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Abstract: We propose a method for estimating the parameters in a latent
Gaussian field used for modeling daily rainfall. For the rainfall variable, a mono-
tonie transformation is applied to achieve marginal normality, thus, defining a
latent variable, with zéro rainfall values corresponding to censored values be-
low a threshold. Methodology is presented for model estimation and validation
illustrated using accumulated daily rainfall data from a network of 14 stations
in the Southern Sweden. Performance of the model is judged through its ability
to accurately reproduce a sériés of temporal and spatial dependence measures.

1. Introduction

Spatio-temporal variability of rainfall is an important source of variability that must
be properly taken into account. Daily and hourly stochastic rainfall models provide
useful supporting rôles in the analysis of risk and vulnerability within hydrologi-
cal and hydraulic Systems. These rôles include the génération of synthetic rainfall
records when there are none, extrapolation of short observed records, and temporal
downscaling of observed records.

Typically daily rainfall at a single site is represented as a mixture of two dis-
tributions in a parametric, nonparametric or semi-parametric framework. One is a
discrète binary part modeling the wet or dry State any given day and the other is a
continuous distribution modeling the nonzero précipitation amounts on wet days.

A lot of effort has been devoted to statistically model high précipitation amounts
which led to using distribution families that are right skewed. Different distributions
hâve been used, such as exponential [29], gamma [21], mixed exponential [31] and
truncated and power transformed normal distributions [4] and [20]. These distri-
butions behave reasonably well in terms of reproducing average characteristics ol
précipitation but none of them succeeds in representing extremes. Besides paramet-
rie models nonparametric approaches hâve also been employed. Synthetic rainfall is
sequentially sampled from historical records with replacement. Several limitations
especially with respect to extremes hâve been recognized, inhérent of the sampling
scheme, see [14] and corrected via nonparametric kernel density estimator. Repro-
ducing the entire range of daily rainfall has been studied in [30], [14], [23] and [19]
in which compound distributions are used for modeling précipitation amount.
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Recent interest in the field has moved away from individual location models to
models that are capable of generating spatially and temporally correlated rainfall
fields. This is especially difficult, given the highly variable nature of précipitation. It
is essentially crucial to capture the domain aggregated behavior of rainfall intensity
and the dry and wet spells that play an important rôle in hydraulic applications.
There are a number of approaches to spatio-temporal modeling. The techniques
include resampling, see [7], use of weather stations, see [18] and [10], or general-
ized linear models, [32]. Recently, [8] presented RainSim, a stochastic rainfall field
generator where rainfall fields are sampled from a spatial-temporal Neyman-Scott
rectangular puises process. Hidden Markov models were used for occurrence in [18]
and for intensity [1]. [2] and [27] on the other hand assumed that both parts of the
précipitation process - occurrence and intensity - can be modeled using the same
latent Gaussian process. Various well known transformation functions hâve been
suggested, for example [3] use a quadratic power function, [27] use a power function,
and [2] use a power-exponential function to transform the Gaussian value to the
desired intensities. Recently, [22] applied a two-part transformation function, with
one part being the inverse of a standard normal distribution and the marginal part
be given by a gamma distribution and [5] used a similar model but with a hybrid
gamma with generalized Pareto for the marginal distribution.

In this paper we assume that a latent Gaussian variable can be used to model the
rainfall with dry conditions corresponding to censored values below a given threshold
and wet conditions corresponding to transformed values above the threshold. A
methodology is presented for estimating the parameters of the latent Gaussian field.
The model is fitted to data from a network of 14 stations in Southern Sweden.
Validation is through the models ability to reproduce a sériés of temporal and spatial
dependence measures.

