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Sliding lubricated anisotropic rough surfaces

F. Plouraboué, M. Prat, and N. Letalleur
Institut de Mécanique des Fluides de Toulouse, UMR CNRS-INP/UPS No.5502, Avenue du Professeur Camille Soula,

31400 Toulouse, France

The object of this paper is to study the effects of lubricant film flow, pressurized and sheared between two

parallel rough surfaces in sliding motion. The influence of microscopic surface roughness on lubricant film

flow macroscopic behavior is described through five nondimensional parameters called flow factors. These

macroscopic transport parameters are related to the local geometry of apertures and surfaces. Short- and

long-range-correlated surface roughnesses display very different macroscopic behaviors when surfaces are

close to contact. These behaviors are related to underlying surface roughness parameters such as the correlation

length and the self-affine Hurst exponent. The problem is numerically studied, and results are compared to

some analytical asymptotic results.

I. INTRODUCTION

A problem consisting of lubricating two sliding surfaces

is encountered in many mechanical and tribological applica-

tions. When sliding surfaces become close, the lubricant mo-

tion becomes increasingly dependent on the surface topogra-

phy. This can be the case in the context of reading and

recording devices such as magnetic recording disks @1#, or
rolling processes @2#. In those applications it may be crucial
to estimate the lubricant interaction with solid surfaces in

order to prevent contact between two solids which could

damage the surfaces. Hence many authors have devoted time

and effort to elaborate models in order to estimate this small

scale interactions between surfaces and lubricant @3,4#.
On the other hand, surface topography itself has received

great attention in many areas due to the growing develop-

ment of refined measurements using mechanical, optical, or

electrical probes. In the context of engineering surfaces,

many studies were devoted to surface topography measure-

ments @5#, showing in many cases multiscale surface rough-
ness. This has been shown in the case of forming or finishing

processes ~shaping and lapping, @6#! electrodischarge ma-

chining, @7# sand blasting, @8# or rolling @9#. In the case of

magnetic recording disks @10,11# or rolled sheets @12# sur-
faces have been shown to be anisotropic and self-affine. An

abundant literature ~see Ref. @13#, and references therein!
shows increasing evidence that industrial machined surfaces

display long-range correlated surface roughness at a small

scales.

Hence it seems natural to address the question of what

influence such geometrical properties may have on fluid-

solid interactions at a macroscopic scale. Such a question has

received considerable attention in different contexts, among

them the transport properties of fractures @14#. The influence
of self-affine fracture roughness on some geometrical prop-

erties @15,16#, on electrical conductance and permeability,

@17–20#, on macro dispersion @21#, on percolation @22,23#,
and on drainage @24# has already been investigated.

As for sliding surfaces, short-range roughness geometry

has been studied by many authors ~see Ref. @4#!. This study
investigates a comparison between short- and long-range

correlated geometries on macroscopic transport coefficients

of lubricated sliding surfaces. The paper is organized as fol-

lows. In Sec. II we introduce the considered geometry, and

recall the results of macroscopization of the Reynolds equa-

tion. We introduce macroscopic transport coefficients called

flow factors, which describe the influence of roughness at the

macroscale. Section III presents the flow factors obtained for

two independent sliding surfaces admitting short- and long-

range correlations. Two particular asymptotic regimes are

discussed, when surfaces are far from each other or, con-

versely, close to contact. In the latter case, the flow factor

dependence on the correlation length or the Hurst exponent

has been explicitly obtained.

II. FROM MICROGEOMETRY TO MACROSCOPIC

FLOW SCALE

A. Surface geometry

This study considers random surfaces, for which the scale

of the ‘‘macroscopic’’ geometry and the ‘‘microscopic’’

roughness are greatly distinct. This configuration is found in

many situations for which, for example, a submillimeter

roughness is superposed on that of some centimeter scale

surfaces variations, as encountered in Ref. @12#. Moreover,

this work focuses on the case where the microscopic struc-

ture is invariant along one direction. The macroscale surface

is thus defined by a single valued function Z(X ,Y )—we

capitalize when referring to the macrostructure — while the

microscale has a one-dimensional roughness z(x) along the x

axis. The variables X and Y vary very slowly in space com-

pared to x, so that the typical X and Y length-scale variations

are considered to be large in comparison to the x variation,

which is usually called the elementary representative scale,

and will be referred to as L.

