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Abstract: Investments in wind energy harvesting facilities are often high. At the same
time uncertainties for the corresponding energy gains are large. Therefore a reliable
model to describe the variability of wind speed is needed to estimate the expected avail-
able wind power and other statistics of interest, e.g. coefficient of variation, expected
length of the wind conditions favorable for the wind-energy harvesting etc. In this paper
wind speed are modeled by means of a spatio-temporal transformed Gaussian field. Its
dependence structure is localized by introduction of time and space dépendent parameters
in the field. The model has the advantage of having a relatively small number of param-
eters. These parameters hâve natural physical interprétation and are statistically fitted to
represent variability of observed wind speed in ERA Intérim reanalysis data set.

I. Introduction

In the literature typically cumulative distribution function (CDF) of wind speed W, say, is
understood as the long-term CDF of the wind speed at some location or région. The distri-
bution can be interpreted as variability of VF at a randomly taken time during a year. Weibull
distribution gives often a good fit. Limiting time span to, for example, January month affects
the W CDF simply because, as it is the case for many geophysical quantifies, the variability
of W dépends on seasons. To avoid ambiguity when discussing the distribution of W, time
span and région over which the observations of W are gathered need to be clearly specified.
By shrinking the time span to a single moment t and geographical région to a location p one
obtains (in the limit) the distribution of W (p, t). This is used as the distribution of W in this
paper. Obviously the long-term CDF can be retrieved from the "local" W (p, t) distributions
by means of an average of the local distributions, viz.for a fixed location p

1 fs+s
(1) P(VF < w) = — J F(W(p,t) <w)dt,
where S can be a month, a season or a year. Similarly the long-term CDF over a région A,
say, is proportional to fA f*+S P(VF(p, t) < w) dt dp.

In order to identify the distributions at ail positions p and times t vast amount of data
are needed. Here the reconstruction of W from numerical ocean-atmosphere models based
on large-scale meteorological data, called also reanalysis, is utilized to fit a model. The
reanalysis does not represent actual measurements of quantities but extrapolations to the
grid locations based on simulations from complex dynamical models. It is defined on regular
grids in time and space and hence convenient to use. In this paper, the ERA Intérim data [9]
produced by European Centre for Medium-Range Weather Forecasts is used to fit the model.
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However the model can also be fitted to other data sets, e.g. to satellites wind measurements
which has also good spatial coverage, see [6].

Modeling spatial and temporal dependence of wind speed is a very complex problem.
Models proposed in the literature are reviewed in [13]. Here we will use the transformed
Gaussian model, which assumes that there exists a deterministic function G(w) such that
X(p, t) — G(W(p, t)) is Gaussian. (The transformations parameters can dépend on loca-
tion location p in a smooth way, see (2) and Figure 1.) The X(p, t) field is defined by the
mean m(p, t) and covariance structure Cov(X(pi,ti),X(p2, h))- Obviously for a given
transformation G and many years of reanalysis one could estimate the covariance for any
pair (pi, fi), (p2, f2), see e.g. [8], [10]. However such an approach is limited to relatively
small grids in space. Employing the empirical covariances in time and space would resuit
in huge matrices, which limit the applicability of such empirical approach. Consequently
a simple parametric model that catches only some aspects of the wind speed variability,
important for a particular application, is of practical interest. For wind energy harvesting
the minimal requirements on the model are that it should provide: a correct estimâtes of
long-term distributions of the wind speed; accurate prédictions of average durations of the
extreme winds conditions and reliable estimâtes of CDFs of top speed during storms.

We are primarily interested in modeling wind fields in offshore locations. The data are
10 minutes wind speed averages, sampled at frequencies ranging from 10 minutes to 6
hours. Our general assumptions are that the field is homogeneous in a région with radius of
about 200-300 km (the assumption is likely to fail in close to coast or inland locations) and
stationary for a period of 3-4 weeks. Consequently we shall first propose a temporal models
valid at fixed locations. Then the velocities of wind field movement, which are functions
of wind speed gradient covariances, will be used to define local spatio-temporal models.
Finally the local models are employed to define a global spatio-temporal model by means
of moving average field having kernels dépendent on the local parameters, e.g. variance and
velocities of storm movements.

The paper is organized as follows. In Section 2 a transform Gaussian model for wind
speed variability in time and space is presented. Then statistical properties of storm char-
acteristics are investigated in Section 3. The corrélation structure of the time sériés and
means to simulate the wind speed are discussed in Section 4. Next local homogeneous
spatio-temporal model for wind speed is presented in Section 5. One of the most important
characteristics of the model, the velocity of storm movements, is introduced and exemplified
in Section 6. In Section 7 the global non-homogeneous model for wind speed field is pro-

posed and validated by means of comparisons of the simulated wind fields and the one given
by ERA Intérim data. Finally in Section 8 the model is applied to study statistical proper-
ties of the encountered wind speed. Paper closes with two appendixes: Appendix A contains
somewhat more technical matters while in Appendix B estimation of spatio-temporal model
parameters is discussed.
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2. Transformée! Gaussian model and long-term CDFs.

In this section we shall introduce the transformed Gaussian model for the variability of
wind speed. In particular the transformation G making the transformed wind speed data
X = G(W) normally distributed will be presented. Seasonal model for the mean and
variance of X is given and assumed normality of X validated.

The wind speed W(p, t) is the ten minutes average of the wind speed measured at posi-
tion p, defined in degrees of longitude and latitude, while t is the time of the year. We will
use the transformation G(w) — wa, where a is a fixed constant that dépends on location p,
viz.

(2) X(p,t) = W(p,t)a<p>
The parameter a is nonnegative with convention that the case a — 0 corresponds to the
logarithm. We assume that X(p, t) is normally distributed. The choice of the transformation
(2) was inspired by the classical paper [7] in which the authors modeled wind speed data
at offshore location. In North Atlantic the estimâtes of the parameter a are between 0.5
and 1 see Figure 1. In inland locations the estimâtes are much smaller and the Box-Cox
transformation could be a better alternative to (2). The Box-Cox transformation was not
used in this work.

Mean of X(p, t), denoted by m(p, t), dépends both on position and time. The temporal
variability of the mean is approximated by seasonal components with trends defined as
follows

(3) ra(p,£) = mo(p) + rai(p) cos(27r t) + ra2(p) sin(27r t) + ms(p)£.
Here t has units years.

Common expérience says that wind speed vary in different time scales, e.g. diumal
pattern due to different températures at day and night; frequency of dépréssions and anti-
cyclones which usually occur with periods of about 4 days and annual pattern. To follow the
daim we propose to model X(p, t) as a sum of four independent Gaussian processesXj(p, t)
having variances of (p, t), i = 1,..., 4, i.e.

