, JVRey (10)
layer are defined by:
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Let us introduce new variable§ Y, A, U, V, andU, defined b . . . -
o ! w variables ¥, 4, U, V, andU. defined by Simulation of Blood Flow Through the Circle of Willis.

the Mangler transformation that reduces the problem to a plang g : >
bidimensional formulatiofi20]: 6nce the relationship between MWSS dndD, 1, and Rg is

known (see results), the calculation of MWSS in carotid stenoses
requires knowledge of the trans-stenotic blood flow. As demon-
strated by Cassot et d9], this flow rate is highly dependent on
(4)  the anatomy of the circle of Willis.
1 1 dR(s) Therefore, the blood flow through the distensible network in-
“Res) VT Ris) Tas UN) Vel cluding the circle of Willis and its afferent and efferent arteries
) (Fig. 2)is simulated as described by Zagzoule and Marc-Vergnes
If the rate of change of taper of the convergemt®/dx* is [22]and Cassot et al9]. In each segment of the network, a set of
everywhere small, the dimensionless versions of the bOUndanree unsteady equatiomsonserva’[ion of mass and momentum
layer equation$20]and of global conservation of flow, written in and purely elastic tube lawrelates the variable cross-sectional

A=A,2

The value of MWSS is then computed. The relationship between
MWSS andL, D, 1, and Rg is investigated by regression analy-

sis based on the least-squares method.

dn. 3)

S
x=f R(s)?ds’, Y=R(s)n, A;=R(s)é;, U=u,
0

\Y,

Mangler coordinates, are, respectively: area of the vessel, the pressure, the flow rate, and the wall shear
U oV stress. A second-order asymptotic expression of the wall shear
—+—=0 stress as a function of the flow rate is provided to close the system
X Y [23]. The compatibility conditions at the nodes of the network are
U au du, ?U ©) the identity of the pressure signals and the conservation of flow.
U X JrV&—Y = Ued_X + N2 The effects of the carotid stenoses are put into the network model

by means of the semi-empirical formulas of Young, Tsai, and
and Seeley[24,25]relating the trans-stenotic pressure drop to the flow
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Fig. 2 Diagram of the circle of Willis and its afferent and effer-
ent arteries. (VA: vertebral, BA: basilar, ICaA, internal carotid, 0
ACeA: anterior cerebral, MCeA: middle cerebral, PCeA: poste- 0

rior cerebral, ACoA: anterior communicating, PCoA: posterior

communicating arteries.
g ) Fig. 3 Nondimensional displacement thickness in Mangler co-

ordinates A; (upper) and wall shear stress (lower) versus axial

position in the convergence characterized by D=0.7 and L
rate in streamlined constrictions. As the predicted pressure dre, for Re,=1000 and different values of A, v2/\Re; (corre-
differs from the experimental measuremef$], the potential sponding to an initial displacement thickness é1,* between
error associated with using these formulas is further dISCUSS@glRO* and 0.33R,*)

below.

By varying the diameters of anterior and posterior communicat-
ing arteries, within the range of anatomical data, we can simul nosis. Whatever the initial value &f , Eq.(11) holds and the
the hemodynamic influence of the circle of Willis. Stenoses q | S

variable degrees can be added to one or to both internal CaI’OBI ves of wall shear stress become superposed in the downstream

. . | di t of the convergence, where the gradient paraméteris
arteries R, =2 mm) over a 5 cm lengtiicorresponding td- g reater than 0.6. Maximal difference from the mean for MWSS in
=12.5). Given the pressure signal at entries and outputs, tg

. If the cases studied is less than 0.25 percent. MWSS is therefore
model computes instantaneous pressure and flow rate value§,ghpendent of inlet displacement thickness and thus, of the as-

each point of the network. MWSS in the stenosed arteries is thelfimeq entry velocity profile. This validates the use of the IBL
derived from the average flow rate thus computed and the stenoggs,

ry.
degrees. y

2 Comparison With Solutions of Complete Nawigtokes
Results Equations. Siegel et al[13]and Huang et al.14] have numeri-

cally solved Navier—Stokes equations for axisymmetric Newton-
Validation of IBL Integral Method for Calculation of ian flow in moderate stenoses. In the first work, a spectral element
MWSS method was applied to cosine-shaped constrictibrs| 3;6] and
] . . D €[0.29;0.5;0.69) for diverse Reynolds number values. Huang
1 Dependence on Upstream Displacement ThickneBgis- et a]. [14] used a finite difference scheme with an unspecified
tence of a potential core implies that the displacement thickngsgnstriction shape, for five values of pdlr, D) ((2, 0.25), (2,
6,* is not thicker tharR,*R/3 for a fully developed parabolic 0.33), (2, 0.5), (4, 0.5), (1, 0.5)), and three values of Ré100,

