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Parametric modeling of photometric signals
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Abstract

This paper studies a new model for photometric signals under high .ux assumption. Photometric signals are modeled by
Gaussian autoregressive processes having the same mean and variance denoted Constraint Gaussian Autoregressive Processes
(CGARP’s). The estimation of the CGARP parameters is discussed. The Cram2er Rao lower bounds for these parameters are
studied and compared to the estimator mean square errors. The CGARP is intended to model the signal received by a satellite
designed for extrasolar planets detection. A transit of a planet in front of a star results in an abrupt change in the mean and
variance of the CGARP. The Neyman–Pearson detector for this changepoint detection problem is derived when the abrupt
change parameters are known. Closed form expressions for the Receiver Operating Characteristics (ROC) are provided. The
Neyman–Pearson detector combined with the maximum likelihood estimator for CGARP parameters allows to study the
generalized likelihood ratio detector. ROC curves are then determined using computer simulations. ? 2002 Elsevier Science
B.V. All rights reserved.

1. Introduction

The detection of extrasolar planets is a challenging
problem in astronomy (see the extrasolar planets en-
cyclopedia [18]). Among the methods currently pur-
sued to detect extrasolar planets, the transit method
(also referred as photometric method or occultation
method) may be the only one to >nd earth class planets
in the near future. The transit method is based on the
detection of photometric .ux variations which results
from the transit of a planet in front of a star. Several
space-based projects have been proposed to achieve
this goal including the US Kepler project, the Edding-
ton european project and the COROT (COnvection
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E-mail address: andrea.ferrari@unice.fr (A. Ferrari).

and ROTation) french project. For a star like the Sun,
the typical relative .ux variation for a Jupiter-like
giant planet is 10−2 (during 25 h) whereas for a
Earth-like planet it is 10−4 (during 13 h). Conse-
quently, the photometric .ux variations caused by
terrestrial planets are diGcult to detect using the con-
ventional transit method and new detectors have to
be investigated.
The >rst problem addressed in this paper is the

modeling of the photometric signals received by the
satellite. Based on two realistic assumptions, the pho-
tometric signals are modeled by Gaussian autoregres-
sive processes having the same mean and variance,
denoted Constraint Gaussian Autoregressive Pro-
cesses (CGARP’s). The second problem addressed
in this paper is the detection of extrasolar planets by
using standard estimation and detection tools. The
theoretical distribution of photometric signals being



generally intractable, most extrasolar planet detectors
reduce to measure the brightness drop of a star which
results from the transit of one of its planets across
its disk [6]. This paper proposes to detect a variation
in the received photometric .ux from the CGARP
modeling and conventional likelihood ratio based
detectors.
The paper is organized as follows:

• Section 2 studies the theoretical model for photo-
metric signals. The concept of CGARP is intro-
duced from the asymptotic distribution, of the data.

• Section 3 studies the maximum likelihood estima-
tion (MLE) of the CGARP parameters and the cor-
responding Cram2er Rao lower bounds (CRLB’s)
for large sample size. These bounds are compared
to the mean square errors (MSE’s) of the estimates
obtained through Monte Carlo simulations.

• Finally, the Neyman–Pearson detector (NPD) for
the abrupt change (AC) detection is developed in
Section 4. The exact distribution of the test statis-
tic is obtained, allowing computation of Receiver
Operating Characteristics (ROC). The practical ap-
plication where the AC parameters are unknown is
then investigated. The generalized likelihood ratio
detector (GLRD) is derived and its performance is
studied from Monte Carlo simulations.

2. Signal model derivation

We assume that the signal is dominated by the pho-
ton noise i.e. the read-out noise and the thermal noise
for the electronic are negligible. The model derivation
relies on the semiclassical theory of photodetection:
the light propagation to the detector is described by
diNraction theory and the photocount only occurs dur-
ing the sensor photodetection. When light with a >xed
intensity over time is incident on a photodetector, the
joint probability of registering the successive photo-
counts xn; n=1; : : : ; N on a single pixel is distributed
according to an i.i.d. Poisson distribution:

Pideal(X) =
N∏
n=1

e−��xn

xn!
; (1)

where X = (x1; : : : ; xN )t and � is the light intensity
(square of the wave amplitude) integrated between
two successive measurements [8, p. 466].

