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Abstract

This work regards the development of a distributed model predictive control

strategy for large-scale systems, as centralized implementations often suffer from

non-scalability. The decomposition of the overall system into minimally coupled

subsystems as well as their coordination are based on optimality condition de-

composition (OCD) and community detection. The OCD approach allows to

solve the associated control subproblems in parallel in an iterative manner until

the required degree of accuracy is attained. The proposed strategy is tested on

two different systems, the quadruple-tank system and the Barcelona drinking

water network, which allow to highlight the effectiveness of the approach.

Keywords: Large-scale systems, model predictive control, distributed control,

optimality condition decomposition, community detection.

1. Introduction

The design and operation of technological processes have experienced a great

development in the last decades, giving rise to large-scale systems, which are

characterized by the spatial distribution of their constitutive elements and the
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transmission of energy and matter among these elements. Therefore, the ever-5

increasing complexity of these systems requires the use of advanced control

strategies to govern their behavior [1].

One of the techniques that has received more attention is model predictive

control (MPC). A large number of methods fall under the umbrella of MPC,

sharing several features such as the explicit use of an approximate model of the10

process to predict the effect of a certain action on the system, the definition of

a set of operational goals to quantify the system performance and the receding

strategy that shifts the prediction horizon towards the future [2]. Furthermore,

MPC has been widely applied in the industry given its intuitiveness and versa-

tility, a fact that can be testified by the large number of industrial applications15

reviewed in [3].

Although MPC has proven to perform remarkably well in a vast array of

domains and test cases, its implementation is often impractical when performed

in a centralized manner (CMPC). Indeed, the distinct features that characterize

large-scale systems often result in a non-scalable model, i.e., the maintenance20

and update of a huge centralized model at every change in the system config-

uration constitutes an arduous task [4]. Moreover, the reliability of the net-

work might be jeopardized if the decisions are centralized in a single controller

[5]. These reasons foster the advancement of non-centralized control strategies,

which divide the control effort among several local controllers, each in charge of25

a portion of the system. This approach allows to reduce the control design com-

plexity and the computational demand. MPC is no exception to this paradigm,

which can be realized by the extensive body of literature on non-centralized

MPC. A comprehensive overview of methods and applications can be found in

[6–8] and references therein.30

In order to design a non-centralized MPC, the overall system must be divided

into a set of smaller subsystems. The goals of the decomposition are twofold:

first, to ensure that each subproblem is much smaller than the overall problem,

i.e., there are fewer decision variables and constraints in the subproblems than

in the overall problem; and second, to ensure that each subproblem is only35
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coupled to a few other subproblems, i.e., each subproblem shares variables with

just a few other subproblems [9]. However, the choice of decomposition is, in

turn, a sensitive matter, as it has a decisive effect on the performance and

the computation time, which can be considerably improved by selecting an

appropriate decomposition [10].40

System decomposition allows for distributed resolution of the subproblems. R1.1

A large number of distributed optimization techniques have been reported in the

literature, and can be classified into two different groups, according to whether

they are based on augmented Lagrangian decomposition or decentralized solu-

tion of the KKT conditions for local optimality [11]. Two of the most popular45

techniques are the alternating direction method of multipliers (ADMM) and

the optimality conditions decomposition (OCD), and pertain to the first and

second class of approaches, respectively. Although somewhat similar in essence,

there are some differences between these two approaches. First, the Lagrangian

function employed in ADMM is augmented with additional terms associated to50

the constraint residuals [12], which is not done in the case of the OCD. Instead,

OCD maintains all coupling constraints in its own subproblem while relaxing

them in adjacent subproblems [13]. Moreover, while ADMM duplicates vari-

ables shared by multiple subproblems and adds equality constraints to ensure

consistency of the local solutions, OCD assigns each variable to a specific sub-55

problem, and considers that those variables assigned to the subproblem are the

only ones allowed to change in its resolution [14]. As a result, ADMM requires

a central coordinator to manage the dual variable update step, while OCD does

not [14].

Stability and convergence of the solution yielded by distributed optimiza-60

tion approaches need to be ensured. These topics have been extensively stud-

ied, and several results on stability [15–17] and convergence [18–20] have been

derived. In particular, very recent results have been reported in [21], where R1.2

an ADMM-based computationally-efficient distributed optimization algorithm

with guaranteed stability and convergence is provided. This is a novel result,65

as it tackles the case of distributed optimization under non-convex constraints
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and provides a generic algorithm for distributed nonlinear MPC with localized

model information.

Summary of the paper and contribution

This work regards the development of a distributed MPC (DMPC) strategy70

for large-scale systems. The approach is divided in two parts: first, a decompo-

sition and coordination method is introduced to divide the overall system into a

set of subsystems that are minimally coupled to each other. Indeed, the system

partitioning problem is carefully examined, as its outcome is closely tied to the

control performance. Then, the control subproblems are synthesized by consid-75

ering the non-centralized MPC framework, and their solutions are coordinated

using the selected policy. Stability and convergence of the solution are analyzed,

and the performance of the approach is tested on two different case studies.

The contributions of this work with respect to the state of the art are listed

below:80

• Some preliminary results regarding the proposed DMPC approach were

obtained and discussed in [22]. However, while several aspects such as the

stability and the convergence of the solution yielded by the method were

not explicitly addressed, these properties are duly analyzed in this work.

• Following the above discussion on different distributed optimization ap-85

proaches, the OCD approach is selected. Its original derivation was il-

lustrated on static optimization problems, i.e., devoid of the temporal

component that is intrinsic to control problems. Therefore, this work

adapts the method to solve DMPC problems. A review of the literature

reveals that the integration of the OCD approach in a DMPC scheme is90

a novel approach: although some preliminary results are reported in [23],

the proposed method is not demonstrated for a DMPC.

• On the other hand, the decomposition strategy employed in [22] only took

into account the structural properties of the system, thus only considering
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the couplings introduced by the dynamics. Conversely, the decomposi-95

tion methodology is refined in this work, using the Karush-Kuhn-Tucker

(KKT) optimality conditions and some ideas from community detection,

which allows to consider couplings that may be introduced by the cost

function.

• The use of community detection to solve DMPC problems is relatively100

recent [24–29]. However, the cost function is usually required to be com- R1.5

pletely separable, either by problem construction or by manipulation of

the original problem, introducing auxiliary variables and constraints. Con-

versely, the proposed approach only requires the cost function not to be

completely coupled, thus overriding the need to manipulate the problem,105

which might render its formulation more intricate.

• The cost function is taken into account at the decomposition stage by

considering the optimality conditions of the overall problem. Then, the

OCD determines the coordination policy as a result of the obtained de-

composition. By contrast, other existing decomposition approaches do not110

determine directly how the subproblems should be coordinated, and thus

require to use an additional coordination strategy.

• The proposed approach allows for a rather direct extension to the robust

control case considering tube-based approaches using the results in [30].