Poiseuille flow, i.e., from Eqs3) and (4): 500, 1000). The results obtained with both methods are consistent
R2VRe, with our IBL method: the discrepancy between the various
A< & 1) MWSS obtained for the same stenotic configuratierg., same
3, values of pairs(L, D)) is smaller than 8.5 percent in spite of

. . ?_ifferent shapes of the stenosis model.
Therefore, the classical assumption of a fully developed parabolic

flow at the inlet of the convergen¢@3,14]is not consistent with ~ Scaling Law for Maximal Wall Shear Stress. Siegel et al.

our methodology. Some authof$5,16]hypothesized a flat pro- [13] performed a scaling analysis of the numerical results ob-

file. Actually, the boundary-layer grows from the artery originfained in three moderate constrictiof®9, 50, and 69 percent

and its thickness is unknown at the inlet of the constricfidn]. radius reductiop leading to the following relationship:

Therefore, the dependence of displacement thickness and wall _ 05

shear stress distribution in the convergence on inlet displacement MWSS=a(Rey)""+b, (12)

thickness was first investigated for nine values of Reynolds numwhere the numerical values of coefficierdsand b depend on

ber (from 400 to 2000), thirteen values bf(from 0.3 to 0.9), and stenosis degree and length in an unknown fashion. Our aim was to

four values ofL (from 3 to 12). complete these results for stenoses ranging from moderate to se-
For example, Fig. 3 displays the results obtained in a 70 percesgre ones, focusing on dependence of MWSS on the upstream



al” b Table 1 Estimated parameters K and ¢ (see Eq. (13)) and re-

1000 g 1000 P gression coefficients
P : , / K 3 X square Correlation coefficient
| // s / | aW)®s 0170 3208 0291 1.000
10 ‘ : : b 0.705 2.984 0.146 1.000
o 10 o
b ; //‘ L // o
0.10.2 013 0‘.4 0.5 016 0.7 0‘.8 09 1 1[).2 013 Oid 05 06 0:7 OtB 0;“41

Hence, dimensional expression as a function of parameters mea-

D b surable in clinical practice is the following:
Fig. 4 Parameters a(L)%®and b as a function of radius reduc- 4uQ* 0240 1 Q* \05
tion. Full circles: results derived from Siegel et al. [13]; cross: MWSS" = R*3|1-D 3298 05 R*
mean of the results of regression analysis obtained for L be- 7(Ry™)™ | ( ) ™o V
tween 3 and 12 at fixed D; line: interpolation of results aver- 0.705
aged upon L. + : — (15)
(1-D)

whereQ* is the flow rate through the stenosis.
Reynolds number and the geometric parameters. In other words,

we investigated the dependence of parametetadb (Eq. (12)) MWSS in a Carotid Stenosis: Role of the Patency of the

on stenosis length and radius reduction. The first step was to ap&-.le of Willis and of Stenotic Pattern. Cassot et al[9] have

lyze the dependence of MWSS onfer D between 0.3 and 0.9 h ' . AN
. - wn that the flow rate in a carotid stenosis is highly dependent
andl. between 3 and 12. Regression analysis of the results Shov@%é)its radius reduction and, provided collateral circulatory path-

that this dependence is correctly described by #&8). The cor- : o . .
relation coefficient in all cases was 0.999 or greater. Finally, Weys of the circle of Willis are efficient, on stenosis degree at the

looked for a relationship between the thus identifeednd b co- g?;rtsra\:viggr?r:vigﬁé:tzgce’ dependence of MW these param-
efficients and the corresponding valuesLodndD. As indicated '

by the dimensional analysis of E(L0) (see Appendix A)a,/L 1 MWSS Dependence on Carotid Stenosis Degréeure 5,
andb should be independent af This was verified, as the maxi- left, displays the variations of MWSSin a unilateral stenosis
mal deviation from the mean values f/L andb obtained for a Versus stenosis degree for five configurations of the circle of Wil-

- lis, i.e., for five arrangements of anterior communicating arteries
range ofL (3 to 12 at fixed D was 1.1 percent and 2.9 percent,>’ "= - S C . :
respectively. Hence, a relationship between these averagEd (ACoA) and posterior communicating arterié®CoA) diameters.