The problem is more complicated when the light
wave incident on the photosurface has stochastic at-
tributes. In this case, the distribution (1) is regarded
as a conditional probability distribution and the de-
terministic parameter � is replaced by a random vari-
able �n with mean E[�n] = � [8, p. 467], [16, p. 419].
The distribution of X =(x1; : : : ; xN )t conditioned on
�=(�1; : : : ; �N )t is then an independent sequence with
Poisson distribution of parameter�. Consequently, the
unconditioned distribution of X is

P(X) =
∫ ∞

0

N∏
n=1

e−�n�xnn
xn!

p(�) d�1 : : : d�N ; (2)

where p(�) is the joint distribution of (�1; : : : ; �N ).
This transform relating the photocount probability to
the integrated intensity probability is often referred to
as the Poisson Mandel transform of p(�) [20]. This
transform was >rst derived in 1958 using classical ar-
guments and rederived in 1964 using a semiclassical
method [16]. It is worthy to note that Eq. (2) can also
handle the case where the detector is not perfect. If
the quantum eGciency of the detector varies with time
[16,8], Eq. (1) can be regarded as the ideal sensor
signal. As previously, the statistical properties of the
observed signal in the real case are described by Eq.
(2). In the monovariate case, x1 is known in the actu-
arial literature as a mixed Poisson process [9].
The ideal case de>ned in Eq. (1) can be obtained

from (2) by choosing forp(�) a product of Dirac delta
functions. This case corresponds to a well-stabilized
single-mode laser radiation. Theoretical expressions
of P(X) can also be derived in the case of polarized
thermal light [8]. Unfortunately, an a priori distri-
bution for � is generally very diGcult to choose.
Moreover, an analytic expression of (2) cannot be
computed for most probability density functions
(pdf’s) p(�). For these reasons, few studies use the
stochastic model described by Eq. (2) for the detec-
tion of photometric .ux variation.
This paper proposes a simple model for X using

two realistic assumptions:

A1 :E[�n] = ��1; A2 : var[�n]��:

A1 expresses a high .ux assumption and A2 conveys
the fact that the variations of the integrated light inten-
sity and the variations of the sensor are small. Based
on these assumptions, this paper proposes to model xn



as a Gaussian AR process subjected to the constraint
E[xn]=var[xn]=�, denoted Constraint Gaussian AR
Process (CGARP). The Gaussian distribution for X
is justi>ed by the following proposition.

Proposition 1. If the probability distribution of X
veri<es (2):
(1) the mean and covariance matrix of X are:

E[X ] = �u; CXX = C

 + �IN ; (3)

where u is a N×1 vector of ones, IN is the N×N
identity matrix; � the mean of �n and C

 the
covariance matrix of �.

(2) De<ne C

 = VD2V t the eigen decomposi-
tion of C

; �k(�) the kth order cumulant of
(��1 ; : : : ; ��k ) where � = (�1; : : : ; �k) and the
standardized vector:

Y� = (D +
√
�IN )−1V t(X − �u); (4)

(E[Y�] = 0; CY�Y� = IN ). If �k(�) = o(�k=2) for
k¿ 2; Y� converges in distribution to the mul-
tivariate Gaussian distribution N(0; IN ) when
� → +∞.

Proof. See Appendix A.

The vector Y� converges in distribution (when
� → +∞) to the multivariate Gaussian distribution
N(0; IN ). Consequently, the distribution of Y� can be
well approximated for large � by its asymptotic dis-
tribution (see for instance [4, p. 204]). Hence, Eq. (4)
and assumption A1, A2 imply that the distribution of
X can be approximated by the multivariate Gaussian
distribution N(�u; C

 + �IN ). Eq. (3) shows that
second order stationarity for � implies second order
stationarity for X . Moreover, assumption A2 implies
that the variance of xn, which equals �+ var[�n], can
be approximated by �.
Finally, parametric AR modeling for X is moti-

vated in the stationary case by the fact that for any
continuous spectral density S(f), an AR process
can be found with a spectral density arbitrary close
to S(f) [4, p. 132]. Classical justi>cations for this
model in the stationary Gaussian context such as the
Wold decomposition can be also found for example
in [17].

Based on the previous comments, X is modeled by
a pth order CGARP de>ned by

xn =−
p∑

k=1

akxn−k + �
p∑

k=0

ak + en; (5)

where a0 = 1 and en is an i.i.d. zero mean Gaussian
sequence. The variance of en in model (5) is such
that var[xn]= �. It is denoted �2e(a; �) in order to take
into account its dependence toward the ak and �. An
analytic expression of �2e(a; �) is diGcult to obtain.
However, a formal expression can be obtained by
rewriting the Yule Walker equations [19] as a lin-
ear system where the unknowns are the signal covari-
ances, c = (�; c(1); : : : ; c(p))t. This leads to

(A1 + A2)c = (�2e(a; �); 0; : : : ; 0)
t ; (6)

where

A1 =




1 0 0 · · · 0
a1 1 0 · · · 0
a2 a1 1 · · · 0
...