The remainder of this paper is structured as follows: Section 2 introduces115

some necessary background material. Section 3 states the problem and identifies

the required steps to solve it. Section 4 details the proposed approach: the

OCD and the community detection frameworks are described first, allowing to

synthesize the DMPC. Moreover, the convergence and stability of the solution

are also analyzed. Finally, Section 5 tests the control approach on the quadruple-120

tank process and the Barcelona drinking water network (DWN), which allows

to draw conclusions and outline future research directions in Section 6.
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Notation

Throughout this paper, let Z≥0 and Rn denote the set of natural non-

negative scalars and the space of n-dimensional column vectors with real entries,125

respectively. Scalars are denoted by either lowercase or uppercase letters; vec-

tors, by bold lowercase letters; matrices, by bold uppercase letters; and sets, by

calligraphic symbols. Set inclusion is indicated with the symbol ⊆, whereas the

union and intersection of multiple sets are denoted with
⋃N
i=0 Xi and

⋂N
i=0 Xi,

respectively. Moreover, ‖x‖2K , xᵀKx, and max (x) and |x| indicate the maxi-130

mum entry and the absolute value of x, respectively. Furthermore, transposition

is denoted with the superscript ᵀ; and element-wise relations of vectors, with

the operators <, ≤, =, ≥ and >.

2. Preliminaries

2.1. Model predictive control135

MPC is an optimization-based control technique that employs a dynamical

representation of the process to solve a finite-horizon optimization problem at

each time instant over a certain horizon. As a result, a control sequence that

minimizes a cost function subject to physical and operational constraints is

obtained [31].140

Consider that the system to be controlled can be described using the general

linear discrete-time state-space representation

xk+1 = Axk + Buk, (1a)

yk = Cxk + Duk, (1b)

where k ∈ Z≥0 denotes the current discrete-time instant, the vectors xk ∈ Rnx ,

uk ∈ Rnu and yk ∈ Rny represent the system states, control inputs and system

outputs, respectively, and A, B, C and D are time-invariant matrices of suitable145

dimensions.
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Then, an MPC can be designed to fulfill the operational goals associated to

(1). The optimal control sequence to be applied to the system is given by the

solution of the following open-loop optimization problem:

min
{ui|k}

k+Hp−1

i=k , {xi|k}
k+Hp
i=k

J
(
ui|k,xi|k

)
(2a)

subject to

xi+1|k = Axi|k + Bui|k, i ∈ {k, ..., k +Hp − 1}, (2b)

ui|k ∈ U , i ∈ {k, ..., k +Hp − 1}, (2c)

xi|k ∈ X , i ∈ {k, ..., k +Hp − 1}, (2d)

xk+Hp|k ∈ XHp
, (2e)

xk|k = xk, (2f)

where {ui|k}
k+Hp−1
i=k , {uk|k,uk+1|k, · · · ,uk+Hp−1|k} and xi|k is defined in the150

same manner, with k the current time instant, i the time instant along the

prediction horizon, and k + i|k the predicted value of the variable at instant

k + i using information available at instant k. Moreover, J
(
ui|k,xi|k

)
allows

to determine the cost throughout the prediction horizon Hp, and X ⊆ Rnx and

U ⊆ Rnu represent the feasible sets according to the physical and operational155

constraints.

Remark 1. A terminal constraint set and a terminal cost are added to (2) to

stabilize the plant [32]. In particular, the terminal constraint set XHp
in (2e)

can be defined as an invariant ellipsoidal set of the form [30]

XHp
=
{

xk+Hp|k ∈ Rnx

∣∣∣xᵀ
k+Hp|kQxk+Hp|k ≤ 1

}
, (3)

whereas the terminal cost is formulated as
∥∥xk+Hp|k

∥∥2
Q

, and Q is chosen as the160

corresponding LQR gain [33].

The optimal control sequence (with respect to the chosen criteria) is given

by {ui|k}
k+Hp−1
i=k , provided that the problem is feasible. However, only uk|k is
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applied to the system, according to the receding philosophy

uMPC
k , uk|k, (4)

which is repeated at the next time instant to exploit the most recent measure-165

ments, thus transforming the original open-loop strategy into a closed-loop one.

2.2. Lagrangian relaxation

Consider that the control problem (2) is reformulated as follows:

min
z

f(z) (5a)

subject to

a(z) = 0, (5b)

b(z) ≤ 0, (5c)

where z ∈ Rnz , f(z) : Rnz → R, a(z) : Rnz → Rna and b(z) : Rnz → Rnb .

Note that z includes all decision variables in (2).170

The original problem can be transformed by using the method of Lagrange

multipliers to facilitate its resolution. Then, the Lagrangian function associated

to (5) can be defined as [34]

L(z,λ,ν) = f(z) + λa(z) + νb(z), (6)

where λ and ν are the Lagrange multiplier vectors of suitable dimensions asso-

ciated to a(z) = 0 and b(z) ≤ 0, respectively [35].175

This function can then be used to formulate a relaxed version of the original

problem [36]:

min
z
L(z, λ̄, ν̄), (7)
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where λ̄ and ν̄ indicate fixed values of λ and ν, respectively. The main advan-

tage of (7) over the original problem (5) is that it can generally be decomposed

into subproblems180

min
z(i)

N∑
i=1

L(i)
(
z(i), λ̄, ν̄

)
, (8)

which can be solved in parallel and yield an approximate solution of (5).

Remark 2. z(i) denotes the subset of variables that belong to the i-th sub-

problem, with z(i) ∈ z and
⋃N
i=1 z(i) = z. Moreover,

⋂N
i=1 z(i) = ∅ corresponds

to the particular case in which the overall problem decomposes into completely

decoupled subproblems.185

The convergence of the solution for the subproblems (8) is achieved by up-

dating the values of the Lagrange multipliers in each subproblem after each

iteration. The i-th subproblem has a set of multipliers, each linked to another

subproblem’s complicating constraint that includes an optimization variable of

the i-th subproblem. These multipliers are assigned a seed value and updated190

(after the subproblems are solved) using the errors in the corresponding com-

plicating constraints. This procedure is repeated in an iterative manner until

the required degree of accuracy is attained.

3. Problem statement

The problem at stake consists in deriving a control approach based on (2)195

that guarantees the convergence and stability of the solution and whose im-

plementation is suitable for large-scale systems. Indeed, (2) is formulated in

a centralized manner, i.e., the overall problem is solved by a single decision

unit, a strategy that might suffer from implementation issues when applied to

large-scale systems. Therefore, it is desirable to reformulate the problem using a200

non-centralized approach. These can be classified into two main groups accord-

ing to the availability of information and interactions among local controllers:
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• Decentralized control approaches solve each subproblem by ignoring the

interactions among subsystems. Depending on the existing degree of cou-

pling among subsystems, such strategies might lead to a poor overall per-205

formance [37].

• Distributed control approaches, on the other hand, take explicitly into

account the effects of local actions at the systemwide level. Indeed, the

developments in information and communication technologies enable the

exchange of information among local controllers, thus allowing for cooper-210

ation and negotiation with the aim to achieve the best global performance

[38]. These problems are solved in an iterative manner until the desired

level of convergence is achieved, thus prioritizing the optimality of the

results over computation time.

Given the fact that the performances offered by distributed approaches are215

closer to the optimal centralized performance than those offered by decentral-

ized ones, the former will be considered. However, distributed control methods

require a number of decision units, each solving a local optimization problem

(subproblem), as well as a mechanism that allows to coordinate the solutions

of the subproblems. Indeed, partitioning the overall problem into subproblems220

generally leads to couplings in the optimization variables, i.e., variables that

appear in more than one subproblem. Therefore, it is desirable that the lo-

cal controllers are able to share their solution with each other, which allows to

solve again their local problem with updated information. This iterative pro-

cess is repeated until the desired level of convergence for the coupled variables225

is achieved. A number of coordination methods based on the Lagrangian relax-

ation approach introduced in Section 2.2 have been reported in the framework

of distributed control.

