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Ajaykumar Manivannan, Elias J. Willemse, Balamurali B. T., Wei Chien Benny Chin, Yuren Zhou, Bige

Tunçer, Alain Barrat and Roland Bouffanais, Member, IEEE

Abstract— With new cities increasingly expanding vertically, there
is a pressing need to shed light on human vertical mobility, which
can readily be achieved with existing sensor technology. To date,
the methodology to track and identify vertical movement from
large-scale unstructured data sets is lacking. Here, we design and
develop such a framework to accurately and systematically identify
the sparse human vertical displacement activity that is typically
buried into the predominantly horizontal mobility. Our framework
uses sensor data from barometer, accelerometer and Wi-Fi scan-
ner coupled with an extraction step involving a combination of
feature engineering and data segmentation. This methodology is
subsequently integrated into a machine-learning-based classifier to
automatically distinguish vertical displacement activity from its horizontal counterpart. We confirm the high accuracy of
this approach by a thorough validation and testing showing a 98% overall accuracy and a 92% F1-score in classifying
vertical displacement activity.We illustrate the potential of the developed framework by applying it to an unstructured
large-scale data set associated with over 16,000 participants going about their daily activity in the city-state of Singapore.
This gives us access to all the vertical movements of this large population, and we investigate the statistical distribution
of vertical activity, both in terms of number of events and size of vertical jumps, and their temporal heterogeneity across
the day. The approach developed here could be used in massive human experiments to uncover the hidden patterns of
human vertical mobility. This new knowledge would have significant ramifications for the architectural design of vertical
cities.

Index Terms— Wearable sensors, multi-sensor identification, human activity recognition, vertical displacement activity.

I. INTRODUCTION

THE urbanization of our planet is rapidly increasing with
55% of the world population now living in cities [1]. In

2030, this number is projected to increase to 60% [1]. In the
face of this unabated urbanization trend, cities are struggling
to accommodate the population influx through urban sprawl
alone, primarily because of land scarcity and the induced strain
on transportation networks. An alternative to urban sprawl—
currently predominant in the rapidly urbanizing Asia—consists
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in increasing the density of the built environment, inevitably
leading to cities with vertically dominated landscapes and
singular skylines.

Such vertical cities exhibit a very distinct urban land-
scape, manifesting a sprawl of an upward nature with a very
high density of high-rise buildings—not necessarily limited
to skyscrapers. This vertical growth of cities is reflected in
the increasing market demand around the world for vertical
transportation systems like elevators and escalators, with ap-
proximately 100, 000 units installed in 2019, and a forecast
for 250, 000 units to be commissioned in 2024 alone [2]. The
Asia-Pacific region, where most of the fastest growing cities
in the world are present [1], is said to have the highest growth
in demand (85%) for vertical transportation systems [2].

Today’s urban planning has greatly benefited from extensive
studies of human mobility over the last half century. Over
the last two decades, this area of research has experienced
significant growth due to the convergence of several techno-
logical factors: (1) the development of new sensors enabling
more accurate tracking of human mobility, (2) the very rapid
and massive adoption of mobile phones globally, and (3) the
so-called “Big Data” effect. In addition, complexity scientists
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have developed several new frameworks to analyze and iden-
tify specific patterns of mobility. Those patterns hidden in
troves of high-resolution mobility data have been uncovered
thanks to large-scale experiments or from massive commercial
databases—e.g., call detailed record (CDR) [3]. However, it is
important to note that these human mobility studies are limited
to horizontal movements, i.e. based on a two-dimensional
representation of the urban landscape. In these studies, roads,
railway networks, and pedestrian pathways are modeled on a
planar surface.

As already mentioned, the rapid change in the topology of
cities in the developing world, especially in Asia, is promi-
nently three-dimensional [4]. The development of sustainable
and livable cities therefore heavily depends on studies of
human mobility across all three dimensions. While brand-new
skyscrapers are being erected every day globally, we know
surprisingly little about vertical human mobility. For instance,
some recent studies propose to study vertical displacements
in vertically integrated mixed-use developments as a means
to identify key spatial connectors that have a direct influence
on social interactions [5]. Moreover, a systematic study of
vertical human mobility would benefit urban/infrastructure
planning in many ways: e.g., targeted facility allocation in
high-rise buildings, optimal placement of vertical nodes based
on the typology of the building and the estimated vertical
transportation load, effective vertical integration of a building
in its neighborhood, etc. [6].

Horizontal mobility has been extensively studied using a
wide variety of data sources: e.g., census data, travel surveys,
CDR, location-based social network services, GPS [7], and
smart travel/transit cards [8]. However, none of these ap-
proaches and sensors can be used effectively to track vertical
displacements. Interestingly though, the sensor technology
required to accurately track such human vertical mobility
is readily available. What is missing is a methodology that
enables the accurate identification of various types of possible
vertical displacements from the output of large-scale human
experiments with sufficient statistical significance.

Here, we report a contribution towards that goal by introduc-
ing and validating a methodology to accurately and systemat-
ically identify the sparse human vertical displacement activity
(VDA) [9] that is deeply embedded within the predominantly
horizontal displacement activity. This particular methodology
is then integrated into a machine-learning-based classifier
capable of dealing with large-scale data sets collected in
free-living and unstructured urban environments. Classically,
barometers have been the primary type of sensor used to track
motion in the vertical direction. Indeed, barometric pressure—
possibly augmented by other sensors—is commonly used in
the field of Human Activity Recognition (HAR) to recognize
the particular VDA class, which is of prime interest to us [9].
Specifically, VDA is a particular human activity class that
deals with the vertical displacement of individuals in the built
environment through commonly available modes of vertical
mobility such as stairs, escalators, elevators, or slopes. In this
work, the term VDA is intended to solely encompass human
movements in vertically built structures. That means that we
are discarding changes in elevation associated with any vehicle

motion (motor vehicle, train, bicycle, cable car, etc.).
Our methodological advancement is thoroughly tested and

validated using a big data set obtained from a large-scale
human experiment carried out in Singapore: the so-called
National Science Experiment (NSE). The NSE was a city-
scale experiment that involved 50,000 students in Singapore
between 2015 and 2017. The wearable devices specifically de-
signed for this large-scale experiment were carried by students
continuously for 5 days, and contained several sensors includ-
ing a barometer and an accelerometer. By fully understanding
the complex interplay of factors that influence barometric pres-
sure, we develop several preprocessing methods to alleviate the
effects of those factors, and with the end goal of achieving the
highest possible accuracy in the VDA identification process.
Moreover, the VDA extraction process must be robust enough
to handle inherent limitations associated with such large-scale
human experiments—i.e., low sampling rate, heterogeneity in
devices and participant population, missing data, sensor errors,
etc. As part of this process, we label manually a large number
of training data (81 subjects, 81 devices, for a time period of
24 hours). This step is followed by a validation using a short-
term video-annotated data set (2 subjects, 5 devices, for a time-
period of 6 hours). We integrate the developed VDA identifica-
tion methodology into a machine-learning based classifier, and
subsequently applied to the large-scale NSE data set to extract
some unique features of human vertical mobility associated
with the student population participating in the NSE.

The main contributions of this paper can be summarized as
follows (see Fig. 1):

• A novel and accurate multi-sensory identification of
vertical displacement activity is developed and validated
against a sparse data set from a large-scale human ex-
periment involving over 16, 000 individuals going about
their daily activity within a densely urban environment.

• The accuracy of this VDA identification process is found
to be strongly dependent on a number of constraints
associated with the sensing of key physical quantities.
Specifically, we design a feature extraction step involving
a combination of feature engineering and data segmenta-
tion. In addition, the properties of the sensors and how
they are used in such large-scale experiments create a
number of challenges, which are identified and addressed.

• A machine-learning based classifier using our novel VDA
identification process allows us to carry out the first
large-scale analysis of human vertical mobility in a city-
scale experiment. Interestingly, our results reveal a highly
heterogeneous distribution of vertical activity, both in
terms of the number of events and of the size of vertical
jumps. These results have far-reaching implications for
the architectural design of dense urban environments.

II. RELATED WORKS

In the field of HAR, sensor data requires pre-processing
followed by the application of recognition models to clas-
sify the activity classes of interest [11], [12]. Algorithms
for identifying VDA from sensor data range from simple
threshold-based models to sophisticated Machine Learning
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Fig. 1: Human activity recognition (HAR) process in the identification of VDA [10]. This flowchart describes the overall
process developed to achieve our VDA analysis represented in the last rectangular box. The key contributions of this work are
in the boxes with a red outline.

(ML) algorithms like deep-learning. In the present work, we
employ a ML-based classification model and we review here
several prior studies concerning the use of ML to classify VDA
events.

