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Abstract
In the context of autoregressive linear process, with exogenous ran-
dom variables, say ARHX (p, ¢, k), We envisage derivative of order p,
exogenous random variables of order ¢ and k fixed jumps. Prediction
and exponential rates are obtained in the context of exogenous ran-
dom variables. Also, high frequency data holds with derivative, and
one obtains jump in derivative of order (p + 1).
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1 Introduction

First, we consider a predictor of the form ARHX(q), where

q
Xﬂ = }O(Xn—l) + Z ah(Zn.h) + &g 02 1 (11)
h=1
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and

Zn,h = uh(Zn—l.h) el Mk s 1 S h S q (12)

cf Damon and Guillas [2002] p.763. Also, a simulation study appears in
the context of ozone [cf Damon and Guillas, 2005].

Our objective is to consider the case of p derivatives with random jumps,
say X, Z,(f,)z, e?) n > 1, and a fixed jump at 0 < ; < ... < t < 1. Note
that the case with p = 0 and without exogenous variables appear in Blanke
and Bosq [2014], Bosq [2015], Blanke and Bosq [2016].

Thus, we envisage the model ARH X (p, ¢, k) with

q

XOt) = p(XP)() + Y an (Z0)() +eP (1), n > 1 (1.3)
h=1
and
708 =un(Z2 ) ) +n0@), 1<h<gn>1,peN, (14

where 0 <t < 1.

Note that ¢ and nff_’ 27 are a white noise, but there is a jump at ¢;.

In this context we put 3 ., Hp;‘HE oo ”aE'jHL <6
ano ||uf,§‘j|’£ <o00,1<h<q 1< j<k, where |||, is the norm of bounded
linear operators.

We now turn to estimation of jumps in derivative. Note that, big contin-
uous variations may be considered as jump (cf Horvath and Kokoszka [2012)]
p.13 with credit card transaction). Here, applications appear in physic,
finance, economy, seismology, shocks, avalanches, electricity consumption,
waves propagation, climatic variation etc.... In Dmowska and Kostrov [1973],
Takahashi [2004], Tanushev [2008], Cetin and Sheynzon [2014], crashes and
beams are considered. In the context of derivative, we envisage Scherzer
[1998], Mas and Pumo [2009], Blanke and Vial [2011, 2014]. We also con-
sider Cates and Gelb [2007] with derivative at discontinuity and Joo and
Qiu [2009] with regression curve in derivative. Jumps in derivative appear in
Warsi [1964], Rauch [1988], Cai and Mehlum [1998] where shocks and waves
hold. Also, electricity consumption appears in the context of El Hajj [2013].

In Section 2, we consider fixed jump in derivative with an exponential rate

(p)

of convergence and convergence in distribution. In this context (X;"(t) —



i

Xi(p ) (t—), 1 <i < n) are independent (cf Proposition 2.1). Also a jump in

derivative appears at T, = {t1,...,tc} where 0 < t; < ... < < 1,1 € T,
with t; = t;(+) in the context of X, We also consider exogenous and

random jump at al(Z,,_(fl)) with fixed jumps S, = {3, ...} D <81 € ... <
st 1,56 € B 55 = 5, H )k

For example, exogeneity appears in volatility models, ¢f Thieu [2016] and
Bosq and Shen [1998].

Also, one obtains CLT and LLN, see Guillas [2000a,b], with derivatives
(cf Proposition 3.5).

In the context of Section 3, a jump at (al(Zﬂ)(s) - al(Zfﬂ)(s—)) is
envisaged (see Lemma 3.1) and an exponential rate holds (cf Proposition
a.2).

Now, prediction holds in Section 4, we use Xi(p (1), Z?.(_ph) (t),1 < h < q) with
1 <i < n . Then, for obtaining empirical linear operators, it is necessary tc
estimate fy, Gpp, U, 1 < h < g and three exponential rates are considered
in Proposition 5.1 (cf Section 5.1). In the context of Hilbertian operators we
consider projection with an orthonormal basis (cf Section 5.2)

Finally, high frequency data are obtained and we consider X ?) and exoge-
nous variable of order p (see Section 6). Finally, we envisage some extension
(cf Section 7).

Note that, we obtain main results in the context of Bosq [2000] and some
change appears in Bosq [2016].