2. Mathematical formulation of the model

The aim of this model is to statistically describe properties of rainfall fields. We
will assume that at each location in space and day of the year, the rainfall amount
accumulated over that day is a realization of a random variable. We suppose that
we hâve a data set that consist of N distinct realizations of the précipitation process
at K locations over a period of D days. This data set is denoted {yn(s,t),n =

1,..., N; s = (xi, Ui), i = 1,..., K, t = 1,..., D}. We shall assume that this dataset
constitutes a set of independent realizations of a transformed Gaussian random field
(G.r.f) {y(s,£)}, which relates to a latent G.r.f {Z(s,t)} through

(2.1) Y(o f\ = S if Z (s, t) > v
1 0, iîZ(s,t)<u,

where i/j is a non-decreasing function, usually referred to as anamorphosis trans-
formation, used to transform the Gaussian values to the right skewed marginal
distribution of the rainfall amounts and v G R a threshold usually set to be zéro.
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The finite dimension distributions of a G.r.f Z are uniquely characterized by the
mean value Hz and the covariance structure Cz which are defined by:

(2.2) /*z(M) = E[Z(s,i)]
and

(2.3)
Cz{s, s + h, t, t + r) = E[(Z(s, t) - hz(s, t)) (Z(s + h, t + r) - /i^(s + h ,t + r))].

Hence from (2.1), is easy to see that the rainfall field Y is uniquely characterized by
Hz, Cz and the anamorphosis transformation ijj.

Notice that in the above scheme, we can also obtain the occurrence of wet events,
i.e. days with positive rainfall, 0(s, t) by means of the latent G.r.f. by

(2.4) 0(s,t) = | J’
3. Model fitting

The aim is then to describe guidelines for fitting the model to the data. We can
think of this procedure as consisting of two essentially independent parts: choosing
an appropriate anamorphosis function and estimating the first two moments of the
random field. The question of modeling the cumulative distribution function (cdf)
of the rainfall intensity has been widely developed in the literature. In this work we
shall concentrate on the problem of estimating the parameters of the latent G.r.f. Z.
Before we proceed any further, we would like to emphasize that the usual procedure
of fitting a mean and a covariance function to raw data does not apply anymore,
since we do not observe realizations of the G.r.f. Z but of the censored transformed
r.f. T.

3.1. Mean estimation

There is a clear link between the mean function of the latent G.r.f. Z and the rainfall
data Y through the frequency of wet days:

\/VarZ( s, t)

where $(•) dénotés the cdf of a standard normal random variable and v is the
threshold level in (2.1). For simplicity from now on we shall set v — 0 and assume
the field Z has been standardized, i.e. YarZ(s,t) = 1 . Hence, (3.1) simplifies to

(3.2) P (wet t day at location s) = <3>(^(s,t)).

Therefore, the mean function Hz is estimated by inverting (3.2) once estimâtes of
the probability in the right hand side of (3.2) are obtained.

(3.1)

P (wet t day at location s) = P(Y(s,t) > 0) = P{Z{s,t) > v) — $

if Z(s, t) > v
if Z (s, t) < v.
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3.2. Covariance estimation

We turn now to the problem of estimating the covariance structure in the latent
G.r.f. One way of estimating the covariance coefficients at a particular time lag for
a censored Gaussian variable is by numerically maximizing the likelihood of the ob-
served bivariate histogram of the censored latent variable, see [15] or by maximizing
a modified version of the likelihood for censored values, see [13]. [16] proposed a
method for estimating the covariance function of the latent field which comprises of
computing the empirical covariance of raw data, then fitting a positive definite func-
tion to it, computing the inverse of this function through the Hermite polynomial
expansion of the anamorphosis function, fitting a positive definite function to it and
then reversing it again with the use of the same Hermite polynomial expansion of the
anamorphosis function to finally obtain an estimate of the desired covariance. We
propose an alternative method of moments approach, by inverting the theoretical
expression for the mean of the censored cross product. We turn to this next.

The following relation holds for a bivariate Gaussian random variable Z = (Zi, Zj)
with mean p = (pi, pj) and corrélation pij (unit variances):

roc

(3.3) E[ZfZ+] = J g(x-p, p^) dx,
where Z+ = max(Zi, 0) and the function g is given by:

(3.4) g(x’, p, pij) = x(f)(x pi) (pij(x - Pj)+//*)$! — fia. i +
1 - Pii

+ \/1~Pij(
Pi + p(x - pj)

1 - pI

In the spécifie case of p\ = p2 — 0 the expectation in (3.3) simplifies to the well
known relation

(3.5) E[Zf z~j] = l^ (pij (f + arcsin(pÿ)) + \]l~P%) •

Therefore using (3.3) and (3.4), corrélation pij(r) between locations si and sj and
time lag r (we hâve assumed stationarity of the covariance structure at least over
the temporal component) can be estimated by minimizing

(3.6) minp r
J 0

g(x\ p^, p^) dx

where zf • dénotés the average of the product of the transformed censored values
at locations indicated by the subindices for the given time lag r and pu dénotés
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the vector (p(si,t), p(sj,t + t)). Note that function g is not a simple function of
pairwise corrélations which can be analytically inverted. The intégral in (3.6) needs
to be computed using numerical intégration. Moreover, a method for obtaining the
estimâtes z+ of the censored latent G.r.f. Z is also required.

