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Abstract: This article presents a new data-driven method for locating leaks in water distribution
networks (WDNs). It is triggered after a leak has been detected in the WDN. The proposed approach
is based on the use of inlet pressure and flow measurements, other pressure measurements available
at some selected inner nodes of the WDN, and the topological information of the network. A
reduced-order model structure is used to calculate non-leak pressure estimations at sensed inner
nodes. Residuals are generated using the comparison between these estimations and leak pressure
measurements. In a leak scenario, it is possible to determine the relative incidence of a leak in a
node by using the network topology and what it means to correlate the probable leaking nodes
with the available residual information. Topological information and residual information can be
integrated into a likelihood index used to determine the most probable leak node in the WDN at a
given instant k or, through applying the Bayes’ rule, in a time horizon. The likelihood index is based
on a new incidence factor that considers the most probable path of water from reservoirs to pressure
sensors and potential leak nodes. In addition, a pressure sensor validation method based on pressure
residuals that allows the detection of sensor faults is proposed.

Keywords: water distribution networks; leak localization; data-driven

1. Introduction

Water distribution networks are complex systems that are difficult to manage and
monitor with extreme importance nowadays. The detection and location of leaks have
become crucial for water distribution because when there are bursts or leaks, this can gen-
erate not only economic losses but also an environmental issue and represents a potential
risk to public health with contaminated water [1]. Another concern is the scarcity of water
that can occur in 2025, which may affect half the world’s population that will not have
access to safe and accessible water for their basic needs [2]. However, with all these risks,
currently, this infrastructure does not perform satisfactorily in practice. According to [3],
a global volume of water loss called Non-Revenue Water (NRW) has been calculated at
346 million cubic meters per day or 126 billion cubic meters per year.

The infrastructure in a medium-sized city can have pipes that span hundreds of kilo-
meters connected to hundreds of nodes (pipe junctions or customers that connect to the
network). Therefore, several factors can generate water loss during transport between
the treatment plants and the reservoir for consumers, usually attributed to several causes,
including leaks, measurement errors, and theft. Water loss can be divided into two terms,
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“real losses” and “apparent losses”. Apparent losses are constituted by badly read measure-
ments, data handling errors, and illegal water tapping. In contrast, the real losses comprise
leakage from all system parts and overflow at storage tanks. Real losses are divided into
“background leakage” made up of small undetectable and into detectable leaks relevant for
detection as they represent significant losses for the water distribution company.

Effective leak management is vital for all of the factors mentioned above to save
financial resources and water. The methods of leak localization can be classified into two
categories: Hardware-based system and Software-based.

The Hardware-based utilizes hardware sensors to detect a leak directly and help the
localization of the leak. As there are various types of sensors and instruments available,
they can be further subclassified as: acoustic [4,5] and non-acoustic detection methods [6].

Software-based methods generally rely on an algorithm or model for detecting leaks.
Unlike hardware-based methods, these methods do not seek to locate the leak point accu-
rately but minimize possible leakage areas. Since these methods are based on information,
such as the pressure of the pipe network, flow data, and so forth, they work well on any
type of pipe. These methods can be divided into physical modeling methods and data-
driven methods. The physical modeling methods or model-based methods identify the leak
using a numerical model and compare the results with the field data, for example, Ref. [7]
which uses pressure sensitivity analysis, Ref. [8] uses leak signature space, Ref. [9] analyzes
the sensitivity matrix and residuals, and [10] uses pressure and flow measurements to
perform leakage detection through model-invalidation. On the other hand, data-driven
methods analyze the monitoring data, combining tools such as artificial intelligence (e.g.,
classifiers [11–14] or artificial neural networks [15,16]). Thus, it is possible to identify poten-
tial areas of the leak based on certain rules or principles without resorting to the simulation
of the physical model results [17]. However, these methods need, in general, an important
number of non-leak and leak data scenarios in the training process to obtain reasonable
results. As an exhaustive amount of leak scenarios are not available in general, a hydraulic
simulator can be used to generate leak data. This work deals with the problem of leak
localization and it is assumed that it is available a leak detection method that determines if
a leak is present or not in the WDN. In particular, a non-numerical localization method,
focused on a data-driven approach, is proposed.

Like other recent works [18,19], it requires only topological information of the net-
work and historical data without leakage of the available measurements. In this work,
the topological information provides the most probable paths for extra flows produced by
leaks. A new incidence factor from every combination of nodes and sensors is computed
with this information. Every incidence factor determines how a leak in a particular node
affects a specific pressure sensor. On the other hand, historical data are used to calculate
non-leak pressure estimations at sensed inner nodes. Residuals are generated using the
comparison between these estimations and leak pressure measurements. Incidence factors
are integrated with residuals in likelihood indexes to give the most probable leak node in a
leak scenario. In addition, pressure residuals are used to detect sensor faults by means of a
novel sensor validation algorithm.