One of the pioneering works on identifying VDA was
performed in 1998 by Sagawa et al. [13], using accelerom-
eter and barometer data to identify VDA. The study used
a threshold-based model with a small training sample (83
minutes and 6 subjects). Since then, the combined effects of
the digital revolution, the ubiquity of mobile devices, and the
advances in sensors, Big Data and ML have paved the way
for the possibility of real-time recognition of activity classes
of individuals evolving in complex environments.

Accelerometers are the most widely used sensors to track
human activities [14], [15]. In studies using an accelerometer
as the stand-alone sensor, the prevalent mode of tracked
vertical mobility is stairs climbing [11], [16]–[20], although
the classification accuracy of stairs climbing tends to be lower
than other activity classes [21], [22]. This led researchers
to include additional data sources to improve the accuracy
of VDA detection, such as gyroscope, magnetometer and
barometer data [23]–[25], and also to consider other modes
of vertical mobility such as escalator and elevator rides. For
instance, Liu et al. [23] added barometer data to a model that
used accelerometer, gyroscope, and magnetometer sensor data,
notably improving the classification accuracy from ∼ 80% to
∼ 90% (number of subjects: 10).

Additionally, some studies have acknowledged that ac-
celerometers are effectively less robust than barometers for
VDA classification. Muralidharan et al. [26] compared the
VDA recognition performance using an accelerometer versus
a barometer, and showed that their VDA classification perfor-
mances were similar — with the barometer-based framework
performing slightly better at nearly 100% accuracy (number
of subjects: 2). However, the accuracy of accelerometer-based

framework dropped drastically when the mobile device was
used to take calls or play games [26]. Similarly, Vanini et
al. [27] showed that the classification performance of VDA
was comparable for accelerometer-only and barometer-only
study (∼ 99%), but that the barometer was more energy
efficient and less dependent from the on-body position than
accelerometers (number of subjects: 10).

Our study focuses on the recognition of VDA as a general
class of activity, and uses the following sensor data : (1)
location data derived from Wi-Fi Access Points (APs), (2)
magnitude of 3-axis accelerometer, and (3) barometric pres-
sure data.

The magnitude of the 3-axis accelerometer signal is orienta-
tion independent [28], [29], and does not require complex data
post-processing [11]. On the other hand, raw barometric sensor
data can entail noise introduced by random sensor errors, lim-
ited sensor resolution, and high sampling frequency (> 2 Hz).
Filtering techniques like moving average filters [30]–[32],
Finite Impulse Response (FIR) filters [33], and Infinite Impulse
Response (IIR) filters [24], [33]–[35] are commonly used to
alleviate the noise effects. To increase precision in extracting
elevation changes, signal modeling such as sinusoidal fitting
model [36] and sigmoidal nonlinear fitting [37] are also used.
In the present study, the spectral resolution of the sensor
data collection is 0.06 Hz. Such low sampling rate allows
the system to side-step noise appearing at high sampling rate
that particularly affects precise extraction of elevation changes.
Therefore, the barometric pressure sensor data we consider
here are not filtered, and other sources of noise due to sensor
resolution are used to quantify the uncertainty in the magnitude
of the predicted VDA.

Barometric pressure data is usually converted to several
common feature types such as : (1) statistical [38], [39], (2)
spectral [38], [39], (3) temporal [38], [39], and (4) wavelet-
based features [40], [41]. The most commonly used fea-
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tures are the rate of change of pressure (vertical velocity
or slope) [23], [30], [38], [42], [43] and differential pres-
sure (dp) [42], [44].

Vanini et al. [27] used barometric pressure data alone to
recognize VDA using the rate of change of pressure along with
the standard deviation of differential pressure as features and
found that Long Short-Term Memory (LSTM) neural network
framework produces a 99% accuracy compared to a decision
tree approach (96%) and naı̈ve Bayes classifiers (93%). How-
ever, their data collection was of short duration (30 minutes
for each class) and conducted in limited environments. Mu-
ralidharan et al. [26] detected floor changes with an accuracy
of 99% using the J48 decision tree model. Even though several
factors that affect barometric pressure are considered, the data
collected were of short duration (few minutes), conducted in
limited structured environments, and lacked any entanglement
with transportation modes. Liu et al. [23] classified vertical
displacement activities from horizontal displacement activities
(HDA) using inertial measurement units (IMU, including
magnetometer), and barometer sensor data, with barometric
sensor features derived from the standard deviation of pressure
and rate of change of pressure. By training various classifiers
such as Random Forest, J48 decision trees, Artificial Neural
Networks (ANN), SVM and Naı̈ve Bayes, they obtained that
Random Forest classifiers produced the highest accuracy of
92%. Also in this study, each activity class was performed
only for a few minutes and limited to ambulation [23].

The review of the literature on HAR [11], [12], [45]–[47]
makes it clear that no classifier can be considered as the best
one in a universal way, i.e. without considering the context
in which it is used. As each data set comes with its own
set of distinct characteristics, the classifier working best for a
particular data set and activity type might not have the best
performance for a distinct problem or different circumstances
(i.e., not generalizable) [11]. In this study, we have chosen two
ensemble models (XGBoost and Random Forest), a Bayesian
model (Naive-Bayes), and an instance-based nearest neighbor
model (k-Nearest Neighbor) to evaluate and compare the
performances of each model on our data set (see Fig. 1).

It is common in the HAR literature to use short-duration
training data collected in segments that contain only one or two
activity classes and are performed in semi-natural or laboratory
conditions, with limited variability in environments. However,
real-life activities of human occur in complex and unstruc-
tured environments, with a wide range of possible sequences,
spanning heterogeneous activity classes with heterogeneous
durations. Our study collocates itself in such a framework, as
it uses a long-term (5 days) data set collected in a large-scale
student population (∼ 50, 000 students) during their routine
weekdays. Hence, it requires a different approach than those
reported in the literature.

Indeed, long-term monitoring of human activities requires
a thorough understanding of all the factors that affect the
sensor data in different static and dynamic environments. In
particular, the factors that influence barometric pressure data
are climate and weather, air velocity during motion, built
environment, altitude, and sensor accuracy [9]. For a detailed
review on the use of barometers to track human activity and

the many factors that affect barometric pressure, we refer the
reader to the recent review paper [9].

III. DESCRIPTION OF DATA

A. National Science Experiment data

The National Science Experiment (NSE) was designed and
commissioned by the Singapore National Research Foundation
(NRF) and the Singapore University of Technology and Design
(SUTD), with other private and government bodies in Singa-
pore [48]. The primary objective of this island-wide science
experiment carried out by Singapore students—themed “Step
Out for Science”— was for students to monitor and evaluate
their own carbon footprint, travel mobility patterns, amount of
time spent indoors and outdoors, and more.

Almost 50, 000 students from 92 schools distributed nation-
wide participated in the NSE in 2016 (Table I). Each stu-
dent carried a wearable device called SENSg (see Fig. 2),
which consisted of built-in environmental, motion sensors and
communication units. The devices were able to record and
transmit the sensed data related to the Activities of Daily
Living (ADL) of the students to a cloud server [49]. The
data was recorded every 13 ∼ 18 seconds over weekdays,
from Monday to Friday, for 8 different weeks in 2016. To
reduce battery consumption, the device goes to a sleep mode
when the processed IMU signal shows no user movement. The
SENSg devices were handed over to the students on Mondays
and collected back on Fridays. Hence, the full time scale of
daily ADL is only available on Tuesdays, Wednesdays and
Thursdays. Table II shows the cleaned NSE 2016 database
after removing devices based on two criteria (a) data coverage
for less than 6 hours per day (b) percentage of missing location
data larger than 50% in a day.

Fig. 2: NSE SENSg device details: (a) outside look, (b)
internal structure [49], (c) working cycle. (Picture Courtesy:
[50])

Our study uses the accelerometer, barometer and Wi-Fi
scanners embedded in the SENSg devices to detect the Vertical
Displacement Activites (VDA) of students during their ADL.
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TABLE I: NSE 2016 - Device delivery information
Dates No.

schools
No.

devices
Primary

(6–12
y.o.)

Secondary
(12–16

y.o.)

Pre-
University

(16–19
y.o.)

Apr 11–15 7 3,002 1,590 1,192 220
Apr 18–22 7 3,290 2,300 990 –
May 16–20 10 2,673 820 1,624 229
May 23–27 2 840 – 220 620
July 11–15 32 10,751 3,834 6,677 240
July 18–22 23 7,934 5,233 2,181 520
July 25–29 8 15,029 220 890 13,919
Aug 17–19 3 6,000 – – 6,000
Total 92 49,519 13,997 13,774 21,748

TABLE II: Curated NSE 2016 database
Dates No.

schools
No. IDs Primary

(6–12
y.o.)

Secondary
(12–16

y.o.)

Pre-
University

(16–19
y.o.)