Once we hâve computed the empirical corrélations Pij{r) (which, for variances
equal unity, coincide with Cov(Z(sî, t),Z(sj,t + r)), the covariance parameters are
estimated through the following method of moments minimization:

(3.7) minv EE n0bs{i,j,T) (pij(r) - Cz({si,Sj,t,t + T-,ri)))2 ,
t i+3

where Cz is a parametric covariance with r] denoting the set of parameters of Cz
and n0bs is the number of observations used in the estimation and which varies
with location and time. Hereafter we shall dénoté by x the estimate of any quantity
x. Notice that there is no theoretical restriction on the type of model covariance
function to be used, except for temporal stationarity. The only other restrictions are

imposed by the numerical complexity of the resulting minimization procedure.

3.3. Anamorphosis transformation

As already mentioned, the problem of modeling the marginal distribution has at-
tracted a lot of attention. Over the years, rainfall intensity has been modeled using
a Box-Cox transformation, see [6], a quadratic power transformation, see [15] and
[13], or a power-exponential transformation of the censored Gaussian distribution,
see [2]. In [23] a generalized Pareto (GP) distribution modeled heavy rainfall above
a high level. [22] used a gamma distribution, while mixtures of exponential distri-
butions were used in [31]. A gamma distribution alone, although flexible enough,
is not quite adéquate to model the tail of the distribution since it underestimates
large values, see e.g. [22]. The fit improves when the so-called hybrid gamma and
GP distribution is used, see [24], [14] and [5]. This hybrid distribution is a resuit of
coupling a gamma distribution with a GP distribution and has its origin in the one
introduced by [9], where Gaussian and GP distributions were stitched together.

Since in this work our main focus is in modeling the structure of the latent G.r.f
we take as anamorphosis transformation the composite of the empirical distribution
of the rainfall intensity with a censored Gaussian random variable. That is:

(3.8) ^{x) = [Femvyl o 4>Mz(æ), x G R

where Femp is the empirical cdf of the rainfall intensity and 4»^z is the cdf of a
censored normal random variable with mean value pz and variance unity, that is
given by

$(x-^z)-3>(-Mz)

0,

if x > 0

if x < 0,
(3.9) (**0
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where <f> and $ are the pdf and cdf of a standard normal random variable respectively.
Therefore the transformation ip in (2.1) is semi-parametric. The motivation for this
choice of anamorphosis function is that we do not want any additional variability
that would be caused by parameter estimation of the marginal distribution. For
more on the anamorphosis transformation see [11].

4. Implémentation and Example

4-1. Data

We consider a small network of K = 14 rainfall stations, denoted from now on by
s = (xi, yi), i = 1,..., K, located in Southern Sweden and covering an area from the
West coast to the East coast in the Baltic sea. The stations hâve been numbered,
see Figure 1. The data consist of accumulated daily rainfall during the month of
July (we assume the rainfall process can then be thought as stationary in time) for
N = bl years from 1961-2011. Less than 10% of observations were missing from each
station. The observation network is quite dense with distance between the stations
ranging from 30 km (distance between stations 10 and 11) to 290 km (stations 4
and 12). The climate in the area is dominated by the effects of the South Swedish
highland, an area situated more than 200 meter above the océan with the prevailing
western winds resulting to orographie précipitation in the surrounding areas.

5f

58° I

57° N

56° N

Figure 1. The locations of the available weather stations.

