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1 Introduction

Throughout the paper, H is a real Hilbert space which is endowed with the scalar product (,-),
with ||z]|? = (z,z) for z € H. Given f : H — R a general convex function, which is continuously
differentiable, we will develop fast gradient methods for solving the minimization problem

min {f(z): x € H}. (1)

Our approach is based on the convergence properties as ¢ — +oo of the trajectories generated by
the damped inertial dynamic

(TRISH) )+ 0v/e()i(t) + BV f(2(t)i(t) + Vf(x(t) 4+ (t)z(t) = 0,

and on the link between dynamical systems and the algorithms that result from their tempo-
ral discretization. We use (TRISH) as shorthand for Tikhonov regularized inertial system with
Hessian-driven damping. As a basic ingredient, this system involves a nonnegative function e(-)
which enters both in the viscous damping and the Tikhonov regularization terms. We assume that
lim¢—s 4 o0 £(t) = 0, which preserves the equilibria. According to the structure of (TRISH) this makes
the damping coefficient asymptotically vanish, in coordination with the Tikhonov regularization
coefficient. The other basic ingredient is the Hessian driven damping term which induces several
favorable properties, notably a significant reduction of the oscillations.

We will show that a judicious setting of £(-) and of the positive parameter & ensures that the
trajectories generated by (TRISH) verify the following three properties at the same time:

e rapid convergence of values (one can approach arbitrarily close to the optimal convergence rate),
e rapid convergence of the gradients towards zero,
e strong convergence towards the minimum norm element of S = argmin f.

Throughout the paper, we assume that the objective function f and the Tikhonov regularization
parameter (-) satisfy the following hypothesis:

f:H — R is convex, of class C2,Vf is Lipschitz continuous on bounded sets;
(A) S := argming, [ # 0. We denote by z* the element of minimum norm of S;

e : [to, +oo[— RT is a nonincreasing function, of class C*, such that lim;_ . (t) = 0.

We will explain at the end of the article how our study can be extended to the case of a convex
lower semicontinuous proper function f : H — RU {400}, and give existence and uniqueness results
for the Cauchy problem associated with our dynamics.

1.1 The role of the Tikhonov regularization

Initially designed for the regularization of ill-posed inverse problems [19,50], the field of application
of the Tikhonov regularization was then considerably widened. The coupling of first-order in time
gradient systems with a Tikhonov approximation whose coefficient tends asymptotically towards
zero has been highlighted in a series of papers [4], [6], [14], [16], [27], [34], [37], [38]. Our approach
builds on several previous works that have paved the way concerning the coupling of damped
second-order in time gradient systems with Tikhonov approximation. First studies concerned the

heavy ball with friction system of Polyak [45], where the damping coefficient v > 0 is fixed. In [15]
Attouch and Czarnecki considered the system
B(t) +ya(t) + Vf(x(t) +e(t)x(t) = 0. (2)

In the slow parametrization case f0+°° e(t)dt = +oo, they proved that any solution z(-) of (2)
converges strongly to the minimum norm element of argmin f, see also [17], [33], [35], [39]. This
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hierarchical minimization result contrasts with the case without the Tikhonov regularization term,
where the convergence holds only for weak convergence, and the limit depends on the initial data.
In the quest for a faster convergence, the following system with asymptotically vanishing damping

(AVD), . () + %i’(t) + Vf(x(t)) +e(t)z(t) =0, (3)
was studied by Attouch, Chbani, and Riahi in [13]. It is a Tikhonov regularization of the dynamic
(AVD), (1) + Zé(t) + VF(a(t) =0, )

which was introduced by Su, Boyd and Candes in [18]. (AVD), is a low resolution ODE of the
accelerated gradient method of Nesterov [41,42] and of the Ravine method [19], [18]. (AVD),_, has
been the subject of many recent studies which have given an in-depth understanding of the Nesterov
accelerated gradient method, see [5], [7], [9], [12],[24], [36], [40], [4], [16], [52].

As an original aspect of our approach, we rely on the properties of the heavy ball with friction
method of Polyak in the strongly convex case, which provides exponential convergence rates. To
take advantage of this remarkable property, and adapt it to our situation, we consider the nonau-
tonomous dynamic version of the heavy ball method which at time ¢ is governed by the gradient of
the regularized function z — f(z)+ @ l|lz||?, where the Tikhonov regularization parameter satisfies
e(t) — 0 as t — +oo. This idea was first developed in [7], [21]. Let us make this precise.

Recall that a function f: % — R is pu-strongly convex for some p > 0if f — 5| - |? is convex. In
this setting, we have the following exponential convergence result for the heavy ball with friction
dynamic where the viscous damping coefficient is twice the square root of the modulus of strong
convexity of f, see [44]:

Theorem 1 Suppose that f : H — R is a function of class C1 which is p-strongly convex for some
> 0. Let z(-) : [to, +0o[— H be a solution trajectory of

Z(t) + 2¢/pz(t) + Vf(z(¢)) = 0. (5)
Then, the following property holds: f(z(t)) — ming f = O (e_\/ﬁt) as t — +oo.

To adapt this result to the case of a general convex differentiable function f : H — R, a natural idea
is to use Tikhonov’s method of regularization. This leads to consider the non-autonomous dynamic
which at time ¢ is governed by the gradient of the strongly convex function

O .

ot H =R, p(x) 5=f($)+7

The viscosity curve € — zc := argming, {f() + %H . HQ} will play a key role in our analysis. By

definition of ¢, we have z.(;) = argming, ¢¢. The first-order optimality condition gives

Vi(zew) +e(t)zewy = 0. (6)
We call t — 24 the parametrized viscosity curve. Then, replacing f by ¢ in (5), and noticing
that ¢ is e(t)-strongly convex, this gives the following dynamic which was introduced in [21] and

[7] (6 is a positive parameter)

(TRIGS)  i(t) + 6\/e(t)2(t) + V£ (z(t)) + e(t)z(t) = 0.

(TRIGS) stands shortly for Tikhonov regularization of inertial gradient systems. In order not to
asymptotically modify the equilibria, it is supposed that £(t) — 0 as t — +oo'. This condition im-
plies that (TRIGS) falls within the framework of the inertial gradient systems with asymptotically
vanishing damping. It has been shown in [7], [21] that a judicious tuning of £(t) in (TRIGS) ensures
both rapid convergence of values, and strong convergence of the trajectories towards the minimum
norm element of S = argmin,, f (which is reminiscent of the Tikhonov method).