) Whatever the configuration, MW$S®xhibits a maximal value for
andb parameters anb alone(see Fig. 4was sought. The chosen g

e . . . X ; a stenosis degree between 60 and 80 percent. The maximal value
fitting function, derived from the dimensional analysis of EtD) ¢ pwss* depends on the configuration of the circle of Willis: It
(see Appendix A), was:

is multiplied by approximately four when both communicating
K arteries are narrofACoA and PCoA diameter equal to 0.4 mm
1=D)¢’ (13) compared to the cases when one of the communicating arteries at
least is broaddiameter equals to 1.6 mm), which allows collateral
whereK and ¢ are positive real numbers. Results obtained by theupply from anterior and/or posterior territories.
least squares method are given in Table 1, and displayed in Fig. 4ln the case of a stenosis associated with a contralateral occlu-
They show very good agreement with numerical values derivetbn (Fig. 5, right), the higher MWSS is obtained when the
from Siegel et al[13]. ACOA is broad and the PCoA is narrow, because the nonoccluded
Finally, the generalized law for MWSS is: carotid irrigates ipsi- and contralateral anterior cerebral territories,
05 without collateral supply from the posterior side. The greater the
0.170 Reg 0.705

MWSS:(l,D)szgs s 4 oy (14) (l\:/la\llilbseé" .of the PCoA, the smaller the maximal value of the
Unilateral stenosis Stenosis + Contralateral occlusion
MWSS* (Pa) MWSR* (s') MWSS* (Pa) MWSR* (s
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Fig. 5 Dimensional maximal wall shear stress (MWSS*) and rate (MWSR*) as a function of
stenosis degree, for five arrangements of anterior and posterior communicating arteries diam-
eters; X: AcoA=0.4 mm/PCoA=0.4 mm; [ ACoA=0.4 mm/PCoA=1.6 mm; O: ACoA=1.6
mm/PCoA=0.4 mm; A: ACoA=1.6 mm/PCoA=1 mm; +: ACoA=1.6 mm/PCoA=1.6 mm.
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Fig. 6 Dimensional maximal wall shear stress (MWSS*) and
rate (MWSR*) in a 57.8 percent stenosis as a function of con-
tralateral stenosis degree, for five arrangements of anterior and
posterior communicating arteries diameters; same symbols as
Fig. 5

2 MWSS Dependence on Contralateral Stenosis Degree. As
an example, Fig. 6 displays the variations of MWSS* in a 57.8
percent radius reduction stenosis versus contralateral stenosis de-
gree for five configurations of the circle of Willis. In all cases, an
S-shaped curve is obtained. As long as the degree of the contralat-
eral stenosis remains less than 30 percent, the MWSS* value does
not change significantly from the value for a unilateral stenosis,
while contralateral stenoses greater than 80 percent have practi-
cally no further effects on the MWSS*, and behave like occlu-
sions. As the degree of the contralateral stenosis increases from 30
percent to 80 percent, the MWSS* increases, but the slope of the
curve is strongly affected by the communicating arteries’ diam-
eters: It increases when ACoA diameter increases, because the
interaction between ipsilateral and contralateral sides increases,
and decreases when PCoA diameter increases, because collateral
supply from the posterior territories minimizes flow rate augmen-
tation. Consequently, when the ACoA is thin, the amplitude of the
S-shaped curve is almost zero. Maximal amplitude is obtained for
broad anterior and thin posterior arteries, leading to very high
MWSS* in moderate stenoses (up to 70 Pa for a 60 percent ste-
nosis). When the degree of contralateral stenosis equals the degree
of the ipsilateral one, the cerebral network presented in Fig. 2
becomes symmetric, and ACoA diameter has no influence. Curves
obtained for the same PCoA intersect in that case, whatever
ACOoA patency.

Discussion

Our scaling law for MWSS in a stenosis is based on several
simplifications when compared to the pathophysiological com-
plexity. The principal assumptions are to consider the blood as a
Newtonian fluid, the flow as steady, and the stenosis as axisym-
metric with a small rate of change of taper and a smooth, rigid
wall. Nevertheless, even if blood is non-Newtonian, its non-
Newtonian components do not affect the magnitude of wall shear
stresses in arterial conditions [28]. The relative error made when
calculating the MWSS assuming quasi-steadiness of the flow in-
stead of taking its unsteadiness into account can be evaluated by a
dimensional analysis from Pedley [29] taking numerical data
found in carotid arteries [9,22]. This error is about 15, 10, 7, and
5 percent for respectively a 30, 50, 70, and 85 percent stenosis. As
intimal thickening in stenosed arteries decreases the flexibility of
the wall, the variations of stenosis radius caused by pressure fluc-
tuations encountered in carotids [22], are less than 1.5 percent.
The hypothesis of a little rate of change of taper is not limiting,
since it is verified even for total occlusions if L=3, i.e., if the
convergence length is greater than 6 mm. The two last assump-

tions are the axisymmetric and smooth geometry. However, they
made possible the dimensional analysis (Appendix A), which ex-
plained the simple dependence of MWSS on geometrical param-
eters and Reynolds number. The results of Siegel et al. [13] were
explained and extended to a larger range of stenosis degrees (in
particular for severe ones), with a simpler methodology and a
great reduction in computing time. The main interest of the so-
obtained scaling law (Eq. (14) or (15)) is that all the parameters
needed are measurable either in in vitro experiments, or in clinical
practice, allowing a simple and much more accurate evaluation of
MWSS than the classical Poiseuille law. This could be of greatest
concern for studying the role of elevated shear stresses in ad-
vanced occlusive lesions, particularly on plaque ulceration, rup-
ture, and thromboembolism.