4-2. Marginal distribution

A simple unbiased estimator for any cdf is given by the corresponding empirical cdf.
Dénoté Fsmp, for s = (xi,yi),i = 1,..., K the estimator that is defined as

(4.1)



13

where Ia dénotés the indicator function of a set A, i.e. a function that equals unity
when property A is satisfied and 0 otherwise and Ns is the number of available data
at location s.

It is easy to show that for each location, Fsmp(x) is an unbiased estimator of
the marginal cdf Fs(x), for ail x G R. The computation of each Fsemp results in K
estimâtes for the empirical cdf, one for each location. Then the shape of each one of
them enables us to choose an appropriate parametric or semi-parametric family of
distributions. As we hâve mentioned before, we hâve decided not to perform this step
at this time since we are mainly interested in evaluating the procedure of obtaining
the distribution of the latent field. In [5], the authors hâve modeled the empirical
distribution using a hybrid gamma with a generalized Pareto distribution and in [23]
for the same data set, the authors used the composite of the empirical distribution
with generalized Pareto for the excesses.

It remains to estimate the distribution of the censored Gaussian random variable
in (3.9). For this we need to fist obtain estimâtes of the mean value /iz, which is the
topic of the next subsection.

4-3. Mean function

Estimation of the mean value fiz is straightforward by simply inverting (3.2). An
unbiased estimator of the probability of wet events is given by:

1 Ns
(4.2) pSit = P (wet t day at location s) = — l{yn(s,t)>o},

s
t=1

where Ns is defined as in (4.1).
Hence, a natural estimator of the mean function at location s and day t is

(4.3) £z(M) = 4>_1(ps,i)-
The proportion of wet events over day t at location s, ps>t, is estimated using (4.2)
and then an estimate of pz is obtained using (4.3). In Figure 2 we présent the
proportion of wet days for one example location the city of Halmstad (station 5 in
Figure 1).

The mean estimâtes, as can be seen in Figure 2, exhibit seasonality which together
with the spatial variability suggested different mean estimâtes at different locations
and days of year. In order to interpolate the mean estimâtes in space, i.e., also at
locations where there are no observations available, estimâtes of the mean pz(s,-)
could be regressed on small-order harmonies, spatial coordinates and altitude. Ad-
ditional covariates could also include distance to the coast as well as climate model
output or broad scale atmospheric conditions. So we write:

J
f 27rj \

£(s, t) = £o(s) + £j,i(s)sin ( 355* + fe,2(s) j ,
3=1 V

(4.4)
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Data

0.7
— Modal

0.6

- 0.5

0.4

0.3

0.2
50 100 150 200 250 300 350

days

Figure 2. Empirical and model estimâtes o/4>

with J not exceeding 2, and the régression coefficients being space dépendent. Pa-
rameter estimation is done by the Weighted Least Square (WLS) method, while the
number of covariates included is determined using the Bayesian Information Crite-
rion (BIC) see [26]. The BIC gave 1 as optimal value of trigonométrie terms in (4.4)
for about half of the stations and 2 for the rest. We hâve decided to use J — 1 for ail
stations since the gain for using the most complex model was not substantial. This
resulted to:

(4.5)

Then, the parameter estimâtes were interpolated in space by regressing them on
location covariates,

£»(s) = <^w(s)> * = 0,1,2(4.6)
where = (<5Mi)0,^i)2,with <W being the intercept and io(s) the co-
variâtes (1, latitude, longitude, altitude). The two steps in the estimation procedure
could probably be combined in one by building a composite likelihood, although
this was not explored any further. A different approach was adapted in [22], where
the authors assumed that the parameter estimâtes were themselves a realization of
some random field.

4-4- Covariance

We turn now to the problem of estimating the spatio-temporal covariance structure
Cz- In order to use the procedure outlined in section 3.2, we need estimâtes of
the censored values, z+, which are obtained by transforming the observed rainfall
amounts y, as follows:

(4.7) z+ = *ïl°fTnp(vh y>o
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with Fsemp(-) being the empirical cdf of the rainfall intensity during each month
estimated according to the procedure in section 4.2 and as in (3.9) with the
estimate of the mean value according to section 4.3 Then, performing the minimiza-
tion procedure in (3.6), using the MATLAB routine fminsearch, we obtain estimâtes
of Pij{r) for different time lags. The resulting covariances for different values of r
can be seen in Figure 3.