Such surfaces are encountered in various contexts such as

magnetic recording disks @10,11# or rolled surfaces @12#. An
example of microscale anisotropic surface topography is rep-

resented in Fig. 1, obtained from an atomic force microscopy

measurement in Ref. @12#. In the following, we will focus on
the statistical property of the microscopic surface height cor-

relation function C(u),



C~u !5^@z~x !2z~x1u !#2&, ~1!

where the average ^•••& is taken over x, along the represen-
tative typical scale L. Short-range-correlated surfaces exhibit

a correlation length l , such that C(u ,l)5C(u/l), for which
C(u/l) becomes constant when u@l . The exact correlation
function expression is generally not significant in compari-

son to the precise value of the correlation length l .
Long-range-correlated surfaces display different proper-

ties. As previously mentioned, fractional Brownian motion

~fBm! is a rather good description of many long-range-

correlated manmade surfaces. These self-affine profiles have

the interesting property of being statistically invariant

through the affine transformation x→a1/zx . Hence the corre-

lation function satisfies C(au)5a2zC(u) for positive a , or

C~u !5C~ l c!Uu
l
U2z

, ~2!

where z is called the roughness or Hurst exponent, and l c is

an arbitrary microscopic length scale, the lower cutoff. This

length has been shown to be a few tens of nanometers for the

surface represented in Fig. 1. Scaling ~2! permits an easy

measurement of the Hurst exponent from the computation of

the height power spectrum P(k)5u z̃(k)u2}k2122z, which is

the square of the Fourier transform of the profile height. It

displays a well-defined power law of the wave vector k. An

example of such a spectrum, obtained from different mea-

surements on rolled surfaces @12#, is shown in Fig. 2. It dis-
plays three decades of self-affine roughness, from a few tens

of nanometers to a few tens of microns. Expanding the ex-

pression of C(u) in Eq. ~1! leads to an equivalent form:

^~z~x !2Z !~z~x1u !2Z !&

^~z~x !2Z !2&
512A2S u

l c
D 2z

, ~3!

where the macroscale surface height Z is the mean of the

microscale surface height Z5^z&, and

A2
5

C~ l c!

2^@z~x !2Z#2&
. ~4!

A is a characteristic parameter of the surface, usually called

the roughness amplitude. The roughness amplitude of self-

affine surfaces can also be described by another parameter

called the topothesy t, which is the characteristic scale for

which local roughness slopes are of order 1. As a matter of

fact, the slopes of self-affine surfaces increase as the obser-

vation scale decreases. The topothesy is interesting to con-

sider because the Reynolds approximation used below is

only valid for surfaces with small slopes. Thus the Reynolds

approximation can adequately describe the flow field at a

scale much larger than t. For example, the topothesy t was

evaluated in Ref. @12# to be of the order of ten nanometers

for rolled surfaces. In the following, we will consider both

short- and long-range-correlated profiles at the microscale.

B. Kinematics and microscopic flow

Two sliding surfaces lubricated by a Newtonian fluid are

considered. The macroscopic geometry, sketched in Fig. 3,

shows that, at the macroscopic scale, the aperture H between

top and bottom surfaces H(X ,Y )5Z2(X ,Y )2Z1(X ,Y ) can

be fully two dimensional. The top surface, number 2, slides

with velocity U2 not necessarily collinearly with that of the

lower surface 1, U1. The mean planes of the surfaces are

FIG. 1. An example of a microscopic view of

an anisotropic surface topography from Ref. @12#,

using an atomic force microscope

FIG. 2. Power spectra of the laminated surface profile obtained

in Ref. @12#.



considered to be parallel. A reference plane z50 is intro-

duced, and each surface is described by its local height z i ,

with macroscopic height ^z i&5Z i , where i51 and 2. In this

study it will be considered that both surface roughness are

independent, and that deformations of surfaces are ignored.

Contacts between surfaces are not permitted. Hence the local

aperture, defined by a5z22z1 is always positive. The mean

local aperture ^a& at the microscale is simply related to the

local macroaperture H, ^a&5H5Z22Z1.

