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The reversed field pinch (RFP) is a toroidal device aiming at the magnetic confinement of a plasma in order
to reach conditions of thermonuclear reactions. In RFPs the magnetic and velocity field self-organize to a
saturated state determined by their nonlinear interplay and the values of the transport-coefficients. The
question addressed in this article is whether this saturated velocity-field is capable of amplifying a seed
magnetic field, the so-called dynamo-effect for the astrophysical community. It is shown, using numerical
simulations in periodic cylinders, that the RFP velocity field can amplify a passively advected seed-field, but
that this is only observed for values of the magnetic Prandtl number above unity. These observations are
reported for both laminar and turbulent RFP flows. We further assess the difference in behaviour between a
passively advected vector field and the true magnetic field and show that their difference is associated with

the detailed alignment properties of the fields.

I. INTRODUCTION

In the context of geophysics and astrophysics, the dy-
namo instability is the process, now widely accepted, to
be at the origin of magnetic fields of astrophysical bod-
ies!. The dynamo instability converts kinetic energy into
magnetic energy for certain types of flows of electrically
conducting fluids?. There exist a number of anti-dynamo
theorems which restrict the occurrence of the dynamo in-
stability to specific classes of flows®? and the observation
of the dynamo instability in experiments is currently re-
stricted to a few realisations in liquid metals* or plasma
flows® which were carefully optimized to obtain critical
values for the magnetic Reynolds number of the order of a
few dozens. While there has been a great deal of interest
for dynamo features in spherical geometries in the con-
text of the geodynamo® or the solar dynamo”, dynamos
were also investigated in toroidal geometries. Torus dy-
namos were in particular proposed as a paradigm for the
accretion disk dynamo®®. At the experimental level, sev-
eral studies considered the screw dynamo in a torus'®. In
this configuration, a liquid metal helical flow is generated
from the sudden deceleration of the torus, and the crit-
ical magnetic Reynolds was determined to be above 18
after careful optimization of the liquid flow!'"!2,

The dynamical growth of the dynamo magnetic en-
ergy is usually separated as a two-step evolution. During
a first step, also called the kinematic dynamo, a small
magnetic field is amplified by a velocity field, which is
negligibly influenced by the Lorentz force. During this
first step we can therefore individually evolve the velocity
field and the magnetic field, since the latter is too weak to
influence the former. The second step consists of the sat-
uration phase, where the magnetic field has grown strong
enough to back-react on the velocity field by means of

) Corresponding author: nicolas.plihon@ens-lyon. fr

the Lorentz-force. In this second phase the simultaneous
evolution of both fields should therefore be considered in
detail to correctly describe the coupled dynamics of the
fields.

In the plasma fusion community, dynamo regimes
usually refer to regimes where an electromotive force
is induced by flow and magnetic field fluctuations due
to turbulence, and has been reported for most of the
magnetically-confined fusion plasma configurations, such
as Reversed Field Pinches (RFPs), spheromaks or toka-
maks. The current profile observed in RFPs was pro-
posed to be sustained by a dynamo regime due to con-
tinuous chaotic or turbulent motion® 1. Investigations
in various regimes were reported over the last two decades
16-20 " More recently, a dynamo electromotive force was
proposed to explain stationary non-sawtoothing regimes
in tokamaks, often referred to as “flux pumping” 2'-2,
However, in essence, in the context of fusion plasma, the
nature of the dynamo is fairly different from the astro-
physical dynamo, in particular in the kinematic phase,
since the initial magnetic field is not a weak small-scale
background, but a strong large-scale imposed field.

The astrophysical and fusion plasma communities do
therefore not address exactly the same subject when they
discuss the dynamo effect. It is this semantic difference
which motivated the present study, but we think that the
findings might be important beyond this semantic moti-
vation. The precise question we address is whether the
velocity field, spontaneously generated through MHD in-
stabilities in RFP geometries can give rise to a dynamo
effect in the astrophysical sense. To do so, we carry
out MHD simulations in a periodic cylinder in the RFP
regime and characterize its capacity to amplify a seed
field. For this we will consider an auxiliary magnetic
field which is passively advected by the plasma flow.