...
. . .

...
ap ap−1 · · · a1 1


 ;

A2 =




0 a1 · · · ap−1 ap
0 a2 · · · ap 0
...

...
...

0 ap 0 · · · 0
0 0 · · · 0 0


 :

(7)

De>ning the vector e1 = (1; 0; : : : ; 0)t, we then obtain:

�2e(a; �) =
�

et1(A1 + A2)−1e1
= ��2e(a; 1): (8)

Note that �2e(a; �) can be computed using the recursive
algorithm studied in [1, p. 117] for the computation
of the power of a linear process.
It is important to note that in the ideal case, the high

.ux assumption implies that the Poisson distribution
can be approximated by a Gaussian distribution with
same mean and variance [5]. This particular case cor-
responds to ak = 0; ∀k ¿ 0 in (5). Consequently, a
major eNect of the detector imperfections is to corre-
late the signal measurements.



3. CGARP parameter estimation

3.1. Maximum likelihood estimation

This section is devoted to the maximum likeli-
hood estimation of a and �. Denote L(X |a; �) the
log-likelihood function of {xp+1; : : : ; xN} conditioned
on {x1; : : : ; xp}:
L(X |a; �)

=− N − p
2

log(2���2e(a; 1))

− 1
2�2e(a; 1)�

N∑
n=p+1

( p∑
k=0

akxn−k − �
p∑

k=0

ak

)2
:

(9)

After dropping some constants, the maximization of
(9) with respect to � for a known AR parameter vector
a leads to( p∑

k=0

ak

)2
�2 + �2e(a; 1)�

− 1
N − r

N∑
n=p+1

( p∑
k=0

akxn−k

)2
= 0: (10)

The two roots of this second order polynomial be-
ing obviously of opposite sign, an analytic expression
of �̂(a) is given by the positive root of (10).
In order to obtain the MLE’s of (�; a), �̂(a) is re-

placed in (9) and the resulting criterion is maximized
over a using a classical optimization algorithm. A crit-
ical point of this step is the optimization initialization.
We propose to take as initial condition the estimates
obtained with classical AR identi>cation algorithms
(e.g. [19]) after removing the estimated mean.
These results suggest the following remarks:

• In the Poisson i.i.d. case, the MLE of � equals the
sample mean. Here, � could obviously also be esti-
mated by the sample mean (method of moments) or
the sample variance. However, the MLE of � has to
be preferred because of its asymptotical good prop-
erties [11].

• In order to take into account the constraint E[xn] =
var[xn] = �, an estimator of � could also be con-
structed by estimating the second order moment of

xn i.e. E[x2n]=�+�2. This estimator is the positive
root of the following second order equation:

�2 + �− 1
N − r

N∑
n=r+1

x2n = 0: (11)

It can be easily checked that in the uncorrelated
case (ak=0; ∀k¿ 1), Eq. (10) reduces to Eq. (11).
Consequently, the second order moment based es-
timator does not take into account the correlations
between the observed samples xn.
Next section derives the CRLB’s for � and a which

are compared to the MLE mean square errors.

3.2. Cram�er Rao lower bounds

CRLB’s are convenient tools for determining the
achievable accuracy of estimators. Unfortunately, the
CRLB’s cannot always be obtained in a simple closed
form expression. In these cases, asymptotic expres-
sions can be used to approximate the CRLB’s for large
values of the number of samples. This section derives
the asymptotic CRLB’s for the parameters a and � of
the model (5).

Proposition 2. The asymptotic Cram�er Rao lower
bounds for the parameters of a CGARP de<ned in
Eq. (5) verify:

lim
N→+∞

N:CRLB(�)

=
[

2�2

�2e(a; �)
+∇a(�)tC−1

p ∇a(�)

− 
(

2�2

�2e(a; �)
+∇a(�)t C−1

p ∇a(�)
)2]

�2e(a; �);

(12)

lim
N→+∞

N:CRLB(a)

=[C−1
p −  C−1

p ∇a(�)∇a(�)tC−1
p ]�2e(a; �); (13)

where  is given by (50); the components of ∇a(�)
by (52) and C−1

p is computed using the Gohberg–
Semencul formula [19].

Proof. See Appendix B.

The theoretical expressions of the CRLB’s derived
in Eqs. (12) and (13) have been compared to the
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Fig. 1. CRLB of a1 and estimated MSE of the MLE of a1 = 0:8
for p = 1 and � = 1000.