The remainder of this paper is organized as follows: Section 2 presents the theory of
graphs applied to WDN and explains the structure of the reduced-order model used in
this work. The developed leak localization has been elaborated in Section 3. In Section 4 a
sensor validation method that allows the detection of pressure sensor faults is presented.
Section 5 introduces the case studies of Hanoi and Modena’s WDNs. Section 6 presents the
conclusions and future scope of the research work.

2. Water Distribution Networks
2.1. Preliminaries

A water distribution network is composed of m pipes, n internal consumer nodes and
can be described by a directed graph G = {V , E}, [20], with V = {v1, . . . , vn} is the set of
vertices that represent connections between the components of the network, additionally
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the last {vn−nI+1, . . ., vn}, represent the vertices of the system’s input, nI being the number
of the inlets, with nI ≥ 1. The elements of the set E = {e1, . . . , em} are the edges, which
represent the m pipes in the network.

The graph G can be represented by the incidence matrix H = [hij], in which the
elements hij are defined as:

hij =


−1 if the jth edge is entering ith vertex.
0 if the jth edge is not connected to

the ith vertex.
1 if the jth edge is leaving ith vertex.

The direction of the edge represents a reference direction for the flow in the corre-
sponding pipe. The incidence matrix is composed of H ∈ {−1, 0, 1}n×m with each row
corresponding to a node and column corresponding to a pipe.

The WDN must fulfill mass conservation law, which expresses the conservation of
mass in each vertex, described by:

H · q = d, (1)

where d ∈ Rn is the vector of nodal demands, with di > 0 when the flow is into the node
i, and q ∈ Rm is the vector of flows in the edges. By virtue of the mass conservation, it is
possible to have only n− 1 independent nodal demand, ∑n

i=1 di = 0, therefore the supply
flow must equal the end-user demands as there is no storage in the network.

Let p be the vector of absolute pressures at the nodes and ∆p be the vector of differen-
tial pressures across the pipes, both in meters of water column [mwc], then the energy law
for water networks gives:

∆p = HTp = f (q)−HTh, (2)

where p ∈ Rn, and f : Rm → Rm, f (q) = ( f1(q1), . . . , fm(qm)). The function f j(·) de-
scribes the flow dependent pressure drop due to the hydraulic resistance in the jth edge.
The relationship between pipe flow and energy loss caused by friction in individual pipes
can be computed using the Hazen–Williams formula [21] for expression f j(·):

f j(qj) =
10.7 · Lj

ρ1.852
j · D4.87

j
· q1.852

j , (3)

where Lj is the length of the pipe and Dj is the diameter of the pipe, both in meters [m], qj

is the pipe flow in m3/s and ρj is the pipe roughness coefficient.
The term HTh is the pressure drop across the pipes due to the difference in geodesic

level (i.e., elevation) in meters [m] between the ends of the pipes with h ∈ Rn the vector of
geodesic levels at each vertex.

2.2. Structure of the Reduced Order Model

The reduced-order network model is used in this paper to calculate the nominal
pressure at the measured internal nodes. The model uses the pressure dependence of the
network’s internal nodes with the pressure and flow measurements of the inlets. The details
of the model derivation can be found in [22,23].

A network can be divided into nodes connected with reservoirs (the inlets nodes)
and internal nodes that compose the system. To facilitate the explanation in this work,
the information regarding inlet nodes will be represented by (r) superscript and those
of the internal nodes, which will be expressed by the (in) superscript. In particular,
vector p(in) will contain pressure node values p1, . . ., pn−nI and p(r) inlet pressure values
pn+1−nI , . . ., pn.

The network needs to fulfill some conditions for using the reduced model proposed:
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Condition 1: corresponds to the demands of the internal nodes of the system, where
Equation (1) can be defined as:

d(k) = −v(k)σ(k), (4)

where σ(k) denotes the total inlet flow into the network at time instant k, the vector v(k)
defines the distribution of the total demand in the internal nodes at every time k, with the
property ∑n

i vi(k) = 1. Notice that if all consumers are residential, all nodes demand have
the same consumption profile, in consequence, the v(k) will be constant v(k) = v.