Our approach is similar to the one adopted in the in-
vestigation by Cattaneo and Tobias?* who investigated a
convectively driven saturated dynamo-velocity field. In-
deed, this approach allows to explore how the capacity of
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a velocity field to amplify a seed-field changes when the
induced magnetic field is large enough to saturate the
velocity field. In the present investigation we transpose
these ideas to the flow generated in an RFP.

The remainder of this article is constructed as follows.
The governing equations and normalization are given in
the next section, together with a description of the nu-
merical method, set-up and boundary conditions. The
results are presented in Secs. IIT and IV, where we con-
sider the kinematic dynamo in a frozen laminar veloc-
ity field, and for a turbulent velocity field, respectively.
Sec. V concludes this investigation.

Il.  RFP SIMULATIONS AND ADVECTION OF PASSIVE
VECTOR FIELDS

The goal of this article is to investigate whether the
velocity field spontaneously generated through MHD in-
stabilities in RFPs may sustain a dynamo effect. We thus
adopted the following methodology:

e A first set of MHD equations (Egs. (1)-(4) below)
are solved for the magnetic field B and the veloc-
ity field w in a cylindrical geometry, with initial
and boundary conditions corresponding to that of
an RFP (applied axial magnetic field and imposed
axial electric current). The initial condition for the
velocity field is small random noise and, as time
evolves, a kink instability develops and generates
a flow. The resulting RFP flow back reacts on the
magnetic field and finally reaches a statistically sta-
tionary state, referred to as the RFP velocity field.

We then use this statistically stationary RFP ve-
locity field as an externally prescribed flow in an
induction equation for an auxiliary passive mag-
netic field D (Egs (5)-(6) below). The questions
addressed in this article are thus similar to a kine-
matic dynamo study: (i) does the RFP velocity
field lead to exponential growth of passive magnetic
energy starting from an initially infinitesimal seed
passive magnetic field 7, (ii) what are the growing
eigenmodes of the passive induction equation ?

Let us now describe in detail the set of equations, nu-
merical methods, and the boundary and initial condi-
tions.

A. MHD simulations of the RFP magnetic and velocity fields

The simplest geometry in which the RFP can be in-
vestigated theoretically and numerically is the periodic
cylinder. By solving the MHD equations in such a do-
main, combined with imposed axial magnetic and electric
fields, the resulting dynamics bear a resemblance with ac-
tual RFP dynamics. Indeed, for certain values of the im-
posed fields, MHD instabilities lead to the generation of a

velocity field, which in turn back-reacts on the magnetic
field by means of the Lorentz force. The periodic cylinder
constitutes therefore a paradigm in RFP research, which
originates from pioneering works?°~2%, but is still actively
considered??39 since it allows to disentangle the effects
of curvature or toroidicity from the already complex dy-
namics®!.

In the following we will thus consider MHD simulations
in a periodic cylinder. The RFP velocity field u is gen-
erated by a kink-instability resulting from its interaction
with the RFP magnetic field B and current density j.
These fields are governed by the equations:

%+(u~v)u:7VP+j x B+uVu, (1)
%’:vx (ux B) + V2B,  (2)

V-u=0, (3)
V-B=0 (4

where v is the kinematic viscosity, A is the magnetic dif-
fusivity, and P is the pressure. This form of the equations
corresponds to a normalization of the velocity by the
Alfvén velocity Cy = B([))/\/W, with B the imposed
magnetic field, p the fluid density and po the vacuum
magnetic permeability. Analogously, an Alfvén timescale
is introduced as t4 = L/C4. The magnetic field consists
of a freely evolving component plus an imposed mean
field, described below. The characteristic lengthscale L
is equal to the diameter of the cylinder 2R. The con-
trol parameter of these equations is the Lundquist num-
ber S = C4L/\, which controls the amplitude of the
velocity field, and thus of the kinetic Reynolds number
Re = UL/v, where the characteristic velocity U is chosen
equal to the RMS velocity. For simplicity, and following
a long-standing practice in dynamo theory®?* we restrict
ourselves to the case where v = A, or in other words, the
magnetic Prandtl number is taken to be equal to unity.
This assumption allows to avoid scale separation between
the magnetic and velocity fields, thus limiting the already
large computational cost and allowing to explore several
regimes. Note that since the magnetic Prandtl number
is unity, the magnetic Reynolds number Rm associated
with the B-field is equal to the kinetic Reynolds number
Re.