4

(4) X{p,t) = ^Xi(p,t), E[Ai(p,f)] = m(p,t), Var(Xi(p,t)) = of(p,£)
i— 1

and E[Xi(p,t)] = 0 for i > 2. Similarly as m(p,t) also logarithms of the variances
of (p, t) are modeled using seasonal components with trends
(5) ln(of (p, t)) = Mp) + &ü(p)cos(27rf) + &i2(p) sin(27r f) + bi3{p)t.
In the following we will write cr2(p, t) = Ylt= i ^(P> t)-

The last terms in (3) and (5) are trends which could be used to investigate possibility of
slow increase of the average wind speed, or the change of variance, over years which are
important issues when estimating safety of maritime operations. This type of problems are
outside of the scope of this paper and hâve not been studied.
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2.1. Estimâtes ofthe parameters

Ten years of data W(p,t) were used to estimate parameters a, rrij and bÿ, i = 1,..., 4
and j = 0,..., 3, in (3-5) in North Atlantic on a grid of 0.75 degree. Figure 1 présents
the estimâtes of parameter a. At offshore locations a values vary around 0.8 while close to
shore or inlands locations a can be much smaller. Note that small values of a indicate larger
departures of the observed wind speed distribution from the Gaussian one.

Parameter a in wind speed transformation

-60 -50 -40 -30 -20 -10 O

longitude

FIGURE 1. Values ofparameter a in the transformation (2).

In the right plots of Figure 2, the standard déviations cr(p, t), defined in (4), are presented
for February and August, respectively. One can see that the standard déviations change
considerably with the geographical location but are less dépendent on seasons. We tum
next to présentation of variability of the parameter ra(p, t), i.e. the mean of X(p, t) defined
in (2).

Since units of m are not physical we choose to show the variability of the médian speed

(6) M(P,t) = m(P,<)1/a(p)
instead. Values of the médian for February and August are presented in two left plots of
Figure 2. As expected, wind speed are higher in winter than in summer.

2.2. Validation of Gaussianity of X(p, t) at offshore locations

Usefulness of the proposed model relies on the accuracy of the approximation of X(p, t)
CDF by Gaussian distribution. The Gaussianity of the process, X(p, t) has been validated
for the Northern Atlantic. An example of conducted validations is shown in Figure 3. In
the figure the left plot shows ten years of W process limited to two weeks in the middle
of February, at locations (-20,60), (-10,40), (-40,50), (—20,45), plotted on the normal
probability paper. (It is assumed that the winds are stationary for such short period of time.)
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FIGURE 2. Left top - Médian wind speed p [m/s], defined in (6), in February. Left bottom - Médian wind speed
in August. Right top - Standard déviation of X, computed by means of (5) in February. Right bottom - The
standard déviation in August.

In the right plot of the figure the transformed data X — G(W) is plotted on the normal
probability paper. One can see that, except of the région of small wind speed, X CDFs are
well approximated by the Gaussian distributions.

Finally we check whether the régressions (3-5) used to model seasonal variability of m
and a2 — J2iLi aï leads to accurate estimâtes of the long-term CDF of W at position p.
Employing Gaussianity assumption of X CDF the theoretical long-term CDF of wind speed
at a fixed position p, defined in (1), is given by

(7) P (W < w) = —
/^(p) _ m(p; £)\
\ J dt,

where $(x) is the CDF of a standard Gaussian (normal) variable. In Figure 4 the yearly
probabilities for wind speed P(VF > w) computed using (7) at four locations in North
Atlantic are compared with the empirical estimâtes. (The locations are marked by crosses
in Figure 1.) One can see that the agreement between the estimâtes is excellent.
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FIGURE 3. Left: Ten years ofwind speed W(i) with t limited to February at the four locations. (—20,60),
(—10,40), (—40,50), (—20,45) plotted on normal probability paper. Right: Transformed wind speed X(t)
limited to February at the four locations plotted on normal probability paper. The values of parameter a in
transformation (2) are a = 0.850,0.675,0.875,0.875, respectively.

FIGURE 4. Comparions of estimâtes of the long-term probability Ÿ(W > w) for yearly wind speed vari-
ability (1) atfour locations defined in degrees of longitude and latitude; (—20,60), (—10,40), (—40,50) and
(—20,45). The solid line is the probability computed using (7) with 5 = 1 year. Somewhat more irregular Unes
are the estimated probabilities based on ten years of reanalysis data.
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3. Irregularity of wind speed time sériés, storm characteristics

The variance of the transformed wind speed a2 (t) is commonly used to describe the vari-
ability of the wind speed. It measures the average square distance of the transformed wind
speed from the mean value m(p, t). The large variance means that the speed can consider-
ably deviates from the expected value. However the variance does not tell how irregular the
measured time sériés actually is, e.g. how frequently the wind speed crosses the médian. In
this section we présent other means to describe wind time sériés variability.

Let assume that the wind speed W(t) is continuous. Dénoté by Nu the number of times
the process W (t) takes value u in [s, s+S] and call it the number of level u crossings by W.
The Nu function is a very useful measure of the irregularity of W. For example Nu du
is equal to the total variation of W in the interval [s, s + S], see [3]. Other applications of
Nu will be presented in following subsections.

3.1. Expected number of level u crossings

For a fixed position p let write W(t) = W (p, t), Xft) = Xfp, t), where Xi are defined
in (4), and m(t) — m{p, t), a2{t) = of (p, t). Further dénoté the dérivative of f(t) by f(t).

In the following we assume that W(t) is continuously différentiable and that the joint
density of W{t),W{t) exists everywhere and is bounded. Then the expected number of
crossings of level u by W(t) in [s, s + S] can be computed using the generalized Rice’s
formula [15], viz.

■s+S z'+oo

E[JVJ=/ /
t J S t/ —i

z\ fw(t),w(t)(z»u) dz dt.(8)

Now by (2) Nu is equal to the number of times X(t) takes the value ua, where a — a(p).
In Section 1 we hâve assumed that W(t), and hence also X(t), are stationary for a period
of few weeks. This means that Cov(X(ti),X(t2)) is well approximated by a function of
t2—h while E [X (ti)] « E [X (^2)] - Consequently the expected value of the dérivative X (t)
is approximately zéro and X(t) and X(t) are approximately uncorrelated, see [1], [2], for
more details. Dénoté by à2{t) the variance of X(t). Using these notation the intégral in (8)
can be written in a more explicit way, viz.