In such a confined geometry, inertial effects are generally

negligible, associated with a very small Reynolds number.

The laminar fluid flow between two rough surfaces is gener-

ally simply not related to the surface topography @25#. An
important exception occurs when surface slopes are small

everywhere. In this context, which covers a broad range of

manmade surfaces, the Stokes formulation of the momentum

equation is simplified by the Reynolds ~lubrication! approxi-
mation. In this approximation the pressure is constant over

the local aperture between the solid surfaces, and the local

velocity field has a negligible vertical component. The veloc-

ity field has two contributions: a Couette one coming from

flow due to moving boundaries, and a Poiseuille one coming

from the pressure gradient. The Couette contribution admits

a local linear vertical dependence, while the Poiseuille one

has a vertical parabolic profile. The pressure field completely

determines the flow field, and is related to the geometry by a

bidimensional local Reynolds equation,

¹•S a3
12m

¹p D5

1

2
“a•~U21U1!, ~5!

where p denotes the pressure at the microscale, and m is the

lubricant viscosity. The Reynolds equation is thus similar to

a heterogeneous Darcy law with a permeability a3/12 related

to the underlying local distance between surfaces. The sur-

face velocities act as a source term that will locally increase

the flow, and thus the pressure. When the local microscopic

scale is very small compared to the large scale macroscopic

description, one may find a homogenized macroscopic equa-

tion for the local Reynolds equation ~5!.

C. Macroscopic Scale

By using homogeneization or volume averaging tech-

niques as shown in Refs. @26–28#, one can relate the spa-

tially averaged divergence free unit flow Q to the macro-

scopic pressure P through the equation

Q52

H3

12m
f•“P1

H

2
~U21U1!1

s

2
fs•~U12U2!, ~6!

where s is the composite root mean square ~rms! roughness

classically defined as s5As1
2
1s2

2 ~where s i5A(z i2Z i)
2 is

the rms microscopic roughness of surface i). Reynolds flow

factor f and fs are diagonal tensors in the (x ,y) coordinate

frame given by

f5S fx 0

0 fy
D 5S 1

H3^a23&
0

0
^a3&

H3

D
fs5S fs5

1

s^a23&
K z12Z11z22Z2

a3
L H 0

0 0

D . ~7!

The left term f is nothing but a reformulation of the well-

known composition of parallel or series resistances, and is

related to pressure forcing. The fy parameter, associated

with parallel resistances, will not be analyzed further in the

following because of its trivial dependence on the aperture

field, i.e, the third moment of the aperture distribution, which

does not depend on the two point correlation of the aperture.

Conversely, the first flow factor fx does depend on this cor-
relation structure, and thus will be of interest in the following

sections. The second tensor fs , which has only one nonzero

component, comes from the mean contribution of the surface

motion on the lubricant flux, in the roughness streak direc-

tion. Similarly the tangential shear vector t, which is the

stress tensor projection tangentially to the mean surface

plane, can be homogenized and exhibits some Couette and

Poiseuille contributions,

t65

m

2
~f fI6ff s!•~U22U1!6

H

2
ff p•“P , ~8!

where t1 is associated with the upper surface, t2 with the

lower one, and I is the identity tensor. The Couette shear

flow factors tensors are again diagonal in the (x ,y) frame,

and read

f f5H^a21&

ff s5S f f s53HF K z11z22Z12Z2
a3

L ^a22&

^a23&

2K z11z22Z12Z2
a2

L G 0

0 0

D .

~9!

The first term is scalar, and comes from the average of the

Couette shear of sliding surfaces. The second term is less

intuitive, and shows some dependence on both the surface

FIG. 3. System of two rough surfaces in sliding motion: a mac-

roscopic view.



height and the local aperture. The Poiseuille shear flow fac-

tor, driven by the pressure gradient, reads

ff p5S f f p 0

0
^a&

H
D 5S ^a22&

H^a23&
0

0
^a&

H
51

D . ~10!

Hence macroscopic effective equations can be explicitly re-

lated to the microstructure geometry, i.e, to the local aperture

and surface height, through five nondimensional parameters.