Egs. (1)-(4) are solved in a periodic cylinder of length
87, and diameter 2R = 2. The MHD-domain is solved in
a larger rectangular box of m x 7 x 8w, where the solid
boundaries are imposed using a penalization method.
The evolution equations are computed using a pseudo-
spectral solver with a 3rd order Adams-Bashforth time-
integration scheme. Details on the numerical methods
and its convergence properties can be found in a previous
publication®2. In the present simulations the resolution
is 64 x 64 x 512 grid-points in the z,y, z-directions, re-
spectively. The pressure is computed from the resolution
of the Poisson equation in the spectral domain®? The
initial magnetic field is a combination of an axial field
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BY = 0.2 and a poloidal field Béo)(R) = 1.4 at the wall,
associated with a uniform imposed axial current density
jgo)(r) = 2.8. The axial component of the magnetic field
at the boundaries is left unconstrained. The velocity-field
is satisfying no-slip boundaries at the wall.

For all simulations the initial conditions are small am-
plitude random noise for the velocity field and zero value
for the non-imposed contribution of the magnetic field.
After a short transient, the non-linear interactions be-
tween the velocity field 4 and the magnetic field B lead
to the generation of flows ugpp in the RFP, whose fea-
tures are discussed in Secs. IIT A and IV for diffferent val-
ues of the Lundquist number S, which is varied through
the value of the diffusivities A = v. The resulting statisti-
cally stationary velocity field is then used as a prescribed
velocity field in the auxiliary passive induction equation
(see next subsection) in kinematic dynamo simulations.

B. Auxiliary passive magnetic field dynamics

In addition to the set of Eqgs.(1)-(4), we solve the evo-
lution of an auxiliary passive field D, satisfying the equa-
tions,

D
9D _ g, (ux D)+ XNV?D, (5)

ot
V.D=0. (6)

where X is the magnetic diffusivity of the passive field
D (quantities related to the passive magnetic field D are
primed in order to avoid any confusion with quantities
related to B). Note that the equations governing the
dynamics of D are identical to the induction equations
(Egs. (2),(4)). The three differences between D and B
are that firstly, D does not back-react on the velocity
field by the Lorentz force, secondly that D does not con-
tain an imposed contribution. The third difference is that
the magnetic diffusivities A, related to B, and X, related
to D, are not equal. This is also a difference with the
investigation by Cattaneo and Tobias??, which focused
on flows sustaining a dynamo field and for which A = \’.

The question that we will answer is whether the ve-
locity field resulting from the interplay of w and B is
able to amplify a small seed-field D. The control param-
eter for dynamo action is the magnetic Reynolds num-
ber, which compares the induction term to the dissipative
term, here for the passive magnetic field D, and defined
as Rm’ = UL/XN. For a given value of the Lundquist
number, the amplitude and structure of the RFP veloc-
ity field ugpp is prescribed by the values of the imposed
axial field Bi") and axial current j?’), thus the ability of
urpp to sustain a dynamo is assessed by changing Rm/
by a change of \. The initial passive magnetic field D
is a random noise similar to the velocity field, but with
initial energy (D?) = [i, D2dV =~ 1071, where V is the
total volume. At the boundary, the poloidal component
of D is set to zero.

The set of Egs. (5)-(6) are solved similarly to Egs. (1)-
(4), in a rectangular box of 7 X 7 x 87 using the same
pseudo-spectral numerical method, and where the solid
boundaries are imposed using a penalization method.