Condition 2: is a particularly case when the vector p(r) of control inputs fulfill the
following case,

p(r)(k) + h(r) = κ(k)1, (5)

for some κ ∈ R, which is the total head at the inlets in [mwc] and where 1 denote the vector
consisting of ones. In [23], there is a discussion on this definition’s feasibility where the
controllers should satisfy this premise at least in networks with the low total consumption.

If these two conditions are fulfilled, the pressure at the ith internal node can be
expressed by:

p(in)i (k) = αiσ
2(k) +

nI

∑
j=1

βij(k)p(r)j (k), (6)

where αi is parameter dependent on the network topology and the distribution of demands
in the network, and βij is dependent on the network topology with j = 1, . . ., nI . The total
inlet flow σ is typically well-known since inlet flows are measured. αi is a parameter
dependent on the network topology and the distribution of demands in the network,
and βij is dependent on the network topology with j = 1, . . ., nI . The total inlet flow σ is
typically well-known since inlet flows are measured.

Some methods of identifying parameters can be used to identify parameters αi and βij

since model (6) of p(in)i is linear [24], using the measures of σ, p(r) and p(in)i with nodes that
contain pressure sensors that will be denoted as psi ∀i = 1, . . ., ns in the following, where
ns is the number of sensors installed in the inner nodes.

Once inner pressure model (6) has been calibrated, the accuracy of the model can be
assessed by applying the computation of the model error or pressure residual defined by:

rsi = p̂si (c)− psi (c), ∀i = 1, . . ., ns, (7)

where c denotes the boundary conditions (heads and inflows in inlets) necessary to com-
pute pressure estimation by means of (6). For example, minimum and maximum resid-
ual bounds σi and σ̄i, considering the available data, can be computed for every sensor
i = 1, . . ., ns to obtain an idea of the accuracy of model (6). Sensor noises and error models
can produce residual errors. If big values of residual bounds are obtained, improvements
in model (6) should be considered. For example, the assumption that all the nodes have the
same consumption profile can lead to a big error in some networks. In this case, the error
could be decreased if model (6) is calibrated only using data from the same hour but on
different days. It would be assumed that different users can have different profiles at a
given hour, but a particular user will have the same profile at a particular hour for all
the different days. This possible improvement will imply the calibration of 24 different
models (6) (one for each hour) and will require more historical data to obtain good accuracy.
Another method to obtain an estimation of the pressure in inner nodes p̂si (c) is to use
historical data directly as a lookup table, as was proposed in [18]. That is, given particular
operating conditions, c provides the inner pressures from historical data that had the closest
operating conditions ĉ to c. Residuals (7) considering leak pressure measurements will be
used in the leak localization, as will be explained in detail in the next section.
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3. Leak Localization

The location of the leak on the WDN is typically divided into two steps: leak detection
and leak localization [25]. The focus in this work is the leak localization assuming that the
detection has already been effectuated. In addition, it is assumed that the leaks can only
happen in the nodes of the network (as considered in [7,26], or [8]), making the number
of nodes equal to the number of potential leaks. The nodes correspond to water users,
pipe junctions, and other structures such as hydrants. However, if the number of nodes
will not provide a representative discretization of the network, some artificial nodes could
be considered.

In this Section, two leak localization methods will be proposed. The first one will
only use available measurements, and its diagnosis will point to one of the inner pressure
sensors installed in the WDN. Therefore, the detected leak should be in an area around this
sensor (cluster). The second method will combine the information of the first method with
the topological information: characteristics of the pipes and connections between the nodes
of the WDN, in a likelihood index that will allow the leak localization at the node level.

3.1. Leak Localization at Cluster Level

As stated before, the proposed leak localization is applied after the leak detection.
In addition to inlet pressure and flow sensors, it is assumed that ns pressure sensors
are installed at different inner nodes. Consider a leak lj acting on the node j of the
network, and the used measurements are assumed to be captured under a leaky situation.
Additionally, admitting leak-free historical data of all the sensors are available. The residual
pressure in internal nodes that contain a sensor, defined in (7), can be computed as:

rsi = p̂si (c)− psi (c
lj), ∀i = 1, . . ., ns, (8)

where p̂si (c) is the pressure estimation considering boundary conditions c in a leak-free
scenario. On the other hand, psi (c

lj) is the pressure value measured by the inner pressure
sensor i under boundary conditions clj (the same heads and inflows in inlets as in c but
with a leak in node j).

Following the ideas in [18], positive residuals can be obtained from the
following transformation:

r̄si = rsi −min(rs1 , . . ., rsns) ∀i = 1, . . ., ns. (9)

Then, as the leak localization can be achieved by determining the residual pressure
component with maximum size (see [22,27]), leak localization can be formulated as:

̂ = arg max
i∈{1,...,ns}

{r̄si}. (10)

Notice that the result of the leak localization method (10) is one of the ns pressure
sensor locations.