Two of these are associated with the pressure gradient and

are called Poiseuille flow factors ~i.e., fx ,f f p). Three of

them are associated with the surface relative velocity, and are

thus called Couette flow factors ~i.e., fs ,f f ,f f s). In the

special case considered here, surfaces 1 and 2 are uncorre-

lated. The aperture field can be considered to be decomposed

of two surfaces of heights equal to zero and z22z1 @29#.
Then it can be deduced that the Couette flow factors depend

only on the local aperture field, through

fs5
s1
2
2s2

2

s2
Fs~H ,s ,$a%!, f f s5

s1
2
2s2

2

s2
F f s~H ,$a%!

~11!

where s is the composite roughness and

Fs5

1

s S H2
^a22&

^a23&
D F f s53HS ^a21&2

^a22&2

^a23&
D .

~12!

It is noteworthy that in the case where both independent

surfaces share the same rms roughness, flow factors fs and
f f s cancel out. This is a manifestation of the statistical sym-

metry of the surfaces, which is also recovered for determin-

istic symmetrical surfaces. Section III studies how these sur-

faces vary with the macroscopic aperture H and the

microgeometry statistical properties. In the following, it is

considered that the height distribution of each surface results

from a Gaussian stochastic process. Being the difference be-

tween two Gaussian processes, the aperture field is also a

Gaussian process, and therefore is fully characterized by its

mean and covariance. It is thus investigated how the aperture

correlation influences the transport properties of the lubricant

between the two sliding surfaces, through flow factors.

III. FLOW FACTOR COMPUTATION

From definitions ~7!–~12!, it is now possible to compute

flow factors. Nevertheless, their average on stochastic micro-

geometries are mainly the quantities of physical interest.

Such a statistical description needs to perform its average on

the random surface height. This computation is numerically

performed, and compared to analytical estimates.

The numerically generated profile correlation function can

be prescribed using their Fourier formulation @30#. A Her-

mitic representation z̃(k)52 z̃!(2k) imposes a real profile.

Gaussian height probability distributions of profile are ob-

tained from complex Gaussian amplitudes of the height Fou-

rier representation. The chosen wave vector dependence of

the height Fourier transform allows one to generate either a

short-range-correlated height profile or fractional Brownian

motion.

The flow-factor computation has been achieved with an

exact integration scheme. Generically, one only needs to spa-

tially integrate some integer power of the local aperture an,

for which an exact expression of the integration elements is

easy to perform. When surfaces are close to contact, this

precise procedure avoids using an adaptative step integra-

tion, and minimizes the computation error. The profile length

L and the number of profiles have been varied so that the

computed quantities satisfactorily reach their mean estimate.

Typically, L has been chosen between 512 and 2048, and the

number of realizations from 500 to 1000.

A. Short-range correlated Gaussian surfaces

This section considers finite correlated microgeometry

profiles. The correlation length is bounded by the composite

roughness s and the elementary representative scale L, i.e,

s,l,L . The first bound, s , is related to the small slope

hypothesis that underlies a flow-factor macroscopic descrip-

tion through the lubrification approximation. The second

bound comes from the definition of the elementary represen-

tative scale L.

Two asymptotic situations when surfaces are either far

from or close to each other are specifically considered in

order to shed some light on the numerical results. These two

limits allow one to perform some analytical analysis. In the

first regime, the macroscopic mean aperture H is considered

to be large compared to the composite roughness s . Their
ratio being a small parameter, it is used to expand the flow-

factor expressions. In the second regime, it is stated that even

if the correlation length l is smaller than L, it is larger than

the minimum aperture. This minimum aperture can be con-

sidered as a small parameter to construct a saddle point ap-

proximation for flow factors.

The situation when surfaces are far from each other is

considered first. This case is related to some weak disorder

expansion based on the parameter s/H , which measures the
relative fluctuation of the local aperture field. Expanding re-

lations ~7!–~12! in powers of this parameter, one finds, to

first order @29#, when s/H is small,

fy
x
.166S s

H
D 2, Fs.3

s

H
, f f p.123S s

H
D 2, ~13!

f f.11S s

H
D 2, F f s.3S s

H
D 2.