Depending on the value of the Lundquist number S,
two types of statistically stationary RFP flows are ob-
served after a transient. At low values of S, the flows
are are steady and laminar, as reported in Sec. III. In
this regime, the laminar steady-state flow ugrpp is pre-
scribed and fixed in time for the auxiliary passive induc-
tion equation. Thus, once the laminar flow has been com-
puted, we stopped the computation of the set of MHD
equations (1)-(4), and only evolve the auxilary induc-
tion equation (5)-(6). At higher values of the Lundquist
number S, the RFP flows urpp are dynamical and the
velocity field exhibits strong fluctuations, as reported in
Sec. IV. In this regime, the flow ugpp prescribed for the
auxiliary passive induction equation evolves with time
and the set of MHD equations (1)-(4) and passive in-
duction equations (5)-(6) are solved simultaneously. We
recall here, that the velocity field w and magnetic field
B are fully coupled and that the velocity and magnetic
modes reported here are non-linearly saturated. On the
other hand, the passive field D does not back react on the
velocity field: the modes presented here for the passive
field are thus linearly stable or unstable modes, similarly
to usual kinematic dynamo computations.

11l.  LAMINAR DYNAMO SIMULATION FOR THE
PASSIVE FIELD.

In this section we will consider cases at low values of
the Lundquist number S, for which a steady laminar RFP
flow is generated. The features of the velocity field u and
magnetic field B are first described, before discussing the
onset of dynamo action and the features of the unstable
growing mode for the passive dynamo field D.

A. A steady Quasi-Single-Helicity state

At first, the steady state laminar flow is computed from
the MHD equations (1)-(4), which are solved over a time
interval equal to 150074. A steady state was reached
typically after 20074. At ¢ = 1500 74, the RFP magnetic
field Brpp and the flow ugrpp are extracted from the
simulations.

The structures of the magnetic field Brrp and velocity
field urpp are displayed in Fig. 1(a) and (b) for S = 150,
where isocontours of the magnetic energy (respectively
kinetic energy) are color-coded by the sign of the axial
component of the field (which would correspond to the
toroidal component in a torus). The magnetic field B has
a strong constant axial component (the applied magnetic
field), which has been subtracted from the total field in
Fig. 1 for the sake of clarity. Both the velocity and the
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FIG. 1. Visualizations of the kinematic dynamo system. The subfigures (a), (b), (c) show iso-surfaces of B2, u? and D?
respectively. These isosurfaces are colored by the sign of the axial component. For instance in (a) B, > 0 is colored in red,

B. < 0 in blue.

magnetic field display a strong n = 9 component, where
the mode-number n denotes the axial frequency.

In particular, the flow has a complex structure: it con-
sists of two strongly interlaced helical flows of opposite
polarities, as shown by the two red and blue screwed
tubes, with a strong shear at the interface between the
red and the blue tubes. The steady-state MHD fields
generated at S = 150 correspond to an intensity of the
velocity field leading to a value of the Reynolds number
Re = 6.37. Such helical flow fields are observed in all
simulations, but at low values of S these fields are sta-
tionary and laminar, whereas at large values they become
time-dependent.

Equations (1)-(4) conserve total energy, magnetic he-
licity and cross helicity in the limit of vanishing dissipa-
tion. The process by which the RFP velocity field urpp
is created is a conversion of magnetic energy to kinetic en-
ergy through a kink instability.!” As expected for a RFP
equilibrium, the field reversal parameter F' = B,/(B,)
decreases as a function of the pinch ratio, where B, de-
notes the wall averaged and (B,) the volume-average ax-
ial magnetic field. In the present investigation, in both
the laminar and turbulent statistically steady states, the
equilibrium profile is characterized by a reduced axial
magnetic field at the walls B, as compared to the im-
posed field. This is characteristic of RFPs. However, no
reversal is observed (F remains positive) and details on
this can be found in Ref. [31].

The flow intensity is measured through the kinetic
Reynolds number, shown as a function of the Lundquist
number in Fig. 2. The kinetic Reynolds number increases
with the Lundquist number, with an empirical scaling
Re oc S%™. Since in these simulations the integral length
scale and imposed magnetic field are fixed, this scaling is
associated with a dependence of the RMS velocity on the
magnetic diffusivity, U ~ A%26, For the lowest values of
S and Re this corresponds to steady laminar flow and for
the largest values to fluctuating movement with several

103: T T T T T T T ““/‘"f
’,"50.745
2 /”,,
E e~ ]
é [ ./,;;' ]
17 » 7
10 Ped 3
0 N N N
10
102 10° 10 10°
S

FIG. 2. Lundquist dependence of the Reynolds number in
the kinematic dynamo investigation. The Reynolds number
is based on the root-mean-square velocity in the domain.

dominating modes.