(9) E [Nu] =

‘S+S 1 &(t)
7r a{t)

(ua
e 2cr2 (*) dt —

‘S+S -| (ua-m(t))2
—— e 2cr2(4) dt,
T(t)

where

(10)

Basically 1 /r[t) is the intensity of points t solving X(t) = m(t), i.e. intensity of times the
wind speed W(t) is equal to the médian value. If W (t) were a stationary process then r
would be equal to the average duration of the period when wind speed is uninterruptedly
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Parameter x(t) [days] in February

-60 -50 -40 -30 -20 -10 0

Parameter x(t) [days] in August

-60 -50 -40 -30 -20 -10 0

longitude

FIGURE 5. Comparison ofspatial variability ofr(t), defined in ( 10) atfixed location. (Top) - February, (Bottom)
August.

above the médian speed. Such a period will be called the région of windy conditions. For
locally stationary process r(f) is interpreted as the local duration of windy conditions.

Estimâtes of the parameter r(t) for February and August are presented in Figure 5 . In
offshore locations r is less than two days, which is much shorter than the stationarity period
assumed to be about 3 weeks. Hence the parameter r(f) is practically equal to the expected
time period the wind speed exceeds the médian.з.2. Distributions ofstorm characteristics

We define stormy weather at position p and time t if wind speed W(t) exceeds some fixed
level u. (In the examples we will use u = 15 m/s.) Similarly, we define windy weather
conditions at time t if wind speed is above the médian, i.e. W (t) > /i(p, t). The région of
stormy conditions consists of time intervals when wind speed are constantly above threshold
и. The intervals will be called storms. Let N dénoté the number of storms that occurred in

[s, s + S]. Durations of storms are denoted by T?1, while the highest wind speed during a
storm by Af, i = 0,..., N. (Here we allow N to be zéro and, for consistence of notation,
we let Tçf = 0, Asf = 0.) The probability distributions of the characteristics will be defined
next. In order to efficiently write down the formulas for the CDFs we need some additional
notation introduced next.

Let the number of storms for which event (statement) A is true be denoted by N (A). For
example, N(Ast > w) is the number of storms for which wind speed exceed a threshold w,
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while N(Tst > t) is the number of storms that last longer than t. The empirical probability
that a storm last longer than t hours can now be written as follows

N(Tst > t)
N

Next the theoretical, based on model, probability of event A, e.g. A = ”Tst > t”, will be
defined by

(11) P(A) =
WW]

E [N]
e.g. P (Tst >t) =

E [N{Tst > *)]
~W]

The proposed model (2) will be validated by comparing the empirical distribution of
storms strength Ast and the average durations of storms with theoretically computed P(Ast >
vu) and E [Tst]. More complex storm statistics could also be used to validate the model but
it would require a dedicated numerical software, see e.g. [14] and references therein, to
evaluate E [1V(A)]. Hence it will not be used here. In the following only a simple bound

(12) V(Ast >w)< Ip-rj, w>u,
introduced in [16], [17], will be used for validation purposes. Since E [Nu] = 2E [N] hence
the expectations

(13) E [Tst] = S
P(W > u)
E [JV„] /2 ’

¥{W < u)
E [Nu] /2 •

In (13), Tcl dénotés time period when wind speed is uninterruptedly below the threshold u,
i.e. a time period between storms. The formulas (13) are proved in Appendix A.з.3. Validation of estimâtes (12-13) at offshore and close to coast locations

In order to further validate the proposed transformed Gaussian model for wind speed vari-
ability we will compare the theoretical statistics of the storm characteristics Ast, Tst and
Tcl with estimâtes of the statistics derived using ten years of reanalysis data. The data at
four positions p, marked by crosses in Figure 1, will be used.

The values r, presented in Figure 5, are used to evaluate expected number of crossings
E [.Nw] at the four positions. Then Ast CDF is estimated using formula (12) for the period
5 = 1 year. In Figure 6 the theoretically derived estimâtes (smooth solid Unes) are com-
pared with the empirical distributions (irregular Unes). One can see that the estimâtes of the
probabilities P(Ast > w) agréé very well with empirical probabilities at the four locations.

Next by combining formulas ( 13) with (7) and (9) the expected duration of a storm is
computed and then compared with the observed average durations. The expected duration
of calmer weather, i.e. time intervals when winds speed are constantly below the threshold
и, is computed in a similar way. The expectations E [Tst], E [Tcl] are computed for a
period 5 = 1 year and presented in Table 1. The results shown in the table and Figure 6
demonstrate a very good agreement between the observed storm characteristics at the four
locations and the theoretically computed one.



34

FIGURE 6. Probabilities P(.Ast > w), u — 15 [m/s], thaï wind in a storm exceeds level w during one year

atfour locations having longitudes and latitudes; (-20,60), (-10,40), (-40,50) and (-20,45). The solid Unes are

probabilities computed using (12) and (9) with a, r(i) and a(t) estimated at the locations. The irregular Unes
are the estimated probabilities using ten years of reanalysis data.

Table 1

Long-term (one year) expected storm/calm durations in days.

position E[Tst}
u =

finst

15 m/s

E[Tcl] rpcl E[Tst]
u =

rj^iSt
18 m/s

E[Tcl] rpcl
(-20,60) 0.6 0.5 4.4 4.2 0.5 0.4 13 11

(-10,40) 0.3 0.4 56 69 0.3 0.3 514 525

(-40,50) 0.6 0.5 4.4 4.2 0.5 0.4 12 11

(-20,45) 0.6 0.5 11 13 0.4 0.4 46 57
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4. The covariances of Xi(t) - simulation of wind speed

In this paper we are primarily interested in a simple model for X(t), t G [s, s 4- S], having
easily interprétable parameters and covariances given by explicit analytical formulas. We
assume that X (t) is build up from independent components Xi and that the covariances of
the components are defined by the parameters a^t) and

(14)
TT &i\t)

where of (t) is the variance of X^t). The number of components is four and these represent
variability of wind speed in different time scales; annual pattern; frequency of dépréssions
and anti-cyclones which usually occur with periods of about 4 days; diumal pattern due to
different températures at day and night; and noise. For the month February the parameters
Ti are shown in Figure 7 while cri are presented in Figure 8. Since ai are of comparable sizes
non of the components Xi can be neglected.

In Figure 7 one can see that average excursion length above the mean of the transformed
wind speed component X\ is about 1-1.5 month. The processes X2, X3, X4 hâve mean zéro
and the parameters t* measure the average duration of periods when Xt{t) > 0. One can
see that 72 is about 5 days while 73 about 1 day. Means to estimate the parameters and a%
are presented in Appendix B.