The steps required to solve the considered problem are outlined below:

• Divide the overall system into a set of smaller subproblems. The resulting230

couplings among subproblems define the required information exchanges.
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• Devise a strategy that allows for the coordination of the coupled subprob-

lems. This strategy will be based on the Lagrangian relaxation approach

presented in Section 2.2.

• Synthesize controllers in a distributed manner using the concepts intro-235

duced in Section 2.1.

The convergence and stability properties will also be analyzed to determine

the applicability of the proposed methodology.

4. Proposed approach

4.1. Optimality condition decomposition240

The OCD can be considered as a particular implementation of the La-

grangian relaxation method, and seeks to decompose a problem into a set of

smaller subproblems and coordinate them using the optimality conditions of

the overall problem [39].

The overall problem (5) is restated for convenience:245

min
z

f(z) (9a)

subject to

b(z) ≤ 0. (9b)

Remark 3. For the sake of simplicity, only the inequality constraints are pre-

served in the formulation, as the case with equality constraints can be dealt

with in a similar manner [39].

The OCD assumes that (9) can be decomposed into a set of smaller subprob-

lems, which can be expressed by conveniently reformulating the overall problem250

as follows:
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min
{z(i)}N

i=1

N∑
i=1

f (i)
(
z(i)
)

(10a)

subject to

h
(
z(1), ..., z(N)

)
≤ 0, (10b)

g(i)
(
z(i)
)
≤ 0, i ∈ {1, ..., N}, (10c)

where N is the number of subproblems that can be identified and z(i) denotes

the set of variables that belong to the i-th subproblem. Moreover, (10b) con-

stitutes the set of complicating constraints, as it contains variables from several

subproblems. Indeed, if these constraints were removed from (10), the over-255

all problem would easily decompose into N subproblems that could be solved

independently.

Remark 4. The OCD requires the cost function to be separable in groups of

variables.

A relaxed version of (10) is given by260

min
{z(i)}N

i=1

N∑
i=1

f (i)
(
z(i)
)

+

N∑
i=1

λ(i)h(i)
(
z(1), ..., z(N)

)
(11a)

subject to

h(i)
(
z(1), ..., z(N)

)
≤ 0, i ∈ {1, ..., N}, (11b)

g(i)
(
z(i)
)
≤ 0, i ∈ {1, ..., N}. (11c)

Remark 5. The solution remains unaffected regardless of how the complicating

constraints are distributed among the N subproblems.

Then, the relaxed problem (11) decomposes into N subproblems after fixing

the values of the variables that pertain to other subproblems. Moreover, the

i-th subproblem is formulated as follows:265
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min
z(i)

f (i)
(
z(i)
)

+

N∑
j=1,j 6=i

f (j)
(
z̄(j)
)

(12a)

+

N∑
j=1,j 6=i

λ̄(j)h(j)
(
z̄(1), ..., z̄(i−1), z(i), z̄(i+1), ..., z̄(N)

)
subject to

h(i)
(
z̄(1), ..., z̄(i−1), z(i), z̄(i+1), ..., z̄(N)

)
≤ 0, (12b)

g(i)
(
z(i)
)
≤ 0, (12c)

where the overlined variables indicate fixed values.

These subproblems are obtained when the complicating constraints of the

j-th subproblem (which involve variables from the i-th block) are relaxed in

the i-th subproblem, while the complicating constraints in the i-th subproblem

are kept as constraints. Then, the coordination of the subproblems to satisfy270

the complicating constraints is straightforward since these are included in the

subproblems, and can be achieved by updating the multipliers as

λ← λ + αhi, i ∈ {1, ..., N}, (13)

where α is a suitable update constant and hi is evaluated using the last solution.

An interesting feature of the OCD is the fact that the decomposition step not

only yields the set of subproblems, but also dictates the coordination policy that275

needs to be applied. Indeed, the resulting subproblems might be independent

(no couplings), which would allow for fully decentralized control architectures;

hierarchically structured, i.e., lower block triangular decompositions [37], which

would benefit from a hierarchical control approach; or interconnected, which

would require a distributed control approach. Hence, the degree of communica-280

tion and coordination among subproblems depends on each case.

The name of the method comes from the fact that the overall problem can

be decomposed by manipulating the first-order KKT optimality conditions of

the overall problem [35]:
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∇z(i)fi

(
z
(i)
∗

)
+

N∑
i=1

∇ᵀ
z(i)h

(i)
(
z
(1)
∗ , ..., z

(N)
∗

)
λ
(i)
∗ (14a)

+

N∑
i=1

∇ᵀ
z(i)g

(i)
(
z
(i)
∗

)
ν
(i)
∗ = 0, i ∈ {1, ..., N},

h(i)
(
z
(1)
∗ , ..., z

(N)
∗

)
≤ 0, i ∈ {1, ..., N}, (14b)(

h(i)
(
z
(1)
∗ , ..., z

(N)
∗

))ᵀ
λ
(i)
∗ = 0, i ∈ {1, ..., N}, (14c)

λ
(i)
∗ ≥ 0, i ∈ {1, ..., N}, (14d)

g(i)
(
z
(i)
∗

)
≤ 0, i ∈ {1, ..., N}, (14e)(

g(i)
(
z
(i)
∗

))ᵀ
ν
(i)
∗ = 0, i ∈ {1, ..., N}, (14f)

ν
(i)
∗ ≥ 0, i ∈ {1, ..., N}, (14g)

where ∗ denotes the optimal value, and λ
(i)
∗ and ν

(i)
∗ are associated to (10b) and285

(10c), respectively.

Given the above considerations, the OCD can be viewed as a partitioning

and coordination strategy that relies on the formulation and convenient manip-

ulation of the matrix of KKT conditions associated to the overall problem to

determine a set of smaller subproblems. However, the OCD addresses neither290

the block identification task nor the manner to obtain the optimal partition-

ing. Therefore, the use of a strategy that yields the optimal partitioning and

complements the OCD is proposed hereunder.

4.2. Optimal partitioning using community detection

The matrix of KKT conditions can be equivalently expressed using the as-295

sociated graph G = (V, E), where V is the set of nodes, i.e., the elements of the

system, and E is the set of edges, i.e., the set of arcs that connect the nodes.

In the context of a control problem, the states, inputs and outputs of the sys-

tem can be viewed as nodes, whereas the edges are the equations that link the

variables.300
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Therefore, the problem of partitioning the matrix of KKT conditions can

be addressed using methods stemming from graph theory and network science.

The approach followed in this work is based on community detection, a problem

that seeks to determine communities, i.e., groups of nodes, within complex

systems, such that its nodes are significantly more coupled to nodes in the same305

community than nodes belonging to other communities [40]. The notion of

modularity, which measures the difference defined by the previous and rather

vague description, is formally defined as follows:

M =
1

2m

∑
i,j

(
Aij −

kikj
2m

)
δ (ci, cj) , (15)

where M is the modularity of the resulting partitioning, m is the total weight of

all edges in the graph, Aij is the weight of the edge that links the i-th and j-th310

nodes, ki and kj are the total weights of the edges that link the i-th and j-th

nodes with the rest of the network, respectively, ci and ci are the communities

to which the i-th and j-th nodes are assigned, respectively, and δ (ci, cj) is the

Kronecker delta defined as

δ (ci, cj) =

1 if the i-th and j-th nodes belong to the same community,

0 otherwise.