Apr 11–15 7 1,797 1,049 608 140
Apr 18–22 7 1,793 1,265 528 –
May 16–20 10 700 239 386 75
May 23–27 – – – – –
July 11–15 33 4,387 2,048 2,114 73
July 18–22 21 3,086 2,292 666 128
July 25–29 8 3,345 – 93 3,057
Aug 17–19 3 1,380 – – 1,380
Total 89 16,581 6,939 4,395 4,853

These sensor types are widely available in modern smart-
phones, rendering them ideal for this particular HAR. The
SENSg device comprises the IMU sensor MPU9250 from
InvenSense, and the barometer sensor BMP280 from Bosch
Sensortech. The device also collected and stored up to a
maximum of 20 Wi-Fi Access Points (AP) with the highest
Receiver Signal Strength Indication (RSSI). We used Skyhook,
a mobile location service from Boston, Massachusetts, that
has geolocation of billions of Wi-Fi APs around the world,
to convert the Wi-Fi APs to location coordinates [51]. The
location coordinates (latitude and longitude) have a typical
location accuracy of ±100 meters. The location accuracy is
increased by applying regression to the time series of location
data (see Appendix B). When the Wi-Fi APs are sparse or
absent, location data is considered as missing. Interpolation is
then applied to the time series data to predict these missing
values (see Appendix A). The full sensor characteristics are
shown in Table III [49]. The embedded barometer sensor is
capable of detecting up to 1 meter changes in height, i.e.
±12 Pa [49]. The raw values measured by the accelerometer
along its three axis were processed on-board the SENSg, and
only descriptive statistics of these raw data were recorded:
(1) max(Macc)—the maximum value of the accelerometer’s
signal magnitude (2) std(Macc)—the standard deviation of
accelerometer’s magnitude, both sampled at 100 Hz during the
one-second data acquisition temporal window, which occurred
in its turn with frequency ∼ 0.0625 Hz. The SENSg device
along with its working cycle are shown in Fig. 2.

B. Video-annotated data
As the measure of the barometric pressure behavior is

influenced by many factors, it is important to have at our

TABLE III: Sensor Characteristics of SENSg device
Sensor Model Range Accuracy Units Poll fre-

quency
Wi-Fi SN8205 – – – 0.062 Hz
Barometer BMP280 300 to

1, 100 hPa
±12 Pa Pa 0.062 Hz

Accelerometer MPU9250 ±2 g ±80 mg mg/LSB 100 Hz
(for every
0.062 Hz)

disposal a data set with the corresponding ground truth for
validation purposes. To this aim, we collected approximately
6 hours of sensor data annotated by means of video recording.
This data set was recorded across different modes of horizontal
(walking, idle, train, bus, car, and cycle) and vertical (elevator,
escalator, and stairs) activity (Table IV). Data was collected
by 2 researchers on different days and time using a SENSg
device that was hung using a lanyard similar to the one used
by students in the NSE. The video was recorded using a Go
Pro Hero 6 mounted on the chest. We will use this data set to
validate manual labeling methods described in Sec. IV-A.

TABLE IV: Video-annotated data
Mode Total

time
(hours)

Car 0.4
Bus 1.5
Train 0.7
Cycle 0.8
Walking 1.5
Idle 0.3
VDA 0.4
Total 5.6

IV. METHODOLOGY

As the NSE was conceived as a large scale data collection
with relatively high temporal resolution and for long durations,
sensor data collection was optimized to save battery life and
data bandwidth. This resulted in a compromise in sensor reso-
lution, sampling rate, and type of sensor data collected, which
inevitably makes the VDA identification more challenging.
This section thus details the machine learning framework that
we developed to identify and extract VDAs from continuous
temporal segments of the NSE data (Fig. 1). Section IV-A
explains the manual labeling techniques, and sections IV-
B, IV-C, IV-D, and IV-E encompass the machine learning
framework. We refer to the Appendices for details related
to the pre-processing of the location data (App. A and B),
while App. C describes the classification model parameters,
and App. D deals with model tuning.

A. Manual labeling
Accurate annotation of sensor data is highly manpower

intensive. One solution is to manually label a small subset
of the data based on expertise, and use it to validate the
classification framework. We were indeed able to perform such
a manual labeling in a subset of the NSE database (see Sec. IV-
D), using our general understanding of the factors affecting
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barometric pressure [9] and leveraging the data annotated
with the help of the ground truth video (Sec III-B). In this
manual labeling, we labeled each data point as either VDA
or HDA, based on the unique characteristic profile of vertical
transportation. As noted in [9], pressure changes caused by
factors other than vertical transportation are mostly long-term
variations (e.g. diurnal pressure cycle) and/or brief and intense
transient spikes (e.g. Indoor-to-outdoor transition).

First, and based on our pilot experiments illustrated in [9],
we distinguish VDA from HDA in our manual labeling by
monitoring the following characteristics: (1) a low horizon-
tal travel velocity, (2) body movements picked up by the
accelerometer, and (3) an increase or decrease in baromet-
ric pressure. We note that high magnitude pressure changes
that can be mistaken for VDA occur during transportation
modes [9], but these transportation modes can be identified
by tracking the location data trend, which should then reveal
a high horizontal velocity.

For validation of the procedure, the classifier will be trained
on the manually labeled data set, and then applied to the
data set described in Sec.III-B, for which the ground truth
is available.

B. Data segmentation

We segment the time series sensor data into regions of
significant and minor pressure changes to allow the classifier
to focus on the main characteristic of VDA—i.e., the pressure-
altitude relation. First, each data point is considered to a have
significant pressure change based on a cut-off value (dpi,cut-off),
determined by considering three points: (1) we want to discard
small pressure jumps that could correspond to other factors
that yield pressure changes of similar magnitude such as
slopes, indoor-outdoor transitions, etc. [9], (2) we want to
consider pressure changes corresponding to at least 50% of
the minimum vertical displacement of a single floor, and (3)
the changes need to be consistent with the sensor resolution
(±12 Pa).

The change in pressure (dpi) for each data point is cal-
culated from the difference of the time series data dpi =
Pi − Pi+1, where Pi is the pressure datum at instant ti. The
time interval dti = abs(ti − ti+1) associated with dpi should
be less than a cut-off value dti,cut-off to take into account that
data can be missing in times of inactivity, and the resulting
variation in pressure values for large values of dti might
then be due to the diurnal pressure cycle. The consecutive
significant pressure changes in the same direction (positive
change or negative pressure drop) are then grouped to form
a segment, i.e. SPi,n+1

= {Pi, Pi+1, . . . , Pn, Pn+1} for a
pressure change sequence of Sdpi,n+1

= {Pi − Pi+1, Pi+1 −
Pi+2, . . . , Pn − Pn+1}. Other features and sensor data are
grouped using the same groups of indices as for the segmented
pressure sequences.

In the case of manually labeled time series data set, we
first label each data point as either VDA or HDA (Sec. IV-
A). Therefore, each segmented data might contain both data
points labeled VDA and data points labeled HDA. We thus
label each segment using a majority rule, and assigning a

VDA label in case of a draw. A perfect data segmentation
would allow each VDA segment to indicate a complete VDA
event with no false positives or false negatives. The choices
of dti,cut-off and dpi,cut-off ultimately determine the performance
of this method. Hence, we compute the F1 score (a.k.a. F -
measure of balanced F -score) of capturing a complete VDA
event in each segment labeled as VDA in the manually labeled
training data for a range of dti,cut-off ([30, 50, 90, 120] sec)
and dpi,cut-off ([20, 23, 25, 27, 30] Pa) values (Table V). The
best F1 score is obtained for values dpi,cut-off and dti,cut-off
equal to 25 Pa and 120 seconds, respectively. We thus perform
the data segmentation with these parameter values, and the
final classification described below will be performed on these
segmented data.

TABLE V: Selection of data segmentation parameters based
on F1 score.

dti,cut-off F1 score
(%)

120 97.68 98.09 98.15 96.98 96.98
90 97.65 98.06 98.12 97.94 96.95
60 97.65 97.99 98.06 97.87 96.88
30 97.14 97.39 97.45 97.23 96.22
dpi,cut-off 20 23 25 27 30

C. Feature engineering

Model explainability is a growing focus in Machine Learn-
ing. To improve explainability, it is natural to start from
features based on domain-specific knowledge. We use here
our data exploration and our understanding of the sensor data
and the target event to be recognized to design several domain-
specific features. Specifically, we compute the following fea-
tures from accelerometer, barometer and Wi-Fi localization
data.

Rate of pressure change dp/dt: It accounts for the pace
of the VDA. This distinguishes the elevation change based
activities from phenomena that unravel over slow temporal
scales such as sensor drift, diurnal pressure cycle, etc.