L This is the key property of the asymptotic version (t — +00) of the Browder-Tikhonov regularization method.
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1.2 The role of the Hessian-driven damping

As is the case with inertial dynamics which are only damped by viscous damping, the system
(TRIGS) may exhibit oscillations which are undesirable from an optimization point of view. To
remedy this situation, we introduce into the dynamic a geometric damping which is driven by the
Hessian of the function f to be minimized. So doing, we obtain the system (TRISH). The presence
of the Hessian does not entail numerical difficulties, since the Hessian intervenes in the above ODE
in the form V?f(x(t))i(t), which is nothing but the derivative wrt time of V f(z(t)). This explains
why the time discretization of this dynamic provides first-order algorithms. The importance of the
Hessian driven damping has been demonstrated in several areas. We list some of them below.

e In the field of PDEs for mechanics and physics, it is called strong damping, or geometric
damping because it takes into account the geometry of the function to be minimized. In the PDE’s
framework, when f is quadratic, and Vf = A is a linear elliptic operator, the strong damping
involves the action of a fractional power A? of A on the velocity vector. When 6 > %, this induces
notably reduced oscillations. The Hessian-driven damping corresponds to 8 = 1. It can be combined
with various other types of damping, such as the dry friction [2]. It also makes it possible to model
shocks which are completely damped in unilateral mechanics [22].

e It has been shown in [19] and [47] that the high resolution ODE of the Ravine and Nesterov
methods exhibits the Hessian driven damping. This explains the rapid convergence of the gradients
towards zero which is verified by these dynamics and algorithms [10], [11], [25], [30], [47]. Our
approach is in accordance with Nesterov [13], where it is conjectured that the introduction of an
adapted Tikhonov regularization term helps to make the gradients small.

e The Hessian driven damping comes into the study of Newton’s method in optimization. Given
a general maximally monotone operator A : H — 27 to overcome the ill-posedness of Newton’s
continuous method for solving 0 € A(z), the following first-order evolution system was considered
by Attouch and Svaiter [26] and studied further in [1], [23]. Formally, this system is written as

V(8 (1) + B (Alz(t))) + Ax(t) = 0.
It can be considered as a continuous version of the Levenberg-Marquardt method, which acts as a
regularization of the Newton method. Under a fairly general assumption on the regularization pa-
rameter v(-), this system is well posed and generates trajectories that converge weakly to equilibria.
Thus, (TRISH) and its nonsmooth extension can be considered as an inertial and regularized version
of this system when A is the subdifferential of a convex lower semicontinuous proper function.

1.3 A model result

In section 3, we will prove the following result in the case £(t) = tir It is expressed with the help
of the parametrized viscosity curve which converges strongly to the minimum norm solution.

Theorem 2 Take 0 <7 <2, §>2, B>0. Letz: [to, +oo[— H be a solution trajectory of
. 0 . . 1
(t) + gw(t) + BV [ (2(1) & (t) + V f (2(1) + wa(t) =0. (7)

Then, we have fast convergence of the values, fast convergence of the gradients towards zero, and strong
convergence of the trajectory to the minimum norm solution, with the following rates:

o f(z(t))—miny f=0 (tlr) ast — +oo ;

+OO 3r—2 2
. / 7 |V (1)t < +oo;
to

o Jlz(t) - xs(t)HQ =0 < Ql_T ) as t — +oo.
tT 2
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This is the first time that these three properties have been obtained within the same dynamic.
Let us note that by taking r close to 2, one obtains convergence rates comparable to the most
recent results concerning the introduction of the Hessian driven damping in the dynamic associated
with the accelerated gradient of Nesterov. Precisely, letting » — 2 in the formulas above gives
f(z(t)) —mingy f = O(1/t%), and f;oroo t2||V £ (x(t))||?dt < +o0. Thus, by taking r sufficiently close to
2, we can obtain convergence rates arbitrarily close to these rates. The case r = 2, which corresponds
to the Nesterov accelerated gradient method, is critical: in this case, the strong convergence towards
the minimum norm solution is an open question. The above results show the balance between fast
convergence of values and strong convergence to the minimum norm solution.

1.4 Contents

The paper is organized as follows. In section 2, for a general Tikhonov regularization parameter
e(+), we study the asymptotic convergence properties of the solution trajectories of (TRISH). Based
on Lyapunov analysis, we show their strong convergence to the minimum norm element of S, and
establish the convergence rates of the values and integral estimates of the gradients. In section 3, we
apply these results to the particular case (t) = t“ 0 < r < 2, and obtain fast convergence results.
Section 4 contains numerical illustrations. Section 5 gives indications concerning the extension of our
study to the nonsmooth case, and provides existence and uniqueness results for the Cauchy problem
associated with the considered dynamics. We conclude with a perspective and open questions.

2 Convergence results via Lyapunov analysis

Given a general regularization parameter £(-), we successively present the idea guiding the Lyapunov
analysis, then some preparatory lemmas, and finally the detailed proof. In the next section, we will
particularize our results to the case €(t) = ﬁ7 0 < r < 2, and obtain fast convergence results.

2.1 General idea of the proof

As we already mentioned, the function

o H R pue) = f@)+ D2 (®)

plays a central role in the Lyapunov analysis, via its strong convexity property. Thus, it is convenient
to reformulate (TRISH) with the help of the function ¢, which gives

(TRISH) )+ dv/¢e( )+ BV f(z(t)2(t) + Ve (2(t) = 0, 9)

where §, 3 are positive parameters. We recall that ¢ : [tg, +0co[— R™ is a nonincreasing function of
class !, such that lim;—, { (t) = 0. In the mathematical analysis of inertial gradient dynamics
and algorithms with Hessian-driven damping, the basic equality

L VS(1) = V)i (0) (10)

makes these systems relevant to first-order methods, a crucial property for numerical purposes.
In the presence of the Tikhonov term, to keep the structural property attached to (10), let us
introduce the following variant of (TRISH) where the above relation comes with ¢ instead of f:

(TRISHE)  &(1) + 5v/=(0i(t) + 55 (Veu(a(t))) + Veor (a(1)) = 0. (11)
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Adding the suffix E after TRISH recalls that the dynamic has been adapted to take advantage of
the Equality in (10), with ¢ instead of f. To encompass these two dynamic systems, we consider

#(t) + 6\/e(0)a (1) + 5% [Ver(z(t) + (p — De(®)z(t)] + Vr (z(t)) = 0, (12)

where the parameter p € [0,1]. When p = 0 we get (TRISH), and for p =1 we get (TRISHE).
Given p € [0,1], let us introduce the real-valued function t € [to, +oo[— FEp(t) € R" that plays
a key role in our Lyapunov analysis. It is defined by

1
Ep(t) = (er(z(t)) = er(ze(r)) + 5 lun(B)]I? (13)
where ¢; has been defined in (8), z() in (6), and

vp(t) = A/e(t) (2(t) — e(r)) + &(1) + B [Vepr () + (p = De(t)z(1)], (14)

with 0 < XA < 6. We will show that under a judicious setting of parameters, Ej(-) satisfies the
first-order differential inequality

[

Ey(t) + n(HBp(0) + 2 (5 - N [Veea®)I* < 12, (15)
where .
(0)i= =530+ (6 = NVED, (16)
and
G(t) = (e + 2a))\£((?) CE(t)+ (1= p)BAGS — V().

Since u(t) > 0, this will allow us to estimate the rate of convergence of E,(t) towards zero. In turn,
this provides convergence rates of values and trajectories, as the following lemma shows.

Lemma 1 Let z(-) : [to, +oo[— H be a solution trajectory of the damped inertial dynamic (12), and
t € [to, +oo[— Ep(t) € RT be the energy function defined in (13). Then, the following estimates are
satisfied: for any t > to,

. e(t %
£ (0)) ~ min s < By(1) + Do (7)
2 _ 2Ep(t)
Jo(0) = oo P < 2220 (15)
Therefore, x(t) converges strongly to =* as soon as lim— 4 oo E;ES) =0.

Proof i) According to the definition of ¢, we have
. % e(t %
Fl(t)) — mingg £ = @u(a(®) — o1 (@) + S (Ja* |2 = a0)]?)

= [pe(z(t) — pelze)] + | e(ze)) — ee(z") | + ? (l=*1 = ll=()]1%)
<0

< eulalt) - eilaan) + S a2

By definition of Ej(t) we have
ot (x(t) = ot(ze)) < Ep(t) (19)
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which, combined with the above inequality, gives (17).

ii) By the strong convexity of ¢, and z.(;) := argming, ¢, we have
e(t
pa(0)) — oulaey) > “ D (t) - 2o
By combining the inequality above with (19), we get
e(t
Ep(®) > "D a(t) 2.0,

which gives (18). O

2.2 Preparatory results for Lyapunov analysis

The parametrized viscosity curve ¢ — x.¢) plays a central role in the definition of Ep(-), and
therefore in the Lyapunov analysis. We review below some its topological and differential properties.