20 40 60 80 100 120 140 160
−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

N

−1
0L

og
(M

S
E

),
 −

10
Lo

g(
C

R
LB

)

MLE(λ)
CRLB(λ)

Fig. 2. CRLB of � and estimated MSE of the MLE of � = 1000
for p = 1 and a1 = 0:8.

MSE’s of the parameter MLE’s. For this purpose,
1000 independent realizations of the signal (5) with
p=1, a1 =0:8, �=1000 have been generated for dif-
ferent values of N . The parameter MLE’s have been
determined for each realization and the corresponding
MSE’s have been computed. A comparison between
the estimated MSE’s and the CRLB’s is depicted in
Figs. 1 and 2. These >gures suggest the following
comments:
• for large values of N , a perfect adequacy between
(12), (13) and the MSE’s is observed: expressions

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

σ
2
e

ρ(
a 

 )

a
1
= 0.8

a
1
= 0.6

a
1
=0.6

a
1
=0.8

1

Fig. 3. Comparison between the CRLB of a1 for the CGARP and
the GARP.

(12), (13) are a good approximation for both the
parameter CRLB’s and the estimate MSE’s,

• for small values of N , the “loss of eGciency” of the
MLE and the unveri>ed asymptotic assumption for
CRLB’s result in a increasing diNerence between
the two curves,

• the validity domain for expressions (12), (13) is
approximately N¿ 40, which is in agreement with
the results obtained in [7].
Next simulations compare the CRLB’s for the

CGARP parameters corresponding to model (5) with
the CRLB’s for a standard unconstraint Gaussian AR
Process (GARP) with mean �, AR parameter vector
a and driving noise variance �2e . The later are de-
noted CRLBu(	), where u stands for unconstraint and
	 = (�; �2e ; a). The unconstraint Fisher Information
Matrix for 	 is block diagonal and does not depend
of �. Consequently, the asymptotic CRLB’s of (�2e ; a)
are given by the >rst terms of (45) and the asymptotic
CRLB of � is

CRLBu(�) =
�2e

N(
∑p

k=0 ak)
2
: (14)

The CRLB’s are compared for a >rst order model by
means of the following ratios:

"(a1) =
CRLB(a1)
CRLBu(a1)

; "(�) =
CRLB(�)
CRLBu(�)

: (15)

Figs. 3 and 4 represent "(a1) and "(�) for diNer-
ent values of a1. The bounds corresponding to the
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CGARP parameters are functions of �, contrarily to
GARP’s parameters. For this reason, the results are
plotted as functions of �2e . This choice guarantees that
"(a1) and "(�) are computed for two processes having
the same variance. The results suggest the following
remarks:
• The asymptotic CRLB’s are lower for the CGARP’s
than for the GARP’s, since "(a1) and "(�) are¡ 1.
This result can be easily generalized for the regres-
sion coeGcients noticing that the >rst term of (13)
is the asymptotic CRLB of the GARP coeGcients
and the second a positive de>nite matrix.

• When a21 tends to 1, the variances of the CGARP’s
and GARP’s tend to +∞. Consequently, CRLB(a1)
and CRLBu(a1) decrease to 0. Fig. 3 reveals
that in this case CRLB(a1) decreases faster than
CRLBu(a1).

• Fig. 4 shows that the limit of "(�) when �2e
tends to +∞ is not a function of a1, contrarily to
"(a1).
These results prove the better identi>ability of

CGARP’s with respect to unconstraint GARP’s (spe-
cially for the regression coeGcients). Indeed, it is
well known that the MLE is asymptotically eGcient.
In other words, the variances of ML estimates are
close to the corresponding CRLB’s for large number
of samples. Consequently, the qualitative behavior of
CRLB’s for CGARP’s and GARP’s is similar to the
qualitative behavior of CGARP and GARP parameter
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Fig. 5. CRLB of � for the >rst order model (N = 1000).

estimates. Regarding the detection algorithm, the per-
formance of the GLRD is closely related to the vari-
ance of the estimated value of �1, which is smaller for
the CGARP model than for the GARP model. Conse-
quently, the GLRD based on CGARP modeling has to
be preferred to the GLRD based on GARP modeling.
Finally, Fig. 5 depicts the behavior of CRLB(�)

as a function of a1 for diNerent values of �. The ob-
jective is to evaluate the achievable precision on the
star .ux estimation. The parameters of the simula-
tion have been computed from Eddington speci>ca-
tions [6]: a sampling time of 30 s, a collecting area
of 55 cm2, a bandwidth of 3250 UA, an optical trans-
mission of 0:923 and a detector quantum eGciency of
0:84. The diNerent star magnitudes (degrees of bright-
ness) used in the simulation are Mv =8; 10; 12 and 14
and the observation time has been chosen equal to 8.3
hours (N = 1000). These values correspond to a .ux
of � = 22 × 105, 35 × 104, 5:6 × 104 and 8:8 × 103.
Fig. 5 shows that CRLB(�) increases when � increases
and when a1 decreases. Eq. (14) proves that this last
property is also veri>ed by the GARP’s.