Parameter t [days] in February

-60 -40 -20 0

Parameter t2 [days] in February

I

Parameter x3 [days] in February
60

tu 50
T3

I 40
JD

30

-60 -40 -20 0

longitude

Parameter t4 [days] in February

-60 -40 -20 0
longitude

Figure 7. Comparison ofparameters n, i = 1,..., 4 defined in (14), in February.
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Parameter a3 in February
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Parameter o4 in February
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Figure 8. Comparison ofparameters ai i = 1,... ,4 defined in (5), in February.
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As mentioned in the introduction we are interested in a simple model of wind speed
variability having physically interprétable parameters and as far as possible leading to ex-
plicit formulas for the non-stationary and spatio-temporal covariances, see (22) and (40),
respectively. We thus propose to use Gaussian covariance functions for Xi, viz.

(15) Cm)(Xi(t),Xi(s)) = ^e^2^l2r‘.
Consequently, by assumed independence of the processes X{ the covariance function of the
process X is given by

(16) Cov(X(t), X(s)) = £ of e-2 (-‘W.
i= 1

A model having Gaussian covariance is sometimes criticized for its smoothness. Hence we
introduced the component X4 which serves as an additive noise. The process has parameter
t4 with values about 10 hours. (It should be also noted that ERA Intérim surfaces are very

smooth.)
In order to validate the model we hâve estimated the covariance of the signal W(p, t)a(p)

for February month at positions p marked by crosses in Figure 1. The empirical covariances
are marked as dashed lines while the model based covariance as the solid Unes in Figure 9.
We can see that accuracy is fair.

Table 2

Illustration of(17). Here r [day] is the expected length ofexcursion above mean of Gaussian Xi(t) having
covariance (15) while rd [day] is the expected length ofexcursion above mean ofthe time sériés Xi(jAt),

At = 0.25 day.

t 0.25 0.5 0.75 1 1.5 2 5 10 20
rd 0.50 0.62 0.82 1.05 1.54 2.03 5.01 10.01 20.00

Remark 1: In this work the wind speed is modeled using continuous time process X(t) =

Y,î=i Xi(t). In Figure 7 the parameters r» for the February are presented. The parameters
define solely the corrélations of the processes, see (15), and can be interpreted as the average
distance between up and down Crossing of E [Xi(t)].

The model is fitted to ERA Intérim data which is sampled with time step At of 6 hours.
For the sampled time sériés, i.e. Xi(tj), tj = j/4 days, the average distance between up-
and down-crossing of the level zéro is equal to rf — P(2Q(0) < 0,2Q( 1/4) > 0)/2. Now
the parameter t? is an explicit function of the corrélation which for model (15) is given by

(17)
2At

1 - arcsin ^e-7r2At2/2Ti^j /arcsin(l)
The relation (17) is illustrated in Table 2. By comparing the estimâtes of n presented in
Figure 7 and values given in Table 2 one can conclude that process X4 is a model of a noise
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which is hard to estimate if the sampling frequency is 6 hours. For the process X% errors
seams to be about 5% which is acceptable value and hence continuous time model seems
to be an option. Finally processes X3 and X4 are very smooth and the sample step At is
adéquate.

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

Lag (day) Lag (day)
FIGURE 9. Comparisons between the covariances of X(t), t in February, given in (16) (dashed Unes) and the
covariances fitted to the data (solid Unes) atfour locations having longitudes and latitudes; (-20,60), (-10,40),
(-40,50) and (-20,45).

The process Xi can then be defined as a moving average as follows

/+00 fn(t - r) dBi{r).
-OO

Here Bi are independent Brownian motions while the kernels fT are given by

fr(t) = (2/n)1/4~exp ^-7r2 ^ j .
4.1. Non-stationary covariances

When the process X (t) is considered for a period S longer than one month the assumption
of stationarity may not hold. This is manifested in the dependence of parameters r* and crt
on t. In the case when S is longer than one month we propose to model Xi as a moving
average (18) with variable kernel, viz.

/+00 °i(t) ~ r) dBi(r).
-OO

(19)
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Obviously the intégrais in ( 19) has to be computed numerically. This is carried out using
the following approximation

/+°° ~ s) dBi{s) « ~ Sj)VdsZij,
-oo •

where Z^, i = 1,..., 4, are independent zéro mean variance one Gaussian random vari-
ables, while ds = Sj+1 — sj. Here Sj forms an équidistant grid covering the domain of
kernels fTi. (In the case when wind speed are simulated on very dense grid then it is recom-
mended to slightly smooth the parameters a, crft) and rft).)

The process Xi defined by (19) has an explicit analytical covariance function given by

(21) Cov(Xi(t),Xi(s)) =

and hence

I 2Ti(t)Ti(s)
rHt) + rHs)

-7r2(s—t)2/(r^(s)+r?(t))

(22) Cov(X(t),X(s)) = e^2(8^/(T‘W+T‘(t))
Ï=1

4.2. Simulation of wind speed

The proposed model gives means for efficient simulation of wind speed over any time in-
terval. Given parameters a(t), m{t), of (f) and rft) the kernels fTi can be evaluated and
processes Xi simulated using (20). Altematively one can simulate X(t) employing covari-
ances defined in (22) and some of many methods to simulate Gaussian vectors. The algo-
rithm based on (20) is préférable when densely sampled wind speed for long period of time
are needed. In Figure 10 (top plots) simulated one year of wind speed are compared with
the ERA intérim data at two locations. The lower plots show the the same winds speed as
the top ones limited to the February. The signais look similar.

5. Local spatio-tempral models for wind speed field

In the previous section we presented a model for wind speed variability at a fixed loca-
tion W{t) — VF(p, t). The parameters in the models dépend on geographical location and
season. Consequently having established locally temporal models over a globe one could
evaluate long term distribution of wind speed at any fixed location. We hâve shown means to
estimate some storm characteristics. However there are problems which solutions requires
knowledge of simultaneous wind variability at several locations, e.g. the storm characteris-
tics encountered by a vessel. Another example is the prédiction of energy production from
a System of wind mill farms. Such problems call for statistical spatio-temporal model for
wind speed W(p, t). By assumed Gaussianity of the transformed wind speed it means that
one need to find the covariances between X(pi,t\) and X(p2, £2) which will be denoted
by C(pi,fi,p2,f2)-
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(-20,60) (-10,40)

FIGURE 10. Top - Comparison ofone year of ERA Intérim data at two locations (solid thick line) with two
simulation ofthe speed. Bottom - Zoomed top plots when wind speed are limited to February.