B. The laminar kinematic dynamo.

In this subsection, we investigate the capability of the
laminar RFP velocity field urpp described in the previ-
ous subsection, to induce dynamo action.

The steady state flow urpp extracted from the sim-
ulations of Egs. (1)-(4) at ¢ = 150074, is used as a
prescribed field for the passive induction equation (5)
starting at time ¢ = 150074. Th initial condition for
the passive field D at t = 150074 is small Gaussian
white noise with initial energy (D?) ~ 1071°. The con-
trol parameter governing Eq. (5) is the passive magnetic
Reynolds number Rm’, which depends upon the passive
magnetic diffusivity X', or equivalently the passive mag-
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FIG. 3. Evolution of the critical magnetic Reynolds num-
ber Ry, as a function of the (kinematic) Reynolds number
Re. The red, circular data points correspond the kinematic
dynamo simulations with a fixed velocity field. The blue,
star-shaped data-point corresponds to the result for a fully
dynamic simulation, discussed in Sec. IV. The inset shows
the time evolution of the passive magnetic energy for differ-
ent values of P, of a given flow with Re = 6.37.

netic Prandtl number Pm’. Dynamos are usually ob-
served above a critical magnetic Reynolds number; for
a given flow urpp, we thus expect to excite a passive
dynamo field D when increasing Pm’. As an illustra-
tion, for S = 150, i.e. Re = 6.37, the time evolution
of the total passive magnetic energy (D?) is displayed in
the inset of Fig. 3 for four values of the passive magnetic
Prandtl number Pm/. The passive magnetic energy de-
creases with time for Pm/ < 3 and increases for Pm’ > 4.
For Pm’ > 4, after a small transient (around 150 74), i.e.
for ¢t > 165074, the energy of the passive magnetic field
increases exponentially with time. For each value of the
passive magnetic Prandtl Pm’, the growth rate of the
passive magnetic energy is computed from the exponen-
tial fit of the time evolution of (D?). The critical passive
magnetic Prandtl number Pm/¢ number is then defined
from the linear interpolation of the growth rates between
the last negative value and the first positive value, e.g.
Pm’c = 3.2 for Re = 6.37. This leads to a critical passive
magnetic Reynolds number Rm’¢ = Re Pm/’¢ = 20.4.

A first important observation is that the RFP flow has
favorable properties for dynamo generation on a passive
magnetic field, which can be qualitatively understood
since RFP flows are characterized by high helicity and
high shear, two properties which are not necessary but
enhance dynamo action?3.

Similar simulations have been run for several values of
S from 150 to 550 in the laminar regime, and the evolu-
tion of the critical passive magnetic Reynolds number as
a function of Re is shown in Fig. 3 (only the red points
correspond to laminar regimes).

Let us now describe the spatial features of the passive

(S

dynamo mode. Figure 1(c) shows the isocontours of the
passive magnetic energy D2, color-coded by the sign of
the axial component of the passive field D, (which would
correspond to the toroidal component in a torus). The
spatial structure of the passive magnetic field is more
complex than the spatial structure of the velocity field.
This is further investigated in Fig. 4, left column, where
the axial spectra of the magnetic, kinetic and passive
magnetic energy are displayed, from top to bottom, for
Re = 6.37. The discrete modes observed in the spectra
for the magnetic and kinetic energies are identical: the
dominant RFP mode is the n = 9 mode, and harmonics
of this mode are clearly observed. The strong harmonics
observed in the spectrum of B? are a signature of the
complex spatial structure observed in Fig.la) where the
blue stripes are larger than the red stripes. We stress
here that most of the magnetic energy is contained in the
applied n = 0 mode (which is not displayed in Fig. 4), less
than 11% of the magnetic energy is present at positive
mode numbers (precisely 11%, 6.5% and 4.2% for Re =
6.37,10.2 and 15.3 respectively). The dominant mode for
the passive magnetic energy (D?) is the n = 2 mode, as
clearly observed in Fig. 1(c). The induction term V x
(u x D) in the passive induction equation (5) leads to
mode mixing between w and D, which, for the case at
Re = 6.37, leads to a complex spectrum for (D?), with
strong contributions of modes 7, 11, 16, 20, etc.