(16)

Therefore, system partitioning in the community detection framework is315

formulated as a modularity maximization problem. Although this is generally an

NP-hard integer program, several efficient algorithms with performances close to

the optimal one have been proposed [10]. The algorithm applied in this paper

is known as fast unfolding [41], which consists in a two-phase approach that

is repeated in an iterative manner until the partitioning cannot be improved.320

Given a weighted network, i.e., a graph in which each edge is assigned a value,

the steps performed by the fast unfolding algorithm are summarized below:

• The initial partition is such that each node is assigned a different commu-

nity.
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• The first step is known as modularity optimization, and consists in com-325

puting the gain of modularity that would result from placing the i-th node

in a neighboring community, i.e., a community to which the i-th node is

linked:

∆M =

(∑
in +ki,in

2m
−
(∑

tot +ki
2m

)2
)
−

(∑
in

2m
−
(∑

tot

2m

)2

−
(
ki
2m

)2
)
,

(17)

where
∑
in is the sum of the weights of the edges of the destination commu-

nity,
∑
tot is the sum of the weights of the edges incident to the destination330

community, ki is the sum of the weights of the edges incident to the i-th

node, ki,in is the sum of the weights of the edges from the i-th node to

the destination community and m is the total sum of the weights of all

network edges.

• The second step, also referred to as community aggregation, consists in335

adding the i-th node to the neighboring community for which the maximal

positive ∆M is obtained. If such situation is not encountered, it stays in

the original community. This is done for each node in the network, and

concludes the first iteration of the fast unfolding algorithm. Note also

that the same node might be considered more than once throughout the340

process.

• To prepare the algorithm for the second iteration, the resulting network is

built, where the nodes are now the communities obtained in the previous

iteration. Moreover, the weights of the edges among communities are

updated adding the sum of individual edges. Note also that this procedure345

creates self-loops.

Figure 1 illustrates the described approach. Note that the community de-

tection problem is solved in only one iteration for this particular network, as a

second iteration reveals ∆M < 0 for each node in Fig. 1(c). Moreover, nodes R2.5
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Figure 1: (a) Original network (each node belongs to a different community). (b) Original

network after modularity optimization. (c) Resulting network after community aggregation.

are labeled in Figs. 1(a) and 1(b) for the purpose of identification, while the350

weights of the edges represent the number of connections between a pair of nodes

(which might be variables or communities), and the weight of an unlabeled edge

equals one.

As stated before, the fast unfolding algorithm is to be applied to the graph

associated to the matrix of KKT conditions, which allows to take into account355

the couplings introduced by the constraints and the cost function. As a result,

this approach reveals communities of system variables, probably allowing for

physical interpretation. Nevertheless, it must be observed that there exists

a matrix of KKT conditions for every time instant. Although it might seem

necessary to apply the algorithm at every instant, in practice it is only required360

to repeat the partitioning procedure in the event of a change in the system, as

the links among variables might be different.

The complete partitioning approach based on OCD and community detec-

tion is illustrated by means of Fig. 2. Note that the original problem can

be expressed using the matrix of KKT conditions. Then, its associated graph365

is analyzed using community detection, yielding a rearranged matrix of KKT

conditions that allows to obtain a problem that decomposes into smaller sub-
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Figure 2: Overview of the OCD using community detection

problems. In turn, these subproblems are solved in parallel, thus providing an

approximate solution to the original problem.

4.3. The DMPC-OCD370

The last step towards the final solution consists in incorporating the coor-

dination mechanism into the formulation of the subproblems, thus tackling the

general case in which the subproblems are coupled. This can be achieved by

combining the CMPC formulation and the coordination ideas based on OCD
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and community detection. Moreover, note that the original OCD formulation is375

extended, as it lacks the temporal component inherent to the control framework.

With all this, the l-th control subproblem reads as follows:

min{
u

(l)

i|k

}k+Hp−1

i=k
,{

x
(l)

i|k

}k+Hp

i=k

J (l)
(
u
(l)
i|k,x

(l)
i|k

)
+
∥∥∥x(l)

k+Hp|k

∥∥∥2
Q(l)

+ (18a)

∑
m6=l,

V(m)∩V(l) 6=∅

λ(m)

(
J (m)

(
u
(m)
i|k ,x

(m)
i|k

)
+
(
x
(m)
i+1|k −A(m)x

(m)
i|k −B(m)u

(m)
i|k

))

subject to

x
(l)
i+1|k = A(l)x

(l)
i|k + B(l)u

(l)
i|k, i ∈ {k, ..., k +Hp − 1}, (18b)

u
(l)
i|k ∈ U

(l), i ∈ {k, ..., k +Hp − 1}, (18c)

x
(l)
i|k ∈ X

(l), i ∈ {k, ..., k +Hp − 1}, (18d)

x
(l)
k+Hp|k ∈ X

(l)
Hp
, (18e)

x
(l)
k|k = x

(l)
k , (18f)

where the superscripts l and m denote information relative to the l-th and m-th

subproblems, respectively, Q(l) is an appropriate submatrix of Q and can be

obtained according to the partitioning, and V(l) and V(m) represent the sets of380

the graph nodes (system variables) associated to the l-th and m-th subproblems,

respectively. Note that the l-th andm-th subproblems can only be coupled in the

variables through the state equation, which is stated by means of the condition

V(m) ∩ V(l) 6= ∅. Thus, these are the sole constraints that must be relaxed.

Remark 6. The decision variables in (18) are denoted with the superscript l.385

Conversely, the variables denoted with the superscript m are optimized in the

m-th subproblem and treated as parameters in the l-th subproblem.
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4.4. Convergence and stability of the DMPC-OCD

4.4.1. Convergence

The convergence properties of the proposed method are discussed following390

the derivation reported in [39]. Note that separable constraints are not taken

into account at this step, as they do not have an influence on the decomposition

procedure.

The search direction strategy can be defined, in the context of an optimiza-

tion process, as an iterative approach that aims at finding a local minimum of a395

cost function. Then, the search directions ∆(l), l ∈ {1, ..., N}, can be computed

in a centralized manner by solving


KKT(1,1) KKT(1,2) · · · KKT(1,N)

KKT(2,1) KKT(2,2) · · · KKT(2,N)

...
...

. . .
...

KKT(N,1) KKT(N,2) · · · KKT(N,N)


︸ ︷︷ ︸

KKT


∆(1)

∆(2)

...

∆(N)

 = −


∇z(1),λ(1)L

∇z(2),λ(2)L
...

∇z(N),λ(N)L

 ,

(19)

where KKT is the matrix of KKT conditions, ∆(l) =
(
∆z(l),∆λ(l)

)
, l ∈

{1, ..., N}, L is the Lagrangian function for the overall problem and the sev-

eral blocks within KKT are the Newton matrices of the form [34]400

KKT(l,l) =

∇2
z(l)z(l)L

(
∇z(l)h(l)

)ᵀ
∇z(l)h(l) 0

 , (20a)

KKT(l,m) =

∇2
z(l)z(m)L

(
∇z(m)h(l)

)ᵀ
∇z(l)h(m) 0

 , (20b)

KKT(m,l) =
(
KKT(l,m)

)ᵀ
. (20c)

However, the approach followed by the OCD consists in solving a decompos-
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able and approximate version of (19) that can be formulated as


KKT(1,1) 0 · · · 0

0 KKT(2,2) . . .
...

...
. . .

. . . 0

0 · · · 0 KKT(N,N)


︸ ︷︷ ︸

KKT


∆(1)

∆(2)

...

∆(N)

 = −


∇z(1),λ(1)L

∇z(2),λ(2)L
...

∇z(N),λ(N)L


(21)

and the KKT(l,l) blocks within KKT are defined as in (20a).