2 Fixed jumps with derivative
Now, we suppose that a jump appears at x® (t) where t € T, = {t1, ..., tk}
with = Bt <t <= tk—]—i-

For convenience we envisage ¢ = 1 since ¢ > 1 is rather intricate, see alsc

Remark 3.4.
We need the following assumption:

Al—p(x®Yec(o,1],n>1,p€EN,
A2 —a,(Z8) e C0, Iln > 1p EN,

A3 — P (t) —eP(t-) £0, a.5.,eT,, n > 1, peN
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where C([0, 1] is the space of continuous function.
Then, it follows that:

Proposition 2.1. Under A1, A2, A3 it holds

XP ) - XP 1) =eP(t) —eP(t-) #£0,a5.t €T, n>1,peN, (21)

XP(t) - XP(t=) = [p(XP)(t) — p(XP)) t-)]
+ [ (Z8) (1) - ai(Z¥

n

—
S—
—
—~
ok
=
-
m’—\
s
=,
=
.
S
I
™
e
S5
=
N
o~
[
e

Since Al and A2 hold, one obtains

X9~ X () = e )~ P ()

n

and there is a jump at T),.

Thus X® and £” have the same jump at T,.
In order to obtain an exponential rate we make the following assumption

Ad—|e®]| _<bn>1,peN
Proposition 2.2. Under A1,A2,A3 A4 one get

PC Y0~ X0 (1) - BP0 - X)) 2 o) < 2ep(~ o)
22

2 1 pe Mg eds b 0and

- SUED() - X9(6,-)) » BEP(E) ~ X)) (23

=1

almost completely,p e N, 1 < j < k.
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Proof. We put

and

Then from Proposition 2.1 we get

—An (2.4)

Now, by using Hoeffding inequality (cf Bosq and Blanke [2007] p.297),
and since (egp )(t) - EEP ) (t—), 1 <i < n) are independent and bounded from
A4, one obtains an exponential rate and (2.2) holds.

Then since

We get the Borel-Cantelli lemma and (2.3) follows. C

Remark 2.3. Boundedness in A4 may be replaced with existence of some
exponential moment (See Bosq [2000] p.221).

Remark 2.4. Finally a random jump with derivative can be considered (cf
Bosq [2015] p.12-14).

Thus, a jump at ¢; in the context of p derivatives is available.
It is also possible to slightly modify D, ,(t), in the i.i.d. case we put

n

1
Duylt) = - Zl X0+ 8,) - Xt - )]

O<t—a,<t+p, <1,

and we make the following assumption:

B- XPget a derivative on the right (resp. on the left), with Taylor rest
and X+ is bounded by b almost surely.

and

C- 0 < E|X®)(t) - X®)(t—)| < oo, where T, = {¢1,...,t;} has a jump
in derivative.
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Proposition 2.5. If B and C hold, we have

Dy (D) = E(X®(t) - XP(t-)),0.5.t €T,

and
Dpp(t) = 0 a.s.if (e, B.) — (0,0)t €T,

Proof. From B one obtains

Xt + Bu) = X2 + B XTV(t 4+ 80B0),

Dt <t + 0591, 0< 0, <l I-58< w and
+1 /
XP(~a,) = X2 (=) = 0 X (6~ b, 00),

) i

0<t—an<t<1,0<9;<1,lgign,hence

where

V0 == 3 [8. XEV (¢ + 0,8) — o XE((t-) - O,00)]

SRS

=1l

and now, from B, we get

Doglt) - = 3 [XP(0) - X 6-)]

T
=1

and (2.5) holds since C gives
1 n
= [X}PJ(t) _xW® (t—)] = E[XO(t) — XP(t-)] a.s.
n
=1

If t has no jump, we get

|Dnp(t)| < b(am+ ) = 0, as.

< b(a + Bu) = 0, a.s.

(2.5)

(2.6)



81

Then we obtain:

Proposition 2.6. (Convergence in distribution)

If A1,A2,A3, and B, C holds, we get %—;f” — 0, and one obtains

=Y [xPt-+8) - X0t - a) - EXO - XPe-)]
= N ~ N(0,0%(p)), (2.9)

0 < t—ay, < t+8, < 1, teT),; where a*(p) = V(XP (1) - XP(t-)), p e N;

and
n

5 [P ) = =) =0, (210)

i=i
in probability, with t ¢ T, since a*(p) = 0.
Proof. We get

= = S [XP+8) - XP(t - a) - BEP(t+8,) - XVt - an)].

n

% Z |:J6n Xi(p-l-l)(t 7 6”‘6”) T S Xi(p+1)((t_) % G;Qn)] = Zn

i!
and by using (2.7) and (2.8) we get

—

RP() = == D L67(0) - X(t-) - BXP(O) = X)) + 2, - EZ,
n
i=1
Now, in the context of B, one obtains
+ 5B
7 B x (1) G T P

and since

1 n
RP(®) = 2= > 1K) - XP(t=) - BXP(O) - XP(t-)] + 2, - BZ,
T
=1
then, since % — 0, one obtains Theorem 25.4 p. 332 [cf Billingsley,

1995]. Finally, we get the desired result from Proposition 2.1.
(2.10) is clear since the gaussian distribution is vanishing. O
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3 Exogeneity

Now, we consider a fixed jump in derivative with exogenous random variables.
For convenience, we envisage ¢ = 1 (see also Remark 3.4).