This result is generic, and does not depend on the specific

characteristics of the microgeometry. Nevertheless, the pre-

cise range within which these expressions are valid does de-

pend on the microscopic statistical correlation. In fact, some

higher order terms of the weak disorder expansion in the

small parameter s/H are needed to exhibit such a depen-

dence. For example, one needs to consider the third term ~the



sixth power of s/H) to obtain an explicit dependence of fx
on the aperture correlation function @31#. Result ~13! show
that when surfaces are far from each other, the flow factors

tend either to 0 or 1. Then, in this limit, macroscopic equa-

tions are perfectly identical to microscopic ones. The aper-

ture heterogeneities do not play any role, and macroscopiza-

tion is trivial. Relations ~13! then give the first correction for
macroscopic equations arising from the microgeometry

roughness. The physical interpretation of the obtained results

can be briefly discussed. The Poiseuille flow factors fx and
f f p are diminished proportionally to the surfaces height vari-

ance, showing that the fluid flow and the shear stress due to

the pressure gradient are slowed down by the presence of

roughness. Some additional fluid flow is then generated by

this roughness, proportional to the velocity difference be-

tween surfaces through the flow factor Fs . Finally, the main

shear generated by the roughness is of Couette origin,

through flow factors f f and f f s . This shear, while mostly

parallel to the surface velocity difference through the flow

factor f f , has a slight misalignment to this kinematic field

through f f s . This amounts to a macroscopic expression of

the misalignment between the microscopic one-dimensional

roughness direction x and the kinematic surface velocity dif-

ference direction U22U1.

Let us now turn to the second regime, where surfaces are

close to contact. It is also possible to obtain some analytical

estimates of the flow factor behavior in this regime. To this

end, it is necessary to consider the aperture probability den-

sity function ~PDF! p(a ,x), which is the probability of find-
ing an aperture a at position x relative to the prescribed mini-

mum at x50, i.e, a conditional PDF p(a ,x)[p(a(x)ua(0)
50). The dependence of p(a ,x) on the distance x to the

minimum is crucial, because the main contribution to flow

factors comes from the aperture distribution near contact.

Nevertheless, the precise form of this PDF will not signifi-

cantly influence the flow-factor dependence with the mini-

mum aperture near contact. Defining some minimal distance

se , with minxa(x)5se, allows one to describe the surface

closeness, with a nondimensional arbitrary small parameter

e . It is then possible to approximate the negative moments of
the aperture distribution given by

^a2n&5

1

L
E
0

L

dxE
0

`

p~a8,x !~es1a8!2nda8, ~14!

with a saddle point estimate. This estimate is given, provided

that the first and second derivatives of p(a ,x), with respect

to a, at a5se , are bounded by

^a2n&.I~l !A 2p

n~n11 !
~se !2n11, ~15!

where I(l)5*0
Lp(0,x)dx/L is a function of the correlation

length l which depends on the probability function at the

minimum, which is not precisely known. Approximation

~15! holds for n.1. When n51, the saddle point approxi-

mation is no longer sufficient to capture the diverging behav-

ior. From Eq. ~15!, we can thus write the flow factor approxi-

mation, near contact, as

fx.A6

p

s3

Hm
3
I~l !e2, Fs.

Hm

s
2A2e , f f p.

A2

Hm
e .

~16!

These results are typical of stochastic geometries. It is ex-

pected that flow factors fx and f f p cancel out when micro-

geometry surfaces tend toward contact. As a matter of fact,

these Poiseuille flow factors, describing the flux and shear

induced by the pressure gradient in the direction of streaks,

are zero when the passage is blocked up. The precise depen-

dence of these flow factors on the surface minimal distance

se is governed by the aperture geometry near its minimum.

They differ from previous analytical results on deterministic

sinusoidal surfaces @32#. For example, fx displays a power
of e5/2 rather than e2 for a deterministic sinusoidal aperture.
Once again, it can be shown that this is a direct consequence

of the geometry of the minimum aperture vicinity.