Similarly as for X (t) we will consider different time scales of wind speed variability and
define

4

(23) X(p,i) = ^Xi(p,t),
i—1

where where Xi(p, t) describes the seasonal variability, X^p, t) is modeling the observed
high frequency colored noise, respectively. The field X2(p, f) will model wind speed vari-
ability related to frequency of dépréssions and anti-cyclones occurrences while Xa(p,f)
will model diurnal pattern. (The fields X2,X3, X4 hâve mean zéro.) Since X% are indepen-
dent

4

C(pi, fl, P2, t2) = Q(pi, fl, P2, t2).
i— 1

The proposed model will be locally homogeneous and stationary in the sense described
in following sections. Présentation starts with a définition of local covariance functions,
which are homogeneous and stationary. The covariance

Q(Pl, G, P2, t2) - Q(P2 - Pl, t2 - fl)

will be Gaussian and will reduce to (15) if p2 = pi.
Since components Xi are independent hence, for simplicity of présentation only, we

drop the subscript i and write X for Xi. Further we shall dénoté by XX) Xy, Xt the partial
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dérivatives of X(x,y,t) on x,y and t, respectively. In addition we will dénoté (p, t) by
x when writing formulas for the covariances. We tum now to define the homogeneous
covariance describing the local corrélation structure.

Let A,

(Ail A12 A13 \A21 A22 A23 I
A3I A32 A33 /

be a symmetrical matrix having positive eigenvalues then

(25) C(xi,x2) = ar2 exp f-y (x2 - xi)A(x2 - xi)T"j = C(x2 - xx)
is a homogeneous covariance function. Obviously Yar(X) = a2 while some simple algebra
show that

(26) _ 1 Yar(Xx) _ 1 Yar(Xy) _ 1 Yar(Xt)
11 7T2 Yar(X) ’ 22 7r2 Yar(X) ’ 33 7r2 Yar(X)

Similarly one can show that

1 Cov(Xx,Xy)(27) A12 = 7r2 Yar(X)
, _ 1 Cov(Xx,Xt) , _ 1 Cov(Xy,Xt)^13 O TT Y / V\ 5 ^237T2 Yar(X) 7r2 Var(X)

Now it is easy to see that n2 a2-A is the covariance matrix of the gradient vector (Xx, Xy, 2Q).
— 1/2

Note that parameter r defined in (10) is equal to À33 . Similarly

(28) Ln ,-1/2 _ \-l/2
'11 jC/7/ À22

are the average length of the windy région in x, y, direction, respectively. As before we
say that the windy conditions are présent at position p at time t if wind speed exceeds the
médian speed, i.e. W(p, t) > /x(p, t).

Summarizing the diagonal éléments of A are equal to reciprocals of L2, L2 and r2. In
the following section we shall demonstrate that the off-diagonal éléments A13, À23 define
velocity of storm (windy weather région) movements. Obviously if A13 = A23 = 0 then the
covariance is separable and there is no organized movement of the wind field. Finally the
element À12 will define the main direction of the storm movement.

6. Velocity of a wind storm

A storm occurring at time t is a région where W (p, t) > u, e.g. u = 15 m/s. The border
of a storm is a u-level contour {p : W(p,t) = u}. The border changes as storms move,
grow or fall. In a classical paper [11] Longuet-Higgins has introduced velocities to study
movements of random surfaces. There are several définitions of velocities proposed in the
literature, see [4]. Here we will use velocity in a fixed direction 9, say. The direction 9,
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called the main azimuth of a storm, will be defined in Remark 2, see also Example 1. As
customary we use the convention that the direction south to north has azimuth 9 = 0° while
azimuth 9 — 90° for the direction west to east.

Following [4] the velocities in the direction 6 and 9 — 90° are given by

(29) Vg(-90°
Wt

Wg-gQo ’

where Wt is the time dérivative of the wind speed, Wq and Wg-ggo are the directional
dérivatives having azimuths 9,9 — 90°, respectively. These are evaluated at a position p on
the u-level contour and fixed time t.

The general assumption of this paper is that parameter a, see Figure 1, does not dépend
on time and changes slowly in space. Hence the gradient VW = (Wx, Wy, Wt) can be
approximated by

(30) VW« (l/a)I1/a_1VX,
where VA is the gradient of X-field. Hence velocities defined in (29) can be approximated
by

(31) % = -— , %-w =
A 6 -*-6-90°

where Xt is the time dérivative of the transformed wind speed, Xg and Xg_ggo are the di-
rectional dérivatives having azimuths 9,9- 90°, respectively. For a homogeneous Gaussian
field médian velocities are given by

(32) Vg =
Cov(Xg(p,t),Xt(p,t))

Yar(Xe)
ve-90°

Cov(Xg~g0o(p,t),Xt{p,t))
Var(Xg-ggo)

see [4] for a proof. The speed in directions 9 and 9 - 90° will be denoted by vg, vg-ggo,

respectively.
In the spécial case when 9 = 90° or 9 = 0°, i.e. one is interested in velocities of move-

ments along the x-axis and y-axis, we hâve that

(33) Vx —

Al3
An’

v„ =
A23
A22

In general the azimuth 9 is chosen in such a way that the directional dérivatives Xg, Xg^ggo
are uncorrelated, see Remark 2 for some discussions about the choice of 9.

Remark 2: For several reasons, see [5] for detailed discussion, it is convenient to rotate the
coordinate System so that the partial dérivatives Xx and Xy become uncorrelated.

Let Ag be the rotation by angle 9 around the t-axis matrix making covariance between
Xx and Xy zéro. Then let dénoté by A(9) the matrix A in the rotated coordinates viz.

A(ff) = Aj A Ag,(34)
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where Â!() is the transpose of Ag. Now Equations (26-27) can be written as follows
(35)

An(0) =
1 Yar{Xe)

7r2 Yar{X) ’ ^22^) =
1 Yar(Xe-9o°)

7T2 Var(X) ’ ^33(^) =
1 Var(Xt)

7T2 Yar{X)
^33,

and

« »„(.i - », »„(». - »»(») -

Further note that parameter r defined in (10) is equal to À33 . Similarly

(37) Ls=\u(er1/2 ie-90» = h2(0r1/2,
are the average length of the windy région in 9,9 — 90°, direction, respectively. Obviously
the médian speed vq and ve~90° can be evaluated using (33) once the matrix A(9) has been
evaluated.

Example 1: Let consider the following field

(38) X{x, y, t) = a\ Ri cos ( 2n T
2tt- + 0i ] + cr2 R2 cos 2?r- + 02

where Ri, i?2 and 0i, 02 are independent variables having Rayleigh, uniform CDF, respec-

tively, i.e. X is a sum of two independent Gaussian fields. The first component is a harmonie
wave moving along the x-axis with velocity L/T while the second term can be interpreted
as colored noise.