4. Abrupt change detection

This section is devoted to the major application of
the model under scope: the detection of a decrease
in the photometric .ux. In the search for terrestrial
planets by occultation this photometric .ux variation



results from the decrease of the star diNracted intensity
during the transit of a planet. This can be modeled
using the notations of Section 2 as AC (at instant r)
in the parameter �:

∀n∈ S0 = {1; : : : ; r} �= �0;

∀n∈ S1 = {r + 1; : : : ; N} �= �1 (¡�0):
(16)

The planet detection problem can then be formulated
as the following AC detection problem:

H0 : S1 = ∅ (no jump);

H1 : S1 �= ∅ (jump): (17)

In the case of i.i.d. Poisson distributed data xn, the
NPD for problem (17) can be easily derived and
yields:

H0 rejected if
1

N − r

N∑
n=r+1

xn ¡': (18)

The problem is obviously more complicated when
the observations xn are correlated. The next section
derives the NPD for problem (17), when xn is the
CGARP de>ned in (5).
AC detection and estimation for AR processes have

been studied for long time (see [3,14] and references
therein for an overview). The new contribution here is
the development of a detection scheme in the particu-
lar case where the jumps occurs on the mean and vari-
ance of a CGARP. The study is restricted to oN-line
change point detection algorithm [3]. A similar prob-
lem was studied in [21], for nonzero mean AR pro-
cesses multiplied by a sigmoidal function modeling a
jump. However, even if this model represents a jump
in the mean and the power of an AR process, it can
be easily checked that it cannot handle the case where
mean and variance are equal. This constraint, as it
will be shown below, simpli>es substantially the test
statistic.

4.1. The Neyman–Pearson detector

After dropping the constant terms, the log-likelihood
function of {xp+1; : : : ; xN} conditioned on {x1; : : : ; xp}

under hypothesis H1 can be written:

L(X |H1)

=− (N − p) log �2e(a; 1)

− (r − p) log �0 − (N − r) log �1

− 1
�2e(a; 1)


 1
�0

r∑
n=p+1

e2n;0 +
1
�1

N∑
n=r+1

e2n;1


 ;

(19)

where

en; i =
p∑

k=0

akxn−k − �i

( p∑
k=0

ak

)
: (20)

The log likelihood function under hypothesis H0 is
readily obtained from (19). After dropping the con-
stant terms, we obtain:

L(X |H0) =−(N − p) log �2e(a; 1)− (N − p) log �0

− 1
�2e(a; 1)�0

N∑
n=p+1

e2n;0: (21)

Using the hypothesis �1¡�0, the NPD reduces to:

T =
1

N − r

N∑
n=r+1

( p∑
k=0

akxn−k

)2
H0

?
H1

' (22)

which suggests the following comments:
• the Neyman Pearson test is a uniformly most pow-
erful test, since the test statistic T does not depend
on �0 and �1,

• in the constraint i.i.d. case (ak = 0, ∀k ¿ 0), T re-
duces to the estimated power of xn, whereas in the
unconstraint i.i.d. Poisson case, T is the estimated
mean (18).
When a jump occurs independently on the mean

and the variance of the process as in [21], the test
statistic T is the diNerence between two positive de>-
nite quadratic forms which is generally inde>nite. The
exact distribution of T is then very diGcult to study
and has been approximated by a Gaussian distribution
in [21]. In this paper, because of the constraint (8),
T reduces to a single positive de>nite quadratic form
whose distribution can be determined under hypoth-
esis H0 and H1: under hypothesis Hi, T is the sum
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Fig. 6. ROC curves for the NPD as a function of V�0=�0 for a
>xed value of �0 (�0 =35×104; N − r=1000). Continuous line:
p = 1, a1 = 0:2. Dashed line: p = 2, a1 = 0:2, a2 = 0:05.

of the square of N − r independent Gaussian random
variables with:
• mean �i(

∑p
k=0 ak)=

√
N − r,

• variance �2e(a; �i)=(N − r).
Consequently, (N − r)T=�2e(a; �i) is distributed as a
noncentral *2 distribution with N − r degrees of free-
dom and noncentrality parameter:

 i = (N − r)
�2i (
∑p

k=0 ak)
2

�2e(a; �i)