2.2.1 Topological properties

The following properties are immediate consequences of the classical properties of the Tikhonov
regularization (see [0] for a general overview of viscosity methods), and of lim;_, { o (t) = 0:

oVt >ty [lmll < =7 (20)
o t_lg_noo zot) — 2| =0 where 2" = proj,,gmin £0- (21)

2.2.2 Differential properties

d d . . d . .
To evaluate the terms & (¢t(ze(ry)) and & (z(t)) which occur in aEp(t), we use the differentia-

bility properties of the viscosity curve e — z = argmin { f(¢) + §||§||2} According to [14], [38], [51],
the viscosity curve is Lipschitz continuous on the compact intervals of |0, +oo[. So it is absolutely
continuous, and almost everywhere differentiable. Based on these properties we have the following
lemma, which was established in [7], and which we reproduce here for ease of reading.

Lemma 2 The following properties are satisfied:

. d .
i) For each t > to, pr ((pt(IE(t))) = %6(15)“1‘5(,5)”2.

1) The function t — Te(py 48 Lipschitz continuous on the compact intervals of |to, +oo[, hence almost
everywhere differentiable, and the following inequality holds: for almost every t > to

< —%<% (%<t>)7%<t>>~

2

d
Hdt (@=(1))

Therefore, for almost every t > to

Hjt (xsm)H < —%Il%(tﬂ*
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Proof i) We use some classical differentiability properties of the Moreau envelope. We have

eieco) = int {0+ “Pie -0} = 1, o)

where, for any 6 > 0, the Moreau envelope fy : H — R is defined by

fote) = min { 1)+ g5 lle - €1? . (22)
Recall that infimum in the above expression is achieved at the unique point proxg(x), i.e.
1
fo(z) = f(proxgs(z)) + %Hl‘ — prox, (2)]%. (23)
One can consult [28, section 12.4] for more details on the Moreau envelope. Since diefg(x) =

— 2|V fo(2)|?, (see [7, Appendix, Lemma 3]), we have:

:
@ g @) = =219 fyip @)1

Therefore,

Sortaan) = 5 (1.4, ©) = 52591y, O (24)

On the other hand, we have

V(pt(mg(t)) =0« Vf(:rg(t)) + E(t)mg(t) =0+ Te(t) = prOXﬁf(O).

Since Vf% (0) = e(t) (O - pI‘OXﬁf(O)> , we get Vf% (0) = —&(t)ze(s)- This combined with (24)
gives
d 1.
Pt (@) = ge(t)H%(t)Hz-
i7) We have
7€(t)$5(t) = Vf(xs(t)) and — E(t + h)xe(H_h) = Vf(xg(t+h)).
According to the monotonicity of V f, we have
(e(t)e(ry — e(t + h)Te(t4h), Te(trh) — Te(r)) > 0,

which implies

—e()|zetrny — zell” + (€(t) = e(t + h)) (@e(rtn)> Te(erh) — Te(ry) > 0.

After division by h?, we obtain

Te(t+h) — Te(t)

h

e(t)—e(t+h x K — T
(e(t) h( ) <w5(t+h>, c(t4 )h a<t>> > c(1)

‘ 2

We now rely on the differentiability properties of the viscosity curve e — =z, which have been
recalled above. It is Lipschitz continuous on the compact intervals of |0, +oo[, so almost everywhere
differentiable. Therefore, the mapping ¢ — z(;) satisfies the same differentiability properties. By
letting h — 0, we obtain that, for almost every ¢ > tg

2

I

. d d
—£(t) <xs(t)7 %xs(t)> > e(t) Hdtws(t)

which gives the claim. The last statement follows from Cauchy-Schwarz inequality. a
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2.3 Lyapunov analysis of (TRISH): main theorem and its proof

Take p € [0,1]. In the Lyapunov analysis of

B(t) +0v/e( V%(w(t)) (p = De®)z(t)] + Ver(z(t)) = 0, (25)

we assume that the Tikhonov regularization parameter £(-) satisfies the following growth condition.

Definition 1 The Tikhonov regularization parameter t — &(t) satisfies the condition (Hyp) if there exists
a>1,¢>2, A>0 and t1 > to such that for allt > t1,

(Hy) i(\/i(it)><min<2)\ 5, <5—”21A>>, and 58 < \/51(7)

where, in the above inequality, it is supposed that the parameter X is such that g < A < § and satisfies

e Forp¢l0 ,2] and c>max( 1+m>

2p—1

2 a+1

0++/0%2—4(1—
(5—0—%4— (5+%)272)<)\<m1n(a115 * 2( p)) when § > v2 — 1.
e Forp € [0, 3] %(5—4—%—0— (5+%)2—2)<)\<min<a116,6+7 W) when § > 2,/(1 —p).

é</\<m1n(a 6+V62 4(1p) when2\/1—p<5§\[—%,

S

Remark 1 Integrating the differential inequality (Hp) shows that the damping coefficient in (25)
(which is proportional to \/=(t)) must be greater than or equal to C/t for some positive constant
C. This is consistent with the theory of inertial gradient systems with time-dependent viscosity
coefficient, which shows that the asymptotic optimization property is valid provided that the inte-
gral of the viscous damping coefficient over [tg, +oco[ be infinite, [9], [35]. See also [7], [21] where a
similar growth condition on the Tikhonov parameter is considered.

For ease of reading, let us recall the functions that enter the Lyapunov analysis:
By(t) = (e1(e(t)) - w(mat))) + 2 llup(8))? (26)
= AWED) (2(1) — o) + #(0) + B[Ve(a(®) + (o — De(t)a(r) (27)
(1) = 510+ (6= NV (25)

v = ([ M(S)dS) | (29)

We can now state our main convergence result.

Theorem 3 Let x(-) : [to, +oo[— H be a solution trajectory of the system (25). Take & > 2+/(1 — p).
Suppose that £(-) satisfies the condition (Hp). Then, the following properties are satisfied: for all t > t1

B (1) By (1)
5y(0) < S [ Gopn(syas + 20200, (30)
2
[ 1w < 52w+ S [ o, (31)

where

G(t) = (Ac + 2a)A 52((?) C2() + (1 — p)BAGS — N)E2(1). (32)
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Proof Since the mapping t +— (4 is absolutely continuous (indeed locally Lipschitz) the classical
derivation chain rule can be applied to compute the derivative of the function Ey(-), see [32, section
VIII.2]. According to Lemma 2 ), for almost all ¢ > ¢ the derivative of Ep(-) is given by:

Eplt) = (Vor(w(t), #(0) + 520 2] — 50 lroqel” + (tp(t), vp(0)- (33)

According to the definition of vy, (see (27)), and the equation (25), the derivation of v, gives

vp(t) = ’2\3% (2(t) — 2e(y) + A/e(t)i(t /\\/@%xg(t) +i(t)
+ B4 (Ver((t) + (p - De(t)z(2))
;\\/(— (2(t) = zer)) + (A = 8) Ve(®)a(t Afdtwem Vi (x(t)).