Obviously Xx is independent of Xy and hence 6 = 90°, see Remark 2. Further

Cov(Xe(p,t),Xt{p,t)) = -(2tt)2ct\/(LT), Cov{Xe-90o(p,t),Xt(p,t)) = 0

while Yar(Xe) — (2ir)2a\/L2. Hence the médian velocities (32) are given by

vq = {L/T, 0), V0-QQO — (0, 0).

In this simple example the médian velocities agréé with the velocity of the harmonie wave
moving along the x-axis.

In Figure 11 variability of the médian velocities vg and vg-900 (32) are compared. In
the top plots seasonal variability of vg is illustrated by showing différences between the
velocities in February and August. The maximal mean speed in the top plots is about 45
km/h while minimal is zéro. Similar comparison for the velocity vg-90o is given in the
bottom plots, where the maximal speed is about 19 km/h. Generally one can say that storms
move faster in winter than in summer, and the angle 9 also changes between the seasons.
For example, in the North Atlantic the storms move basically in average from west to east
while in the summer months the direction is opposite in latitude of around 20 degrees.
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FIGURE 11. Top - Estimâtes ofthe médian velocity, km/h, ofa storm (windy région) movement in direction 6 in
February and August. The color corresponds to speed. The highest speed (orange) is 45.1 km/h while the lowest
(blue) is 0 km/h. Bottom - Comparisons ofthe médian velocities ve-900 in February and August. The highest
speed is 18.6 km/h.
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We tum now to illustration of the dynamics of the fields Xt. Only the winter month
February and velocities vg will be presented here, see Figure 12. In the figure, left upper
plot, one can see that for the component X\, which model the seasonal variability, the
velocity vq « 0, i.e. the component has locally separable covariance (À13 and À23 are
practically zéro). Similarly the component X3, modeling diumal pattern, moves slowly with
speed about 10 km/h. The component ^(p, t), modeling wind speed variability related to
frequencies of dépréssions and anti-cyclones occurrences, moves relatively fast with speeds
about 50 km/h. Further the "noise" field X\ moves with speed which are not negligible
however the estimation error of the speed can be large because of relatively long sampling
step At = 6 hours.

V in February
ei

VQ in February
3

FIGURE 12. Estimâtes of the médian velocities, km/h,
highest speed X\ moves is 3 km/h, X2 maximal speed
maximal speed is 37 km/h.

VQ in February

-60 -40 -20 0

V0 in February

-60 -40 -20 0

the fields Xi moves in direction 6 in February. The
is 61 km/h, X3 maximal speed is 12 km/h while X4

Remark 3: Following irregularity factors can be useful

ncn 2 _ Ai3(<9) 2 A23(0)
9

\Aii((9)A33(<9) ’ 9 90 \JA22(0)A33(0)

Roughly, smaller values of the factors higher risks of extreme storms, see [5] for more
details. Further, if a2e + a2d_90o = 1 then the surface X drifts, viz.

X(p,t) = X(p~virt,0).
If p has rotated coordinates then vdr in rotated coordinates is equal to (vq, vq-qqo).
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7. Non-homogeneous spatio-temporal model for the field X

Dérivation of the inhomogeneous covariance fonction is a simple extension of the one di-
mensional construction, used in Section 4.1, of the non-stationary covariances (22). More
precisely a zéro mean Gaussian field Xi, having covariance fonction

Ci(xi,x2) = (J2i exp ^-y(x2 -xi)Âi(x2 -xi)T^ ,
will be defined by means of a moving average process, i.e. a convolution of infinitésimal
"white noise" with the following kernel

/*(z) = c^(27r)3/47r3 | det A*|3/4exp (-7r2zAjZT) ,

which one can write more formally as

ATj(x) = J fi(x-z)dBi(z),
where Bi{z) is a Brownian sheet. However, as mentioned before both variances a\ and the
matrices Ai describe local properties of Xt. The parameters are estimated using observa-
fions of the fields X% in small neighborhood of x — (p, t). We express this dependence
explicitly in the notation by means of of(x) and A*(x). For xi, x2 in a neighborhood of x
a covariance (25) can be defined, viz.

C»(xi,x2) = cr2(x) exp ^-y(x2 -xi)Af(x)(x2 -xi)Tj ,

and the value of the component Xi (x) can be simulated by smoothing Gaussian white noise
by means of a kernel

fi{z;x) = crj(x)(27r)3/47T3 | det A*(x)|3/4 exp (-7t2z A*(x) zt) ,

giving

ATï(x) = J /j(x- z;x) dBi{z).
The so defined non-homogeneous field is zéro mean Gaussian with covariance fonction
given by

Q(x, x') = J fi(x - z; x)/i(x' - z; x') dz.
The intégral can be evaluated leading the following explicit formula for the covariance

(40) Ci(x,x') = (Ti(x)(Ti(x') ,23|A<(x)|-i/2|Ai(x')|-V2_e_lrai
|Ai(x)_1 + Aj(x')'

;(Aj(x) 1+Ai(x/) 1)‘
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where z — x' - x = (x' — x,y' — y,t' — t). Finally, by assumed independence of the
components Xi the covariance structure of the X field is given by

4

(41) C(x, x') = Q(x, x').
i=1

Example 2: Simulations of wind fields. For any finite collection of points xt = (xi, yu U )
the random variables X(xj), i = 1,n can be simulated using covariances C(xi,xj)
evaluated using (40-41) and the average values of AT(x?;), m(xî) defined in (3). In Figure 13
two simulations of the wind speed field for t around 15th February and six hours later
are presented. The simulated fields are compared with the two fields extracted from ERA
Intérim data base. The fields look similarly. The comparison is by no means validation of
the model. It just shows that the model is not obviously wrong. The model will be validated
in the following section where statistics of the encountered wind speed measured on-board
of vessels will be compared with the theoretically, i.e. from the model, derived distributions.
The material is based on [18].

8. Statistics of encountered wind speed

In this section we shall apply the proposed spatio-temporal covariances (40-41) to describe
variability of wind speed time sériés encountered by a vessel. We will give means to dérivé
the long-term distribution of encountered wind speed and the expected number of cross-
ings of a level u that are needed to estimate expected duration and strength of encountered
storms. More detailed study of the data can be found in [18].