The central column of Fig. 4 displays the spectra for
the case S = 276, e.g. Re = 10.2, while the right column
corresponds to the case S = 417, e.g. Re = 15.3. The
dominant RFP mode is at n = 8, which couples with the
dominant n = 0 or n = 10 modes for (D?), also leading
to a complex spectrum for (D?).

‘We have observed in our simulations that the influence
of Pm’ on the spectra of D is very weak: the same modes
are excited for simulations with values Pm’ = 2,4, 7 and
only small variations are observed in the relative ampli-
tudes of the modes (not shown).

The strong coupling between the velocity field u and
the passive magnetic field D is emphasized in Fig. 5,
in which isocontours of the kinetic energy and of the
passive magnetic energy are displayed simultaneously for
S =150, e.g. Re =6.37. A first observation is that the
structure of the passive magnetic field, which is domi-
nated by a n = 2 mode is strongly affected by the n =9
dominant velocity mode. This is observed in the zoom
of Fig. 5, where the separation between black and white
ribbons for the passive magnetic energy (opposite val-
ues of D,) is a zone of strong shear for the velocity field
(transition between the red and blue ribbons of the ki-
netic energy isosurfaces). A second observation is that
the kinetic energy is mostly concentrated in the central
part of the cylindrical domain, while most of the passive
magnetic energy is concentrated in outer radial regions.
Another observation is that the structures of the passive
magnetic field connect in high velocity shear regions, and
the axial component of passive magnetic field reverses
sign at the same location as the reversals of the axial
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FIG. 4. Normalized axial spectra of B? (top), u? (center) and

D? (bottom) for different values of Re and for P}, = 4.

component of the velocity field.

To summarize, the laminar RFP flow is a kinematic
dynamo velocity field for high enough Pm/. The next
question is how the passive and magnetic fields act when
the flow is not steady, and how the back-reaction of the
magnetic field on the velocity field changes the dynamics.

IV. TURBULENT DYNAMO SIMULATIONS

In this section, we address a regime at large Lundquist
number, for which the RFP velocity field ugrpp is no
longer steady and laminar. Thus, similarly to the case of
convectively driven turbulence investigated by Cattaneo
and Tobias 4, simulations are carried out with all three
fields u, B and D evolving in time. We will first focus on
the flow characterization, then we will assess the dynamo
threshold and we will finish by evaluating the alignment
properties of the system.

A. Flow characterization

Simulations at S = 2000, resulting in an RFP flow with
Re = 50, are carried out, and a snapshot of the kinetic
energy is shown in Fig. 6(top). The velocity field clearly
shows a trace of a periodic structure, but small scales are
also observed. This assessment of the flow-behavior from
the flow-visualizations is however of qualitative nature.

FIG. 5. Visualization of the normalized kinetic energy iso-
surface, u?/(u*) = 6.6 and the normalized passive magnetic
energy isosurface D?/(D?) = 9, colored by the axial velocity
field u. and axial passive magnetic field D, respectively, for
Re = 6.37 and P, = 4.

A more quantitative characterization of the turbulent
nature of the different fields is given by the energy spec-
tra. The axial-mode spectra are shown in Fig. 7. These
spectra illustrate that the dynamics of the fields u and
B are not restricted to a small number of excited modes.
Indeed, the broad-band character of these spectra sug-
gests that the flow is in a turbulent state. Neverthe-
less, the power-spectra of the velocity and the magnetic
field show some well-defined peaks. These peaks are as-
sociated with the close to periodic-structure observed in
the visualization. Altogether, these broad-band spectra
over two decades in wavenumber show that the dynamics
in this section are turbulent in the presence of close-to-
periodic velocity and magnetic field structures.