Observed spatial covariance of x=0 of latent Gaussian field

0.68 0.56 0.55 1

0.72 0.6 0.54 0.77 1

0.79 0.65 0.6 0.81 0.77 1

0.71 0.7 0.67 0.72 0.71 0.75 1 |
0.68 0.68 0.67 0.68 0.66 0.71 0.88 1

0.5 0.59 0.66 0.42 0.31 0.47 0.54 0.58 1

0.65 0.54 0.49 0.73 0.81 0.72 0.69 0.63 0.34 1

0.63 0.61 0.58 0.67 0.68 0.65 0.75 0.73 0.48 0.76 1

0.54 0.52 0.52 0.59 0.6 0.53 0.69 0.69 0.41 0.66 0.83

0.46 0.52 0.53 0.41 0.39 0.39 0.53 0.57 0.57 0.37 0.57

0.43 0.5 0.56 0.38 0.39 0.46 0.54 0.58 0.62 0.42 0.54

Observed spatial covariance of x=1 of latent Gaussian field

2 4 6 8 10 12 14

FIGURE 3. Spatial covariance structure for the latent Gaussian field for July for r = 0 (L^t) and
t — 1 (Right,).

The corrélation between different locations during the same day, t — 0 varies
between 0.3 (for stations 5 and 9) up to 0.88 (between stations 7 and 8) as can be
seen in Figure 3 (Left). In Figure 3 (Right), we plotted the corrélation between the
different stations but for one day delay, i.e. pij( 1), which, as expected, are weaker
and vary between 0.05 and 0.4. As can be seen in Figure 3 (Right), these corrélations
are no longer symmetric, i.e Pij(l) 7^ Pji{ 1)- This is due to the dynamics involved,
i.e. the motion of the weather Systems.

To these corrélation estimâtes we shall fit a parametric covariance function using
the minimization procedure in (3.7). For simplicity, we shall consider only fully
symmetric covariance functions, although as we hâve seen in Figure 3 (Right) the
data does not appear to be fully symmetric. On the other hand the assumption
of stationarity does not seem to be very restrictive, the area of Southern Sweden
seems to be homogeneous enough. The spatial anisotropy can be partly corrected by
forming an anisotropic covariance function by applying to the isotropie covariance
a non-Euclidean measure formed as Euclidean distance in a linearly transformed
spatial coordinate System. Additionally, the covariance function should also include
some kind of dynamics, a feature that is not accounted for in the présent choice of
covariance structure but should be further investigated.

Before we proceed any further the spatial coordinate System should be trans-
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formed by rotating the old isotropie axis x, y by an angle 0, forming new coordinates

/ x' \ / cos0 sin 9 \ ( x \(4'8) U' ) = (-sin* «»«)( y)
and then dilating them by a factor e to form the new coordinates

(4.9) ( x" ( vÆ 0
U'/l 0 IM

The distance h in the new coordinate System is transformed to

(4.10) ||^40)eh|| = y e(a;cos0 + ysind)2 + -(—xsin# + y cos O)2,
with isotropy attained for e — 1. There is some non-uniqueness in this formulation
which can be removed by adding some constraints on the ranges of the parameters,
see [17].

Finally, several parametric functions hâve been fitted using (3.7). For a collection
of valid spatio-temporal covariances, see [12], [25] and [28] among others.The con-
stant n0bs(i,j,T) in (3.7) equals the number of observations used in the estimation
of the empirical covariance between station s* on a given day and station sj after r
days. The minimization is performed for each time lag r separately. The covariance
structure that gave the best fit in terms of Weighted Least Squares (WLS) criterion
is the following,

(4.11) Cz(h,r) = ??{||h|| = 0,r = 0} + aW\ + 1
g o|r | + 1

where y > 0. The function 7?{-, •} models the nugget effect which allows for a disconti-
nuity at zéro, and is used to account for the undistinguishable micro-scale variability
and measurement error. The nonnegative parameters a and b are the scaling parame-
ters of time and space respectively, controlling the degree of dependence. The fitting
of the covariance structure resulted to a set of parameters [a, 6, rj, 9, e].