Let us write shortly Ap(t) :== Vi (z(t)) + (p — 1)e(t)z(t). We get

(ip 0. 0p(0)) = <A OB we<t>>+<A—6>@i(t)—AJe(T)jt%m—wt<w<t>>,vp<t>>

QF
= 2 0llat) — me P+ [ S b (A= 8)<(t) ) (@) — 2oy, 50
D) e(t) 2\/7 e(t)s
£ 8) VEDIEWIP 1 B (3 — 8) VD Ap(0), 1)
Co
T (jfé m) (V1)) 2(t) — ) —(Vn (a(0)), (1))

=D,

BT, A(0) — BAWE@ (Ap(2), jt Te(t) )\25(75)(%355@),91:(15)—ms(t)>
—A/g( ws(t)v (p 1)>\ﬂ E(t)\/e(t)(@(t) — zopy, 2(1))-

Since ¢ is e(t)-strongly convex, we have

(34)

()

or(e)) — e (@(t) > (Veor(x(t), 2oy — 2(t)) + 52 |l2(t) — 2oy 2.

Recall that £(t) is nonincreasing, i.e. £(t) < 0. Therefore, by using the above estimation, we get

s(%ﬂ) (e(2(t) — oe(roe))) + (2‘3@ ¢s<T>>e(t>|x<t>x5<t>n2. (35)

For all a > 1 we have the following elementary inequalities

A/e(t) . a\
VD (i) < 2D gy 4 2D smn (36)
32 \/e(t) a)n/
—BAVe(t)(Ap(t ’dt%(m < T||Ap(t)”2+ H@ s(t)“ (37)
Similarly, for all b > 0,
d b)\\/ A3e3
WOy 2t) — o) < P L 2 X D e @)
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The coeflicients a and b will be adjusted later, conveniently. Note that

Co = (A = 8) Ve (I2(0)]1> + BAp(),5(1)))

_ C=OVED (a2 + 130 + 84,017 - 1A OI) . (39)

=5 [I9ee@@)I? + 145 ()17 = 1960 () ~ Ap(®)]’]
=5 [IVe @) + 1401 = (0 = D’ O] (40)

—B(Ver(x(t)), Ap(t)) =

I\D\Q l\D\E

By combining the inequalities (35)-(36)- (37)-(38)-(39)-(40) with (34), we obtain

(i 1), vp(1)) < A (“2) - m) (pe(a(t) — ge(zory))

Ve 6>a<t> (@(t) ~ (0. (1)
‘{ ((1) m) zb(t)}la?(t)—ws(t)l2 "
+§ R F DI+ 5 O~ 8) VEDIH() + 845 ()]
i atb) AM w12 + L= D () Je@ () - 220y, 20)
+§ OV 1 (o )5 | 14O - (T (0.0
+2 - 122 Wl - D Iven=)).

Combining (41) with (33), the terms (Vo (z(t)),z(t)) cancel each other out, which gives

(1) < 2 (f% - s(t)> (pe(@(1)) — eulze) + 5 [20) + B~ 122 0)] ()P
2Ol ” + A (;jiﬂ —5)e ()) (1) = 2equ,(0)
2 3.2
| X + 20 (2 S @)N ;b(t)] Jo(®) - 2o (42)

WL (( )x a)@noc(t 124 5 (= 8) VEDa(t) + 84p(0)]1

DO —

a0 B WED D+ BN W (VD () — 220y, 2(D)
B O R CEONE0) uAp(t)n?—guvmx(t))n?
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To build the differential inequality satisfied by Ej(-), let us majorize

BBy (1) = u(0) (o1(a(®)) — or(zeiey)) + P o (1) 2
(t) (o1 x(t) o o) + OO 0(1) — ey 12+ D i) + By (1))2
+M(t Ve — To(py, 2(t) + 5?10@))
(®) (el - ws@)) + OO 00 — 12 4+ 4D a0) + A (0))2
+u(t)>\\/ — Tty (1)) + Bu(t)A/e(8) ((t) — 20y, V%ﬁt(ﬂﬂ(ﬂ))
o S aettry S et o 2
< (t) (r(w(t)) — erlaeey)) + ONED () — zoo? + A2 i (2) + 5,02

OO @(t) — 2oy, #(1) + S p(@)[Voe((t)]?
+(p — 1Bu(t)e(t)/e(t)(@(t) — oz, (1))

By adding (42) and (43), using u(t) = —22((?) + (6 = X\)y/e(t), and after simplification, we get

(43)

Ep(t) + u(t) Ep(t) < <t>< ;(’?)Ha 20) + A8 5%)(sot(w(t))—mxe(t)))

5 [E0) + 8~ D22O)] 202 = S llaeqe
2 [5,/ (E(t) +2 (201 — 2)2 — 1) 3 (1) +2/\25%(t)} 2(t) = 2oy |I?
+5 (L DA =0) VEDII? - LH 160 + 84, 01 (44)
+%(2a+b ) Ae( ||dtﬂﬂe:(t)|\2 (p— 1)BA(G — N> (t)(a(t) — ey, x(t))
g{m W1 50— 0 D) | 14y 1)
5 (= —ﬂ%(t)) F8(E- \/s<t>> IV a(e)) 2
2.
Since () is nonincreasing, — 4((2 13() + BAR (1) < ())|| O R E(it))uA,,(t)H%

.. .. . 1
Combining this inequality with (z(t) — zo(), z(t)) = 3 [llz(t) — zey I? + Iz = llzew I?], we get

Ep(t) + u(t)Ep(t) < \/2(t) (— 2§§t()t) +(6-2)) + A8 ;;%) (e (z(t) = pe(ze(sy))

+ % [£0) 1 Blp — 1) (p— 1+ A0 — X)) 2(0)] 2(0)]?

g[eu (b~ DBNG ~ V()] [z

+ 2 [8vVED® +2 (200 - 202 = 1) ek (1) + 253 (1)

+ 20— 1A = V(0] lat) — oo )
+[5 (2= 0 vaD - S0 1BOIP + 5 ot 02V el

@—1—/8(%6)@)755@

a e(t)

(-1 gl +56=2) VED) IVl P

_|_
o™
—

1Ap ()12

+
™
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By using Lemma 2, we have

(1) E(0) w2
< el < Sl

d
arre®

which gives

Ep(t) + u(B)Bp(t) < V() (— O 520+ A8 é(“)(mac(t))—sot(%(t)))

2e3 (t) 2¢(t)
2[5 + B~ 1) (= 1+ 20 = 0) 0] (O]
[ﬂr +2(200 — 202 — 1) £3 (1) + 22765 (1)
+2(p ~ 1)B(6 — V2] o) — oo
+[3 (@ -0 Ve - 20 lato? (46)
5 |2+ Ai? —E(0) + (1- p)AAG - A)e%)] lzeqol?

+§ M —B(A— 5)\/7 ﬂE(t)

Ap(t)))?
. 1 Ap @)l

153 e(t
5 (10 (()) LEDNEC) ||wt<x<t>>||2.
Let us make precise the choice of the parameter b and take
b:= %)\ with ¢ > 2.

Let us analyze the sign of the coefficients involved in (46). Since €(¢) is nonincreasing and p < 1,

B0+ hOF0) < VED | 50+ 020008 505 | () i)
> =

5 |d0 48— 1) - 1+A<6A>>s2<t>] ()

=B

+2 B/=(t)E(t) +2 2(54—%))\—2)\2—1 20 +2(p—1)B6E =N 20| |a(t) =zl
<0 -z <Osince 6>\
1 LA €O | aonza B s> as g B
+5 (0 Dr=0) vE@ - 5 a0+ 5 [5(3+o-2) vam - 1- Z0 Lo
=D Ay
1 () 2 2
+3 |(2a+ A A 20 E(t) + (1 —p)BAG — Ne (t)} [zt
+5 (F1- 0 + 86 -2 VED ) IVt (a7)

Az
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e Condition (Hp) implies that

d 1 d 1 1 1
dt<8(t)><(2)\—6), dt(@) §<6—(+ )) and (Sﬁgm.