A jump in derivative appears at S, = {s1,..., 85} where sp = 0 < 51 <
. < 8y € 1 = 8p41,8 € 8, in the context of al(Z,(ﬁ)(t) (cf Section 2).

Now we get:
A5 — XP(s) = XP(s-), s € 5,

n

Then
Lemma 3.1. From A1,A3,A5 , we get

a1(Z%))(s=) = ar(ZE)(s) = eP(5) — P (s—) £ 0a.s.,8 € Spyn > 1, pEN
(3.1)

Proof. We put

and

Thus
XP(s) = XP(s=) = [o(X:21)(s) = p(X;20)(s-)]
+ [03(Z1)(6) — an(Z2h)(5=) + [P (s) — P (5-)
Then, from Al, A5 it is easy to see that (3.1) holds. 2
Proposition 3.2. Under A1,A3,A4,Ab , it holds

P 1D (@(Z8)(65) ~ (@0 (28)(5)

— Box,(22)(s;) - (01,(Z7)(si-)}| 2 @) < 2exp(— =

52 i )

1<j<hn>1,peN and

—2{ a15(Z2)(85) — (@135(Z8) (s5~) = Blar3(28)(s3) = 014(Z%) (=)

(8.5)
almost completely, 1 <j<h,n>1,peN
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Proof. Lemma 3.1 entails
01,(Z9)(55-) — a1, (ZE))(s;) = €P () — £ (5;~) # Oa.s.

and, one obtains Hoeffding inequality (cf Bosq and Blanke [2007] p.297).
Finally, we get

&0 2

and the convergence is almost complete by Borel-Cantelli lemma, cf (3.3). O

Remark 3.3. Then, a jump at s; in a context of p derivatives holds.

Remark 3.4. Now, it is possible to envisage ¢ jumps. We set aj(Z,(f_J})(s)

where s € S;p) = {Sj,u---,Sj,kj} Al < 9 = L g =l lE T e g
where £; is an integer. Then, it holds

R,=T,n(n"_, s%)=0

=
where p € N. Thus, Lemma 3.1 and Proposition 3.2 are clear.

Note also that the CLT and the LLN hold with exogeneity and derivative:

Proposition 3.5. (Guillas)
Let X, Z®) nP) @) pe q bounded ARHX(p), if p € N, we get

X® = p(XP)) + a(ZP) + £
with ||ul| < ||p|| < 1, then

XP 4.4 XP
T

— 0

almost surely and in L3, and

% N aZd) —=aN(0,C;)
=1

Proof. In the context of Guillas [2000a,b], Theorems 1 and 2, we may replace
X,Y,n,e with X® Y@ 5@ F) and the result is straightforward. H|
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4 Prediction

We now consider forecasting over ¢ € [0, 1] .
We make the following assumption:

A6 — (X2 7@ @) 100 gre globally independent n > 1, p € N

n—11 “n,

Then, we put

Consequently

E(XP UL 1) = o(XP)(t) + a(ZP)(2) + EED 1)UL (1))

n

and, since A6 are independent, one obtains
E(ePt)|U2)®) = BEP(6) = 0.

Then, for obtaining prediction, it is necessary to estimate p,a,u in the
context of exogenous random variables (cf Section 5).

There is a lot of papers about prediction but Mas [2007] and Brunel et al.
[2016] are interesting.