In the next subsection we will determine the dynamo-
threshold for the present RFP flow.

B. Dynamo growth rate and threshold

The evolution of the passive vector D was solved si-
multaneously to the dynamical evolution of the w and
D fields for P, = 1.43 and P, = 2 The time evolu-
tion of the mean passive magnetic energy (D?) for these
two runs is plotted in Fig. 8. It is observed that for
P/, = 2 the RFP field in the dynamic regime is capa-
ble of amplifying a seed magnetic field, and the RFP
velocity field can therefore be called, as for the laminar
case, a dynamo velocity field. In the case of P}, = 1.43,
the passive magnetic energy fluctuates around a constant
value over a long-time interval. The threshold for dy-
namo action at Re = 50 is therefore close to P), = 1.43,
corresponding to a critical magnetic Reynolds number
R].. = 71.5. The new result is added to the data previ-
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FIG. 6. Visualizations of an instantaneous snapshot of the (a)
iso-surfaces of the kinetic energy u* and (b) passively advected
magnetic energy D?, colored by the axial component, in the
turbulent RFP simulation. Whereas the velocity field seems
to be dominated by a small number of energetic modes, the
advected field shows a more turbulent behavior.

102 ——————rT ——————rT
Ep/ > Ep
*

*
BUSE | L e o
e g g D?DD.O o5

2lgn s 0 oPe O
107 FP S Fho g @ g

En/EEn
e]
[e]

v vvvvd v vowe vl e 3

107

L vl L vl

10° 10" 102
n

FIG. 7. Normalized spectra of u?, B? and D? for Re = 50 and
P}, = 2. The velocity and passive-vector spectra are shifted
upwards for clarity by one and two decades, respectively.

ously obtained in the laminar regime (Figure 3). The crit-
ical magnetic Reynolds number in this dynamical case is
therefore somewhat higher but of comparable magnitude
to the critical value of the laminar kinematic dynamo, ob-
served around Re = 15, where R, . ~ 50. We stress here
that the resolutions required to well-resolve the dynamics
of the passive field D are higher than that required to re-
solve the u and B fields, resulting in high computational-
resource-requirement for turbulent dynamo simulations.
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FIG. 8. Time evolution of the variance of the passive field in
the dynamic runs for Re = 50 and P,, = 1.43;2.

As a consequence, higher Re regimes are not explored in
this manuscript.

A snapshot of the passive magnetic energy at P, = 2
is shown in Fig. 6 at the same time as the kinetic en-
ergy shown in the top panel. As for laminar dynamos,
the structure of the passive vector-field D is much more
complex than that of the velocity field u and shows a
less periodic behavior. This is highlighted by the energy
spectrum shown in Fig. 7 which does not display ener-
getic peaks.

The fact that we observe the growth of the amplitude
of D? in Fig. 8 is in agreement with the observations
of?*, who showed that the saturation of the magnetic
field B does not modify the velocity field in such a way
that dynamo-action is prohibited. Rather it modifies the
simultaneous dynamics of B and w, such as the alignment
properties described later in this section.

We stress here that even though the velocity field is
able to amplify a seed-field for certain parameters, this is
not the case for Pm’ = 1. This shows that the diffusive
effects acting upon the passive field need to be smaller
in our simulations than those acting upon the RFP mag-
netic field. This seems to indicate that in our simulations
the B-field in the statistically steady state is unaffected
by the dynamo effect, since its magnetic Reynolds num-
ber is below the threshold for dynamo action. This is
a major difference compared to the results of?4, where
dynamo amplification of a passive field by the saturated
velocity field was observed for Pm’ = 1.

C. Alignment of the different fields

As mentioned above, in ref.?* the same system of equa-
tions was investigated as in the present study, but in a
different geometry, using a different forcing. It was ob-
served that the variance of the D-field continues to in-
crease after the saturation of the B-field. One of the
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key insights obtained thereby is that the saturation is
not only due to the modification of the flow-field by the
Lorentz-force. Indeed, if this was the case, the strength of
D would saturate simultaneously with that of B. Rather
is it due to some intricate interplay between the velocity
field and the magnetic field. It is therefore not visible
from the velocity field alone that the magnetic field sat-
urates, and at which level. One should thus consider the
simultaneous dynamics of w and B.