Then, the leak localization results in ̂ point not only to sensor location sj but also to
the nodes that produce a higher incidence for this sensor than the other sensors (cluster j).

3.2. Leak Localization at Node Level

Considering the Hazen–Willians Equation (3) for every pipe (edge ez) a resistance Rz
can be defined:

Rz =
10.7 · Lz

ρ1.852
z · D4.87

z
. (11)
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Among the multiple pipe paths that can connect every pair of nodes ij, a path Pmin
ij

with a minimum total resistance Rij can be computed by means of :

Pmin
ij = arg min

P (k)
ij ∈Pij

∑
ez∈P (k)

ij

Rz, (12)

where Pij = {P
(r)
ij , . . . ,P (e)

ij } denotes the set of paths connecting nodes i and j.

On the other hand, the minimum path from the nI inlets to a node j , Imin
j , can be

obtained by applying the computation of the minimum paths from the nI inlets to node j
by means of (12) and determine which is the one with the minimum resistance among the
nI paths.

When a leak is produced in node j, Imin
j is the most probable path for the extra

flow produced by the leak. So the effect of a leak in node j to sensor si depends on the
intersection of the paths from inlets to node j and the node where the sensor is located si:
Imin

j and Imin
si

. To quantify the degree of incidence of the leak to the sensor, an incidence
factor gj,si is defined as:

gj,si = Rc
j,si

ḡj,si , (13)

where Rc
j,si

is the resistance of the path defined by Imin
j ∩ Imin

si
, the superscript c refers to

the common path between node and sensors, and ḡj,si is a normalization factor that takes
into account the inverse of the resistance from the node j to the different sensors:

ḡj,si =


1

Rj,si
∑ns

l=1
1

Rj,si

if j 6= si

1 if j = si.

The ns incidence factors associated to a leak in node j, gj,si i = 1, . . ., ns can
be normalized:

λj,si =
gj,si

∑ns
l=1 gj,sl

, (14)

where coefficient λj,si determines the relative incidence of a leak in node j to sensor si
regarding all the ns sensors and the need to fulfill:

ns

∑
i=1

λj,si = 1 ∀j = 1, . . . , n− nI . (15)

For every node j = 1, . . ., n− nI , the most sensitive sensor to a leak in this node can be
computed as:

̂ = arg max
i∈{1,...,ns}

{λj,si}. (16)

The ns clusters used in the leak localization defined in (10) can be computed using the
set of nodes that provide the same value of ̂. The following equation is the definition of
the cluster associated with the sensed node l:

Cl = {vj ∈ V| arg max
i∈1,...,ns

{λj,si} = l}, (17)

where l = 1, . . ., ns. The topological information of λj,si and the measurement information
of residuals r̄si can be integrated in a parameter θj defined as:

θj =
1
θ̄

ns

∑
i=1

λj,si r̄si (18)
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where θ̄ is a normalization factor. Then, θj can be interpreted as a likelihood index, and the
leak localization at cluster level defined in (10) can be formulated at node level as:

̂ = arg max
j∈{1,...,n−nI}

{θj}. (19)

In order to improve the performance of the leak localization method, the information
of the residuals at different time instants k can be taken into account applying the Bayes’
rule as:

Pj(k) =
Pj(k− 1)θj(k)

∑n−nI
l=1 Pl(k− 1)θl(k)

, (20)

where Pj(k− 1) is the prior probability whose initial value Pj(k− 1) has to be determined
(for example Pj(0) = 1/(n− nI)). Then, the leak node localization can be estimated by
using posterior leak probabilities by:

̂(k) = arg max
j∈{1,...,n−nI}

{Pj(k)}. (21)

4. Sensor Validation

When a leak is not detected by the leak detection method, anomalous values of
pressure residuals rsi (k) i = 1, . . ., ns defined in (7) can be used to detect sensor faults.
In the same operating conditions, the historical data of inner pressure sensors (leak-free
data or data for a particular leak scenario) can be used first to calibrate a pressure estimation
model as described in Section 2.2. Secondly, to determine residual bounds σi and σ̄i that
allows the implementation of pressure sensor fault detection through checking:{

rsi (k) ∈
[
σi, σ̄i

]
⇒ No Fault (φi(k) = 0)

rsi (k) /∈
[
σi, σ̄i

]
⇒ Fault in sensor si (φi(k) = 1).