= (N − r)
�i(
∑p

k=0 ak)
2

�2e(a; 1)
: (23)

The pdf of T can be expressed as

pT (t|Hi) =
N − r
�2e(a; �i)

fi

(
N − r
�2e(a; �i)

− t
)
; (24)

where fi(t) is a mixture of central *2 pdf’s:

fi(t) =
1
2
(t= i)(N−r−2)=4I(N−r−2)=2(

√
 it)e−( i+t)=2;

t¿ 0; (25)

and I,(x) is the modi>ed Bessel function of the >rst
kind of order , [10].
Eq. (24) allows us to plot ROC curves, in order to

evaluate the NPD performance and the in.uence of
the various parameters. Figs. 6 and 7 show the ROC
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Fig. 8. ROC curves for the NPD as a function of a1 (p = 1,
a1 = 0:2, N − r = 1000, �0 = 5:6× 104, V�0=�0 = 10−4).

curves computed for a transit of an earth-like planet
in front of a magnitude 10 star, as a function of the
ratio V�0=�0 where V�0 = �0 − �1 and �0. As can
be expected, the NPD performance increases when
V�0=�0 and �0 increase. These >gures also show that
the qualitative behavior of the NPD is very similar
for a >rst order CGARP (p= 1, continuous line) and
an higher-order CGARP (p = 2, dashed line). Based
on these comments, next simulations have been car-
ried out for >rst order CGARP’s for simplicity. Fig. 8



studies the eNect of the signal correlation on the detec-
tion performance. The detector performance increases
with the signal correlation, as it could be predicted.

4.2. Generalized likelihood ratio detector

The optimal NPD provides a reference to which
suboptimal detectors can be compared. However, it
requires a priori knowledge of the abrupt change pa-
rameters �1 and r (the parameters ak , k = 1; : : : ; p
and �0 are assumed to be known). The GLRD has re-
ceived much attention in practical applications, where
the abrupt change parameters are unknown [2,12]. The
GLRD is the ratio of the supremum of the likelihood
function with respect to the unknown parameters un-
der both hypothesis. The resulting likelihood ratio is
compared to a suitable threshold which depends on
the Probability of False Alarm (PFA).
The GLRD requires the computation of the MLE’s

of �1 and r. When r is known, the MLE of �1, denoted
�̂1(r), is de>ned as in Section 3.1 by the positive root
of( p∑

k=0

ak

)2
�21 + �2e(a; 1)�1

− 1
N − r

N∑
n=r+1

( p∑
k=0

akxn−k

)2
= 0: (26)

In order to obtain theMLE of r, the expression of �̂1(r)
obtained from (26) is replaced in (19) and the resulting
criterion is evaluated for r ∈{p+ 1; : : : ; N − 1}. The
global maximizer of this criterion de>nes the MLE of
r denoted r̂ and the MLE of �1 is �̂1(r̂).
The GLRD statistics is then obtained by replacing

r and �1 in L(X |H1) − L(X |H0) by their MLE’s.
A closed form expression of the GLRD statistic dis-
tribution is clearly diGcult to derive. Consequently,
ROC curves have been computed using Monte Carlo
simulations.
Fig. 9 shows the ROC curve of the GLRD for p=1,

a1 = 0:2, N =6000, r=3000, �0 = 14× 106 (Mv=6)
and V�0=�0 = 1:5 × 10−2. Note that this >gure has
been obtained from 100 independent signal realiza-
tions. A comparison between Figs. 6 and 9 shows
the well-known loss of performance of the GLRD
compared to the NPD. However, the GLRD shows
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Fig. 9. ROC curves for the GLRD. p=1, N − r=6000, r=3000,
�0 = 14× 106 and V�0=�0 = 1:5× 10−2.

satisfactory performance depending on the signal cor-
relation which is measured here by the value of a1.

It is important to note that the parameters �0 and
ak , k = 1; : : : ; p, have been assumed to be known in
this section. These parameters are obviously unknown
in practical applications and have to be estimated.
Their estimation relies on a calibration procedure that
is performed independently of the detection using the
method described in Section 3.1. However, it is inter-
esting to note that the MLE’s of parameters �0 and ak ,
k = 1; : : : ; p could also be included in the likelihood
ratio. This might signi>cantly modify the GLRD per-
formance.