So, we have
- ef) +(5—2)\) = % <1> +(5—2)) <0.

2¢ (1) Ve(t)

e According to § > 2¢/(1 —p) and X < S+v/87—4(1-p) “;254(1_’)), we have p— 146X — A2 > 0.

Therefore,

B=¢(t) +8(p—1)(p—1+ A6 —\)e2(t) < B(p—1) (p—1+6)\—)\2) 22(t) < 0.
\g’o-/ <0

° Whenégﬁf%wehave

2(5+1>A—2/\2—1§2\/§>\—2/\2_1:_(‘/§>‘_1)250'
(&
When 6§ > v2 — 1, we have

1 o 1 1 1
R =< - )2 — .
(6 + C))\ A 5 < 0, because A > >3 <6+ +4/(6+ c) 2)
Therefore (§ + 2)X — A% — 2 < 0, which implies that
0:2(6+%)>\—2>\2—1§0.

e Condition (Hp) implies that

D= {; ((1+ Ia- 5) ;;';(2)} _ LZ( i(t)) +§((1+i)x5)} <.
1

1
F itivity of A 68 < d — <-4+ )N) ¢ lud
e For nonpositivity of Ay, we use §8 < =0 and (ﬁ(t)) <3 ( (1+ a) ) o conclude

Alzﬁ(2+6—>\)\/@—1—i€(§?

:ﬁ<2+5_x>\/@—1+2ﬂ\/6(7)<—2§§()t)—§(5—(1+i)x)>+ﬁ(5—(1+i)x)x/e(7)

<0
< 2B(5—A)\/elt) — 1= B (5 —2\) /e(t) + Bov/e(t) — 1 < 0.
<0 <0

e Finally,

AQ—A/&W—HBF((S— 20+ o (i(t)»
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It follows from the estimate (47) that

() + w)B0) < 5 | 2ot AT~ 00+ (199G =020 o
5 (3 =) IVer=®)IP.
Since [l2.(p < 12", we get
Ep()+ 10 B0 < 12260 + 4 (3~ 1) 1901 ) P, (15)
where G(t) = (Ac + Qa)/\i((?) C () + (1 - p)BAGS — Ne2(D).

t
We have % —1 < 0. By taking v(t) = exp (/ u(s)ds) , and setting
t1

Wy(t) = el M%) (49)
we conclude that o
Walt) =2(0) (Ep(t) + n)Ep(1) < ey, (50)
By integrating (50) on [t1,t], and dividing by ~(t), we obtain our claim (30)
[l=*|? /t 7(t1)Ep(t1)
Ep(t) < RONA G(s)v(s)ds + —n (51)

Coming back to (48), we get by integration

t t * (12 t
By(t) - By(e) + | u(s)Ep<s>ds+§(1—§) [ ivestetopipas < BB [ aas

1

Our assertion (31) is then reached by neglecting the positive term E,(¢) + f:l wu(s)Ep(s)ds. O

Corollary 1 Let z(-) : [to, +oo[— H be a solution trajectory of the system (TRISHE) with § > 0

#(t) + 0v/e(t)i(t) + B% (Ve (2(1)))) + Ver (x(t)) = 0. (52)

Let us assume that there exists a,c > 1 and t1 > to such that for all t > t1, (H1) holds. Then,

=1 J | K(Acwanéj(i)) _é(s)> 7(5)} t B
x 1 €21s ~(t1)E1(t1
Bl = 10 MO

where y(t) = exp (/t ,u(s)ds) and p(t) = 7285(8) +(@=X \/z-:(T)

Corollary 2 Let z(-) : [to, +oo[— H be a solution trajectory of the system (TRISH) with § > 2
#(t) +3v/e(D)a(t) + BV f (2(1))i(t) + Veor (1)) = 0. (54)

Let us assume that there exists a,c > 1 and t1 > to such that for all t > t1, condition (Ho) holds. Then,

(53)

t .
! *”2/ {((Ac—l—%))\gj(i)) _é(5)+ﬁ)\(6—)\)62(t)> 7(5)} s

t ez (s v(t1) Eo(t1)
2 ~(t) y(t)

t .
where y(t) = exp (/t u(s)ds) and p(t) = — 256(?) + (6 = A)/e(t).

Eo(t) < (55)
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3 Particular cases

Take (t) = tlr’ 0 <r <2 to >0, and consider the systems (TRISHE) and (TRISH). The

convergence rate of the values and the strong convergence to the minimum norm solution will be
obtained by particularizing Theorem 3 to these situations. In these cases, the integrals that enter
into the formulation of Theorem 3 can be calculated explicitly. In fact, obtaining sharp convergence
rate of the gradients requires another Lyapunov analysis based on the function &, defined by

Ep(t) = (pe(z(t)) — pt(aey)) + %Hfif(f) + B [Ver(x(t) + (p— De(®)a(t)] [, (56)
We can notice that when A = 0, we have &£,(t) = Ep(t). So, with A = 0, the estimation (42) becomes
&) = By(t) < 1 [e0) + 80~ 172220 1201 SOl ? - S VD)
VD) + BADIE + 2 [+ B5VED)] 1401 ~ DI veeao)?.

By supposing 68 < \/%, we conclude that
&) < 3 [0+ 8- 1O 2@ - 32011 - 5 VD)
VDN + B0 ~ DIV (57)

3.1 System (TRISHE)

1
Theorem 4 Take £(t) = — and 0 <r < 2. Let z : [to, +oo[— H be a solution trajectory of

tT’
.. 1) B\ . . 1 rB
CL‘(t) + (g + t7) x(t) + ﬁva (l’(t)) CL'(t) =+ Vf (;c(t)) —+ (tT — t"JFl) x(t) =0. (58)
Then, we have convergence of values, strong convergence to the minimum norm solution, and

. 1

fz(t)) — n}_llnf =0 (t—r) as t — 4o00; (59)
1

lz(t) — a:s(t)HQ =0 (E) as t — 4o0. (60)
2

ot
tmin((z'f'TT ,'r)

In addition, we have the following integral estimates

lz(t) + BV f(z(t)] = O ( ) as t — 4oo. (61)

oo too 5
/ £ (0)|2dt < +oo, / (D9 f(2(0)) |2dt < +oo.
t1 t1

Proof a) By taking e(t) = tlf’ in Corollary 1, we get (58). So if (H1) is satisfied, we get

3
2

* 112 t -2
Er(t) < ”2:;(!) 5 ((/\c+ 2a)/\: (Z)) - é(s)) ~v(s)ds + % (62)

Using the same technique as before, we start by choosing the parameters a > 1,¢ > 2, A > 0 such
that
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g<)\<a—+16for0<6<ﬁ—%andg<%(5+%+1/(6+%)2—2><)\<a+16f0r6>\f—7

We can easily check that for » < 2 and for ¢ > t; large enough,

d 1 r o r—2 . 1 a+1 T
el [ < — — — <
7 ( 5(t)> 2t 2 < min (2)\ 0, 5 (5 Y A)), and B <tz.