(22)

The accuracy of this fault detection method depends on the length of residual bounds
σi and σ̄i and, therefore, on the accuracy of pressure estimation (6). In order to increase the
accuracy of the fault detection method, spatial residuals [28] between pressure residuals (7)
can be computed

Srsi ,sj(k) = rsi (k)− rsj(k) ∀i = 1, . . ., ns − 1 and j = i + 1, . . ., ns. (23)

In the same way as the pressure residuals, spatial residual bounds εi,j and ε̄i,j can be
computed using leak-free data, and the fault detection can be implemented as follows:Srsi ,sj(k) ∈

[
εi,j, ε̄i,j

]
⇒ No Fault(Φi,j(k) = 0)

Srsi ,sj(k) /∈
[
εi,j, ε̄i,j

]
⇒ Fault(Φi,j(k) = 1).

(24)

As model errors will affect in a similar way as close pressure sensors, it is expected
that some spatial residual bounds will be smaller than pressure residual bounds. Therefore,
fault detection defined by (24) will be more sensitive to pressure sensor faults than the one
defined by (22). The accuracy of the sensor fault detection can be increased by means of
average computing residuals in a time window leading to smaller residual bounds.

Once a residual has been violated, that is, at least one of the sensor faulty signals φi(k)
i = 1, . . ., ns or spatial faulty signals Φi,j(k) i = 1, . . ., ns − 1 and j = i + 1, . . ., ns is
equal to one, the sensor fault isolation can be implemented in two stages as described in
Algorithm 1:
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Algorithm 1 Sensor validation search for sensor fault

Stage 1: In the case of the activation of one or more sensor faulty signals φi(k) i = 1, . . ., ns, as these

signals are uniquely related to sensors si i = 1, . . ., ns, the isolation is trivial and faulty sensors

must be discarded for future leak localization, and the number of available healthy sensors ns

should be updated.

Stage 2: Only considers Spatial faulty signals Φi,j(k) of the ns non-faulty sensors from Stage1.

As these fault signals are potentially affected by two possible sensor faults si and sj, the fault

isolation can be implemented iteratively by the following steps:

1: for i← 1, ns − 1 do

2: for j← i + 1, ns do

3: if Φi,j(k) == 1 then

4:

ı̂ = arg max
i∈{1,...,ns}

{
ns−1

∑
j=i+1

Φi,j(k) +
i−1

∑
j=1

Φj,i(k)}. (25)

5: Discard sensor sı̂, eliminate faulty signals related to this sensors, update ns.

6: end if

7: end for

8: end for

In the case that two or more sensors obtain the same cost function in (25) and less than
the maximum possible value ns − 1, the computation of (25) should be performed in a time
window until new Spatial faulty signals are activated.

5. Case Study
5.1. Hanoi WDN

The Network used for the case study is a reduced city’s network model from Hanoi’s
WDN (Vietnam). It is composed of one inlet (reservoir), 34 pipes, and 31 nodes, represented
by Figure 1.
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To analyze the performance of the proposed approach, data with different conditions
have been generated artificially using the EPANET hydraulic simulator [29]. In order
to consider realistic scenarios, some uncertainty has been added to the data [30]: the
magnitude of the leak is random with a range of 25 to 75 [l/s], that is, between 1% and
2.5% of the average inlet flow of the WDN. Furthermore, white noise has been combined
to emulate the noise present in real measurements, and uncertainty of 10% (uniform
distribution) was added in the nominal demand value.

The daily water consumption pattern used for the calibration of Equation (6) is shown
in Figure 2, having four days of operation.

The sample rate is 10 min, but average hourly measurements are calculated to reduce
uncertainties on the diagnostic stage.
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Figure 2. Flow consumption.

Results

The evaluation of the performance of the proposed leak localization method at node
level defined in Equation (21) will be analyzed utilizing Average Topological Distance
(ATD) [11]. The ATD represents the node’s distance between the node predicted as leaking
and the actual node with the leak. To calculate the ATD, it is first necessary to create a
matrix containing the minimum topological distance (in nodes or meters), A ∈ Rn−nI×n−nI .

Finally, the confusion matrix Γi,j(n− nI × n− nI) defined in [18] and depicted in
Table 1 is used to assess the performance of Equation (21). The rows of this matrix cor-
respond to the leak scenario and the columns to where the leak is located (l̂) by the leak
localization method.

Table 1. Confusion matrix Γ.

l̂1 · · · l̂i · · · l̂n−nI

l1 Γ1,1 · · · Γ1,i · · · Γ1,n−nI
...

...
...

...
...

...
li Γi,1 · · · Γi,i · · · Γi,n−nI
...

...
...

...
...