5. Conclusions

This paper studied a new model denoted CGARP
(for Constraint Gaussian Autoregressive Process)
model for the analysis of high .ux photometric sig-
nal. The estimation of CGARP parameters using
the maximum likelihood method was addressed. A
comparison between the parameter estimates and the
corresponding Cram2er Rao lower bounds was pro-
vided. CGARP modeling was shown to be a useful
tool for the detection of extrasolar planets by occulta-
tion. Indeed, the extrasolar planet detection problem
was formulated as the detection of abrupt changes
in the CGARP parameters. The Neyman–Pearson
detector for this detection problem with known



parameters was studied. Closed form expressions of
the Neyman–Pearson detector ROC’s were derived.
The generalized likelihood ratio detector was then
studied for practical applications in which the pa-
rameters are unknown. ROC’s for the generalized
likelihood ratio detector were computed by using
Monte Carlo simulations and provided the detection
performance.
The abrupt change detection problem addressed in

this paper assumed that the .ux variations due to the
presence of a planet were observed on the last data
samples. Within the framework of extrasolar planet
detection, this problem occurs when photometric sig-
nals are recorded during a short time interval. When
signals are recorded during a longer time interval,
the photometrix .ux decreases when the planet is in
front of the star and takes its original value when the
planet has moved. These .ux variations can even be
observed during successive occultations. It is interest-
ing to note that the proposed detection algorithm can
be extended to this situation, by de>ning an appro-
priate set of indices S1 in the AC detection problem
(16). In this case, the NPD test statistics T can be
obtained from Eq. (22), where the summation over
n is replaced by n∈ S1 and N − r is replaced by the
cardinality of S1. Consequently, the pdf of T and the
ROC curves can be computed very similarly to those
obtained in this paper. Of course, the GLRD perfor-
mance increases when the number of samples under
hypothesis H1 increases. Consequently, the detection
performance should improves, when successive planet
occultations can be observed. This generalization is
currently under investigation.
Finally, the AC model used in this paper does not

take into account the ingress=egress of the planet on the
star and the limb-darkening. These eNects can be easily
incorporated in the formalism proposed in the article at
the price of an increased number of unknown param-
eters. However, it is worthy to note that they will only
have a little eNect on the detection performance [22].

Appendix Asymptotic normality of Y


1. Mean and covariance of X

The >rst and second-order statistics of X
can be easily computed using conditional

expectations:

E[xn] = E[E[xn=�n]] = E[�n] = �; (A.1)

cov[xi; xj] = E[E[xixj|�i; �j]]− �2 (A.2)

=

{
cov[�i; �j] if i �= j;

�+ var[�i] if i = j:
(A.3)

2. Asymptotic normality of Y


In order to prove the asymptotic normality of Y�,
we study its second characteristic function denoted
.Y�(�)= log/Y�(�), where /Y�(�)=E[ej�

tY� ] and
� = (!1; : : : ; !N )t. Denote ’� = V (D +

√
�IN )−1�

where IN is theN×N identity matrix. The components
of the vector ’� are

’k(�) =
N∑
q=1

vkq!q

dq +
√
�

(A.4)

using obvious notations. Note that assumption A2 and
the orthogonality of V implies that

’k(�) = O
(

1√
�

)
: (A.5)

A straightforward computation yields

.Y�(�) =−j�
N∑
k=1

’k + log/X (’�): (A.6)

Using conditional expectations, the >rst characteristic
function of X can be written as follows:

/X (�) = E[E[ej�
tX |�]] = E

[
N∏
k=1

e(e
j!k−1)�k

]

(A.7)

= E[e
∑N

k=1 �k (e
j!k−1)]: (A.8)

Consequently, by denoting W�(S) = E[e�
tS ] the

moment generating function of �, Eq. (A.8)
reads:

/X (’�) = W�(S); (A.9)

with S = (s1; : : : ; sN )t and sk = ej’k (�) − 1.



Assuming that � satis>es some regularity conditions
(see [15, p. 198]) and denoting �k(�) the kth order
cumulant of (��1 ; : : : ; ��k ) where � = (�1; : : : ; �k), the
second-moment generating function of � can be ex-
panded as

logW�(S) = �
N∑

�1=1

s�1 +
1
2

N∑
�1 ;�2=1

�2(�1; �2)s�1s�2

+
1
3!