Using our scaling law, we calculated MWSS values in carotid
stenoses, according to the patency of collateral pathways. The
main assumption in the simulation of blood flow through the
circle of Willis was to use semi-empirical formulas of Young,
Tsai, and Seeley relating the trans-stenotic pressure drop to the
flow rate in streamlined constrictions. As the predicted pressure
drop differs from the experimental measurements [26], the poten-
tial error associated with using these formulas was estimated in
the particular case where both anterior and posterior communicat-
ing arteries are so narrow that they functionally behave as closed.
This analysis demonstrated that using more accurate formulas
would change the absolute numbers, but not the general trends of
the results depicted in Figs. 5 and 6. As an example, the maximal
MWSS* calculated when both communicating arteries are narrow
(ACoA and PCoA diameter equal to 0.4 mm) is underestimated
by around 35 percent.

An interesting result is that wall shear stress doesn’t increase
monotonically with the stenosis degree: The stenosis degree lead-
ing to maximal MWSS results from a balance between the in-
crease of wall shear stress due to increasing velocity, in order to
satisfy mass conservation, and its decrease due to reduction of
flow rate through the vessel induced by its increased resistance.
This suggests that risk of embolus release could be greater for
some moderate stenoses than for more severe ones. Even for a
given stenosis degree, the results show huge variations of the
MWSS. For instance, very high MWSS* values (>70 Pa) can be
found in moderate stenoses (60 percent), if they are associated
with a contralateral occlusion, large ACoA, and narrow PCoA
diameters. This last result was obtained because we have not only
considered an isolated stenosed vessel, but also included it in the
whole network. It could explain the uncertainty about the percent-
age of stenosis above which carotid obstructive lesions must be
considered severe for the risk of stroke. In fact, peril of embolic
stroke is likely to be elevated for stenosis degree where MWSS is
maximal (i.e., between 60 and 80 percent), when risk of hemody-
namic stroke increases with stenosis degree. Further investigations
on the mechanical properties of thrombi and plaques are therefore
needed for a better understanding of the role of MWSS in the
embolic mechanisms.
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Nomenclature
a, b

coefficients for maximal wall shear stress relationship
(Eq. (12))

D = degree of stenosis (radius reduction at stenosis throat)
L = length of convergent part of stenosis
n = coordinate at right angle to the stenosis wall



Q = flow rate
R = radial position of the wall
Rey = Reynolds number based upon upstream diameter and
mean upstream velocity: 2Ry* - Uy* /v =2Q*/ mRy* v
s = current length measured along the stenosis wall from
the beginning of the convergence= —L)
u = velocity component parallel to the stenosis wall
U = velocity component in the Manglet direction
v = velocity component normal to the stenosis wall
V = velocity component in the Manglef direction
X = axial coordinate
X,Y = Mangler coordinatessee Eq.(4))
6; = displacement thickness of the boundary-layer
A, = displacement thickness of the boundary-layer in Mang-
ler coordinates
A, = pressure gradient parameter of the boundary-layer
M = viscosity
v = kinematic viscosity
7y = wall shear stress
Subscripts
0 = upstream condition= —L)
e = condition at the edge of the boundary-layer

Superscripts

mean over a cross section
dimensional quantities
nondimensional quantities

*

none

Appendix A: Dependence of MWSS on Parameters
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ueaiz 1ovi ), (A.2)

R R2\Re,

The basic assumption of boundary-layer thel@§] gives, for the
displacement thickness:

*

JRe(s*)’
where Re(¥) is the localReynolds number in the potential core,
based ors* (x*) andu.* (x*). Assuming that the axial location

of the MWSS is near the throat, combination of E, (4), and
(A.3) leads to:

8% (x*)=~

(A.3)

RyL
1~ -
Ju,
Thus, by use of EqgA.2)and(A.4), Eq.(10) at first order reduces
to:

(A.4)

VRey  3v2
MWSS~k , A.5
Rthroat3 \/E Rthroa\t3 ( )
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