...
ln−nI Γn−nI ,1 · · · Γn−nI ,i · · · Γn−nI ,n−nI



Sensors 2021, 21, 7551 10 of 19

Considering the confusion matrix Γ, the ATD can be computed as follows:

ATD =
∑n−nI

i=1 ∑n−nI
j=1 Γi,j Ai,j

∑n−nI
i=1 ∑n−nI

j=1 Γi,j
. (26)

Four cases have been considered with different quantities of sensors in the network to
analyze how this affects the final result. Table 2 presents the distribution of the selected
nodes to contain a sensor. As seen in [31], the positioning of the sensors produces different
results. As this work did not discuss the adequate sensors’ arrangement, they were chosen
to consider an improvement in the results regarding the number of sensors.

Table 2. Nodes with sensors.

Case Nodes with Sensors

1 12, 17, 23, 29

2 6, 12, 17, 23, 29, 21

3 6, 12, 15, 17, 23, 21, 27, 30

4 6, 9, 12, 15, 17, 24, 21, 22, 28, 29, 31

Using the inlet flow data and non-leak historical pressure measurements of the selected
sensors, the βi and the αi with i = 1, . . ., 31 in (6) have been identified (notice that nI = 1).
With these parameters, the pressure estimations under a non-leak condition in the network
can be calculated considering inlet measurements using Equation (6) and posteriorly
applied to calculate the residuals (9) with measured pressures in leak scenarios. In addition,
non-leak pressure measurements and estimations are used to generate fault-free pressure
residuals rsi (k) and bounds σi, σ̄i i = 1, . . ., ns, as well as spatial residuals Srsi ,sj(k) and
bounds εi,j, ε̄i,j ∀i = 1, . . ., ns − 1 and j = i + 1, . . ., ns.

For every sensor configuration, normalized incidence factors (14) have been computed
with topological information: node connections and pipe characteristics (length, diameter,
and roughness). Figure 3 has the objective of comparing the information of the incidence
of single leaks to pressure sensors obtained by a hydraulic model with the one obtained
by means of topological information. The nodes selected to have sensors are the ones
defined in the first case in Table 2. In particular, Figure 3c shows the clustering that groups
the nodes that produce the highest effect in a specific pressure sensor. Nodes in yellow
define the cluster of nodes where a leak produces a maximum pressure deviation from
the non-leak scenario in the sensor installed in node 12, and the same is true for nodes
in violet, red and green regarding pressure sensors in nodes 17, 23, and 29, respectively.
Finally, nodes in black are nodes that produce a similar variation of pressure (difference
of variation less than 0.1 [mwc]) in at least two different pressure sensors. In order to
obtain this information, a hydraulic model to compute the difference of non-leak and leak
pressures in all the nodes for the different leaks is required. On the other hand, Figure 3a
shows the clustering that takes into account the shortest weighted pipe length (hydraulic
distance), that is, the sum of (Lz/D4.87

z ) for all edge ez in the path to the sensors, being the
smallest one used to define the most resemblance to the sensor, used in Ref. [18]. Finally,
the clustering depicted in Figure 3b is defined by Equation (17), which is based on the
common resistance path explained in Section 3. These two last clusters that only require
topological information could be used in the leak localization method at the cluster level
defined in Equation (10). It is important to emphasize that the clustering based on the
resistance common path, proposed in this paper and depicted in Figure 3b, resembles the
clustering based on the actual leak effect in the network (given by the model) depicted
in Figure 3c much more than the clustering based in the hydraulic distance depicted
in Figure 3a. Therefore, the clustering proposed in this paper provides more accurate
information for leak localization purposes than that based on the hydraulic distance. For
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example, as shown in Figure 3c, when a leak is present in nodes 3, 4, 5, 6, 7, 8 or 9, the sensor
most affected by the leak is the sensor in node 12. This information is the same as the one
provided by the clustering depicted in Figure 3b and is computed only with topological
information. However, using the clustering of Figure 3a based on the hydraulic distance
between nodes and sensors, the closest sensor to these nodes is the sensor in node 17.
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Figure 3. The ns clustering generated with the aspects: (a) shortest weighted pipe length, (b) The resis-
tance takes into account the common path Rc

j,si
; (c) is the maximum residual. Nodes in yellow, violet,

red and green define the cluster related to sensor installed in node 12, 17, 23, and 29, respectively.

Figure 4 shows the correlation analyses of the relative incidence index λj,si defined in
Equation (14) for all the nodes j = 1, . . ., 31 depicted in every subplot for every sensor si
i = 1, . . ., 4. As this index is normalized, its values are in the range [0,1). The nodes with
the higher index (more brown color) are those that produce a higher effect in the pressure
sensor si.