Modified zero-crossing rate z̃cr: The zero-crossing rate
zcr is a temporal feature that counts the number of sign
changes during a particular time window for a given signal.
Here, we modified this feature to count changes in sign only if
the corresponding magnitude difference in pressure is ≥ 20 Pa.
This conditioned z̃cr can indeed identify the pressure spikes
due to factors such as weather and climate, built environment,
air velocity during motion or sensor accuracy, and distinguish
them from one-directional pressure changes that occur during
changes in elevation.

Horizontal travel velocity dx/dt: as the location data
are recorded in terms of latitude and longitude, we use the
haversine formula (see Eq (1)) to calculate the great circle
distance x between two locations. It is based on the assumption
that the Earth is approximately spherical, a valid assumption
for small distances such as the ones measured in the NSE
data. The horizontal travel velocity dx/dt plays a key role
in differentiating significant pressure changes of VDA from
transportation based activities [9]. Specifically, the great-circle
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distance x between location coordinates (ϕ1, λ1) and (ϕ2, λ2)
with ϕ the latitude, λ the longitude, and r the radius of earth,
is given by:

x = 2r arcsin

(√
sin2

[
ϕ2 − ϕ1

2

]
+ cosϕ1 cosϕ2 sin2

[
λ2 − λ1

2

])
. (1)

Statistical features of immediate neighborhood in time
series data Ni: By definition, a VDA event is always preceded
and followed by a HDA event. However, during vertical
mobility modes like elevator (and sometimes during escalator
rides), a person is potentially standing with no significant body
movement. Likewise, during transportation modes such as car,
bus or train travel, the vehicle stops intermittently, leading to
regions of low horizontal travel velocity. Hence, calculating
statistical features over an immediate neighborhood of each
data point can entail a sequence of events during and around
an activity of interest. More precisely, for each data point i,
we compute on the time window N = {i − 2, i − 1, i, i +
1, i + 2} (of approximate width ∼ 80 seconds) and for both
the horizontal travel velocity dx/dt and the accelerometer
data (max(Macc) and std(Macc)) the ten following statistics:
Minimum, Maximum, Average, Median, Mode, RMS (Root
Mean Square), MAD (Median Average Deviation), Standard
deviation, Variance, and IQR (Inter Quartile Range).

Statistical features of segmented data Si: Many of the
statistical features considered for the immediate neighborhood
of time series data are not suitable for segmented data, as the
length of the sequences is typically very small for most VDA
events—2 ∼ 4 s or even less (1 ∼ 2 s) for transportation
modes during which the sign of slope dp/dt changes very
often. Hence, we compute only the mean, median, and mode
of each data segment. This is done both for the original sensor
data and for the statistical features of immediate neighborhood
in the time series of the modified zero-crossing rate z̃cr, of
the horizontal travel velocity dx/dt, and of the accelerometer
data (max(Macc) and std(Macc)).

In total, we compute 95 features of the segmented data (Sec
IV-B). We refer to this set of features as Feature set-I.

D. Training-Validation-Test data
The NSE 2016 data set is very diverse in terms of the num-

ber of students, unique devices and demography of individual
participants. Hence, each train-validation-test data set should
reflect this diversity. To ensure this, we select the data collected
during one day by 81 students from 81 different schools, with
an appropriate balance of school types (primary, secondary and
pre-university) and weekdays (limited to Tuesday, Wednesday,
and Thursday) to form a representative sample (see Table VI.
We manually label this data sample according to the steps
described in Section IV. This sample data set is then randomly
divided into training (80%) and test set (20%), with all the data
collected by any single device assigned either to training or
testing as a whole (data collected by a single student cannot
be split between training or testing). The classifier model is
trained on the training set with the model’s hyperparameters
being tuned by a 5-fold cross-validation. Once the best model
parameters are identified, it is then tested against the test set
for the final performance evaluation.

In addition, to validate the manual labeling, we use the
video-annotated data described in Sec.III-B. We apply the
trained classifier model to these data labeled using the cor-
responding video recording to establish the ground truth.

E. Classification models

We have selected four commonly used classifiers in
HAR [11]: (1) Extreme Gradient Boosting (XGBoost or XGB),
(2) Random Forest (RF), (3) Naive-Bayes model (NB), and
(4) k-Nearest Neighbors (kNN). Both XGBoost and Random
Forest are decision-tree-based ensemble learning algorithms.
The XGBoost algorithm is based on the boosting method that
adds weak learners sequentially to reduce the loss function
of the model, while the Random Forest model is based on
the bagging method that adds weak learners in parallel, and
uses majority voting model to make final predictions. On the
other hand, the Naive-Bayes model is a probabilistic learning
algorithm based on Bayes’ theorem that assumes strong inde-
pendence between the features. As for the k-Nearest neighbor
model, it is non-parametric and uses distance-based measures
to find the k-nearest samples, and it uses a majority voting
model to assign a class.

The hyperparameters of these classifiers are tuned by means
of a grid search using a 5-fold cross-validation on feature set-
I. A more detailed description of the model parameters and
model tuning can be found in App. C and D respectively.

V. RESULTS AND DISCUSSION

The central objective of our study is to obtain the magnitude
of vertical displacements of individuals during their daily
activities as an indication of vertical movement in a large-
scale study of human mobility. By leveraging the relationship
between barometric pressure and altitude, our specific aim is
to develop pre-processing methods that alleviate the adverse
influence of the other factors that affect barometric pressure
in order to accurately extract the instances of vertical motion.

We globally consider the following procedure. First, a small
representative sample of the cleaned NSE 2016 data (Sec IV-
D) is manually labeled as described in Sec IV-A. We then
segment the whole cleaned NSE 2016 data set from Table II
along with the manually labeled data and video annotated data
according to Sec IV-B. The classifier model is then trained on
the segmented manually labeled data to achieve a binary clas-
sification between Horizontal Displacement Activity (HDA) or
Vertical Displacement Activity (VDA). The trained classifier is
applied to the video annotated data to validate manual labeling,
and finally applied on the cleaned NSE 2016 data set.

A. Performance comparison of classification models

The four classifiers described in sec. IV-E are trained using
feature set-I with the respective hyperparameters tuned from
the 5-fold cross-validation with grid search (see Sec. IV-E).
Their respective classification performances on the test data set
are reported in Table. VII. The XGBoost model provides the
highest overall accuracy (98 %) and F1-score for classifying
VDA (93 %), closely followed by the Random Forest (overall
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TABLE VI: Properties of the Training-Test split data sets

data set Ground
truth

Size in
duration

Number of
time-series
data points

Number of
segmented
data

Number of
devices

Number of
individuals

Number of
schools

Pri. Sec. Pre-
U.

Training
(80%)

Manual 64 (days) 207,380 7,132 64 64 64 21 20 23

Test
(20%)

Manual 17 (days) 55,092 2,166 17 17 17 8 2 7

Video
annotated
data

Video
recording

6 (hours) 1,262 305 5 2 – – – –

accuracy of 97 % and F1-score for classifying VDA at 89 %).
Both the Naive-Bayes model and k-Nearest Neighbor model
perform poorly with an F1-score for classifying VDA standing
at 52 % and 17 % respectively. The ensemble learning methods
clearly show a superior performance than Naive-Bayes and
kNN models, similar to the results reported by Liu et al. [23]
in classifying VDA from HDA. Therefore, we select XGBoost
as the classifier of choice for this analysis.

TABLE VII: Comparison of classifier performance on the test
data set with feature set-I

Model Overall
accuracy
(%)

Class Precision
(%)

Recall
(%)

F1-
score
(%)

Support

XGB 98 HDA 99 99 99 1899
VDA 93 92 93 277

RF 97 HDA 98 99 99 1899
VDA 96 83 89 277

NB 80 HDA 97 80 88 1899
VDA 38 83 52 277

kNN 87 HDA 88 99 93 1899
VDA 52 10 17 277

B. Validation of manual labeling

To ensure the validity of our manual labeling strategies, the
trained XGBoost classifier model is applied to the data set with
ground truth annotated from a video recording. The results of
the classifier performance is shown in Table VIII. Although
the classifier has 100% precision (i.e. it does not capture false
positives), it has a recall of 80% (i.e. it only captures 80% of
the actual VDA events), thereby yielding an F1-score of 89%.

TABLE VIII: Classification results of video-annotated data
set with feature set-I

(a) Performance metrics

Class Precision
(%)

Recall
(%)

F1-score
(%) Support

HDA 95 100 97 246
VDA 100 80 89 59
weighted
average 96 96 96 395

(b) Confusion matrix

Class HDA VDA Support
HDA 246 0 246
VDA 12 47 59

Fig. 3: Distribution of the rate of pressure changes in predicted
data in video-annotated data set when using feature set-I.