This expresses that the condition (#1) holds. With the notations of Theorem 3, we have

__£@®) _ o, 6=
u(0) = gk G- Ve = 5+ (63)
t T
B (t\? 20—\ (2r  %r
s ([ s0)- (3 o A2 )
r 2(5—>\) 2—r r 2(5_)\) 2—r -1
= C1t% exp [ﬁt 2 } where Cy = (tf exp {72 — t,? . (64)
. 205 — \) . . o
Setting Ao := (Ac+2a)A, o := 5 and replacing (t) and ~(¢) by their values in (62), we get
*(12 t
A 1 2-r t1)Eq(t
El(ﬂﬁ%/ (L;JrW) exp(60522 )derM (65)
2tz exp (50tT) ty \ S sz ~(¢)

Then notice that

a4 (iexp (5032—7’“)) _ ( R 50(2T+2)) exp (%Sz;r).
ds \ ps ps2

2ps 2

AoT 1 1 do(2—1) . .
we h — + < ——5 + ————~, which
a+1 0, we have 2 T ST 2ps oz ich gives

t —r
P / <_L2 + %0(2 7+:)) exp (50327) ds + () Fa(ty)
Sot 2 ) t ps 2ps 2 v(t)

(
1 d (1 : (t1)E1(t1)
(%fi)ﬂfk<ep@” ))“+7twwt

o r L y(t1) Er(th) r v(t1) Er(th)
- t2 exp (5 2ot P (50t1 >+ 7(t) = 2,016TJr2 7(t) .

For s large enough, by taking 0 < p <

Eq(¢)

IN

‘We have % < Ct™ s exp [—60262%} Since 0 < r < 2 and §p > 0, we deduce that %
v v

tends to zero at an exponential rate, as t — +o0o. Therefore, there exists a positive constant C such

that for t large enough

C

By Lemma 1, we deduce that there exists positive constants C and M such that, for ¢ large enough,

1 1

f(a(t)) —minf < © (tig + —) L le(t) - aagy | < 20 < 2€

< b
e(t) — %"

tT

I5(t) + BV @i (a()) + (p = De(t)a(t)]|* < MEp(t) < (67)

~
0
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Since 0 < r < 2, we conclude that
. 1 2 1
f(m(t))—n%_ltnf:(’) o 2(t) = zey I = O ) as t — +oo.
2

By (67), we have
vMC

£(t) + BV f(z(O)I < [|2(t) + BVee(z(t))]| + e(®)lz(®)]] < o=z *II @Il
Since z is bounded, we conclude that, as ¢ — 4oo0,
o %) if rel3,2]
lé(6) + BV F@) =t

b) We now come to the integral estimates of the velocities and gradient terms. For this, we use
the pointwise estimates already established, and proceed with the Lyapunov function &, defined in
(56). The system (TRISHE) corresponds to p = 1, so we consider

E1(1) = (91(a(0)) — erlaew)) + 16(0) + BV ()]

Since for t > t1, 68 < then according to (57), we have

NeoL
E1(1) < g0 ~ 320" ~ VDI
2 VD) + BV e ) ~ 2V eu(a(n)
< eI = SVED DI - 5 IVerao)? (68)

Equivalently,
1) . ; 1. *
S VEDIFOIP + D19 @)I? < (1) - 520”2

By multiplying this last equality by t% 1 and integrating on [t1,T], we get

5 [T
5 [ TR+ S
ty

We have

—1 3r_q —1 3r—2 T 3r_o
[ E1(t)dt = ( s le (1) — e iy (t)) - 5 28, (1) dt
t ty

1

* T
*AIIV%(I’( )%dt < —/ L& (t)dt + ||»’02|| / t272dt. (69)
131 t1

ty

T
TT* (e (( ))—wt(ws(t)))d““&zli/ £ 72)i(t) + BV (1)) 2dt

t1

-1
S t12 51

3r—2 [T 3r_o 2
tz 1 t2 7 |2(t) + BV (2(t))]I7dt (70)

t1 t1

3r__
<t

According to (66) and (67), we deduce that there exists C' > 0 such that

T 3r_q 4 3r_q T 3
—/ t2 e (t)dt < tp? 51(t1)+0/ t" 0 de. (71)
ty ty
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From this, we deduce that — f:oo t%flé'&(t)dt < 4o00. By (69), we conclude that

5 (T2 B (T sy 2
5 [ N0+ [T e < +oc.
t1 tl

Therefore
T T 3r
/ " Y|&(t)]|?dt < 400 and / t2 Y|V (x(t))]|2dt < +oo.
t1 t1
We also have

2
97N < (Ve O+ 3 120) < 21T0e)I? + 31O

3r

Since z is bounded, we obtain f:oot > YV f(x(t))]|?dt < +o00. This completes the proof. O

3.2 System (TRISH)

We now come to the corresponding result for (TRISH), stated as a model result in the introduction.
1
Theorem 5 Take § > 2, e(t) = ey with 1 <r < 2. Let x : [to, +0o[— H be a solution trajectory of

B0 + (0) + 57 (@) 4(0) + T (2(0) + 2 (0) = 0. (72)

Then, we have the following estimates

fz(t)) — n%nf =0 (tlr) as t — +oo; (73)
2 (t) — 2oy ||* = O < f_r ) ast — 4oo. (74)
lz(t) + BV f(z(t))]| = O <t7£> as t — +oo. (75)
+oo +oo o,
/ Y| (8)]]2dt < +oo, / t7 2 V(@) dt < 4-o0. (76)
t1 ty

Proof a) Taking e(t) = tlr in Corollary 2 gives (72). So if the condition (Hp) is satisfied, we get

7(t1) Eo(t)

v(t)

ds + (77)

29(t) t, £3 (s

Eo(t) < ]2 K(,\c + 2a)/\é2((s)) —é(s) + BA(0 — /\)sz(t)> ~(s)

As in the proof of Theorem 4, since r < 2, take the parameters a > 1,¢ > 2, A > 0 such that

i (6+ 0+ 2)? —2) <A < min (#16, 7‘”@2‘4) :
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For ¢t > ¢; large enough, one can prove that

. oz _ r
4 ! :thzgmin a4 6,6+ 0% —4 , and p§<tz.
a\ Jewy) T2 at1 2
. o . . . 2(6 = N)
This means that the condition (Ho) is satisfied. By setting Ao := (Ac + 2a)A, &o := By and
Bo = BA (6 — A) and combining the equations (63) and (64) with (77), we get
t
2-r t1)Eo(t
B < e [ (25 P Yo (05 ) s WU o)
2t2 exp (6otT) tp \ S s rsT ~(t)
Pl 1 Bo 2—r
Let us estimate the integral / (—2 + =+t ) exp (603 2 ) ds. For p>0
t; \ S s 2 rsz
d (iexp (505%)) _ (_% n M) exp (80s°7").
ds \ ps ps 2ps 2
So, we need to show that
Aor 1 Bo 1 do(2—7)
ot T S 79
s s rss ps? 2ps + (79)
dor fo dor | L+ bo
Since r > 1, we have for s large enough, —- + pEzE: + < ey + 7+2 .
2 rs 2
By taking p < mé, we have
M+1+%<_L 60(2—r)<:>A0T+% 50(2—r_ AN
52 s30T ps? 2ps = s? N ") st B s
1
e oAk
s 2z r
We have 0 < r < 2, which means that lims_ 4o % = 0. Combining the fact that A\ < ailé with
s 2

the choice of p, one can check that

57)\7p(1+%)>( | ) +15 p(1+ 0)>7(1+%)(p7m5)>0.
N———

>0

Therefore, for s large enough, the last above inequalities are satisfied, which implies that, for
1 <r < 2, and ¢; large enough, we have

t
r E
Eo(t) < — / (—%+50(27+I) ‘) exp (605 e )ds+77(t1) o(t1)
2t exp <5ot 2 ) t ps 2ps 2 rss ¥(t)
t
b [ (L g () )t 20050
2t% exp (60t 3 ) t, ds \ ps 7(t)
r r 1 2o t1)Eo(t r t1)Eo(t
= rt2 . 2=r\ 9t exp (60t12 ) + FY( 1) tO( 1) < T+2 ’Y( 1)(;;( 1).
2pt 2 tz exp (5Ot 2 ) pL1 ’V( 2pt 2 0l
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v(t1)Eo(t1)