Theorem 1. Let KKT and KKT be the centralized matrix of KKT conditions

and its approximate version, respectively. Then, the sufficient condition for405

convergence of the solution provided by the OCD reads as

ρ
(
I−KKT

−1
KKT

)
< 1, (22)

where ρ(·) denotes the spectral radius of the matrix evaluated at the solution.

Proof. See [42, Chapter 4.2.1] for the proof of general convergence results yielded

by iterative methods that are employed to solve large linear systems.

Remark 7. The convergence condition (22) must be checked for every matrix410

of KKT conditions, as follows from the statement in Section 4.2.

4.4.2. Stability

The terminal constraint set (3) must be designed to be structured [16], i.e.,

the following additional property needs to be taken into account in its design:

xᵀ
k+Hp|kQxk+Hp|k =

N∑
l=1

(
x
(l)
k+Hp|k

)ᵀ
Q(l)x

(l)
k+Hp|k, (23)

and Q(l) must be positive semi-definite, l ∈ {1, ..., N}.415

21



The desired structure for XHp is attained by considering local invariant sets

of the form [30]

X (l)
Hp

=
{

x
(l)
k+Hp|k ∈ Rnx(l)

∣∣∣ (x
(l)
k+Hp|k

)ᵀ
Q(l)x

(l)
k+Hp|k ≤ β

(l)
}
, (24)

which implies that the condition xk+Hp|k ∈ XHp
is equivalent to

∀i ∈ {1, ..., N} ∃β(l) ≥ 0 : x
(l)
k+Hp|k ∈ X

(l)
Hp
,

N∑
l=1

β(l) ≤ 1. (25)

Then, Q can be synthesized from the local Q(l) matrices by solving an

additional optimization problem [30, Eq. (23)]. In short, this approach employs420

the decomposition of the overall problem, which has already been performed, to

obtain the Q(l) matrices, one for each subproblem. Then, the overall matrix Q

can be built by conveniently stacking Q(l), and its final structure is such that it

decomposes in the already defined block matrices Q(l). Note that this approach

allows to obtain both the terminal constraint set and terminal cost.425

4.5. Summary of the DMPC-OCD approach

Certain steps comprised in the proposed DMPC-OCD approach may be com-

puted offline, while the simulation of the control problem is performed online.

Algorithms 1 and 2 summarize the offline and online parts, respectively. Note

that the states obtained in Algorithm 2 after applying u
MPC (l)
k allow to resume430

the simulation at the next time instant. On the other hand, the stop criterion is

usually formulated as a maximum admissible error that the complicating con-

straints should not violate. Naturally, the required degree of accuracy of the

solutions has an impact on the number of iterations that need to be performed.

Remark 8. Algorithms 1 and 2 are formulated assuming that the system con-435

ditions do not change throughout the simulation, which allows for an offline

overall problem decomposition and computation of the terminal constraint set

and terminal cost. The noncompliance of this scenario would require to perform

these steps online.
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Algorithm 1 Offline calculation of the terminal costs

1: Formulate the overall control problem (2)

2: Decompose (2) using the community detection algorithm applied to the

KKT conditions formulated for the overall problem (Fig. 2)

3: Determine the terminal constraint set and the terminal cost taking into

account the decomposed problem obtained in step 2 (Section 4.4.1)

Algorithm 2 Online DMPC-OCD

Require: Set of subproblems (18)

1: Initialize states and Lagrange multipliers in all subproblems

2: for k = 1 : tsim do

3: Perform one iteration for each subproblem

4: while the stop criterion is not met do

5: Exchange last solution among coupled subproblems

6: Update Lagrange multipliers using (13)

7: Perform a new iteration for each subproblem

8: end while

9: Set u
MPC (l)
k , u

(l)
k|k and apply it, l ∈ {1, ..., N}

10: Obtain x
(l)
k+1, with l = 1, ..., N

11: end for

5. Case study440

The effectiveness of the proposed approach is tested on two different sys-

tems, the quadruple-tank system and the Barcelona DWN. One the one hand,

considering the quadruple tank system allows to make use of a well-established

process for which several benchmarks exist, thus making it possible to compare

and validate the results. On the other hand, the Barcelona DWN is a large-scale445

system that has also been considered to test control approaches in the last years.

Both case studies are described next, each accompanied by the obtained

results and corresponding analysis. Moreover, their implementation is carried

out in MATLABR©, using YALMIP [43] as parser.
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5.1. The quadruple-tank system450

The quadruple-tank system, depicted in Fig. 3, is a multivariable process

reported in detail in [44] and widely employed for the purpose of control edu-

cation. Although not strictly a large-scale system, the quadruple-tank system

possesses a number of features that makes it a very suitable case study in the

context of this work. On the one hand, it is a highly coupled system, which455

allows to test the derived system partitioning and coordination strategy. On

the other hand, the system states are directly measurable, which eliminates the

need to use an observer in combination with the controller, thus simplifying the

design task. Last but not least, the same benchmark was used in [45] to test

the performance of several predictive control strategies, with which the DMPC-460

OCD can be compared by considering the same physical parameters and control

objectives.

5.1.1. System description

The main operational goal of the quadruple-tank process consists in steering

the water levels of the two lower tanks to the setpoints by conveniently adjusting465

the voltages applied to two pumps.

The dynamics of the system can be described by

dh1
dt

= −a1
S

√
2gh1 +

a3
S

√
2gh3 +

γa
S
qa, (26a)

dh2
dt

= −a2
S

√
2gh2 +

a4
S

√
2gh4 +

γb
S
qb, (26b)

dh3
dt

= −a3
S

√
2gh3 +

1− γb
S

qb, (26c)

dh4
dt

= −a4
S

√
2gh4 +

1− γa
S

qa, (26d)

where hi [m] and ai [m2] denote the water level and the discharge constant of

the i-th tank, respectively, with i ∈ {1, 2, 3, 4}, S [m2] is the cross section of

the tanks, qj [m3h−1] and γj (dimensionless) indicate the flow and the ratio of470

the three-way valve associated to the j-th pump, with j ∈ {a, b}, respectively,
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Figure 3: Schematic representation of the quadruple-tank system

and g [ms−2] is the acceleration of gravity. As stated before, the values of all

parameters are as in [45].

Equation (26) is used as the simulation model. On the other hand, the

DMPC-OCD is tested over a linear prediction model that can be obtained by475

linearizing (26) around the equilibrium levels given in Table 1 in [45]. Note that

the linear prediction model is expressed in terms of deviation variables around

the operating point as follows:

xi = hi − h0i , i ∈ {1, 2, 3, 4} (27a)

u1 = qa − q0a, (27b)

u2 = qb − q0b . (27c)

Then, the prediction model reads as
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dx

dt
= Acx + Bcu, (28a)

y = Ccx, (28b)

with x = [x1 x2 x3 x4]
ᵀ
, u = [u1 u2]

ᵀ
, y = [x1 x2]

ᵀ
and480

Ac =


−1
τ1

0 1
τ3

0

0 −1
τ2

0 1
τ4

0 0 −1
τ3

0

0 0 0 −1
τ4

 ,Bc =


γa
S 0

0 γb
S

0 1−γb
S

1−γa
S 0

 , Cc =

1 0 0 0

0 1 0 0

 ,
(29)

where τi = S/
(
ai
√

2h0i /g
)

[s] is the time constant of the i-th tank. This

continuous-time prediction model is discretized with a sampling time Ts = 5 s.