The recall performance is rather low due to a high pro-
portion of instances such that dp/dt < 1.9 Pa/sec in the
video-annotated data set (16.9% of all points marked as VDA)
compared to the test data set (5.5%) for example. This issue is
also responsible for some false negatives in the predicted data,
where 77% of the predicted false negatives in video-annotated
data set have dp/dt < 1.9 Pa/sec (see Fig. 3). This is due to
the fact that many of the data points with small pressure jumps
dp are not labeled as VDA in the manually labeled data set.
Indeed, many instances with similar magnitudes for dp cannot
be ruled out with high confidence given the known factors
influencing barometric pressure [9].

C. Impact of sensor type and feature importance
Three sensors are employed for this study: Barometer, tri-

axis accelerometer, and Wi-Fi scanner (location data). To un-
derstand the impact of these sensor types on the classification
of VDA, we conduct an ablation study. Since barometric
pressure data is used in the pre-processing step (data segmen-
tation) and is vital to the extraction of vertical displacements,
features derived from barometer data are not removed in this
ablation study. Table IX reports the results of the classification
performance with features from the following sensor(s): (a)
Barometer only, (b) Barometer and tri-axis accelerometer,
and (c) Barometer and Wi-Fi scanner (location data). The
F1-score for classifying VDA is 57% (overall accuracy of
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89%) with barometer features only, and it is significantly
improved by the addition of the tri-axis accelerometer features
(overall accuracy of 96% and F1-score for classifying VDA
at 83%). An even better performance is achieved with the
combination of location and barometer features with 97%
overall accuracy and 90% F1-score for classifying VDA. The
addition of the accelerometer data to barometer and location
data thus only improves the F1-score by 3%. As noted in
Sec. II, previous studies [26], [27] have obtained similar
accuracy with accelerometer only or barometer only features,
but their training data was collected in limited environment
(e.g. ambulation only or transportation only activities, short
time period, etc.). However, for a data set such as the one
considered here, which was collected in a long term free-living
environment, it thus seems that barometer only features are not
enough to classify VDA with high accuracy; however, adding
the data of even only one additional sensor data allows to
reach very good performances even in this case.

TABLE IX: Impact of sensor type on the classifier performance
with selected features of feature set-I. Baro - Barometer, Acc
- Accelerometer, and Loc - Location data derived from Wi-Fi
scanner.

Sensor Overall
accuracy
(%)

Class Precision
(%)

Recall
(%)

F1-
score
(%)

Support

Baro. 89 HDA 94 94 94 1899
VDA 58 56 57 277

Baro +
Acc

96 HDA 98 97 98 1899

VDA 83 84 83 277
Baro +
Loc

97 HDA 98 99 99 1899

VDA 92 88 90 277
Baro +
Loc +
Acc

98 HDA 99 99 99 1899

VDA 93 92 93 277

The XGBoost model (see App. C for a description of
the model and its hyperparameters) has an embedded feature
ranking method that quantifies the importance of each feature
to build the predictive model. The most relevant parameter
to quantify relative feature importance is the total gain that
measures the improvement in accuracy brought on by the
feature for each tree in the model. Based on the total gain,
the feature importance of all 95 features is calculated from
the tuned model. To understand the impact of using reduced
feature sets, we re-tune the hyperparameters and re-train the
classifier model using the top 10 (out of 95) and the top 5
(out of 95) of the important features, denoted as the feature
set-II (features 1–10 in Table X) and feature set-III (features
1–5 in Table X) respectively, using the same procedure as
described in App. D. The reduced feature set size of 10 and 5
are arbitrarily chosen, but it is supported by the fact that the
total gain drops drastically after the most important feature
(Sdp/dt) as shown in Table X.

The classification performance of the XGBoost model with
feature sets I, II, and III are shown in Table XI. The overall
classification accuracy of the model for all feature sets on the
test set stands at 98%, and the F1-score for classifying VDA is

TABLE X: Feature importance obtained from the tuned XG-
Boost classifier model. Top 10 results are shown. S stands for
segmented data.

No Feature Total gain
1 Sdp/dt 4460
2 Smin(NRMS(std(Macc)))

2614
3 Smin(Nmedian(dx/dt))

988
4 Smin(z̃cr) 421
5 Sdx/dt 265
6 Smin(Nmax(Macc))

184
7 Smin(Nmax(dx/dt))

184
8 Smin(Navg(dx/dt))

141
9 Smax(Nmax(dx/dt))

124
10 Smin(Nmin(dx/dt))

114

TABLE XI: Classification performance of the XGBoost
model

(a) Performance metrics

Feature
set

Overall
accuracy
(%)

Class Precision
(%)

Recall
(%)

F1-
score
(%)

Support

Feature
set-I

98 HDA 99 99 99 1899

VDA 93 92 93 277
Feature
set-II

98 HDA 99 99 99 1899

VDA 93 90 92 277
Feature
set-III

98 HDA 98 99 99 1899

VDA 94 90 92 277

(b) Confusion matrix

Feature
set

Class HDA VDA Support

Feature
set-I

HDA 1870 19 1899

VDA 22 255 277
Feature
set-II

HDA 1870 19 1899

VDA 27 250 277
Feature
set-III

HDA 1874 15 1899

VDA 29 248 277

found to be slightly lower at 93% for feature set-I and 92% for
feature set-II and III. As the number of features are reduced
from 95 to 10, and ultimately down to 5, there is a very slight
increase in precision with a complementary decrease in recall.
The confusion matrix in Table XIb, shows that there is no
significant drop in performance when reducing the feature set
size. To strike a balance between performance and number of
features, we use the XGBoost model results with feature set-II
in this section’s further analysis.

D. VDA classification performance
Table XIb shows the confusion matrix—i.e. predicted class

distributions and corresponding Type-I (False Positives) and
Type-II errors (False Negatives). When closely inspecting the
feature space in the test data set, one finds that the Type-
II error generally occurs when the rate of pressure changes
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Sdp/dt is small, typically below 1.9 Pa/sec for 65% of the false
negatives. This observation may have two possible origins.
Either, this is due to the small magnitude of pressure jumps
dp (associated to low recording frequency that splits a single
VDA event across multiple time intervals). Alternatively, this
could also be due to larger time intervals dt (due to irregular
recording frequency of 0.076 ∼ 0.016 Hz). In both cases,
the low and irregular sampling rate is the key limiting factor.
In some cases, a vertical mobility event is following or
preceding an horizontal transportation mode—e.g., above-the-
ground or underground train travel—, which may lead to
misclassification due to the reliance of Wi-Fi localization for
the calculation of the travel velocity. This is the case for
instance when the APs are sparse.

E. VDA recognition limitations

The magnitude of the altitude change in a given VDA
event is derived from the barometric pressure change of the
segmented data Sdp using Eq (2). The accuracy of this mag-
nitude is limited by the barometric sensor resolution, which
is ±12 Pa for our SenSg device (see Table III). Some of the
VDA events with lower values of Sdp/dt are not appropriately
classified, as stated in Sec. V-D. For a typical sampling
frequency of 0.062 Hz, this corresponds to an altitude change
of 2.5 meters (30 Pa). Hence, it is reasonable to assume that
vertical displacements smaller than this value are not properly
captured, and thus the vertical moves can only be accurate
with a vertical resolution of ∼ 2.5 meters.

The classification performance when recognizing VDAs in
this study is thus limited by the type of sensor data, sensor
resolution, and sampling frequency. Location data from GPS
with an accuracy of ±10 meters would outperform the often
inaccurate Wi-Fi localization, which is only accurate within
±200 meters. Similarly, a higher sampling rate of barometric
pressure to the tune of 1 Hz would be ideal compared to the
lower sampling frequency of ∼ 0.062 Hz in this data set.
Moreover, the use of accurately annotated data set—e.g., by
means of video recording—can markedly improve the training
performance.

VDA can be further sub-classified into different modes
of vertical transportation like elevator, escalator, or stairs.
This would however require large amounts of video-annotated
training data set with high temporal and spatial resolution.
This is because the rate of change of vertical displacement—a
key metric in distinguishing between these modes [9]—needs
to be sampled at a fairly high resolution, especially to be able
to differentiate between stairs climbing and escalators riding.
Furthermore, the classification between stairs/escalators and
elevators will only be accurate for floor jumps larger than
2 ∼ 3 if the sampling frequency is low, such as that found in
our data set. For these reasons, we do not consider VDA sub-
classification in this study. However, with the use of sensors
with a higher sampling rate, such sub-classification of VDA
should be attainable as shown in previous works [23], [26],
[27], [52].