We now proceed in the same way as in the proof of Theorem 4. Since has also an

exponential decay to zero, we deduce that for ¢ large enough, (73), (74) and (;5) are satisfied.

b) We now come to the precise integral estimates of the velocities and gradient terms. Parallel to
the study for (TRISHE) we proceed with the Lyapunov function &, defined in (56). The system
(TRISH) corresponds to p = 0, so we consider

E0lt) = (pu(a(0)) — e1(eew)) + 6(0) + BV F()]

Using successively the derivation chain rule, the equation (TRISH), and £(t) < 0, we get

L Eo(t) = (Ve (x(1)), 2(6)) + EL ()12 + (&) + BV £ (1)), () + ﬁv2f<m<t>>ac(t>>
= —B(Ver(2(1), VF(2(1)) — 6/e@|(t)[I2 + =L [l=(£)] - 65@ NV f(x(t)), i(t)

§—BHVf(w(t))HQ—ﬁe(t)<w(t) V(1)) — 5y /E D)2 — 65DV S x(t) 50
< 21V @) + 5O a0 - s EDIHOI? - 36v/EDV £(a(0), 30
Equivalently,
819 He)I? +ov/EDIHO1? < —Leott) + 5 D (o) - 55DV £ (a(0). (0.

By multiplying this last equality by t% 1 and integrating on [t1,T], we get

T
s / L ((0) 2t + 6 / () 2t

1

T
< - / ﬁ*liso()dtm t*flux(t)Hth—aﬁ / UV f(2(t)), &(t))dt.  (80)
t1 t1

t1

Let us show that the second member of this last inequality converges when T' goes to infinity.
e For the first term of second member of inequality (80), we have

- T T,
—/ I “Eo(t)dt = [ 37*150@)] + (% - 1)/ 7 728 (t)dt
ty t ty

sr T s r— 3r_
<t e+ (5 -1) [ ) - ey a (U72) / £5725(0) + BV £ (a(t)) et

C
gcl+(37";2>/:ﬁ—2 (f(x(t))—f(w*))dtJr<3T4_2>/t1 52 (o)) Pat
(22 / CERa(0) + 6V (w(0))a (81)

Using (75) and (73), and the fact that z(-) is bounded, we obtain

tj°°t3*’*1 Eo(t)dt < Cy + Co [T 1272t + C5 [,7°74"73dt < 400, becauser <2.  (82)
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e Consider now the third term of the second member of the inequality (80). According to the
.od X .
equality & (F(x(1)) ~ f(27)) = (Vf(2(1)), &(1)), we have

T T
=08 | NS0, @e)dt = ~65 [ (f(2(1) ~ £("))]

t 31

T
+ 68— 1)8 / 72 (f(2(t)) — f(a)) dt

T
< 6687 (f(2(1)) — f(2")) +8B(r — 1)5/t £ (f(2(1)) - f(z")) dt.

Cy

Using (73), we get
—88 [,70 TNV (w(t)), &(1))dt < Ca+ Cs [T t72dt < +o0. (83)

Collecting (80), (82) and (83), we conclude that

o T )Pt + 6 / "
2 /., v

ty

oo —+oo -
Cedr < 05 [ (o)
ty
Using again that = is bounded, we deduce that

B[P sy 2 o a2
5| ISP [ e ) < .
ty

t1

This completes the proof. ]

4 Numerical illustrations

Let us illustrate our results with the following examples where the function f is taken successively
strictly convex, then convex with a continuum of solutions. In a third example, we compare the
two systems (TRISH) and (TRISHE). The following numerical experiences describe in these three
situations the behavior of the trajectories generated by the system (TRIGS) (without the Hessian
driven damping) and by the systems (TRISH) and (TRISHE) (with the Hessian driven damping).
All these systems take into account the effect of Tikhonov regularization. They are differentiated
by the presence, or not, of the Hessian driven damping. According to the model situation described
in Theorem 4 and Theorem 5, the Tikhonov regularization parameter is taken equal to e(t) =¢ ",
with 0 < r < 2. We consider different values of the parameter r which plays a key role in tuning the
viscosity and Tikhonov parameters. We pay particular attention to the case r close to the value 2,
which provides fast convergence results. The corresponding dynamical systems are given by:

(TRIGS)  @(t) 4+ 6t 2i(t) + Vf (z(t)) +t "2(t) =0

(TRISH)  #(t) + 6t~ 2a(t) + BV2S (x(t) i(t) + Vf (2(t)) +t "2(t) =0

(TRISHE) (1) + 8t~ £(t) + AV (a(0)) (1) — vt (1) +1770(0) + Vf (2(1)) + (1) = 0.
We choose § =3, 8 =1.
To facilitate the comparison of the trajectories corresponding to different dynamics, for example

(TRIGS) and (TRISH), they are represented respectively by continuous lines and dotted lines. All
our numerical tests were implemented in Scilab version 6.1 as an open source software.
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@) = (@1 +a3) = 2In(er + (@2 +1) ot = (1.(£ 1)/2) the unique solution of min fy(x)
i

[— — Theoretical convergence rate : r = 2 2

time : t o)
(TRIGS) : i(t) + V/e(®)it) + Vf(x(t)) + =(t)a(t) = 0, 2(0) = (1,1),2(0) = (0,0) (TRISHE) : £(t) + 6/aa(t) + ¥ A(t) + e(tjx(®) + J:Ttt e — 0 2(0) (L 15(0) - (00)
04
107 Ny ‘ o]
% 107 ET\‘—___ T \T’&T]M_—————_________
g : i S A i S S 10 TRISHE: 1= 0,5 ”\‘SIQJA\’;\Q/;&}Q\’Q&Q,QL&M ATRLS VSN N
= ; ¥ ————— TRISHE:r= ANMAMAE RS R
3 1075 7 z —— IRISHE:r-1 SEARA "iﬁf NA rﬁiwﬁﬁx‘r\wf;ﬁ\;‘;\
TRISHE : v = 1,8 SRR AN AR
- 12 TRISHE : 7 = 1,9
10 T T T T T T T T 10 T T T T T T T

T T T
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
time : t time : t

e(t 2 Veset 0 =3,0=1a £(t) =t " where r varies
o) = axgmingpn(s) = f.(r>+%\xu' We set § = 3,6 =1 and £(t) = t " where r varies

[l2(t) = )12

time : t time : t

Fig. 1 Convergence rates of values fi(z(t)) — f(z*), of trajectories ||z(t) — z*||2, and gradients ||V f1(z(¢)]2.

Ezample 1 Take f1 :] — 1, +o00[>— R which is defined by
fi(z) = (z1 +23) — 2In(zy + 1) (z2 + 1).

The function f; is strictly convex with

1__2 2 0
Vii(z) = [2 st | and V2f1(z) = (wlarl)z 94 2
(w2+1)2

T2 — To+1

The unique minimum of f; is * = (1, (v/5 — 1)/2). The corresponding trajectories to the systems
(TRIGS), (TRISHE) are depicted in Figure 1.