5.1.2. Experimental design

As stated before, the control strategy aims at maintaining the water levels

of the lower tanks as close as possible to the desired values. Fig. 4 depicts the485

references considered, which are designed to test how the system responds to

setpoint changes that involve admissible values that are relatively far from one

another. Moreover, it can be observed that the initial setpoints correspond to

the linearization values considered in the computation of the prediction model.

On the other hand, the following performance index is considered:490

J =

tsim∑
k=1

(
h1(k)− s1(k)

)2
+
(
h2(k)− s2(k)

)2
+

tsim∑
k=1

0.01
(
qa(k)− qsa(k)

)2
+ 0.01

(
qb(k)− qsb(k)

)2
,

(30)

where qsa and qsb correspond to the values of the controlled inputs and are com-

puted for the setpoints s1 and s2 in steady-state conditions.

Remark 9. The computation of the performance index (30) begins once the

operating point is reached, i.e., at t = 2700 s.
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Figure 4: Reference water levels for tanks 1 and 2

5.1.3. Results495

The CMPC associated to the quadruple-tank system can be formulated as

follows:

min
{ui|k}

k+Hp−1

i=k , {xi|k}
k+Hp
i=k

J
(
ui|k,xi|k

)
(31a)

subject to

xi+1|k = Axi|k + Bui|k, i ∈ {k, ..., k +Hp − 1}, (31b)

ui|k ∈ U , i ∈ {k, ..., k +Hp − 1}, (31c)

xi|k ∈ X , i ∈ {k, ..., k +Hp − 1}, (31d)

xk+Hp|k ∈ XHp
, (31e)

xk|k = xk, (31f)

with

J
(
ui|k,xi|k

)
=

k+Hp−1∑
i=k

∥∥xi|k∥∥2P +
∥∥ui|k∥∥2R +

∥∥xk+Hp|k
∥∥2
Q
, (32)
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and X and U correspond to the admissible sets of states and inputs, respectively,

and can be computed using the physical limits provided in [45]. Moreover, the500

cost function (31a) is adapted from (30) employing deviation variables, and the

weighting matrices (of suitable dimensions) are: P = I, R = 0.01I and Q is

computed as indicated in Remark 1.

The KKT conditions associated to (31) can be formulated using (14). Note

that (31a) is completely separable, i.e., its structure does not introduce any505

coupling among variables. Therefore, the graph associated to the matrix of

KKT conditions is equivalent to the graph of the system, and can be constructed

as shown in [27]. First, the interactions between variables and constraints can

be modeled by means of the bipartite network depicted in Fig. 5(a). Two

sets of nodes (variables and constraints) are considered, and there is an edge510

that connects a variable vi and a constraint cj provided that vi appears in cj .

Note that the four constraints correspond to the prediction model, as the rest

of constraints are not coupled. This graph can be simplified down to a variable

unipartite graph, depicted in Fig. 5(b), that disregards the constraint nodes:

the interactions between the different variable nodes are now described by edges515

whose weights are equal to the number of shared constraints among the pair of

variables.

The same information can be expressed in a compact manner using the edge

weight matrix



0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 1

0 1 0 0 1 1

1 0 1 1 0 0

0 1 1 1 0 0


. (33)

Then, the fast unfolding algorithm1 is applied to the graph using (33). The520

1https://perso.uclouvain.be/vincent.blondel/research/louvain.html
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Figure 5: (a) Variable-constraint bipartite graph. (b) Equivalent variable unipartite graph.

results obtained after performing the steps described in Section 4.2 are illus-

trated in Fig. 6. A second iteration of the method shows that the partitioning

cannot be further refined. Therefore, the analysis of the variables that be-

long to each community allows to conclude that the first subsystem comprises

tanks 1 and 3, whereas subsystem 2 consists of tanks 2 and 4. Equivalently,525

x(1) , {x1, x3} and x(2) , {x2, x4}. The same subsystems are identified in

[45] using another approach, which allows to validate the system partitioning

results. Note that the subsystems are coupled only through the inputs, and

both of them have an effect on the dynamics of both subsystems.

The subproblems that result from the system partitioning can then be for-530

mulated as follows:

min{
u

(l)

i|k

}k+Hp−1

i=k
,{

x
(l)

i|k

}k+Hp

i=k

J (l)
(
u
(l)
i|k,x

(l)
i|k

)
+ (34a)
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Figure 6: (a) Original graph associated to the quadruple-tank system. (b) Original graph

after modularity optimization. (c) Resulting graph after community aggregation.

λ(m)

(
J (m)

(
u
(m)
i|k ,x

(m)
i|k

)
+
(
x
(m)
i+1|k −A(m)x

(m)
i|k −B(m)u

(m)
i|k

))

subject to

x
(l)
i+1|k = A(l)x

(l)
i|k + B(l)u

(l)
i|k, i ∈ {k, ..., k +Hp − 1}, (34b)

u
(l)
i|k ∈ U

(l), i ∈ {k, ..., k +Hp − 1}, (34c)

x
(l)
i|k ∈ X

(l), i ∈ {k, ..., k +Hp − 1}, (34d)

x
(l)
k+Hp|k ∈ X

(l)
Hp
, (34e)

x
(l)
k|k = x

(l)
k , (34f)

with

J (l)
(
u
(l)
i|k,x

(l)
i|k

)
=

k+Hp−1∑
i=k

∥∥∥x(l)
i|k

∥∥∥2
P(l)

+
∥∥∥u(l)

i|k

∥∥∥2
R(l)

+
∥∥∥x(l)

k+Hp|k

∥∥∥2
Q(l)

. (35)
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In the context of this particular problem, l = 1 implies m = 2 and vice versa.

The solution of the DMPC-OCD is depicted in Fig. 7, showing that the

proposed controlled strategy is able to keep the water levels close to the time-535

varying setpoints with no significant error. Moreover, the evolution of the levels

of the upper tanks is also provided, although these are only required to stay

within operating limits. Naturally, several iterations are required at every time

instant to meet the stop criterion, which is formulated as

√√√√(max
(∣∣∣h(1)
∗

∣∣∣))2

+

(
max

(∣∣∣h(2)
∗

∣∣∣))2

≤ 10−9, (36)

where h
(1)
∗ and h

(2)
∗ correspond to the values of the complicating constraints540

(the subsystems’ dynamics) after substituting the solutions. The satisfaction of R2.2

(36) does not require more than four iterations in the context of this problem.

On the other hand, the average computation time (model definition, conversion R1.4

to solver-specific format and resolution) for the CMPC equals 0.024 seconds,

while it takes 0.028 seconds in the case of the DMPC-OCD. It can then be seen545

how the distributed approach does not improve the computation time of the

centralized approach. This is due to the fact that the quadruple-tank system is

not a large-scale system, and therefore the sizes of the overall system and the

subsystems are rather similar. The need for the DMPC-OCD approach to solve

iteratively until convergence causes the increased computation time. Therefore,550

the benefits that the proposed approach can offer will become more evident in

larger case studies such as the one considered in the next section.

Remark 10. The DMPC-OCD yields a vector of optimal values with length

equal to Hp. The stop criterion (36) is formulated for the worst-case scenario as

it considers the largest errors for both subsystems, even if these are not obtained555

at the same time instant within the prediction horizon.

On the other hand, the performance index (30) for the DMPC-OCD is com-

puted, and equals 31.88. The same MPC is tested using a centralized imple-

mentation for the sake of comparison, yielding a performance index of 31.36.
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Figure 7: DMPC-OCD results: (a) y1 (solid blue) and s1 (dashed black). (b) y2 (solid blue)

and s2 (dashed black). (c) qa (solid gray) and qb (dashed black). (d) h3 (solid blue) and h4

(dashed gray).