A ship route is a sequence of positions pî5 say, a ship intends to follow. We assume that a
ship will follow straight fines between the positions having azimuth ai, say. A voyage starts
at time s and will last for S days. Initial position p(s), azimuths a(t) and ship speed vsh(t),
te [s, s + S], define its position p (t) at any time t during a voyage. Then the encountered
wind speed are given by

(42) W(t) = W{p(t),t), s < t < s + S.
A ship sailing along a route (p(t), t) = (x(t),y(t),t), te [s, s + S], has velocity

(43) vsh(t) = (x(t),ÿ(t)) = vsh{t) (sfim(f),coso:(£)),
where vsh(t ) is the ship speed at time t. (Recall that the x axis has azimuth 90° while the
y-axis has azimuth 6 = 0°.) In the following we will use the transformed Gaussian field (2)
to model the encountered wind speed W(t), viz.

(44) W{t) = X(p(t),t)1MpW = X(i)1/o<t).
Theprocess X(t) is Gaussian with meanm(t) = m(p(f),f) and variance cr2(f) = a2(p(t),t),
respectively. The long term distribution of W (t) can be derived by means of the model viz.

wa(*) — m(t)
a{t)(45) P(W < w)

w
dt.
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FIGURE 13. Two simulations ofwindfields around 15th ofFebruary
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FIGURE 14. ERA Intérim windfields around 15th ofFebruary
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The irregularity of wind speed will be described by means of E [Nu]. The parameter r(t)
was defined in (10), viz. r(i) = Tccr(t)/\Jvar(X(t)). In order to evaluate Yar(X(t)) one
needs to introduce a time dépendent gradient vector VX(t) = (Xx, Xy, Xt)(p(t), t) and
the vector of dérivatives

(46) v = (x(t),ÿ(t), 1).

Obviously ship velocity vsh(t) = (x(t),ÿ(t)) and X(t) = v(t) • VX(f), where • is the
scalar product. Hence

(47) Var(X(t)) = v(t) A(f) v(t)T,
where A (t) is the covariance matrix of the gradient vector XX(t). The matrix A has to be
estimated in the région of interest. In Appendix B a sketch of the estimation procedure is
given. Knowing parameters r(f) and a(t) one can compute E [Nw\ (9) and the encountered
storm characteristics using formulas (12) and (13)

8.1. Validation - wind speed encountered by vessels

Measurements of the wind speed over ground, i.e. ten minutes averages, recorded each
ten minutes on-board some ships, are used to validate the proposed model. Since the data
are recorded much denser than the reanalysis we hâve removed high frequencies from the
signais (periods above 1.5 hour were removed using FFT). The data used in this study
is limited to the North Atlantic and western région of Mediterranean sea. The accuracy
of the theoretically computed long-term distribution of encountered wind speed will be
investigated.

First a single voyage operated in late August, shown in the top left plot of Figure 15, is
considered. In right top plot of the figure, the measured wind speed, shown as solid line, are

compared with the estimated wind speed using reanalysis, dashed dotted line. One can see
that the two signais are reasonably close.

In the left bottom plot of Figure 15, ten thin fines show the empirical long term proba-
bilities P(FF > w) computed for reanalysis based estimâtes of wind speed that would be
encountered if the ship were sailing the same route every year. One of the estimâtes is not
visible since it is very close to the P(fF > w) estimated using the on-board measured wind
speed, the thick solid fine. The ten estimâtes show large variability between years. The reg-
ular solid fine is the theoretically computed P(FF > w). It is close to the average of the
ten estimâtes derived from the reanalysis (not shown in the figure). We conclude that for
the considered route the theoretical long-term distribution of wind describes well long-term
variability of winds along the rout. Similar conclusions can be drawn from Figure 17 left
plot were the combined long-term distributions for ail 40 voyages are shown. Based on the
results presented in Figures 15 - 17, we conclude that the theoretical long term distribution
of wind speed encountered by a sailing vessels agréés well with the distribution derived us-

ing reanalysis; and secondly that the routing Systems used in planning a route is successful
in selecting routs with calmer wind conditions than average one, see also [12].



51

rout

FIGURE 15. Top left - A route sailedfrom Europa to America in late August. Top right - Wind speed measured
on-board a vessel (solid irregular line) compared with their estimâtes derivedfrom the reanalysis data (dashed
dotted line). Bottom left - Comparions of estimâtes of the long-term probability P(VF > w), plotted on the
logarithmic scale, for the voyage. The thick smooth line is the probability computed using (45). The less smooth
thick line is the probability estimated using the on-board measured wind speed. The thin irregular Unes are
the probabilities estimated from the reanalysis data for ten different years. Bottom right - Comparions of the
estimâtes of E [Nw], plotted on the logarithmic scale, for the voyage. The thick smooth line is E [Nw] computed
using (9). The thick irregular line is the Nw evaluated from the on-board measured wind speed. The dashed
dotted line is the estimate ofE [TV^.] using reanalysis derived wind speedfor the route sailed in ten years.

FIGURE 16. The considered routs in the validation process.



FIGURE 17. Left- Comparisons ofthe estimâtes ofthe long-term probability P(W > w)for theforty voyages.
The solid smooth line is the probability computed using (45). The dashed-doted line is the estimate ofF(W >
w) using ten years of reanalysis while the irregular line is the estimate of the wind speed encountered by
vessels. Right - Comparisons of the estimâtes of E [Nw] for the forty voyages. The solid smooth line is the
E [Nw] computed using (9). The dashed dotted line is an estimate of E [Nw] using ten years reanalysis while
the irregular line is the on-board observed Nw.

In Figure 15, bottom right plot, and in Figure 17, right plot, estimâtes of E [Nw] based
on reanalysis (dashed dotted line) and the observed Nw (the solid irregular line) are com-

pared with the theoretical E [Nw\ computed using (9) for routes shown in Figure 16 and
Figure 15 top left plot. One can see that the Unes are close except for the high wind speed.
The observed crossings of high wind speed (solid irregular line) are fewer than theoretically
predicted. This we attribute to use of routing programs that successfully choose calmer route
than the average one. This claim is also supported by studies of the estimate of E [Nw\ de-
rived from 10 years of reanalysis, shown as the dashed line. One can see that these estimâtes
are higher than on-board observed Nw for wind speed above 12 m/s. A more extensive sta-
tistical description of the encountered speed is presented in [18].

9. Conclusions

A statistical model for the wind speed field variability in time and over large geographical
région has been proposed. The model was fitted to ERA Intérim reanalyzed data. Valida-
tion tests show very good match between the distributions estimated from the data and the
theoretical computed one from the model. The model was also used to estimate risk of en-

countering extreme winds and the theoretical estimâtes agréé well with the empirical one.
Realistic wind profiles can be simulated using the model.