Ezample 2 Consider the convex function f2 : R? — R defined by
1
fo(z) = §($1 + x9 — 1)2.
We have

Vht) = |2 T2 | and v = [ ]

We have S = argmin f> = {(z1,1 —21) : 21 € R} and z* = (3, 3) is the minimum norm solution.
The corresponding trajectories to the systems (TRIGS), (TRISHE) are depicted in Figure 2.

Ezample 3 To compare the systems (TRISH) and (TRISHE), we take the same function fs as in
the previous example. The corresponding trajectories are depicted in Figure 3.

As predicted by the theory, it is observed that the trajectories generated by the systems (TRISH)
and (TRISHE) have at the same time several remarkable properties: they ensure fast convergence
of the values, fast convergence of the gradients towards zero, and convergence to the minimum
norm solution. The presence of the Hessian driven damping in these dynamics induces a signif-
icant attenuation of oscillations (by comparison with (TRIGS)). The third example shows that
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fol) = (21 + 22— 1) /2 ' = (1/2.1/2) the orthogonal projection of the origine on the solution set of min fo(z)
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2
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Fig. 2 Convergence rates of values fa(z(¢t)) — f(z*), trajectories ||z(¢) — z*||2, and gradients ||V fa(z(¢)||2.
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Fig. 3 Comparison of (TRISH) and (TRISHE)

the trajectories generated by (TRISH) and (TRISHE) share a very similar behaviour. We see the
advantage of taking r close to 2 in the presence of the Hessian driven damping. Indeed, r = 2 gives
viscous damping similar to that of the accelerated gradient method of Nesterov, in which case we
know that the adjustment of the coefficient § plays a crucial role. Note the criticality of the case
r = 2, since for r < 2 the condition for § is § > 2, whereas for » = 2 we know that we must take
& > 3 to get fast convergence. This is an interesting subject for further research.
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5 Existence of solution trajectories for (TRISHE)

Let us start by establishing the equivalence between the inertial dynamic with Hessian driven
damping (TRISHE) and a first order system in time and space in the case of a smooth function f.
Similar result was first obtained in [3], with applications to mechanics [22] and deep learning [29].

Theorem 6 Let f: H — R be a convex C? function. Suppose that o >0, 8> 0. Let (zo,20) € H x H.
The following statements are equivalent:

1. z: [to, +oo[— H is a solution trajectory of

(TRISHE) (1) + 6/=(0(t) + 5% (Vor(a(t))) + Veou (1)) = 0. (84)

with the initial conditions x(to) = xo, (to) = To.

2. (z,y) : [to, +oo[— H X H is a solution trajectory of the first-order system

i(t) + BVei(() — (3 = 6v/=(0) 2(t) + Jy(t) =0

(85)
0 (5= 0vE - F28) a0+ Ju0 =0,
with nitial conditions z(to) = xo, y(to) = —B(Zo + BV, (z0)) + (1 — d+/e(t0))zo
Proof 2. = 1. Differentiating the first equation of (85) gives
40 (1 s/m) i)+ Lo -
5O+ 5 (Teula() +0 50020 - (5 -5vE0 a0 + i =0 (0

Replacing ¢(t) by its expression as given by the second equation of (85) gives

50+ (Teula(®) +5 55 0200) - (=520 ) 00

2 <<_5F F) (t)—y<t>) (87)

Then replace y(t) by its expression as given by the first equation of (85)

H(0)+ B2 (Vor(alt) + ji )= (5 -ovEm ) i)

1 (1 B5 €(t) 1/, 1 _
+ <ﬁ RNEORR (t)> o)+ 5 (40 + 89 (e0) - (§ - 5vE0 ) 1)) =

After simplification of the above expression, we obtain (84).

1. = 2. Define y(t) by the first equation of (85). Differentiating y(¢) and using equation (84)
allows one to eliminate #(¢), which finally gives the second equation of (85). O

Based on Theorem 6, the following first order formulation helps give meaning to the (TRISHE)
system when f € I'h(#H). It is obtained by substituting the subdifferential dp; for the gradient Vi
in the first-order formulation (85).
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Definition 2 Let § > 0, 8 > 0 and f € I'h(H). Given (zo,yo0) € dom(f) x H, the Cauchy problem
for the inertial system (TRISHE) with generalized Hessian driven damping is defined by

#(1) + Bogi(x(1) — (%~ 0v/E@ ) a(t) + hu(®) 30
0 - (5 -6vE0 - £ 50 ) o0 + a0 =0 (59)
)

z(to) = o, y(to) =

Let us formulate (88) in a condensed form as an evolution equation in the product space H x H.
Setting Z(¢) = (z(¢),y(t)) € H x H, (88) can be equivalently written

Z(t) +0G(t, Z(t)) + D(t, Z(t)) 30, Z(to) = (z0,v0), (89)

where G(,-) € To(H x H) is the function defined by G(t,Z) = Byi(z), and the time-dependent
operator D : [to, +oo[XH x H — H x H is given by

D(t,Z)(—(;—SW)er;y,—(;—6@—526\;%>x+;y>4 (90)

The differential inclusion (89) is governed by the sum of the time dependent maximally mono-
tone operator 9G(t, .-) (a convex subdifferential) and the time-dependent linear continuous operator
D(t,-). The existence and uniqueness of a global solution for the corresponding Cauchy problem
is a consequence of the general theory of evolution equations governed by maximally monotone
operators [31, Proposition 3.12], and of the fact that ¢ — ¢¢(x) is a nonincreasing function, see [18].
In this setting, the notion of classical solution is replaced by the notion of strong solution, see [31,
Definition 3.1], [25, Theorem 4.4], [20, Theorem 2.4].

6 Conclusion, perspective

For convex optimization in Hilbert spaces, we have introduced a damped inertial dynamics which
combines Hessian driven damping with Tikhonov regularization. The Hessian driven damping and
the Tikhonov regularization term induce specific favorable geometric properties, related to curva-
ture aspects. The Tikhonov term regulates the objective function. It makes the dynamic relevant
of the heavy ball with friction method for a strongly convex function. The Hessian driven damping
acts on the velocity vector in a similar way as continuous Newton’s method. It has a corrective
effect by damping the oscillations that arise with ill-conditioned optimization problems. It turns
out that the two techniques combine well and provide a substantial improvement to Nesterov’s
accelerated gradient method. While preserving fast convergence of values, they ensure fast conver-
gence of gradients to zero, they significantly reduce oscillations, and provide convergence to the
minimum norm solution.

Our study provides a solid basis for the convergence analysis of algorithms obtained by temporal
discretization, which is a subject of further work. Our approach calls for many developments. We
showed that our approach can be naturally extended to the case of nonsmooth convex optimization,
and the study of additively structured ”smooth + nonsmooth” convex optimization problems. Our
study naturally leads to applications in various fields such as inverse problems for which strong
convergence of trajectories, and obtaining a solution close to a desired state are key properties.

It is likely that a parallel approach can be developed for multiobjective optimization for the
dynamical approach to Pareto optima, and within the framework of potential games. The Lyapunov
analysis developed in this paper could also be very useful to study the asymptotic stabilization of
several classes of PDE’s, for example nonlinear damped wave equations. One of the main challenges
related to our study is whether similar convergence results can be obtained using autonomous
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systems, see [3] for a first systematic study of this question. Indeed the study of autonomous versions
of the Tikhonov method, such as the Haugazeau method, in the context of dynamic systems, and
rapid optimization, is a field largely to be explored.

Acknowledgments: The research of Aicha BALHAG was supported by the EIPHI Graduate School
(contract ANR-17-EURE-0002).
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