F. Prevalence of vertical mobility in Singapore’s student
population

We have applied the trained XGBoost model with featurre
set-II to the curated NSE data described in Table II. The data
was collected for N = 16, 486 students from 89 schools aged
6–19 whose residences and schools were spread throughout the
island-state of Singapore. For each subject, the data contains at
least 6 hours of coverage during a day. The results presented in
this section are aggregated over the duration of a single day for
each participant—the selected day corresponds to the one with
the largest among of data points collected during their week
of carrying the SENSg device as part of the NSE program.
The predicted VDAs are postprocessed to remove vertical
displacements (less than 9% of total) that are accompanied
by significant pressure fluctuations (dp > 20 Pa) that may
have been caused by sensor errors (see [9]).

The total number of predicted VDAs in the entire data set
reaches 182, 841 events after postprocessing. Some statistics of
VDA for each subject over a day are calculated and shown in
Fig. 4, namely the number of VDAs, the cummulated vertical
displacement and the total time spent in the VDA mode. On a
daily average, a subject was found to be engaged in 10 events
of vertical mobility, traveled vertically ∼ 83 meters, and spent
a total of 4 minutes per day in this mode. As an element
of comparison, Americans are found to spend on average ∼
65 minutes per day eating [53]. The distributions are however
rather heterogeneous, with individuals who traveled as much
as 140 meters vertically in a single VDA event, moved up to 60
times in vertical direction and spent up to 24 minutes per day
in VDA. The highest vertical displacement in our predicted
data (140 meters) is nearly half the size of the highest building
in Singapore—the Guoco tower stands at 290 meters.

Fig. 4 also shows the breakdown of the distributions of
VDA for primary (PRI), secondary (SEC) and pre-university
(PREU) students. Interestingly, the vertical mobility footprint
of PREU students is markedly higher than that of PRI or
SEC students, even if the descriptive statistics of single VDA
events are very similar: the median values are 5.2 m for PRI
students, 5.1 m for SEC students, 5.8 m for PREU students;
the mean values are respectively 9.3 m (PRI), 8.3 m (SEC),
8.1 m (PREU) and the maximum values are 116 m (PRI),
120 m (SEC), 140 m (PREU). The fact that pre-university
students are more active in terms of cumulated VDA can in
particular be explained by the fact that they are more likely to
travel through public transportation like trains that are either
above or below the ground road level [54].

The timeline of VDA reveals a rich structure. In highly
vertical cities, people experience significant waiting times
during their vertical mobility due to their use of shared public
transportation such as elevators or slow pedestrian movements
in escalators and stairs. In Singapore, these waiting times can
be similar in magnitude to the waiting times between trains
or buses (2 ∼ 5 minutes). Actually, businesses operating on
appointment only often remind their customers to include the
waiting time associated with elevator rides when planning their
arrival. While these time scales can still be considered small,
the ongoing trend of vertical integration of multi-purpose
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Fig. 4: Aggregated distribution of VDA for a population of N = 16, 486 individuals. The aggregation period is set to 1 day.
N is the number of subjects and x̃ denotes the median value (dashed lines). Top row: number of VDA events per subject;
Middle row: total cummulated vertical displacement (in meters) per subject; bottom row: total time spent in VDA (in seconds)
per subject; left column: total population; right column: subjects grouped by school types.

buildings will underscore the importance of understanding
congestion in terms of vertical transportation and mobility.
Understanding congestion per land use type and time is
important to inform better transportation planning and this
point will apply as well to vertical transportation.

Fig. 5 shows the hourly statistical distribution of VDA
according to the three group types under investigation (PRI,
SEC and PREU). The group-based total number of subjects
with VDA (i.e., active subjects, Fig. 5(a)) and total count
of VDA (Fig. 5(b)) exhibit similar trends; both indicate that

different daily rhythms of individuals occur between the three
groups, i.e,. the peaks in activity for PRI are at 7 a.m., 10
a.m., 1 p.m., and 4 p.m., SEC at 6 a.m., 10 a.m., 2 p.m., and
6 p.m., and PREU students at 8 a.m., 12 p.m., and 5 p.m.
In addition, a large number of activities of PREU students is
observed during evening and night times, which can readily
be explained by the fact that some schools like the Institute of
Technical Education (ITE), operate primarily in the evening
and by the active after-school life of the late-teen population.

Due to the low number of active users between 12 a.m. and 5
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Fig. 5: Temporal statistics of VDA according to group types: (a) number of subjects with VDA (active subjects) by hours,
(b) total VDA count by hour, (c) average vertical displacement per active subject by hour, and (d) hourly average time spent
in VDA per active subject by hour. The errorbars in (c) and (d) indicate the confidence intervals estimated using a bootstrap
approach (n = 1000).

a.m., the average vertical displacement (Fig. 5(c)) and average
time spent in VDA (Fig. 5(d)) shows large uncertainty within
that particular time period, and become stable again after 5
a.m. In terms of per-subject average vertical displacement and
time spent, the primary and secondary students show similar
patterns, while pre-university students yield markedly different
patterns. For instance, the primary and secondary students’
average vertical displacement is high during 5 a.m.–6 a.m.
time window, drops to 9 meters between 8 a.m.–12 p.m., then
peaks up again to ≥ 20 meters between 4 p.m.–9 p.m., and
decreases after that. On the other hand, the pre-university
students average vertical displacement is about 20 meters
between 6 a.m.–7 a.m., slightly decreases to 14 meters around
11 a.m., then slowly increases until 11 p.m. These differences
in the morning could be explained by the style of classes
between the primary/secondary and pre-university students:
primary and secondary classes are usually fixed and students
do not need to change classes between courses, whereas pre-
university students will need to move to other classes for
different courses.

VI. CONCLUSION

Over the past two decades, advancements in sensor technol-
ogy and complexity science have enabled the dissection, with
unprecedented accuracy, of the fine details of human mobility
in urban areas from large-scale data. Mining these “Big Data”
revealed the burstiness and relative predictability of human
spatial movements [55], [56], as well as highly dense spatial

areas in cities [57]. However, these studies, albeit illuminating,
were mainly carried out on large groups of people living and
moving about in mostly flat cities, and were therefore limited
to horizontal movements in two dimensions. The present study
explored the application of identifying and monitoring VDA to
highlight the prevalence of vertical mobility at city-scale, and
its potential to add to the understanding of human mobility in
general.

Previous studies on VDA identification focused on the
feasibility of using barometric pressure sensing, hence the
associated experiments were designed for and carried out in
highly controlled conditions, e.g., structured environments,
short-term activities, simplified barometric pressure behavior,
limited activity classes, small-population samples, and small-
scale areas. In the real world, human vertical movements
are typically unstructured due to the nature of human living
patterns as well as the constraints imposed by the built environ-
ment. Using our understanding of the barometric pressure data
behavior and considering a more general scope corresponding
to real-world conditions, we have developed an accurate VDA
extraction methodology, integrated into a machine learning
strategy to precisely identify daily life VDA in “Big Data”
sets obtained from a city-scale experiment.

This “Big Data” set consisted of 16,581 students between
the age of 6 and 19, from 89 schools spread throughout
the city-state of Singapore. The relatively long-term tracking
(5 days) and high recording frequency (every ∼ 16 seconds)
has provided high spatiotemporal resolution data sufficient
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to identify VDA in diverse conditions. The classification
performance of the model is similar or closely aligned with
the results reported in the literature (Sec. II)—with 98%
overall accuracy and 92% F1-score in classifying VDA—while
significantly generalizing its applicability to almost all possible
real-world conditions.

The recognition of VDA is instrumental to the effectiveness
of a range of critical applications in the fields of indoor
positioning and navigation [26], [31], [58], [59], estimation
of energy expenditure, and health monitoring [34], [41]. The
present study markedly expands the scope of applications
by rendering possible the performance of large-scale human
experiments with the ultimate goal of shedding light on the
patterns of human mobility in dense urban areas, and its impact
on urban planning.

Our study is ultimately limited by the participants age group
and size, the sensor characteristics (primarily resolution and
sampling rate), and the training data collection methods (video
annotation versus manual labeling). Future studies can most
likely achieve more significant results by improvements in one
or more of these categories to obtain a more accurate and
general detection of VDA.

Lastly, the analysis of the aggregated VDA data by pop-
ulation groups/segments has revealed rich details about the
anticipated differences in the profiles of daily activity between
late-teens and younger children. The uncovered patterns of
vertical human mobility enabled us to accurately quantify,
for the first time, the distance traveled and time spent in
vertical transportation in a densely built urban environment.
It has also revealed some unique patterns of activity related
to vertical transportation that is present in many aspects of
our human lives. There is no doubt that a more systematic
analysis of the non-aggregated data would provide substantial
new details and unique information about the dynamics of
vertical mobility across several dimensions, including gender,
age, socioeconomic status, etc.