Results ~13! and ~16! are compared with the numerical

computations sketched in Figs. 4–8. These simulations have

been performed with a Gaussian short-range-correlation

function of the form C(u)5s2(12e2u2/2l2), varying the

correlation length l , by an order of magnitude from

FIG. 4. fx flow factor for a finite correlation length l . The

continuous line represents the weak disorder approximation ex-

pressed in Eq. ~13!

FIG. 5. f f p flow factor for a finite correlation length l with the

same convention as in Fig. 4.



531023L to 531022L , for various elementary representa-
tive scales L. The flow-factor behavior have shown no de-
pendence on scale L, as expected from flow factors definition
and short-range correlation, where l!L . The insets of the
figures especially illustrate Eq. ~16! asymptotic behavior.
The first estimate @Eq. ~13!# is rather good when H/s.5.
The saddle point approximation’s quality depends on the
considered flow factor. The more peaked they are near con-
tact, the better approximated they are. Hence the nondimen-
sional permeability fx is well captured by the asymptotic
due to its 23 power dependence on the local aperture as
represented in Fig. 4. Moreover, the fx prefactor I(l) de-
pendence on l , has been found from a data collapse of the
numerical simulations, indicating a scaling I(l)}l23/2. f f p

and Fs are well described in the close vicinity of contacts by

the saddle point estimate, but poorly approximated when e
.0.1.

The analysis of the Couette shear flow factors f f and F f s

behavior, in the vicinity of contact shows an algebraic diver-

gence, as sketched in the inserts of Figs. 7 and 8. This diver-

gence is characterized by a power law exponent m :

f f}F f s}~se !2m. ~17!

This algebraic divergence of the shear Couette flow factors,

with a minimum distance se , is qualitatively consistent with

the one obtained in the deterministic sinusoidal case @32#.
This divergence is associated with an increasing Couette

shear, experienced when surfaces are close to contact. How-

ever, the power law exponent m depends on the correlation

length l , as can be deduced from Figs. 7 and 8. The larger

the correlation length, the more flow factors diverge, and the

larger the m exponent is. Nevertheless this dependence is

rather smooth, as obtained from Fig. 9, which exhibits a

logarithmic dependence: m}2ln l. It is noteworthy that

when l is small, the m exponent tends toward zero. The

Couette shear divergence disappears as the correlation length

tends toward zero. Nevertheless this limit has to be consis-

tently considered with the hypothesis of a small slope, which

gives a lower bound for the correlation length l.s . In this
limit, the divergence of shear Couette flow factors is still

algebraic but with a small exponent. The other limit, where

l.L , extrapolating the results of Fig. 9, gives a value that is
close to 1/2, for the exponent m. This value is then consistent

with the exponent m51/2, obtained when analytically com-

puting these flow factors, using a sinusoidal aperture distri-

bution, which coincides with a random aperture profile with

correlation length equal to the representative scale L @32#.

FIG. 7. f f flow factor for a finite correlation length l with the

same convention as in Fig. 4.

FIG. 8. F f s flow factor for a finite correlation length l with the

same convention as in Fig. 4.

FIG. 9. Power-law coefficient m of the shear Couette flow factor

vs the correlation length l with the same convention as in Fig. 4.

The dot size represents the error bars of the numerical computa-

tions.

FIG. 6. Fs flow factor for a finite correlation length l with the

same convention as in Fig. 4.



B. Long-range-correlated surfaces

Long-range-correlated self-affine profiles are now under

study. Such fractional Brownian motions do not display any

typical correlation length, between a lower cutoff l c and an

upper cutoff Lc . The flow factors are nevertheless strongly

influenced by their long-range-correlation characterized by

the Hurst exponent z and the roughness amplitude A.

When surfaces are far apart from each other, the weak

disordered results @Eq. ~13!# do apply, and give a correct

estimate of their dependence on the imposed mean macro-

scopic distance H. Conversely, when surfaces are close to

contact, the transport properties become sensitive to the cor-

relation specificity, in particular in the region where the ap-

erture is minimal. As a matter of fact, fractional Brownian

motion displays some interesting specific properties near the

maxima and minima. Some results, conjectured from nu-

merical simulations @33#, have stated that there are two re-

gimes for the conditional probability density function of the

aperture p(a ,x) estimated at distance x from the minimum :

p~a ,x !5H 1

a
fS a
xzD a@a!