Appendix A:

In this appendix (13) is proved. Let assume that W (s) is a smooth process. Using Fubinni’s
theorem

E [Tst] /o+C° E [N(T* > <)] dt
EIJV1

N{Tst > t) dt
E [jVl
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Since J0+o° N(Tst > t)dt = fss+è l{w(t)>tt} dt, where 1 a{%) is the indicator function of
the set A taking value 1 if x e A and zéro otherwise. Again by Fubini’s theorem

E 1 {W(t)>u} dt
“s+5

P(W{t) > u) dt

and hence

E [Tst] = S
P{W > u) „ P(W > u)

E [Nu] /2 •

Appendix B:

In this appendix methods used to estimate parameters of the proposed spatio-temporal
model are sketched. The parameters of the model has been fitted for the North Atlantic.
Here the ERA Intérim data has been used. A moments method and régression fit were em-

ployed to estimate the parameters. In the following the measured wind speed at a location
will be denoted by w(t).
Step 1 : For a fixed geographical location and 0 < a < 1 the transformed wind speed

w(t)a is computed and the mean (3) fitted using LS régression. Empirical cumulative
distribution function (CDF) and Gaussian (CDF) are fitted to the residual w(t)a —

m(t). Parameter a* minimizing the distance between the two distributions is selected
as an estimate of a. The corresponding mean m*(t) is an estimate of m{t). Further
the residual x(t) = w(t)a* — m* (t) is evaluated and then used to estimate parameters
cf (t) in the following steps.

Step2: Estimation of signais Xi(t), i = 1,... ,4. The signal x\ is estimated as follows;
first one filters out from x(t) (see Stepl) the harmonies with periods shorter than 40
days. The resulting signal is an observation of x\(t). The signal X2{t) is derived by
filtering out harmonies with periods below 5 days from the signal x(t) - x\(t). The
signal xs(t) is derived by filtering out harmonies with periods below 1 day from the
signal x(t) - x\(t) - ^(t). Finally, x±{t) = x(t) - x\(t) - ^(f) - xs(t).

Step 3: For a signal Xi(t) the parameters af(t) are estimated as follows. For a sequence of
times tj, assuming stationarity of xî(s) for s in a neighborhood of 10 days around tj,
estimâtes of c%(tj) are found. Then of (t) are estimated by fitting seasonal compo-
nents, similar to (3), to sequences of observations (t1,al(tJ)2).

Step 4: Estimation of Efp, t), i.e. the covariance matrix of the gradient vector evaluated at
(p, t). The covariance matrix is defined by six covariances between the partial dériva-
tives of Xi. The functions are changing slowly with season but spatial variability can
be high, particularly at Coastal and inland locations. We fit six seasonal components
to the covariances for each of positions p on a grid with mesh 0.75 degree. The com-

ponents are estimated in a similar way as discussed in Step 3.

10. Acknowledgments

Support of Chalmers Energy Area of Advance is acknowledge. Research was also supported
by Swedish Research Council Grant 340-2012-6004 and by Knut and Alice Wallenberg



54

stiftelse. The author also would like to thank Wallenius Lines AB for providing on-board
wind measurement data and two anonymous referees for valuable comments.

References

[1] ADLER R.J. (1981) The geometry ofrandom fields. Wiley
[2] ADLER R. J. AND Taylor J.E. (2007) Random fields and Geometry. Springer Mono-

graphs in Mathematics.
[3] Banach, S. (1925) Sur les lignes rectifiables et les surfaces dont l’aire est finie Fund.

Math., 1 225-237.
[4] Baxevani, A., Podgôrski, K. and Rychlik, I. (2003) Velocities for moving ran-

dom surfaces. Prob. Eng. Mechanics, 18 251-271.
[5] BAXEVANI, A. and Rychlik, I. (2006) Maxima for Gaussian seas. Océan Engineer-

ing, 33 895-911.
[6] Baxevani, A., Caires, S. and Rychlik, I. (2008) Spatio-temporal statistical

modelling of significant wave height. Environmetrics, 20 14-31.
[7] Brown, B.G., Katz, R.W. and Murphy, A.H. (1984) Time Sériés Models to

Simulate and Forecast Wind Speed and Wind Power. Journal of Climate and Applied
Meteorology 23 1184-1195.

[8] Caralis, G. Rados, K. and Zervos, A. (2010) The effect of spatial dispersion
of wind power plants on the curtailment of wind power in the Greek power supply
System. Wind Energ. 13 339-355.

[9] Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P.,
BECHTOLD, P., BELJAARS, A.C.M., VAN DE BERG, L., BlDLOT, J., BORMANN,
N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L.,
HEALY, S.B., HERSBACH, H.,HÔLM, E.V., ISAKSEN, L., KÂLLBERG, P., KÔH-
ler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette,
B.M., Park, B.M., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.N.
and Vitart, F. (2011) The ERA-Interim reanalysis: configuration and performance of
the data assimilation System. Quarterly Journal of the Royal Meteorological Society,
137 553-597.

[10] KlSS, P. and JÂNOSI, I.M. (2008) Limitations of wind power availability over Europe:
a conceptual study. Nonlin. Processes Geophys. 15 803-813.

[11] LONGUET-HlGGINS, M. S.. (1957) The statistical analysis of a random, moving sur-
face. Phil. Trans. Roy. Soc. A, 249 321-387.

[12] Mao, W., Ringsberg, J.W., Rychlik, I. and Storhaug, G. (2010) Develop-
ment of a fatigue model useful in ship routing design. Journal of ship research, 54
281-293.

[13] Monbet, V., Ailliot, P., and Prevosto, M. (2007) Survey of stochastic models
for wind and sea State time sériés. Prob. Eng. Mechanics, 22 113-126.

[14] Podgôrski, K., Rychlik, I. and Machado, U. E. B. (2000) Exact Distributions
for Apparent Waves in Irregular Seas, Océan. Engng., 27 979-1016.



55

[15] RlCE, S. O. (1944, 1945) The mathematical analysis of random noise part I and IL
Bell Syst Tech J. 23 282-332, 24 46-156.

[16] Rychlik, I. and Leadbetter, M. R. (2000) Analysis of océan waves by Crossing
and oscillation intensities. International Journal of Offshore and Polar Engineering,
10 282-289.

[17] Rychlik, I. (2000) On some reliability applications of Rice formula for intensity of
level crossings. Extrêmes, 3 331-348.

[18] Rychlik, I. and Mao, W. (2014) Probabilistic Model for Wind Speed Variability En-
countered by a Vessel. Natural Resources, 5 837-855 . DOI: 10.4236/nr.2014.513072

Igor Rychlik
Mathematical Sciences,
Chalmers University of Technology,
SE-412 96 Gôteborg, Sweden. e-mail: rychlik@chalmers . se