Thus, a rather small decrease of performance can be observed for the DMPC-560

OCD with respect to its centralized counterpart, probably due to the fact that

the stop criterion allows for a small error at every time instant that adds up

over time. Moreover, the performance index of the DMPC-OCD is similar to

those reported in the benchmark. All these reasons allow to conclude that the

proposed control approach performs as desired.565

5.2. The Barcelona DWN R2.1

The Barcelona DWN has been used as case study in several research publica-

tions [4, 5, 46, 47]. In contrast to the quadruple-tank system, this is an example

of a large-scale system, the kind of systems for which the proposed approach570

has been derived.

5.2.1. System description
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Without going into detail, the Barcelona DWN consists of several water

treatment plants that extract water from rivers and aquifers, treat it and supply575

drinking water to the Barcelona metropolitan area. The reader is referred to [4,

Section 2.1] for a more exhaustive description of the system.

The Barcelona DWN control-oriented model can be derived by considering

the constitutive elements and their interactions:

• Tanks are the elements that allow to store water so that the demand may

always be satisfied. The expression that describes the dynamics of the l-th

tank reads as follows:

x
(l)
k+1 = x

(l)
k + ∆t

∑
i

ql,ik −
∑
j

ql,jk

 , (37)

where x
(l)
k is the volume of the l-th tank at time instant k, ∆t is the

sampling time, and ql,ik and ql,jk are the inflows and outflows of the l-th

tank at time instant k, respectively. Note that these flows may correspond

to manipulated flows and/or demands. Moreover, the constraint on the

capacity of the l-th tank is given by

x(l) ≤ x(l)k ≤ x
(l), (38)

where x(l) and x(l) denote the minimum and maximum capacities of the580

l-th tank, respectively.

• Pumps and valves are used as actuators and allow to convey water to sat-

isfy the demands. Their physical limits, which constrain the performance

of the system, can be expressed as

u(m) ≤ u(m)
k ≤ u(m), (39)

where u
(m)
k denotes the flow supplied by the m-th actuator at time instant

k, and u(m) and u(m) are the minimum and maximum capacities of the

m-th actuator, respectively.

• Nodes correspond to the network locations where water flow mergings

and splittings occur. These mass balances determine the static system
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behavior, and are incorporated into the model as equality constraints.

Then, the mass balance at the n-th node can be expressed as∑
i

qn,ik =
∑
j

qn,jk , (40)

where qn,ik and qn,jk are the inflows and outflows of the n-th node at time585

instant k, respectively. Again, note that q may denote both manipulated

flows and demands.

• Consumer demands act as system disturbances. As daily and weekly

trends can be detected in the data, approximate demands can be fore-

cast using time series methods [48].590

With all this, a discrete-time state-space network model can be written as

follows:

xk+1 = Axk + Buk + Bddk, (41a)

0 = Euk + Eddk, (41b)

where xk, uk and dk denote the tank volumes, manipulated controls and de-

mands, respectively, and A, B, Bd, E and Ed are the model time-invariant

matrices of suitable dimensions. Note that (41a) comes from (37), and (41b),595

from (40).

Moreover, a simplified representation of the Barcelona DWN is provided by

means of Fig. 8. The system consists of seventeen tanks, sixty-one actuators,

eleven nodes and twenty-five demand sectors. Note also that node 11 is split in

two parts for the sake of a better visualization, but in practice it corresponds600

to a single location.

5.2.2. Experimental design

The management objectives regard constant demand satisfaction while mini-

mizing costs and reducing wear and tear of the equipment. The set of operational605

objectives can be formally defined as follows:
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Figure 8: Schematic representation of the Barcelona DWN

• Cost minimization due to water extraction, treatment and distribution,

which can be expressed as

J
(1)
k = We (α + βk) uk, (42)

where α and β denote the known cost vectors related to water extraction,

treatment and distribution, and We is the penalty associated to the eco-

nomic objective. Note that the time dependency of β is due to different

pumping electricity costs throughout the day.610

• Ensure safety storage volumes: the water volumes in the tanks shall always

guarantee demand satisfaction and therefore be greater than safety storage

volumes, which may be computed based on demand forecasts. However,

allowing water volumes in the tanks to fall below the safety volumes for

reduced periods of time might improve the overall performance. This

relaxation is penalized as

J
(2)
k = sᵀkWssk, (43)

where sk is the vector of relaxed volumes at time instant k and Ws is the

penalty associated to the safety objective. Note also that this relaxation
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requires to modify (38) as

xk − sk ≤ xk ≤ xk (44)

and add the following constraint:

sk ≥ 0. (45)

• Smoothness of the control signal, aiming at extending the useful life of

pumps and valves. This can be expressed as

J
(3)
k = (∆uk)

ᵀ
Wu∆uk, (46)

where ∆uk = uk−uk−1, and Wu is the penalty associated to the smooth-

ness objective.

Then, the simulation is designed as in [4]: a four-day simulation is considered,

with a sampling time of one hour and a prediction horizon of twenty-four hours

to account for the daily seasonality. Moreover, We, Ws and Wu are selected615

according to the first scenario in the same reference.

5.2.3. Results

Before proceeding with the results, it is worth noting that the steps followed

are the same as those reported for the quadruple-tank system in Section 5.1.3.620

Therefore, some content and/or mathematical formulation is not repeated here

for the sake of convenience.

The CMPC for the Barcelona DWN can be formulated by constructing a

multi-objective cost function with (42), (43) and (46), and gathering the con-

straints (39), (41), (44) and (45). Then, the centralized optimization problem625

can be formally derived by slightly modifying (31)–(32).

Once the graph associated to the matrix of KKT conditions for the central-

ized problem has been obtained, it can be partitioned using the fast unfolding

algorithm. As a result, the three communities depicted in different colors in

Fig. 8 are identified:630
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• The first subsystem (red) consists of tanks xa, a={9, 11, 13}, controls ub,

b={28, 33, 35, 43, 44}, nodes Nc, c={9, 10}, and demands dd, d={8, 11, 16,

19, 20}.

• The second subsystem (green) consists of tanks xa, a={10, 12, 14:17}, con-

trols ub, b={29, 30, 36, 39, 42, 45:61}, nodes Nc, c={8, 11}, and demands635

dd, d={12, 17, 18, 21:25}.

• The third subsystem (blue) consists of tanks xa, a={1:8}, controls ub,

b={1:27, 31, 32, 34, 37, 38, 40, 41}, nodes Nc, c={1:7}, and demands dd,

d={1:7, 9, 10, 13:15}.

An inspection of the centralized model reveals that the subsystems are cou-640

pled only through the inputs. Moreover, the couplings are as follows:

µ1,3 = {u33},

µ2,1 = {u29, u36, u42, u49},

µ2,3 = {u30, u39},

µ3,2 = {u37, u38, u41},

where µi,j denotes the set of manipulated controls that have been assigned to

the i-th subproblem (and are thus optimized in the i-th subproblem) but which

also have an effect on the j-th subsystem, with i, j = {1, 2, 3}. Note that similar

results are reported in [4] using a different partitioning approach, as the number645

of coupled controls is the same.

Then, a subproblem for each of the identified subsystems can be formulated

by modifying (34)–(35). To illustrate the approach, and in the same spirit as [4],

the performances of the centralized and distributed approaches are compared.