To illustrate the fitting of the spatio-temporal covariance function, Figure 4 shows
the fitted spatial covariance function for different time lags together with the em-

pirical covariances for July. Our method of moments approach to estimating the
parameters of the covariance shows reasonable performance. A simulation study
showed that the method of moments approach performed considerably better than
the modified maximum likelihood (MLE) used in [13] in terms of bias of the esti-
mated corrélation. The modified MLE severely overestimated the corrélation when
the dependence between censored bivariate Gaussian data was strong, but performed
reasonably well when data were independent. On the other hand, the method of mo-
ments approach performed equally well for any type of dependence between data.
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Figure 4. Spatio-temporal covariance function (4-11) (finesJ for the latent Gaussian field with
empirical covariances (*) for July for time lags r = 0,1,2,3 from top to bottom.

5. Model Validation

In this section we validate the performance of the method for modeling the spatio-
temporal variability of the rainfall fields. For this, we generated 100 trajectories of
the 51 years of data using the proposed algorithm and then examined the results.

5.1. Simulations

To simulate rainfall data at site s on day t, we perform the following steps.

• A realization of a normal random field Z(s,t) with mean function ftz and
covariance Cz is generated.

• For every location and day there is zéro rainfall if Z(s,t) < 0.
• For location and day with positive rainfall the simulated intensity is set to

Y(a,t) = $(Z(8,t)).

5.2. Temporal model

As is well known, the previous day’s property of dry or wet greatly influences next
day’s weather, see e.g. [23]. For this reason, transition probabilities with previous
dry and wet day are estimated. Figure 5 illustrâtes these observed and simulated
transition probabilities for the city of Halmstad (station 5 in Figure 1) together with
a pointwise 90%-confidence interval based on 100 simulations. As it can be seen the
probability of next day to be wet is about 0.2 higher if présent day is wet than
if it is dry. The stochastic model slightly underestimates the transition probability
of a wet day given the previous day is wet and it overestimates the corresponding
probability given previous day is dry. Since these probabilities dépend mainly on the
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Figure 5. The observed, (dots,) and simulated (linej proportions of wet day given previous wet
(Left) and dry (Right) day at Halmstad, unth a pointwise 90%-confidence interval based on 100
simulations.

one day-lag corrélation between the different stations, this suggests that the fit of
the corrélation could be better improved.

We turn next to the dry/wet behavior of the obtained stochastic model. We
remind that the distribution of the length of the wet and dry spells, i.e. the time
there is positive rainfall or no rainfall respectively, is an essential feature of any
stochastic model for rainfall. Notice that these characteristics dépend solely on the
latent process since they coincide with the time the process spends above (below)
the zéro level. The empirical distribution of wet (Left) and dry (Right) spells can be
seen in Figure 6 together with the model distribution and a 90% confidence interval
superimposed. The length of the wet spell is very well replicated for any spell length,

Duration (days) Duration (days)

Figure 6. The empirical distribution (dots) ofnumber consecutive wet (Left) and dry (Right) days,
and the ones based on simulations (+) with a 90% confidence interval superimposed, at Halmstad.
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and the same is true for most of the dry spell lengths.

5.3. Spatial model

A positive feature of the defined stochastic model is in correlating wet events across

space. In order to illustrate the fit of spatial dependence we hâve considered ail pairs
of stations and then computed the observed and model proportions of simultaneously
wet and simultaneously dry days. The results are gathered in Figure 7. The latent

FIGURE 7. The proportions of simultaneously dry (Leftj and simultaneously wet days (Ttightj. The
proportions of observations are given on y-axis with the corresponding simulated proportions on the
x-axis with a 90% confidence interval based on 100 simulations given by Unes.

Gaussian field seems to replicate well the simultaneous wet behavior.
Another interesting feature of the spatial dependence structure is whether it prop-

erly replicates the number of wet stations each day. Figure 8 displays the observed
proportion of number of stations with positive rainfall. Days where data are missing
for at least one of the stations were removed. The stochastic model seems to replicate
quite well the observed frequency of total number of stations with simultaneous wet
events. It is interesting to notice that the probability to hâve no observed rainfall at
any of the stations is about 0.22, while the probability to observe précipitation at
ail stations is about 0.17 and higher than the probability to observe positive rainfall
in any subset of locations.