}x212z a!a!,

~18!

Here a!(x!) is the typical aperture for which the fractional

Brownian motion loses the memory of the maximum ~or
minimum! position far from x!. These two constants are re-

lated by the affinity scaling a!
5Ax!z. The first regime of

Eq. ~18! is simply given by the rescaling invariance of the

aperture cumulative distribution function. The second regime

is far from simple and there is, for now, no mathematical

demonstration of it @34#. This twofold behavior is neverthe-

less known in the special case of Brownian motion when z
51/2. The specific behavior of the aperture field near contact

influences flow factors when surfaces are near contact. The

normalization condition of the PDF is related to the upper

and lower cutoffs Lc and l c :

E
l c

Lc
dxE

0

`

p~a ,x !da51. ~19!

The representative typical scale L for averaging flow factors

has to be chosen so that L>Lc . For the sake of simplicity,
one has chosen L5Lc in the following, while other choices

would nevertheless not have modified the obtained results.

As previously done, a saddle point estimate of the negative

moment of the aperture can be computed, from the definition

^a2n&5

1

Lc
E

l c

Lc
dxE

0

`

da8p~a8,x !~es1a8!2nda . ~20!

Taking relation ~18! into account, it can be approximated, for
a small e ,

^a2n&.
1

Lc
E

l c

x!

dxx212zA 2p

n~n11 !
~se !2n11. ~21!

Using normalization ~19!, one can estimate in the limit,

where x!
!Lc ,

E
l c

x!

dxx212za!.12E
1

`

uf~u !du . ~22!

The right-hand side of relation ~22! is constant; then, near
contact, the simple result holds:

^a2n&}
1

x!zLcAn~n11 !
~se !2n11. ~23!

From this estimate, one can compute the flow factors’

asymptotic expressions near contact :

fx}
s2x!z

Hm
3
Lce

2, fs.
Hm

s
2A2e , f f px.

A2

Hm
e .

~24!

One may note that these asymptotic behaviors are quite close

to the previous results for finite correlation length @Eq. ~16!#.
Their dependence on the minimum distance e is identical,

but the prefactor of fx now displays some dependence on

the Hurst exponent z and the upper cut off Lc . It is interest-

ing to note that an increasing correlation of the aperture,

associated with an increasing Hurst exponent, leads to an

increasing permeability when surfaces are close to contact.

These estimates are fully consistent with numerical results

reported in Figs 10–12. Scaling ~24! allows a data collapse
of every numerical computation of the nondimensional per-

meability fx near contact when the Hurst exponent varies.

The linear dependence of fx , with upper cutoff Lc , has also
been numerically checked, but is not represented in these

figures for clarity’s sake. Simulations sketched in Figs.

10–12 also permit one to estimate the validity of the saddle

point approximation @Eq. ~24!#, which begins to hold when

e,0.1.

As previously observed, Couette shear flow factors f f

and F f s diverge when surfaces are close to contact. From the

twofold aperture behavior near contact @Eq. ~18!#, it is clear

FIG. 10. fx for a self-affine aperture. Hurst exponents ranging

from 0.1 to 0.9 have been computed. The inset shows the numerical

data collapse obtained using rescaling @Eq. ~24!# near the contact.



that their shared divergence with the ^a21& moment cannot

be captured by a rough saddle point estimate. This diver-

gence numerically display the same interesting power law

behavior as in the previous section. More precisely, the in-

sets of Figs. 13 and 14 show the power law behavior near

contact, whose exponent m depends on the Hurst exponent z .
The more correlated the aperture field is, the higher the value

of z is and more divergent the Couette shear is. This joint

behavior can be related to the Hurst exponent, as sketched in

Fig. 15. This figure displays a power law dependence of

shear flow factors near contact, which have the form

f f}F f s}e2m}e2(dcz), ~25!

where c and d are two constants related to the surfaces am-

plitude A. Such an algebraic divergence of the Couette shear

flow factors was already obtained for a finite correlated ap-

erture. Here the power law exponent m of this algebraic di-

vergence is shown to depend algebraically on the Hurst ex-

ponent. The power law exponent m can be extrapolated from

Fig. 15 for Hurst exponent values z→0 and z→1, for which

it exhibits the extreme values m→0 and m→0.25. These

limits are consistent with the ones previously obtained for

finite correlation in Sec. II. z→0 is associated with a deco-

rrelation of the aperture field, where the algebraic divergence

of the Couette shear flow factors disappears. The m.0.25

value obtained in the other limit, where z→1 is bounded as

expected by the deterministic result on a sinusoidal aperture,

for which m51/2.