5 Estimating linear operators

5.1 Exponential rate

In the context of ¢ € [0, 1] it holds
B=pC,

where D is a cross-covariance operator and C' a covariance operator.
Also, from Mercer Lemma, we have

C’_i)\rvr@vr,

=1

with
Gl 1
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To this aim, we envisage the empirical covariance in the context of derivative.
given by

19~ 50 o 3@
—
and the empirical cross-covariance operator get the form

n,

1 n—1
() =S ERa s () (p)
DP = n—1;Xi X . n>2

Since C' is not invertible, we must obtain a truncation at k,, that is
lﬁn, — [1*» Dw(pr) C;L(P)H""n
where I1*is the projector over vy, ..., vy, -
Similarly, we set

1 n
(») (p)
o 2; a2tz

1=

and
1 n—1
'p) (p)
AP = RT]ZZ? ® Zij1, n = 2.
9=1

And, one obtains:
dn(p) — [1*» A,S;D) I‘:L(p) Ik

An analogous result holds concerning u.
Finally the predictor takes the form

XP@) = pa(XP)E) + 81222 @),

where 2
2 = 025 ()

Now, we need to obtain an exponential rate with two assumptions:

AT=X =br™, (>0,y>1), r>1

and

A8 — HX},?’)HOC isbounded, n > 1, p € N

Then we have

il
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Proposition 5.1. Under assumptions A1, A3, A5, A7, A8, one obtains

P([|n, (X = p(XP)[|; 2 €) < e1.(e,p) exp(=ca (e, ) W)’

(5.1)
ISl T 1 e S b
And

P(llann (Z2) = an(Z) |, 2 €) < due, p) exp(=da. (e, p) (ng;nT)LT“f)

(5.2)
7? = 017 n 2 n‘?,n: ,:,, 2 1: p = N
And, finally
: n
P(]|tw, ,'(Z,ff)) — up Z P H.c > ¢e) < e (e, p) exp(—ez (g, p) W)
[2.3)

B0, 1= R il pe T

Proof. From Theorem 8.8 and Example 8.6 p.221 of Bosq [2000], we get

Pl = plle 2 1) < 1) exp(=eas(a) - (5.4)

log )i

n =002 ngeern) - Vs ) =0y =1, p e N;

cf p.232-234 in Bosq [2000] with some little modifications.
Now, since A8 is bounded, we have

A (@ (p) SN e > 1
n(X0) = PO 2 1) < Plon, ol 2 )

o0

and from (5.4), one obtains

P(

n(XP) = (XD 2 ) < a1 (e19) expl=a(6:9) forary)

where = ¢, then (5.1) holds.
B3

(5.2) and (5.3) are similar. O

Remark 5.2. Note that we get k, = logn.

Then, the next statement entails:
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Corollary 5.3. Assumptions Al, A3, A5, A7, A8 give

P XO@ — XO > n) =0 —é(n, e e
(Uztggll n(t) = XP(8)] 2 n) = O(exp(=d(1,4) (1ogn)4<1+ﬂ)
p€EN, n2>n(n,q).
Proof. Clear, from Proposition 5.1. =

Remark 5.4. It is also possible to modify p by using regression in derivative.

We put
X(P)fx(?)

1 n

Zn ; XH-] (
T

0 < j <k, where K is gaussian and h,, — 0 (See Damon and Guillas [2002]
p.765, equation (5)).

£

;)

fw'(ngp)) ) _x (@)

h’ﬂ )

5.2 Almost sure convergence

In the context of Hilbertian operators, we get p and a with
Xﬂ = p(XTl—l) + a(Zn) + 5-,11 T 2 ]_

and we envisage projection with an orthonormal basis. Also, we suppose that
p and a are symmetric.
We put
p(v;) = Ajuy, J 2 1, (5.5)

and
a(v;) = pv5, J 2 1, (5.6)
where the vf,-s are orthonormal.
We consider the following assumption

A10 - (e,) I1 (Z,,)

cf Damon and Guillas [2005] p. 187.
We need the following hypothesis:

A1l — E({Zn,v;)*) < 00 and E({Xn,v;)?) < 00
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Proposition 5.5. From A10 and A11, one obtains

i n—1
" =3 (X, v) (Xig1, 04
;Zz:l (Xiavj)

and

N Xi) j Zi: j
T e 59
n Loie1 {Zi, Uj)
Proof. By using vj, it holds
(Xn,v5) = (p(Xn-1),v5) + (a(Zn), vj) + (€n, v5)
and from (5.5) and (5.6) (7.1) and (7.2) we get
(Xn,v3) = X (X1, 05) + 5 (2, v3) + (Ens 05) (5.9)

and
(Xny 03} (Xno1,03) = Nj (Kot 03 15 ((Zony 03) (K1, 05)) e, v3) (Xnm1,05)

but since

Xn-1= ij(gn—l—j)
j=0

(see Bosq and Blanke [2007] p.245), then from A10 , we obtain
(Zn,v5) T (X1, 05)

and also
<En7 Uj) I (Xn—la v_7>

thus
E({Xn, v5) {(Xn1,0)) = S E((Xn-1,v)%)

and one obtains an empirical form in the context of (5.7).
Now, by using (5.9) (7.5), we get