In general we feel that the model replicates spatial aspects of the précipitation
process well.

5.4. Spatio-temporal model

The most difficult feature of multisite rainfall data is the spatio-temporal dependence
structure. We hâve already seen in Figure 4 that the parametric covariance function
of the latent Gaussian field fits well the empirical covariance for at least a few time
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Figure 8. The proportions of obserued number of stations that are simultaneously wet and the
corresponding quantity for the stochastic model with a 90% confidence interval.

lags. Following [22], we validate the fit of the spatio-temporal structure by checking
the domain aggregated behavior. The domain aggregated rainfall is the total rainfall
from ail stations at each given day. Further, a domain aggregated dry spell is defined
as the number of days where ail stations are dry and similarly, a domain aggregated
wet spell is the number of days where at least one station is wet.

An alternative way to the spatio-temporal aspects of the generated dry/wet be-
havior is by examining pairwise lagged rainfall probabilities defined as follows:

(5.1) P(Y{Si,t- 1) = 0,Y(Sj,t) > 0) and PÇYfat- 1) > 0,Y(sj,t) = 0).

Each point in Figure 9 represents observed and model proportions of either one of
the pairwise lagged rainfall occurrences. The stochastic model seems to overestimate
the quantity for small proportions in July. The déviation is only of order 0.02 and
unlikely to hâve a significant impact in practice.

6. Conclusions

We hâve presented a general methodology for modeling spatially correlated fields of
daily rainfall. The method relies on a latent Gaussian random field that drives both
the rainfall occurrence and the rainfall intensity processes, with the rainfall intensity
being modeled as transformed Gaussian.

The mean function was estimated by inverting the proportions of rainfall at each
location and then seasonally varying parameters were spatially interpolated using
régression with Fourier components and location covariates respectively. A paramet-
rie covariance function was used to model the observed spatio-temporal corrélations
with the fitting performed using a method of moments approach and certain rela-
tions that hold for censored Gaussian moments.
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Figure 9. The pairwise lagged occurrence proportions where the observed proportions are given on
the y-axis and the corresponding quantities for the stochastic generator are represented on the x-axis
mth a 90% confidence interval for the model values given by Unes.

We illustrated the methodology in a data set from Sweden, a network of 14 stations
spanning over 51 years. Realistic spatio-temporal artificial sequences of rainfall hâve
been generated and used to validate different aspects of the proposed model. We
hâve shown that the stochastic model seem to be able to reproduce the dependence
between different days and stations quite well. Also, the method shows a good ability
to replicate dry and wet behavior. The possibility to include other covariates such
as climate model output or broad scale atmospheric conditions in order to model
the corresponding spatial extrapolation of the parameters should be investigated.
Finally non-isotropic spatial covariance structures should also be fitted.

7. Appendix section

In this section we dérivé formula (3.3). Let X,Y be two standard (mean zéro and
variance unity) Gaussian random variables with corrélation p. Then we hâve the
following représentation:

Y = pX + yi - p2i
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v
where = dénotés equality indistribution and £ dénotés a standard normal random
variable independent of X. Then, it is easy to see that:

E[y+X+j = E[({pX + yi - p2£) V o) (X V 0)]
rÇ=oo rx=oo

= / (y/l -p2Ç + px)l
'£=—oo J x=0
rx=oo r£=oo

/ z<p(x) /
>x=0 JÇ= px

^y+px>ox'r(xMi)dxdt;

(y/l- p2£ + px)tp(Ç)dÇdx

' x=0
xv(x)(px$(—j==) + y/l-p2p( JPX J)dx,yï3?

where X+ = max{0, X}. By letting

g(x]p) = x(xp<$>( px ) + y/l ~ P2ip(
px

yr3? »

the covariance of non-negatively truncated versions of X and Y is given by
r oo

(7.1) Cov(X+,y+)= / g(x,p)p(x)dx-E[X+]E[Y+}.Jo

It is easy to généralisé for the case of non zéro means by modifying function g to

g(x] px,PY, P) - x<p(x-px) ((p(x-pY)+Px)$(^^^—/Yh+V1 ~ PM—
V1 ~ P

where px = E[X] and py — E[y],
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