One way to consider the simultaneous dynamics of the
velocity and the magnetic field is to introduce the El-
sasser variables, defined as, 2¥ = w4 B , and the passive
Elsasser variables, defined as, £+ = u + D

The dynamical equations for the Elsasser variables are
obtained from the sum and the difference of Eqs (1) and
(2) yielding

Q2T 4+ 2T . V2t = Vit - vpr, (7)

with P* = P + B?/2. The dynamical equations for the
passive Elsasser variables are obtained from the sum and
the difference of Eq (1) and (5), and, using the simplifying
assumption P, = P/, =1 write

et +eFvet = vt —vp
e o) Ve —e) - - V-2,
(®)

It is insightful to look at the structure of Egs. (7) and
(8) which explicitly expresses the coupling of the different
fields. The equations for the Elsasser variables (Eq. (7))
is more symmetric than the equations for the passive
Elsasser variables (Eq. (7)), due to the presence of the
Lorentz force (and the absence of its passive counter-
part).

What this difference exactly implies for the dynamics
is not straightforward to infer from the equations. We
can however mention the specific case where strong cor-
relations exist between the magnetic field and the veloc-
ity field343°  such as observed in the solar-wind. In the
extreme case of u = +B, the nonlinear term vanishes
for the case of the full system, but does not for the pas-
sive advected system. This shows a concrete example of
different behavior of the two systems: if the fields are
aligned and of equal magnitude, the nonlinearity of the
full system is decreased, but not for the passive case.

If the fields align, but are not of equal magnitude, the
nonlinearity is weakened, but does not vanish. The ten-
dency for rapid alignment was reported in several stud-
ies of incompressible MHD3%38%,  We will here investi-
gate whether the alignment shows a qualitatively differ-
ent behavior. For this we show in Fig. 9 the probability
functions of the cosine of the angle between the different
fields at ¢ = 120074. At instant ¢ = 0, the PDF is al-
most constant (not shown), hence no (u, D) alignment
is observed. At instant t = 120074, the PDF reaches
two peaks at +1 for all three quantities, reflecting pref-
erential alighment and anti-alignment between all three
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FIG. 9. Probability density functions of the alignment be-
tween the three fields during the statistically steady state of
the dynamic RFP simulations.

quantities. This local alignment is strongest between the
velocity field and the passive field D.

This illustrates that all three vectors locally align with
each-other. However, the quantitative difference is not
enormous, and the fact that the saturated velocity field
is able to amplify the passive seed field is likely to de-
pend on subtle correlations between the magnetic field
and the velocity field. We recall that, for the numerical
simulations reported here, P/ = 1.43 > P, = 1 and
that the simplifying assumptions leading to the formu-
lation of Egs. (8) are not strictly fulfilled and that the
study of these correlations would require reaching a dy-
namo regime at P, = 1.

V. CONCLUSION

The question which motivated the present study was
whether the RFP velocity field can amplify a seed-field
and can thereby called a dynamo field. The answer to
the question is not straightforward. If we do not put any
constraints on the diffusivity of the passively advected
field, the answer is yes, since both in the laminar, steady
case and in the dynamic case we have succeeded to de-
termine a finite value of the critical Reynolds number, as
shown in Fig. 3.

In all our simulations we needed however to raise the
magnetic Prandtl number of the passive field Pm’ above
the unity value of the corresponding value for the RFP
magnetic field. This shows that fluctuations of the B-
field are not subject to the dynamo-effect in the present
set-up.

We also traced down a difference in the description
of the B and the D field, by considering the Elsasser
variables. In particular we showed that alignment of the
velocity field and the B-field reduces more strongly the



AlP

Publishing

Dynamo-properties of RFP velocity field

nonlinear interactions than alignment of the D-field with
the velocity does.

Exploring in more detail the saturation-mechanism of
the turbulent dynamo in terms of detailed alignment
properties and Elsasser-dynamics seems a promising di-
rection for further research.
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