These results show that the Couette shear stress is

strongly influenced by the long-range nature of the aperture

field, especially near contact. Numerically, the Couette shear

stress displays a power law dependence with the Hurst ex-

ponent, which cannot be captured by a saddle point approxi-

mation. It is nevertheless tempting to associate the algebraic

dependence of the power law exponent m with the specific

behavior of fractional Brownian motion near contact.

IV. CONCLUSIONS

Newtonian lubricant flow, between two microscopically

statistically independent anisotropic surfaces in sliding mo-

tion without solid contact, has been studied. The macro-

scopic flux and shear experienced by both surfaces are re-

lated to their microscopic roughness through five

nondimensional flow factors. The aperture field between sur-

faces entirely determines these flow factors. They have been

FIG. 11. f f p for a self-affine aperture with the same conven-

tions as in Fig. 10.

FIG. 12. Fs Flow factor for a self-affine aperture with the same

conventions as in Fig. 10.

FIG. 13. f f for a self-affine aperture with the same conventions

as in Fig. 10. The inset shows a power-law divergence that depends

on the Hurst exponent near contact.

FIG. 14. F f s for a self-affine aperture with the same conven-

tions as in Fig. 13.



computed numerically for short- and long-range aperture

correlations. Asymptotic situations, where surfaces are either

close to one another or far apart, have been analytically stud-

ied and compared to numerical calculus. The Poiseuille flow

factors fx and f f p , and the Couette shear flow factor Fs ,

exhibit rather generic behaviors when surfaces are close to

contact. It has nevertheless been found that the nondimen-

sional permeability fx prefactor does depends on the aper-

ture correlation. Couette shear flow factors f f and F f s di-

verge as surfaces are brought into contact. The exact nature

of this divergence depends strongly on the aperture correla-

tion. For a short-range-correlated profile, the Couette shear

flow factors diverges algebraically, with a power law expo-

nent which logarithmically depends on the correlation

length. For a long-range-correlated profile, the Couette shear

flow factor exhibits an algebraic divergence with the mini-

mum aperture. It has been found numerically that this diver-

gence has a power law dependence on the Hurst exponent of

the aperture correlation.

This study has been confined to uncorrelated profiles.

Some of the obtained results are modified when the top and

bottom surfaces are intercorrelated. Such a correlation be-

tween solid surfaces occurs naturally during the rolling pro-

cess, where roughness is transferred from the steel roll to the

workpiece @12# as well as in any process where deformations
conform the two pieces one another. In this case, one has to

consider a spatiotemporal average rather than a simple spa-

tial average in order to compute flow factors, as indicated in

Ref. @36#. For a simple deterministic geometry, analytical

results show that intercorrelation mainly affects fs and f f s

@32#, which are equal to zero when top and bottom profiles

are identical. Moreover, numerical simulations as well as

symmetry considerations indicate that this result also apply

for random identical profiles @35#.
Moreover, the obtained result for the shear flow factors

strongly depends on the one dimensional confinement of the

microgeometry. In particular, the divergence of the shear

Couette flow factors will be smoothed out by two-

dimensional effects. In the case of a two-dimensional micro-

scopic roughness, flow factors cannot be computed directly

from the moments of the local aperture, but must be evalu-

ated from two-dimensional numerical computations required

to solve closure problems @36#. Such a procedure should ex-
hibit, at some point, nondiverging shear flow factors when

reaching solid contact between surfaces. Finally, some non-

dimensional coefficients, characterizing the anisotropy of the

microscale roughness —such as the Peklenik number found

in Refs. @26,4#— should provide a natural lower cutoff for

the reported diverging behaviors.
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