Figure 5a displays the evolution of the ATD (in nodes) obtained by the leak localization
method based on the Kriging spatial interpolation methodology presented in [18] with the
time horizon (in hours) used recursively by the Bayes’ rule in (20). Four different sensor
configurations are considered with 4, 6, 8, and 10 sensors placed optimally in order to
maximize the performance of the leak localization proposed [18]. The performance can
be compared with the one obtained by the new leak localization method proposed in this
paper at node level defined in Equation (19) with the same dataset and the same sensor
configurations as in [18], depicted in Figure 5b and with the sensor configurations shown
in Table 2, depicted in Figure 5c.

Figure 5a shows that the leak detection performance of the Kriging method improves
significantly from four to eight sensors and more moderately compared to ten sensors,
still having a good result, even with noise data managing to reach an ATD equal to
2.5 node. When compared to the newly proposed leak localization method, as can be
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seen in Figure 5b,c, the new leak localization method always outperforms the Krigring
method, even in the case of using the sensor configurations proposed in [18] that were
computed to optimize the performance of the Kriging method. Figure 5c shows that the
sensor configurations proposed in [18] are not optimal for the proposed method but the
performance can be improved by changing the sensor configurations, in this case manually.
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Figure 4. Relative incidence index λj,si for all the nodes (j = 1, . . ., 31), corresponding to: (a) 1st sensor (i = 1), (b) 2nd senor
(i = 2), (c) 3rd sensor (i = 3), and (d) 4th sensor (i = 4).

In order to illustrate the performance of the proposed sensor validation method, Case
1 (four sensors) will be considered. The four-sensor residuals computed by Equation (7)
have been considered in a time window of 24 h using leak-free data leading to upper
residual bounds equal to:

[σ̄1, σ̄2, σ̄3, σ̄4] = [0.11, 0.06, 0.09, 0.11]

and the lower residual bounds equal to:

[σ1, σ2, σ3, σ4] = [−0.14,−0.10,−0.10,−0.08].

In the same way, the six spatial residuals defined by (23) have been computed in the
same conditions as sensor residuals leading to spatial residual bounds:

[ε̄1,2, ε̄1,3, ε̄1,4, ε̄2,3, ε̄2,4, ε̄3,4] = [0.06, 0.07, 0.08, 0.04, 0.05, 0.03]

and [
ε1,2, ε1,3, ε1,4, ε2,3, ε2,4, ε3,4

]
= [−0.04,−0.06,−0.08,−0.06,−0.09,−0.03].
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Figures 6 and 7 depict the evolution of sensor and spatial residuals with their respec-
tive residual bounds in a fault scenario of sensor 1 that corresponds to the pressure sensor
in node 12. The fault is a drift of 0.1 [mcw] that starts on the 5th day. As shown in Figure 6,
by applying (22) to sensor residuals it is impossible to detect the fault until the end of the
day 9 (i.e., 4 days later) when residual sensor 1 violates the bounds. However, by applying
(24) to spatial residuals it is possible to detect the fault in 10 h: Srs1,s2 violates its bounds in
10 h, and Srs1,s3 , Srs1,s4 violate their bounds in 16 h and 22 h, respectively.
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Figure 5. Evolution of the ATD between the methods: (a) using the Kriging interpolation method
presented in [18], (b) using the new leak localization method with the same sensor configurations as
in [18] and (c) using the new localization method with sensor configurations of Table 2.

5.2. Modena WDN

The second case study selected to test the performance is the reduced model of the
real water distribution network of the Italian city Modena. This large-scale network
is comprised of 268 junctions (nodes) connected through 317 pipes and served by four
reservoirs. There are no pumps in the network since it is entirely gravity-fed [32,33].

The EPANET hydraulic simulator was used to generate artificial data to analyze the per-
formance of the proposed method. The following simulation conditions were considered:

• The leak scenario consists of data samples collected every 10 min and filtered to hourly
values to reduce the uncertainty in the data;

• The uncertainty of demand is considered by introducing the uncertainty of 10 [%]
(normal distribution) of the nominal demand value. In addition, white noise is deemed
to emulate the noise in the measurements;

• The leak size is randomly selected with a range of 3 to 6 [l/s], representing 1% to 2.5%
of the network consumption.
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The sensor bias, sensor drift, and abrupt sensor failure of sensor faults were proposed
to analyze the sensor validation method. The sensor bias fault was simulated as a step
change, and the drift fault was given as a time-varying ramp signal. In both cases, the fault
magnitude was randomly chosen with a range of 0.1 to 0.2 [mwc]. The last fault was
simulated by turning the sensor output to zero.