APPENDIX

A. Localization & Interpolation

The location data is using an API from a third party
company called Skyhook based on the available Wi-Fi APs.
It requires a minimum number of APs to triangulate a given
location. As the density of Wi-Fi APs varies from place to
place, accurate localization may not always be achievable
with insufficient data. This is especially pronounced in trans-
portation modes—such as underground subway rides, by-pass
roads, tunnels, bridges, etc.—where Wi-Fi APs are sparse or
even non-existent, even in highly dense cities. In our dataset,
a per-person average of 8% data points are missing location
information due to failed localization.

To complete the Wi-Fi localization data, an interpolation
method is used to predict the missing values. To identify and
validate the best interpolation method, successfully localized
time series are selected and a fraction of its data is removed
randomly. The Root Mean Squared Error (RMSE) value
between original and randomly removed data is calculated
for three distinct interpolation methods: (1) linear (2) cubic

spline, and (3) piece-wise cubic spline. For a fraction (10 ∼
50%) of the data removed, the linear interpolation consistently
outperforms other methods under consideration with the lowest
RMSE values. For fraction> 20% of the data removed, RMSE
measured in degree of latitude/longitude is ∼ 0.0001 for linear
interpolation while RMSE (degree)∼ 0.005 for other methods.

B. Regression
The Wi-Fi localization data has a low spatial resolution

of ±400 meters. The travel velocity estimation based on this
data reveals high local errors. To reduce local fluctuations, a
regression model is applied to find the best fit. To analyze the
model performance, RMSE is used to estimate the residuals
and the R-squared value quantifies the proportion of variance
explained by the model. The regression model performs poorly
when applied to the entire time series sequence. This is due
to the different regions of variability in data. The time series
location data is hence segmented into a series of local (tempo-
rary) variable and global (long-term) variable sequences. The
regression model is then applied with different window sizes
or knot placements to each of these sequences, higher number
of knots for a global variable and lower number of knots for
a local variable.

A local variable sequence is defined as Si,n = {i, i +
1, . . . , n} where the location of index − n is at distance ≤
distance cut-off from index − i. A global variable sequence
is created by combining several local variable sequences of
length < 10 (∼ 2.5 minutes) to reflect long term changes in
location.

Two regression models: (1) piece-wise polynomial and (2)
natural piece-wise cubic regression spline are considered as
well as three smoothing models: (3) Savitzky-Golay smooth-
ing, (4) LOESS model, (5) Exponential smoothing model.
These five options are compared against different window
sizes or knot placements (local variable = [5, 15, 30], global
variable= [5, 15, 30]) and distance cut off = [0.1, 0.3, 0.5] km).
The natural piece-wise Cubic regression spline and Savitzky-
Golay show the lowest RMSE and highest R-Squared values
for all knot placements/window sizes and distance cut off.
Either of these methods will suitably reduce the local errors
in location data. A low RMSE and high R-squared value
can also point to an over-fitted data, hence, model selection
should be supported by additional considerations. The optimal
knot placements should be sparse for local variable data
to reduce local fluctuations and denser for global variable
data where location varies long-term. Here, Natural Piece-
wise cubic regression spline method is selected with knot
placements at (local variable, global variable)= (15, 1) of the
segmented data using distance cut off = 0.3 km. Essentially,
the knot placements are designed to smooth the local variable
data while leaving the global variable sequences intact.

C. Classification model parameters
1) XGBoost: Gradient boosting allows an ensemble of weak

learners to build models that depend on the gradient descent
algorithm to optimize an objective function. The objective
function measures the model fitness of the training data
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and consists of training loss and regularization [60]. Train-
ing loss quantifies the predictive capability of the model
and the regularization parameters helps reduce over-fitting
by controlling the complexity of the model. The balance
between these two terms is commonly known as the bias-
variance trade-off [60]. XGBoost classifier model encompass
several parameters that are categorized as general, booster,
and learning task parameters [61]. The tree booster parameters
allows the specification of learning rate (eta), minimum loss
reduction to make a split (gamma), maximum depth of a tree
(max depth), minimum sum of weights of all observations
in a child (min child weight), fraction of observations to be
sampled randomly (subsample), fraction of columns to be
sampled randomly in each tree (colsample bytree), control
of class imbalance (scale pos weight), L2 regularization term
on weights (reg alpha), and L1 regularization term on weights
(reg lambda) [60], [61]. Learning task parameters gives the
option to choose an objective function (objective) for opti-
mization against a specified evaluation metric (eval metric).
The number of trees or estimators (n estimators) required
depends on the learning rate eta. The optimization of the tree
booster parameters based on the evaluation metric allows the
objective function to look for values that avoids over-fitting.
Model over-fitting can be further controlled by reducing the
learning rate and increasing the number of estimators [61].

2) Random Forest: The Random Forest classifier is an
ensemble learning algorithm that tries to create a range of
uncorrelated trees by randomly selecting features for each
tree and randomly (with replacement) assigning training data
to each tree. Both of these properties of Random Forest
helps control over-fitting [62], [63]. The number of trees
are given by the parameter n estimators and the maximum
number of features considered for splitting a node is given
by max features. The maximum number of levels in each
tree is controlled by the parameter max depth. The samples
given to the tree are controlled by the following parameters:
bootstrap, min sample split, min weight fraction leaf ,
and min sample leaf . The parameter bootstrap can be set
to True to allow random sampling with replacement. The
minimum number of data points assigned to a node before
splitting is given by min sample split and the parameter
min sample leaf is used to control the minimum number
of data points allowed in a leaf node. The sample weight can
be adjusted using the parameter min weight fraction leaf .
Finally, the class imbalance in a data set can be controlled by
setting the parameter class weight to balanced.

3) Naive-Bayes: Based on Bayes’ theorem, the Naive-Bayes
model is a probabilistic learning algorithm. This study uses the
Gaussian Naive-Bayes algorithm that assumes Gaussian dis-
tribution for each class [63], [64]. Other Naive-Bayes models
such as Multinomial and Bernoulli are defined for discrete data
values and hence not suitable for our problem [63]. Gaussian
Naive-Bayes model has only two parameters: var smoothing
and priors. The prior probability of the classes can be
assigned through priors. Since there are no prior probability
available for our classes, this parameter is unspecified in this
work so that the priors can be learnt from the data. The
parameter var smoothing is used to adjust the weight given

to data points far from the mean distribution. This is the only
parameter tuned for the Naive-Bayes model here.

4) k-Nearest Neighbors: k-Nearest Neighbors classifier is a
class of Nearest Neighbors algorithm that identifies k-nearest
training data points based on their similarity [63]. The number
of neighbors k is given by the parameter n neighbors. The
neighbors can be weighed uniformly or differently using the
parameter weight. The distance metric used can be controlled
by the parameter p, which denotes the power of the Minkowski
distance (p = 1 denotes Euclidean and p = 2 denotes Man-
hattan). The speed of finding the nearest neighbors depends
on the parameter algorithm that can be set to brute-force or
more faster methods such as tree-based search algorithms. The
tree-based search can be controlled by the parameter leaf size
that can be adjusted for faster construction and queries.

D. Classifier model tuning
The four classifier models follow an overall procedural

structure for model tuning. The optimal model hyperparam-
eters are selected by grid search and a 5-fold cross-validation
using the metric – Area Under the Receiver Operating Char-
acteristic Curve (ROC AUC). The grid search is initialized
with a set of hyperparameter values, which are fine tuned
until no further change in the results is noticed. The 5-fold
cross-validation is used to reduce the bias and makes use of
the training set efficiently to understand the model’s predictive
power on new data during the tuning procedure. Due to the
specific nature of the classifier models, some differences in
the procedure exist. For example, all the hyperparameters for
the Random Forest, Naive-Bayes, and k-Nearest Neighbors are
tuned using a single grid search while the hyperparameters for
XGBoost are tuned in a series of grid searches. The XGBoost
model is thus tuned by the following steps:

XGBoost model tuning steps: The optimal parameter
values are calculated in a series of steps, where each step
progresses by estimating the parameter under consideration
based on the parameters calculated from preceding step. The
steps taken to tune the model are as follows: (1) Set a high
learning rate and find the optimal number of estimators, (2)
For the given learning rate and number of estimators, find
optimal max depth and min child weight, (3) Find optimal
value of gamma (4) Re-calibrate the optimal number of esti-
mators, (5) find optimal values for the parameters subsample
and colsample bytree, (6) find the optimal values for the
regularization parameters reg alpha and reg lambda, (7) Re-
calibrate the optimal number of estimators, (8) Reduce the
learning rate and find the optimal number of estimators [61].