N∑
�1 ;�2 ;�3=1

�3(�1; �2; �3)s�1s�2s�3 + · · ·

(A.10)

for �¿" ("¿ 0 is de>ned such that the series in
Eq. (A.10) represents a function which is regular for
�¿" [15, p. 198]). The second characteristic func-
tion of Y� can then be computed by replacing (A.10)
in (A.6):

.Y�(�) =−j�
N∑

�1=1

’�1 (�) + �
N∑

�1=1

(ej’�1 (�) − 1)

+
1
2

N∑
�1 ;�2=1

�2(�1; �2)(ej’�1 (�) − 1)

×(ej’�2 (�) − 1) + · · · : (A.11)

Consequently, by substituting ej’k (�) by its power se-
ries expansion and using Eq. (A.5) and the hypothesis
�k(�) = o(�k=2), k¿ 2, we obtain:

.Y�(�) =−�
2

N∑
�1=1

’�1 (�)
2 + o(1): (A.12)

Finally, the limit oN.Y�(�) can be computed noticing
that the sum in the >rst term is the norm of ’�:

lim
�→+∞

.Y�(�) = lim
�→+∞

− �
2

N∑
q=1

!2
q

(dq +
√
�)2

=−1
2

N∑
q=1

!2
q: (A.13)

Eq. (A.13) shows that the second characteristic func-
tion of Y� converges to the second characteristic
function of the multivariate Gaussian distribution

N(0; IN ) when � → ∞. Consequently, Y� converges
in distribution to the multivariate Gaussian distribution
N(0; IN ).

Appendix B. Asymptotic CRLB’s for the CGARP
parameters

The unknown parameter vector for the CGARP de-
>ned by (5) is � = (�; a). Since there is a one-to-one
transformation between �=(�; a) and 	=(�2e ; a), the
CRLB’s for � and 	 are linked by the following rela-
tion [13]:

CRLB(�) =
@g(	)
@	

CRLB(	)
@g(	)
@	

t

; (B.1)

where @g(	)=@	 is the Hessian of the transformation:

@g(	)
@	

=
(
�=�2e ∇a(�)t

0 Ip

)
: (B.2)

In this expression �=�2e = 1=�2e(a; 1) is the partial
derivation of � with respect to �2e (according to (8))
and ∇a(�) is the gradient of � with respect to a.

B.1. Asymptotic CRLB for 	 = (�2e ; a)

The coeGcients of the Fisher Information Matrix
(FIM) for a Gaussian process are the sum of a term that
only depends on the covariances of the process and a
term that takes into account its mean [19]. The >rst
term of the asymptotic FIM for 	 is the well-known
asymptotic form given for example in [7]. The mean
of the process being �u; u=(1; : : : ; 1)t, the coeGcients
of the second term are(

@�
@8k

ut
)
C−1
N

(
@�
@8l
u
)
= utC−1

N u
@�
@8k

@�
@8l

; (B.3)

where CN is the order N signal covariance matrix.
Consequently:

FIM(	) =N
(
(2�4e)

−1 0
0 (�2e)

−1Cp

)

+ utC−1
N u∇	(�)∇	(�)t ; (B.4)

where

∇	(�)t =
(
�
�2e
;∇a(�)t

)
: (B.5)



The inversion of (B.4) using the inversion lemma and
products of bloc matrices yields:

CRLB(	) =
�2e
N

(
2�2e 0
0 C−1

p

)

−�2e
N
 N

(
2�

C−1
p ∇a(�)

)
(2� ∇a(�)tC−1

p );

(B.6)

with

 N =
�2eu

tC−1
N u

N

(
1 +

�2e
N
utC−1

N

×u
(
2�2

�2e
+∇a(�)tC−1

p ∇a(�)
))−1

: (B.7)

The inverse of CN is computed using the Gohberg–
Semencul formula [19] which yields:

utC−1
N u=

1
�2e


(N − p)

( p∑
k=0

ak

)2

+
p∑

q=1

( p−q∑
k=0

ak

)2
−

p∑
q=1


 p∑

k=q

ak




2

 :

(B.8)

Hence

lim
N→+∞

utC−1
N u
N

=
1
�2e

( p∑
k=0

ak

)2
: (B.9)

Replacing this expression in (B.7) yields:

 = lim
N→+∞

 N (B.10)

=

( p∑
k=0

ak

)21 +

( p∑
k=0

ak

)2

×
(
2�2

�2e
+∇a(�)tC−1

p ∇a(�)
))−1

: (B.11)

B.2. Asymptotic CRLB for � = (�; a)

The substitution of Eqs. (B.2), (B.6) in (B.1) leads
to Eqs. (13), (12). Note that ∇a(�) can be computed

from (8) as follows:

@�
@ak

= �2e
@(�2e(a; 1))

−1

@ak
= �2e

@et1(A1 + A2)−1e1
@ak

(B.12)

=−�2eet1(A1 + A2)−1 @(A1 + A2)
@ak

×(A1 + A2)−1e1: (B.13)
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