Results

As applied in the previous case study, the Average Topological Distance (ATD) was
used to assess the performance of the proposed leak localization method at the node level
defined in (19). Two scenarios have been considered with five and ten pressure sensors that
are presented in Figure 8a,b respectively. As emphasized in the last section, performance
in the leak localization task is highly dependent on the number of sensors installed in the
network [34–36].

Figure 9 shows the result of ATD evolution as defined in (26) applied with Bayes’
posterior time reasoning (20) to represent the leak location performance of the proposed
method. This figure shows that the leak localization performance reached an ATD of 8
and 5.5 nodes with 5 and 10 inner pressure sensors installed in the network respectively.
Considering that the proposed leak localization method only requires topological informa-
tion and non-leak historical data in available measurements, the obtained performance is
reasonably good.

On the other hand, a total of 6000 scenarios were simulated with 10 days each to
evaluate the sensor validation method for the five sensor configurations depicted in
Figure 8a. Thus, 1000 scenarios were generated for each sensor with sensor bias, sensor
drift, and abrupt sensor failure applied randomly, and the remainder 1000 without faults.

To calculate the residual and spatial residuals bounds, a 6-month leak-free scenario
was generated. The five sensor residuals computed by Equation (8) considering the time
window of 24 h and increasing 24% observed bounds. Leading to upper residual bounds
equal to:

[σ̄1, σ̄2, σ̄3, σ̄4, σ̄5] = [0.10, 0.06, 0.04, 0.01, 0.04]

and to lower residual bounds equal to:

[σ1, σ2, σ3, σ4, σ5] = [−0.08,−0.05,−0.03,−0.01,−0.06].

Following, the ten spatial residuals defined by (23) were computed in the same
conditions as sensor residuals leading to spatial residual bounds:

[ε̄1,2, ε̄1,3, ε̄1,4, ε̄1,5, ε̄2,3, ε̄2,4, ε̄2,5, ε̄3,4, ε̄3,5, ε̄4,5] =
[0.07, 0.08, 0.08, 0.10, 0.06, 0.05, 0.06, 0.03, 0.06, 0.05]

and
[ε1,2, ε1,3, ε1,4, ε1,5, ε2,3, ε2,4, ε2,5, ε3,4, ε3,5, ε4,5] =

[−0.07,−0.09,−0.08,−0.09,−0.05,−0.04,−0.06,−0.03,−0.04,−0.04].

For this study, the evaluation metric applied was classification accuracy. To this pur-
pose, the confusion matrix was used, which presents the classification accuracy and the
misclassification error, and the horizontal axis of the confusion matrix describes the pre-
dicted labels of samples, while the longitudinal axis depicts the true labels of samples.
The right side shows the percentages of correctly and incorrectly classified observations for
each true class.
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Figure 8. Configuration of pressure sensors in Modena WDN: (a) 5 sensors, (b) 10 sensors.
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Figure 9. Evolution of the ATD.

Figure 10 illustrates the result for the confusion matrix for all scenarios generated,
and depicts that the accuracy of detecting faults in the sensor is very high, where the
lowest accuracy is presented in fault sensor number five with an accuracy of 95.4% and
the highest in fault sensor number three with 100% accuracy. Regarding the accuracy of
the scenario with no-fault, eight of the 1000 fault free scenarios presented one false alarm
among the 240 samples of the scenario; therefore providing an average interval between
false detections of 240,000/8 = 30,000 h.
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6. Conclusions

A new data-driven method for leak localization in WDN based on historical non-leak
data and the topological information of the network is proposed. The proposed method is
triggered when a leak is detected, and it is based on the evaluation of residuals generated by
leak pressure measurements in some inner nodes and the estimation of leak-free pressures
in these nodes utilizing a reduced-order model and historical data. Topological information
is used to compute a new incidence factor that considers the most probable path of water
from reservoirs to pressure sensors and potential leak nodes. The proposed incidence
factor combined with residual information generates a likelihood index that allows leak
localization at the node level. In addition, a sensor validation method based on the sensor
pressure residuals, which is able to detect and isolate pressure sensor faults, is proposed.

The proposed method’s general performance for leak location and sensor validation
is evaluated in reduced models of the Hanoi and Modena water distribution networks.
The results of the leak localization are compared to another technique published with
satisfactory results. Future works can be developed to improve the leak localization and
sensor validation performances, with a study of an algorithm to automatically determine
the optimal sensors required to maximize the leak localization performance.
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