To this end, the evolution of the volume of a tank, a manipulated control and650

the total cost are depicted in Figs. 9, 10 and 11, respectively. It can be seen

that the results obtained using both approaches are rather similar for both the

tank volume and the flow through the valve. Indeed, Fig. 11 reveals that the
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performance of the distributed approach is only slightly worse than that of the

centralized counterpart, which yields the optimal performance. Such small de-655

crease of performance comes with the benefit of the reduction in computation

time that can be achieved if the subproblems are solved in parallel. Indeed, the

computation time for a single DMPC-OCD iteration is equal to the computation

time for the largest subproblem. In the case of the Barcelona DWN, the average R1.4

computation time (defined in the same way as for the quadruple-tank system)660

for the CMPC equals 0.521 seconds, while it takes 0.468 seconds in the case

of the DMPC-OCD. While the reduction in time might not be impressive, this

is due to the fact that the partitioning approach yields one significantly-larger

subsystem, a fact that affects the total computation time. However, this parti-

tioning offers modularity maximization and information-sharing minimization,665

thus providing an interesting trade-off. Furthermore, (36) is adapted to achieve R2.2

convergence, which does not require more than five iterations. This shows that

the proposed approach scales well for large-scale systems, as only one iteration

less was required to achieve convergence for the quadruple-tank system.

Two final comments to conclude the analysis of the results: on the one670

hand, the system is characterized by a daily periodic behavior, both in the

consumer demands (higher during the day and lower during the night) and in

the pumping electricity costs for the water company, which follow the same

trend as demands. This fact can be realized in Fig. 10, where the flow through

the eighteenth actuator (from the seventh tank to the fifth demand) is higher675

during the day and lower during the night, and also in the cost function in

Fig. 11. On the other hand, it is worth mentioning that the results regarding

the evolution of the cost function differ a little from those in [4], as a scaling

factor was used to present the results in economic units rather than in euros for

confidentiality reasons. The same approach has been followed in this work, but680

the same scaling factor may not have necessarily been applied.
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Figure 9: Evolution of the water volume of tank 2 for centralized (blue solid line) and dis-

tributed (black dashed line) implementations
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6. Conclusions

This work has presented a DMPC approach for large-scale systems, given the

fact that centralized implementations often suffer from non-scalability and spa-

tial distribution. The overall problem is decomposed using a particular imple-685

mentation of the well-known Lagrangian relaxation procedure known as OCD.

Indeed, the KKT conditions of the overall system are formulated and manip-

ulated to determine a set of smaller subproblems whose solution converges to

the centralized optimal solution. However, and despite the fact that the OCD

assumes that the problem can be decomposed, it does not provide the optimal690

system partitioning. Therefore, a heuristic approach known as community de-

tection is used to determine how the system should be partitioned, as it yields

a close-to-optimal performance. Then, the overall problem can be decomposed

by manipulating the graph associated to the matrix of KKT conditions, thus al-

lowing to take into account the couplings introduced by the cost function in the695

partitioning step. Finally, the subproblems can be coordinated and iteratively
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solved until the errors due to the couplings are below a certain threshold. The

proposed approach is tested on the quadruple-tank system and the Barcelona

DWN, as each of them allows to highlight different aspects. The results allow

to conclude that the methodology derived in this work provides a satisfactory700

performance, as it allows to fulfill the operational goals.

Although the proposed approach can be applied to any large-scale system,

it has been derived with the inland waterways case study in mind. Indeed, pre-

liminary results on centralized control and state estimation for these systems

have been reported in [49]. However, inland waterways are characterized by705

several features, e.g., complex dynamics, large time delays and resonance phe-

nomena, that make it reasonable to test the approach on simpler systems first.

Moreover, the inland waterways case study would also require distributed state

estimation since the states cannot be measured, which would add complexity to

the final design. Once the performance of this approach on inland waterways710

has been validated, several ideas might be explored. One possibility could be

to extend the formulation to propose a robust strategy considering tube-based

approaches. On the other hand, the design of such controllers and observers

could be integrated in a hierarchical approach such as the one derived in [50],

where additional aspects such as tidal periods and discrete-valued actuators are715

taken into consideration. Finally, the DMPC-OCD could be used in combina-

tion with the fault diagnosis approach presented in [51] to propose a control

reconfiguration strategy, aiming at ensuring that the system continues to per-

form even in the presence of faults. However, this would require to extend the R2.4

proposed partitioning approach, as it would need to be performed online every720

time that a fault was diagnosed. Indeed, the faulty components would need to

be disconnected for maintenance, which would result in changes in the network

topology that would require to perform online re-partitioning.
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[23] J. J. Yamé, F. Gabsi, T. Darure, T. Jain, F. Hamelin, N. Sauer, Optimality

condition decomposition approach to distributed model predictive control,800

in: 2019 American Control Conference (ACC), 2019, pp. 742–747.

[24] S. S. Jogwar, P. Daoutidis, Community-based synthesis of distributed con-

trol architectures for integrated process networks, Chemical Engineering

Science 172 (2017) 434 – 443.

44



[25] D. B. Pourkargar, A. Almansoori, P. Daoutidis, Impact of decomposition805

on distributed model predictive control: A process network case study,

Industrial & Engineering Chemistry Research 56 (34) (2017) 9606–9616.

[26] W. W. Tang, D. B. Pourkargar, P. Daoutidis, Relative time-averaged gain

array (RTAGA) for distributed control-oriented network decomposition,

AIChE Journal 64 (5) (2018) 1682–1690.810

[27] W. Tang, A. Allman, D. B. Pourkargar, P. Daoutidis, Optimal decompo-

sition for distributed optimization in nonlinear model predictive control

through community detection, Computers & Chemical Engineering 111

(2018) 43 – 54.

[28] W. Tang, P. Daoutidis, Network decomposition for distributed control815

through community detection in input–output bipartite graphs, Journal

of Process Control 64 (2018) 7 – 14.

[29] P. Daoutidis, W. Tang, A. Allman, Decomposition of control and optimiza-

tion problems by network structure: Concepts, methods, and inspirations

from biology, AIChE Journal 65 (10) (2019) e16708.820

[30] C. Conte, M. N. Zeilinger, M. Morari, C. N. Jones, Robust distributed

model predictive control of linear systems, in: 2013 European Control Con-

ference (ECC), 2013, pp. 2764–2769.

[31] J. B. Rawlings, D. Q. Mayne, Model predictive control: theory and design,

Nob Hill Pub. Madison, Wisconsin, 2009.825

[32] D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert, Constrained

model predictive control: Stability and optimality, Automatica 36 (6)

(2000) 789 – 814.

[33] D. Limon, I. Alvarado, T. Alamo, E. F. Camacho, MPC for tracking piece-

wise constant references for constrained linear systems, Automatica 44 (9)830

(2008) 2382 – 2387.

45



[34] D. P. Bertsekas, Constrained optimization and Lagrange multiplier meth-

ods, Academic Press, 2014.

[35] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge University

Press, 2004.835

[36] N. Chatzipanagiotis, D. Dentcheva, M. M. Zavlanos, An augmented La-

grangian method for distributed optimization, Mathematical Programming

152 (1-2) (2014) 405–434.

[37] D. D. Siljak, Decentralized control of complex systems, Courier Corpora-

tion, 2011.840

[38] R. Negenborn, P. J. van Overloop, T. Keviczky, B. De Schutter, Distributed

model predictive control of irrigation canals, Networks and Heterogeneous

Media 4 (2) (2009) 359–380.

[39] A. J. Conejo, E. Castillo, R. Mı́nguez, R. Garćıa-Bertrand, Decomposition
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