(X, v} = Aj (Xn1,05) + 15 (Zn, 05) + {€ns 0j)
and inserting (Z,,v;) one obtains, by using A1l
E((Xn, v3) (Zns 03)) = 1 E(Zn, v3)")

and the empirical form appears in (5.8). O
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Then
Corollary 5.6. From A10 and A11, it holds
Mo B gl il (5.10)

and
ﬂjn — Hj, @.8., j = 1: (511)

Proof. From All, one obtains
1 1
E(| (Xn, vj) (Xn-1,05) ) < [E((Xny03) )2 [B({Xnl1,05)"))2 < 00

Then, from the strong law of large numbers (cf. Shiryaev [1996], p.325),
we get

n i 121-:11 (Xi, 03} (Xit,v5) = B((X1,v5) (X2,05)), a.s.
and n
%Z (Xz'-,Uj>2 57 E((Xa%')g)
g=
then

A

)\jn =7 Aj @.8

and (5.10) holds.
On the other hand

E(|{X:,vj) {Zi,v5) |) < [B((Xi, v;)")]2 [B({Zi, v;)*)]? < 00

thus .
EEL (X, wiZa gy — B(X u9iZ, ;) as
and also
1 n
H Z <Z'ia Uj>2 = E((Z= Uj>2)a a.s.
255
then

)G’jn - Wy, Q.8
and (5.11) holds. O
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Remark 5.7. An infinite dimensional vector get the form
(X 03) = Ajn A X1, 05) + fign {Zny 05} + (s 05}, 521

Remark 5.8. An exponential rate may be envisaged, if || X,,|| is bounded, we

get

nn®

P Lk saiad -
(i_lzllfl e ) = 4 el L

n> 1,a > 0,8 > 0. > 0, cf Bosq [2000] p. 99 and 104.
fLjn is similar.

)

Remark 5.9. A derivative of order p can also be considered.

6 High frequency data

It is also possible to observe high frequency data, namely (X,i(p )(;L),rn =
1,0< j<m,1<i<n)with p € N and to envisage exogenous random
variables.

In order to simplify the exposition, we suppose that X® has a single
jump at ty € [0, 1[.

Since data are discrete, we need a regularity assumption for the sample
path, that is

A9 — |X®(t) — XP)(s)] < clt — 5|, (s,t) € [0,t0[PU[t, 1]%, ¢ > 0, a €]0,1].
Now, there exists an integer jo(n) such that

i :
Jo(n) o Jo(n) o
Tﬁ T'ﬂ-

Then, we construct a detector of t, by putting
: 1
to, = — arg max Sﬁz

R

where

Tn A

o) _ % Z(X‘(p)(i) _xod=ly

L)<, pel
Then we get the following statement
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Proposition 6.1. From A9 we obtain
tAD!” = t0(+) a.s.

and
- 1
Uiy = == =5 to(—) a.s.
i

n

with

A 1
: Z ) = e = = B ) — X P () n.s.

T'n

=

where r, — 0.

Proof. In the proof of Proposition 4 we envisage some little modifications
but the proof is clear [see Bosq, 2015]. O

Remark 6.2. In the context of exogenous random variables one consider

an(Z,)) (7) +) and the proof is clean.

Remark 6.3. It is also possible to obtain a jump at X ®*+1) namely:

n

s TR e )= X ) AP B )
Dn (t[]) TE H Z a 1k _ﬁ
B n n

0 <ty—fp <to<to+an, <1with a, | 0(+) and 8, | 0(+).
We consider one jump at ty, a Taylor expansion and a bounded jump at
X® then we have

D (1) = BXT(ty) — XOH(t,-)) .5
cf Bosq [2016] Proposition 3.2 p.731-732.

7 Possible extension

Remark 7.1. The ARMAD®)(k,r) process can also be considered (cf Bosq
[2016] p.730) in this context:

XP =" LX) ZA (¥P), peN.

But this expression is rather complicate.
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Remark 7.2. We may envisage a fixed jump in the context of a continuous
function.cE €, = Cllt;, &l 0= f =k + 1
Then, we conslder a jump at ¢; < s, t <1541, where

Caile 1) E Xi(s ||1 <8<ty ti<t<tiq,

and

n

Y Xi(5) Xig1(8) ley<ostisn tytctson,

=1

with

Pnj = Hk" Dn,j C:;Hkn

where [T¥7is the projector over vy, ..., vy, .
ay j and u, ; are similar (cf Section 5).
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