The cross-entropy loss for binary classification is set as
the objective function. For an initial learning rate of 0.3, the
above steps are followed from (1) to (7). As the final step
(8), the learning rate is reduced considerably (from 0.3 to 0.2
for feature set-I, to 0.1 for both feature set-II, and feature
set-III) to control over-fitting while keeping the F1 score of
VDA classification higher. The optimal number of estimators
is then found to be 43, 125, and 72 for feature set-I, II,
and III respectively from 5-fold cross validation for the given
learning rate. The class imbalance is acknowledged by setting
the parameter scale pos weight to 1 for faster convergence.
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E. Pressure-altitude relation
The fundamental equation for fluids at rest dictates the

relationship between atmospheric pressure and altitude [65].
The change in altitude is indeed given by

z2 − z1 = −p2 − p1
γ

, (2)

where γ = ρg is the specific weight of air with density
ρ = 1.225 kg/m3 and g is the acceleration due to gravity
g = 9.81 m/s2 at standard sea-level conditions. The fluid
is assumed to be incompressible and in isothermal condition.
This pressure-altitude equation is valid for data collected for
elevation less than 10 km from sea-level [65], which is always
the case in our study.
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de Physique Théorique in Marseille, France. He

is also Specially Appointed Professor at the Tokyo Tech World Research
Hub Initiative (Tokyo, Japan) since April 2019. His research interests
span statistical physics and its interdisciplinary applications. He is an
expert in the field of complex networks, from fundamental aspects to
applications ranging from computational social science to epidemiology.

Roland Bouffanais (Member, IEEE) received
the B.Sc. and M.Sc. degrees in physics from
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tiotemporal patterns of urban human mobility,” Journal of Statistical
Physics, vol. 151, no. 1, pp. 304–318, 2013.

[9] A. Manivannan, W. C. B. Chin, A. Barrat, and R. Bouffanais, “On the
challenges and potential of using barometric sensors to track human
activity,” Sensors, vol. 20, no. 23, p. 6786, 2020.

[10] M. Straczkiewicz and J.-P. Onnela, “A systematic review of
human activity recognition using smartphones,” arXiv preprint
arXiv:1910.03970, 2019.

[11] O. D. Lara and M. A. Labrador, “A survey on human activity
recognition using wearable sensors,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 3, pp. 1192–1209, 2013.

[12] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity
recognition using body-worn inertial sensors,” ACM Comput. Surv.,
vol. 46, no. 3, 33:1–33:33, Jan. 2014, ISSN: 0360-0300. DOI: 10.
1145/2499621.

[13] K. Sagawa, T. Ishihara, A. Ina, and H. Inooka, “Classification of human
moving patterns using air pressure and acceleration,” in IECON’98.
Proceedings of the 24th Annual Conference of the IEEE Industrial
Electronics Society (Cat. No. 98CH36200), IEEE, vol. 2, 1998,
pp. 1214–1219.

[14] M. Janidarmian, A. R. Fekr, K. Radecka, and Z. Zilic, “A comprehen-
sive analysis on wearable acceleration sensors in human activity recog-
nition,” Sensors (Switzerland), vol. 17, no. 3, 2017, ISSN: 14248220.
DOI: 10.3390/s17030529.

[15] N. Twomey, T. Diethe, X. Fafoutis, A. Elsts, R. McConville, P. Flach,
and I. Craddock, “A Comprehensive Study of Activity Recognition
Using Accelerometers,” Informatics, vol. 5, no. 2, p. 27, 2018. DOI:
10.3390/informatics5020027.

[16] Y. Chen and C. Shen, “Performance Analysis of Smartphone-Sensor
Behavior for Human Activity Recognition,” IEEE Access, vol. 5,
pp. 3095–3110, 2017, ISSN: 21693536. DOI: 10.1109/ACCESS.
2017.2676168.

[17] J. Mäntyjärvi, J. Himberg, and T. Seppänen, “Recognizing human
motion with multiple acceleration sensors,” Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, vol. 2,
pp. 747–752, 2001, ISSN: 08843627. DOI: 10.1109/ICSMC.2001.
973004.

[18] S. Chung, J. Lim, K. J. Noh, G. Kim, and H. Jeong, “Sensor
data acquisition and multimodal sensor fusion for human activity
recognition using deep learning,” Sensors (Switzerland), vol. 19, no. 7,
2019, ISSN: 14248220. DOI: 10.3390/s19071716.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 17

[19] K. Kunze and P. Lukowicz, “Sensor placement variations in wearable
activity recognition,” IEEE Pervasive Computing, vol. 13, no. 4,
pp. 32–41, 2014, ISSN: 15361268. DOI: 10.1109/MPRV.2014.73.

[20] M. Cornacchia, K. Ozcan, Y. Zheng, and S. Velipasalar, “A survey
on activity detection and classification using wearable sensors,” IEEE
Sensors Journal, vol. 17, no. 2, pp. 386–403, 2017.

[21] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and K. Aberer,
“Energy-efficient continuous activity recognition on mobile phones: An
activity-adaptive approach,” Proceedings - International Symposium on
Wearable Computers, ISWC, pp. 17–24, 2012, ISSN: 15504816. DOI:
10.1109/ISWC.2012.23.

[22] L. Bao and S. S. Intille, “Activity Recognition from User-Annotated
Acceleration Data BT - UbiComp 2002: Ubiquitous Computing,”
UbiComp 2002: Ubiquitous Computing, vol. 3001, no. Chapter 1,
pp. 1–17, 2004.

[23] M. Liu, H. Li, Y. Wang, F. Li, and X. Chen, “Double-windows-
based motion recognition in multi-floor buildings assisted by a built-in
barometer,” Sensors, vol. 18, no. 4, p. 1061, 2018.

[24] A. Moncada-Torres, K. Leuenberger, R. Gonzenbach, A. Luft, and
R. Gassert, “Activity classification based on inertial and barometric
pressure sensors at different anatomical locations,” Physiological mea-
surement, vol. 35, no. 7, p. 1245, 2014.

[25] A. El Halabi and H. Artail, “Integrating pressure and accelerometer
sensing for improved activity recognition on smartphones,” in 2013
Third International Conference on Communications and Information
Technology (ICCIT), IEEE, 2013, pp. 121–125.

[26] K. Muralidharan, A. J. Khan, A. Misra, R. K. Balan, and S. Agarwal,
“Barometric phone sensors: More hype than hope!” In Proceedings of
the 15th Workshop on Mobile Computing Systems and Applications,
ACM, 2014, p. 12.

[27] S. Vanini, F. Faraci, A. Ferrari, and S. Giordano, “Using barometric
pressure data to recognize vertical displacement activities on smart-
phones,” Computer Communications, vol. 87, pp. 37–48, 2016.

[28] S.-M. Lee, S. M. Yoon, and H. Cho, “Human activity recognition from
accelerometer data using convolutional neural network,” in 2017 ieee
international conference on big data and smart computing (bigcomp),
IEEE, 2017, pp. 131–134.

[29] I. Cleland, M. P. Donnelly, C. D. Nugent, J. Hallberg, M. Espinilla,
and M. Garcia-Constantino, “Collection of a Diverse, Realistic and
Annotated Dataset for Wearable Activity Recognition,” 2018 IEEE
International Conference on Pervasive Computing and Communica-
tions Workshops, PerCom Workshops 2018, pp. 555–560, 2018. DOI:
10.1109/PERCOMW.2018.8480322.

[30] C. Bollmeyer, T. Esemann, H. Gehring, and H. Hellbrück, “Precise
indoor altitude estimation based on differential barometric sensing for
wireless medical applications,” in 2013 IEEE International Conference
on Body Sensor Networks, IEEE, 2013, pp. 1–6.

[31] G. Pipelidis, O. R. M. Rad, D. Iwaszczuk, C. Prehofer, and U.
Hugentobler, “A novel approach for dynamic vertical indoor mapping
through crowd-sourced smartphone sensor data,” in 2017 International
Conference on Indoor Positioning and Indoor Navigation (IPIN),
IEEE, 2017, pp. 1–8.

[32] A. Sabatini and V. Genovese, “A sensor fusion method for tracking
vertical velocity and height based on inertial and barometric altimeter
measurements,” Sensors, vol. 14, no. 8, pp. 13 324–13 347, 2014.

[33] B. Ghimire, C. Nickel, and J. Seitz, “Pedestrian motion state classi-
fication using pressure sensors,” in 2016 International Conference on
Indoor Positioning and Indoor Navigation (IPIN), IEEE, 2016, pp. 1–6.

[34] F. Bianchi, S. J. Redmond, M. R. Narayanan, S. Cerutti, and N. H.
Lovell, “Barometric pressure and triaxial accelerometry-based falls
event detection,” IEEE Transactions on Neural Systems and Rehabili-
tation Engineering, vol. 18, no. 6, pp. 619–627, 2010.

[35] M. Voleno, S. J. Redmond, S. Cerutti, and N. H. Lovell, “Energy
expenditure estimation using triaxial accelerometry and barometric
pressure measurement,” in 2010 Annual International Conference of
the IEEE Engineering in Medicine and Biology, IEEE, 2010, pp. 5185–
5188.
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